
MobiHoc 2023 Keynote

A Journey from
Wireless Networks to Distributed Optimization

Nitin Vaidya
Georgetown University

Net-X

Multi-
Channel

Mesh

Theory to
Practice

(2006)

Multi-channel
protocol

Channel Abstraction Module

IP Stack

Interface
Device Driver

User
Applications

ARP

Interface
Device Driver

OS improvements
Software architecture

Capacity
bounds

channels

ca
pa

ci
ty

Net-X
testbed

CSL

A

B

C

D

E F

Fixed

Switchable

Insights on
protocol design

Linux box

More Recently …

From there to here …

g Through a few short-term, somewhat accidental,
interactions

g I will discuss one example

5

Takeaway …

Picture from Wikipedia

Moral of the Story #1

Natural, unanswered questions at the intersection of
previously explored problem spaces

Moral of the Story #2

Academia lets you work on things for which
you may have no competence

 Make the best use of the freedom

A Journey from
Wireless Networks to Distributed Optimization

 Consensus

Consensus, consensus, everywhere …

Consensus, consensus …

g Commit or abort ?

g Network of databases …

 agree on a common action

Consensus, consensus …

g What is the temperature?

g Network of sensors …

 agree on current temperature

Consensus, consensus …

g Should we trust ?

g Web of trust …

 agree whether is good or evil

13

Consensus, consensus …

g Which way?

Consensus

“Local” Algorithms

c

b

a

Consensus … Local Averaging

Initially, state = input

16

Consensus … Local Averaging

1

2

6

Initially, state = input

c

b

a

Consensus … Local Averaging

Initially, state = input

a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3

Consensus … Local Averaging

a = (1+6)/2 = 7/2

b = (1+2)/2 = 3/2

c = (1+2+6)/3 = 3
1

2

6

1/ 2 0 1/ 2
0 1 / 2 1 / 2
1 / 3 1 / 3 1 / 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

M

c

b

a
a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3

old valuesnew values

1/ 2 0 1/ 2
0 1 / 2 1 / 2
1 / 3 1 / 3 1 / 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= = M
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

M

c

b

a
a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3

old valuesnew values

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= M M
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after 2 iterations

= M2
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after 1 iteration

c

b

a
a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3

old valuesnew values

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after k iterations

c

b

a
a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after k iterations

.285 .285 .43

.285 .285 .43

.285 .285 .43

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c

b

a
a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3

k à ∞

initialfinal

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

after k iterations

.285 .285 .43

.285 .285 .43

.285 .285 .43

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c

b

a
a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3

k à ∞

Consensus !
initialfinal

Graph Condition for Consensus

g At least one node must be able to influence all nodes

c

b

a

c

b

a

1974

Change of Weights

c

b

a
a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2

3 / 4 0 1/ 4
0 3 / 4 1 / 4
1 / 4 1 / 4 1 / 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= = M
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

M

c

b

a
a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1/ 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

è
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c

b

a
a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2

after k iterations k à ∞

initialfinal

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= Mk
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1/ 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3
1 / 3 1 / 3 1 / 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

è
a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c

b

a
a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2

Average
Consensus

initialfinal

after k iterations k à ∞

Graph Condition for Average Consensus

g Every node must be able to influence all others

– Strong connectivity

c

b

a

c

b

a

Lossy Wireless Links

(2012)

Average consensus over
 lossy wireless links?c

b

a

Photo courtesy Alejandro Dominguez-Garcia

Implementation

g Each node “transfers mass” to neighbors via messages

g Next state = Total received mass

35

c

b

a

c/2

c/4

c = a/4+b/4+c/2
a = 3a/4+ c/4

b = 3b/4+ c/4

c/4

Implementation

g Each node “transfers mass” to neighbors via messages

g Next state = Total received mass

c

b

a

c/2

c/4

c/4
a/4

b/4

c = a/4+b/4+c/2

3b/4

3a/4 a = 3a/4+ c/4

b = 3b/4+ c/4

Conservation of Mass

g a+b+c constant after each iteration

c

b

a

c/2

c/4

c/4
a/4

b/4

c = a/4+b/4+c/2

3b/4

3a/4 a = 3a/4+ c/4

b = 3b/4+ c/4

Wireless Transmissions Lossy

a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2
c

b

a

c/4

X
Xc/4

Conservation of Mass

3 / 4 0 1/ 4
0 3 / 4 0
1 / 4 1 / 4 1 / 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

a
b
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

X

a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2
c

b

a

c/4

X
Xc/4

Average Consensus over Lossy Links

g Sender and receiver views potentially inconsistent
 … message delivered or not?

g Average consensus fails

a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2
c

b

a

c/4

X
Xc/4

Average Consensus over Lossy Links
(2012)

g Solution …

 a different algorithm that can
 tolerate lossy links
 without explicit knowledge of lost messages

41

Long-term benefit for me …

g Exposure to a new class of problems

g New mathematical tools for analyzing algorithms

 è Impacted a large fraction of my work since

1980: Pease, Shostak, Lamport
 Byzantine consensus

1986: Dolev et al.
Approximate

Byzantine consensus

Tsitsiklis 1984
Decentralized control

Hajnal 1958
Weak ergodicity
of
nonhomogeneous
Markov chains

Distributed
Control

Jadbabaei 2003
Flocking problem

Distributed
Computing

1983: Fischer, Lynch, Paterson
 Asynchronous consensus

impossibility result

DeGroot 1974
Reaching a consensus

Consensus

Distributed Computing

g Faults

g Scalar inputs

g Undirected graphs,
often complete

g Global algorithms

g Exact consensus in
synchronous systems

Consensus

1980

Distributed Computing

g Faults

g Scalar inputs

g Undirected graphs,
often complete

g Global algorithms

g Exact consensus in
synchronous systems

Consensus

Global Algorithm

Exact Consensus

Distributed Control

g No faults

g Vector inputs

g Incomplete
(directed) graphs

g Local algorithms

g Approximate consensus

𝑓!

𝑓"
𝑓#

𝑓$

𝑓%

Consensus

Distributed Computing

g Faults

g Scalar inputs

g Undirected graphs,
often complete

g Global algorithms

g Exact consensus in
synchronous systems

Many problems should have been solved
decades ago … but were not

g Borrowing assumptions from the other domain

g New network models

49

g Local algorithms
iAverage consensus over lossy links
iByzantine consensus over point-to-point channels
iByzantine consensus over broadcast channels

g Global algorithm
iByzantine consensus over directed graphs
iByzantine consensus over broadcast channels

 and more …

Many problems should have been solved
decades ago … but were not

Fault-Tolerant Consensus

with Local Algorithms

c

b

a

Local Averaging

Initially, state = input

52

a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3

Graph Condition for Consensus

g At least one node must be able to influence all nodes

c

b

a

c

b

a

Byzantine Fault Model

g No constraint
on misbehavior
of faulty agents

b

a

Local Averaging

Initially, state = input

a = (a+c)/2

b = (b+c)/2
c = 2Byzantine

node
C

c =1

b

a

Local Averaging

Initially, state = input

a = (a+c)/2

b = (b+c)/2
c = 2Byzantine

node
C

c =1

No consensus !

Graph Condition for Consensus
with Byzantine faults

g Goal is to achieve consensus among
the non-faulty agents

57

Graph Condition for Consensus
with Byzantine faults

g At least one node must be able to influence all nodes

c

b

a

c

b

a

Insufficient with faults

b

a

c = 2
Byzantine

node
C c =1

Graph condition for local Byzantine consensus
algorithms is now known (2012)

Fault-Tolerant Consensus

over Broadcast Channels

Wireless Broadcast

g Wireless transmissions (potentially) received by all
neighbors of the sender

g Does this benefit Byzantine consensus?

b

a

c = 2

Byzantine
node

C

Misbehavior can be detected

c =1

Wireless Broadcast

Graph Condition for Byzantine Consensus
Global Algorithms

g Point-to-point networks (1982)

 2f + 1 connectivity
 3f + 1 nodes

f faulty
nodes

Graph Condition for Byzantine Consensus
Global Algorithms

g Point-to-point networks (1982)

 2f + 1 connectivity
 3f + 1 nodes

g Broadcast channels (2018)

 3f/2 + 1 connectivity
 2f node degree

f faulty
nodes

Fault-Tolerant

Distributed Optimization

Averaging

g Input of node i = 𝑎!

g Compute average of 𝑎!"s

S

a1

a2

a1

a2

S is a trusted server

Fault-Tolerant Averaging

g What to do if some nodes send bogus values?

S

a1

a2

a1

z

Byzantine

Averaging è Optimization

g Input of node i = 𝑎!

g Average of 𝑎!"s =

 where

of user data for training models. While such machine learning applications can improve user experience, they
also threaten the user’s privacy [26]. Motivated by these examples in the context of distributed optimization,
we ask the following question:

Can agents collaboratively learn underlying model parameters
without leaking private information?

The paper presents two privacy-preserving algorithms for distributed optimization, which can be used
for improving privacy in distributed machine learning. Although our work is motivated by machine learn-
ing applications, the proposed solutions have applications wherever distributed optimization formulation is
adopted.

We consider a distributed optimization problem involving S agents, each of whom has access to a local
convex objective function fi(x). In the context of machine learning for classification, the local objective
function may be a loss function that measures the accuracy of classification on the training dataset using a
given choice of model parameters – here x denotes the vector of model parameters. As an example, in the
context of classification task, fi(x) may denote the logistic loss function for the data items stored at agent i
– the loss depends on the parameters of the classification hypothesis, and the goal is to identify parameters
that minimize the loss over all the agents (i.e., over data stored at all the agents). In Section 6.2, we will
elaborate on the application of our work to machine learning.

Problem 1. The set of S agents need to distributedly compute the optimum of the global objective function,
which consists of the sum of the local objective functions. That is,

Distributedly find x
⇤

2 argmin
x2X

SX

i=1

fi(x) (1)

where X is the set that contains all feasible values for parameter vector x.

The local objective function fi(x) at each agent i is assumed to be a convex function. Additional
assumptions regarding the objective functions and the communication network interconnecting the agents
are detailed later.

1.1 Contributions

In this paper we present three algorithms for privacy-preserving distributed optimization:
• Randomized State Sharing (RSS, Algorithm 1) :

– Our privacy-preserving algorithm uses randomization. However, unlike di↵erential privacy schemes, our
strategy preserves optimality by introducing correlation between the randomness added to local model
parameter estimates.

– We prove asymptotic convergence in a deterministic setting (every execution) and argue its privacy
using the privacy analysis developed for a special case.

• Function Sharing (FS, Algorithm 4):

– We show that Function Sharing strategy (Algorithm 4, presented in [1]) simulates a special case of RSS
algorithm. If the random perturbations added to local iterates in RSS algorithm are state dependent,
then the RSS algorithm imitates FS algorithm.

– The deterministic convergence is shown to easily follow from the convergence analysis for RSS Algorithm.

• Randomized State Sharing - Locally Balanced (RSS-LB, Algorithm 3):

– RSS-LB is a distributed learning algorithm that uses locally balanced randomization to perturb the
parameter estimates (perturbations add to zero at each node). Unlike RSS, agents do not share the
same perturbed estimate with neighbors. Neighbors receive dissimilar estimates from agent j.

– We show deterministic convergence of RSS-LB.

2

i

𝑓! 𝑥 = (𝑥 − 𝑎!)"

Many Applications

 argmin ∑𝑓! 𝑥 	

Rendezvous

70

9/5/19, 8(20 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8995814,-77.0679478,15z

Map data ©2019 Google 1000 ft

Rendezvous

71

9/5/19, 8(20 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8995814,-77.0679478,15z

Map data ©2019 Google 1000 ft

𝑓# 𝑥 𝑓$ 𝑥

𝑓% 𝑥

X

 argmin ∑𝑓! 𝑥 	

Machine Learning

g Data is distributed
across different
agents

Agent 1 Agent 2

Agent 3 Agent 4

g Data is distributed
across different è Collaborate to learn
agents

Minimize
global loss

!𝑓! 𝑥

 𝑓% 𝑥 𝑓& 𝑥

𝑓$ 𝑥𝑓# 𝑥

Machine Learning

 argmin ∑𝑓! 𝑥 	

Gradient Method

x2
x3

𝑓 𝑥 =)𝑓! 𝑥 x0

x1

Gradient Method

𝑓 𝑥 =)𝑓! 𝑥

x2
x3

x0

x1

𝑥"#$ ⟵ 𝑥" − 𝜆!
!

𝛻𝑓! 𝑥"

Gradient Method

𝑓 𝑥 =)𝑓! 𝑥

𝑥"#$ ⟵ 𝑥" − 𝜆!
!

𝛻𝑓! 𝑥"

x2
x3

x0

x1

Distributed Optimization

g Each agent 𝑖 knows own cost function 𝑓! 𝑥
and it can compute 𝛻𝑓! 𝑥

g Need to cooperate to minimize ∑𝑓! 𝑥

 è Distributed algorithms

Architectures

3

2
4

5

1

1 2 3

Server

Parameter Server

g Server maintains estimate 𝑥' 𝑥#
Server

g Server maintains estimate 𝑥'

In each iteration

g Agent i
iReceives 𝑥' from server

Server

𝑥' 𝑥'

Parameter Server

𝑥#

g Server maintains estimate 𝑥'

In each iteration

g Agent i
iReceives 𝑥' from server
iUploads gradient 𝛻𝑓!(𝑥')

Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥')

Parameter Server

𝑥#

Parameter Server

g Server maintains estimate 𝑥'

In each iteration

g Agent i
iReceives 𝑥' from server
iUploads gradient 𝛻𝑓!(𝑥')

g Server updates estimate

	 𝑥"#$	⟵ 	𝑥" 	− 𝜆	!𝛻𝑓! 𝑥"

Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥')

𝑥#

Many Variations

… stochastic optimization
… asynchronous
… gradient compression
… acceleration
… shared memory

Server

Adversarial Agents

g Fault-tolerant
distributed optimization

 How to optimize
 if agents inject
 bogus information?

f1(x) + f2(x) + f3(x)

Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥')

Fault-Tolerant Optimization

2015 …

Rendezvous

89

9/5/19, 8(20 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8995814,-77.0679478,15z

Map data ©2019 Google 1000 ft

X

𝑓# 𝑥 𝑓$ 𝑥

𝑓% 𝑥

Rendezvous

90

9/5/19, 8(20 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8995814,-77.0679478,15z

Map data ©2019 Google 1000 ft

X

𝑓# 𝑥 𝑓$ 𝑥

𝑓% 𝑥

Minimize global
loss

/𝑓! 𝑥

𝑓% 𝑥 𝑓& 𝑥

𝑓$ 𝑥𝑓# 𝑥

Machine Learning

Faulty agent can
adversely affect
model parameters

Parameter Server

g Server maintains estimate 𝑥'

In each iteration

g Agent i
iDownloads 𝑥' from server
iUploads gradient 𝛻𝑓!(𝑥')

g Server updates estimate

	 𝑥"#$	⟵ 	𝑥" 	− 𝜆	!𝛻𝑓! 𝑥"

𝑥#
Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥')

Parameter Server

g Server maintains estimate 𝑥'

In each iteration

g Agent i
iDownloads 𝑥' from server
iUploads gradient 𝛻𝑓!(𝑥')

g Server updates estimate

𝑥"#$	⟵ 	𝑥" 	− 𝜆	Filtered−Gradient

𝑥#
Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥')

2016

But what do we mean by fault-tolerance?

Fault-Tolerance

g Optimize over only good agents … set G

Fault-Tolerance

g Optimize over only good agents … set G

argmin)
!∈%

𝑓! 𝑥

argmin)
!∈%

𝑓! 𝑥
Is this achievable?

 It Depends

argmin)
!∈%

𝑓! 𝑥
Is this achievable?

 It Depends

argmin)
!∈%

𝑓! 𝑥
Is this achievable?

Independent
functions

“Enough”
redundancy

Independent
functions

“Enough”
redundancy

Is this achievable?argmin)
!∈%

𝑓! 𝑥
Is this achievable?

Approximate

2016

argmin∑!∈' 𝑓! 𝑥 = argmin∑!∈'
$
|'|
𝑓! 𝑥

Approximation

argmin∑!∈' 𝑓! 𝑥 = argmin∑!∈'
$
|'|
𝑓! 𝑥

argmin ∑!∈# 𝛼! 	𝑓! 𝑥

Approximation

without
necessarily
knowing 𝛼!’s

Independent
functions

“Enough”
redundancy

Is this achievable?argmin)
!∈%

𝑓! 𝑥
Is this achievable?

Approximate

Independent
functions

“Enough”
redundancy

Is this achievable?argmin)
!∈%

𝑓! 𝑥
Is this achievable?

ExactApproximate

(2020)

An “Extreme” Example

Stochastic machine learning

g Agents draw samples from
identical data distribution

g Filter on stochastic gradients

Agent 1 Agent 2

Independent
functions

“Enough”
redundancy

Is this achievable?argmin)
!∈%

𝑓! 𝑥
Is this achievable?

Approximate Exact

110

(2023)

Status

g Many papers, various groups
 ... particularly fault-tolerant stochastic learning

– Various filters for gradients
– Variations on underlying assumptions

g A tutorial available from my website

g A survey to be available soon (from another group)

Picture from Wikipedia

Moral of the Story #1

Natural, unanswered questions at the intersection of
previously explored problem spaces

Moral of the Story #2

Academia lets you work on things for which
you may have no competence

 Make the best use of the freedom

Thanks!

disc.georgetown.domains

Thanks!

disc.georgetown.domains

9/3/19, 10(39 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8927011,-77.036099,18z

Map data ©2019 Google 100 ft

Independent Functions

a b c

9/3/19, 10(39 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8927011,-77.036099,18z

Map data ©2019 Google 100 ft

Independent Functions

a b c

9/3/19, 10(39 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8927011,-77.036099,18z

Map data ©2019 Google 100 ft

Independent Functions

a b c

9/3/19, 10(39 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8927011,-77.036099,18z

Map data ©2019 Google 100 ft

Independent Functions

a b c

9/3/19, 10(39 AMGoogle Maps

Page 1 of 1https://www.google.com/maps/@38.8927011,-77.036099,18z

Map data ©2019 Google 100 ft

Independent Functions

Provably impossible to compute

 argmin)
!∈%

𝑓! 𝑥

g Clip the largest 𝑡 norms to equal 𝑡 + 1th norm

121

Norm Filter

𝛻𝑓# 𝑥' = 1

𝛻𝑓$ 𝑥' = 3

𝛻𝑓% 𝑥' = 2

g Clip the largest 𝑡 norms to equal 𝑡 + 1th norm

 Filtered gradient =

Norm Filter

+ $
%
𝛻𝑓$(𝑥') 𝛻𝑓#(𝑥') +	𝛻𝑓%(𝑥')

𝛻𝑓# 𝑥' = 1

𝛻𝑓$ 𝑥' = 3

𝛻𝑓% 𝑥' = 2

g Clip the largest 𝑡 norms to equal 𝑡 + 1th norm

 Filtered gradient =

Norm Filter

𝛻𝑓# 𝑥' = 1

𝛻𝑓$ 𝑥' = 3

𝛻𝑓% 𝑥' = 2

+ $
%
𝛻𝑓$(𝑥') 𝛻𝑓#(𝑥') +	𝛻𝑓%(𝑥')

Exact optimum computed despite faulty agents

1984

An Example of Redundancy

𝑛 agents
𝑓 bad agents

g Aggregate cost of ANY 𝑛 − 2𝑓	 agents has

 argmin identical to desired argmin)
!∈%

𝑓! 𝑥

Another Approximation

g Relax the notion of “enough redundancy”

g Produce output within distance ε of “true” minimum

argmin)
!∈%

𝑓! 𝑥

Challenges

g Privacy-preserving
distributed optimization

 How to collaborate
 without revealing
 own cost function?

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥')

