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More Recently ...

Fault-Tolerance in Distributed Optimization:
The Case of Redundancy

Preserving Statistical Privacy in Distributed Optimization

Byzantine Consensus with Local Multicast
Channels



From there to here ...

® Through a few short-term, somewhat accidental,
interactions

®m | will discuss one example



Takeaway ...



Moral of the Story #1

Natural, unanswered questions at the intersection of
previously explored problem spaces

Picture from Wikipedia



Academia lets you work on things for which
you may have no competence

Make the best use of the freedom



A Journey from
Wireless Networks to Distributed Optimization

Consensus



Consensus, consensus, everywhere ...



Consensus, consensus ...

® Commit or abort ?

m Network of databases ...

agree on a common action



Consensus, consensus ...

® What is the temperature?

m Network of sensors ...

agree on current temperature



Consensus, consensus ...

® Should we trust % . ?

m Web of trust ...

agree whether % is good or evil



Consensus, consensus ...

® Which way?




Consensus

“Local” Algorithms



Consensus ... Local Averaging

Initially, state = input
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Consensus ... Local Averaging

Initially, state = input
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Consensus ... Local Averaging

Initially, state = input
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Consensus ... Local Averaging
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after 2 iterations after 1 iteration
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after k iterations
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after k iterations K> o
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Graph Condition for Consensus

m At least one node must be able to influence all nodes
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MORRIS H. DeGROOT*

1974

Reaching a Consensus

Consider a group of individuals who must act together as a team or
committee, and suppaose that each individual in the group has his own
subjective prabability distribution for the unknown value of some
parameter. A model is presented which describes haw the group might
reach agreement on a common subjective probability distribution
far the parameter by poaling their individual apinions, The pracess
leading to the cansensus is explicitly described and the cammon dis-
tribution that is reached is exalicitly determined. The model can alsa
he applied to problems of reaching a cansensus when the apinian of
each member of the group is represented simply as a paint estimate of
the parameter rather than as a probability distribution.

1. INTRODUCTION

Consider a group of % individuals who must act
together as a team or committee, and suppose that each
of these k individuals can specify his own subjective
probability distribution for the unknown value of some
parameter 8. In this article we shall present a model
which describes how the group might reach a consensus
and form a common subjective probability distribution
for 4 simply by revealing their individual distributions to
each other and pooling their opinions.
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distribution over Q for which the probability of any
measurable set A is 35, p.Fi(A). Some of the writers
previously mentioned have suggested representing the
overall apinion of the group by a probability distribution
of the form Y%_, p.F. Stone [13] has called such a
linear combination an *‘opinion pool.” The difficulty in
using an opinion pool to represent the consensus of
the group lies, of course, in choosing suitable weights
P1, -+ -, Pr. In the model that will be presented in this
article, the consensus that is reached by the group will
have the form of an opinion pool. However, the model is
new. It explicitly describes the process which leads to
the consensus and explicitly specifies the weights that
are to be used in the opinion pool.

In summary, this model is beliéved to have three
important advantages:

1. The process that it describes is intuitively sppealing.

2. Tt presents simple conditions for determining whether it is
possible for the group to reach a consensus.

3. When a consensus csn be reached, the weights to be used in
this consensus can be explicitly and simply ealculated.



Change of Weights
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after k iterations K> o
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Graph Condition for Average Consensus

®m Every node must be able to influence all others

— Strong connectivity
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Lossy Wireless Links

(2012)



Average consensus over
lossy wireless links?

Photo courtesy Alejandro Dominguez-Garcia



Implementation

®m Each node “transfers mass” to neighbors via messages

B Next state = Total received mass

b é"“’
™ b = 3b/4
C /’ LA
C/2< !
C

\/4 »'Q
T = a/4+b/4@ i
4 a =3al4
a L

35



Implementation

®m Each node “transfers mass” to neighbors via messages

B Next state = Total received mass
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Conservation of Mass

B a+b+c constant after each iteration
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Wireless Transmissions Lossy
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Consa(ation of Mass
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Average Consensus over Lossy Links

B Sender and receiver views potentially inconsistent
.. message delivered or not?

®m Average consensus fails
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Average Consensus over Lossy Links
(2012)

m Solution ...

a different algorithm that can
tolerate lossy links
without explicit knowledge of lost messages

41



Long-term benefit for me ...

B Exposure to a new class of problems

® New mathematical tools for analyzing algorithms

=» Impacted a large fraction of my work since



Consensus

Hajnal 1958

Distributed
Computing

DeGroot 1974

Reaching a consensus

1980: Pease, Shostak, Lamport

Byzantine

1983: Fischer, Lynch, Paterson

Distributed
Control

Tsitsiklis 1984
1986: Dolev et al.

Jadbabaei 2003



Consensus

Distributed Computing
® Faults
®m Scalar inputs

m Undirected graphs,
often complete

®m Global algorithms

m Exact consensus in
synchronous systems




1980

Reaching Agreement in the Presence of Faults

M. PEASE, R. SHOSTAK, AND L. LAMPORT

SRI International, Menlo Park, California

ABSTRACT. The problem addressed here concerns a set of isolated processors, some unknown subset of which
may be faulty, that communicate only by means of two-party messages. Each nonfaulty processor has a private
value of information that must be communicated to each other nonfaulty processor. Nonfaulty processors always
communicate honestly, whereas faulty processors may lie The problem is to devise an algorithm in which
processors communicate their own values and relay values received from others that allows each nonfaulty
processor to infer a value for each other processor The value inferred for a nonfaulty processor must be that
processor’s private value, and the value inferred for a faulty one must be consistent with the corresponding value
inferred by each other nonfaulty processor

It is shown that the problem 1s solvable for, and only for, n = 3m + 1, where m 1s the number of faulty
processors and n 1s the total number. It is also shown that if faulty processors can refuse to pass on information
but cannot falsely relay information, the problem is solvable for arbitrary n = m = 0. This weaker assumption
can be approximated n practice using cryptographic methods

KEY WORDS AND PHRASES., agreement, authentication, consistency, distributed executive, fault avoidance, fault
tolerance, synchronization, voting

CR CATEGORIES: 3.81.4.39. 529 530 . 6.22



Consensus

Distributed Computing
® Faults
®m Scalar inputs

m Undirected graphs,
often complete

®m Global algorithms

m Exact consensus in
synchronous systems




Algorithm 1:

Proposed algorithm for Byzantine consensus under the local G IObaI Algo I’I’[h M

in directed graphs: Steps performed by node v are shown here.

Each node v has a binary input value in {0,1} and maintains a binary ste
Initialization: -y, := input value of node v.

For each F C V such that|F| < f do Exact Consensus

Step (a):

Step (b):

Step (c):

Step (d):

Step (e):
Step (f):

end
Output ~,.

Perform directed graph decomposition on G — F'. Let S be the unique source
component (Lemma 6.1).

If ve SUT(F,S), then flood value 7, (the steps taken to achieve flooding are
described in Appendix|(A).

If v € S, for each node u € SUT'(F,S), identify a single uv-path P, that
excludes F'. Let,

Zy = {u € SUT(F,S) | v received value 0 from u along Py, in step (b)},
N, :=SUT(F,S) — Z,.

If both Z, — F and N,, — F' are non-empty, then
If Z, % N, — F,
then set A, := Z, and B, := N, — F,
else set A, := N, and B, .= Z, — F.
If v € B, and v received value § € {0,1}, in step (b), identically
along any f 4+ 1 node-disjoint A,v-paths that exclude F', then set
Yo = 0.

If v € S, then flood value ,,.

IfveV — S — F and v received value 6 € {0, 1}, in step (e), identically along
any f + 1 node-disjoint Sv-paths that exclude F, then set 7, := 4.




Consensus

Distributed Computing
® Faults
®m Scalar inputs

® Undirected graphs,
often complete

®m Global algorithms

®m Exact consensus in
synchronous systems

Distributed Control
m No faults

m Vector inputs

® |[ncomplete
(directed) graphs

®m [ocal algorithms

® Approximate consensus




Many problems should have been solved
decades ago ... but were not

® Borrowing assumptions from the other domain

® New network models

49



Many problems should have been solved
decades ago ... but were not

m |ocal algorithms

® Average consensus over lossy links
® Byzantine consensus over point-to-point channels
® Byzantine consensus over broadcast channels

®m Global algorithm
® Byzantine consensus over directed graphs
® Byzantine consensus over broadcast channels

and more ...



Fault-Tolerant Consensus

with Local Algorithms



Initially, state =

c = (a+b+c)/3

Local Averaging

iInput

g
N

52



Graph Condition for Consensus

m At least one node must be able to influence all nodes
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Byzantine Fault Model

B No constraint
on misbehavior
of faulty agents

All models are wrong;
some, models are useful.
| ot e - George Box

IJ("‘




Local Averaging

Initially, state = input

Byzantine
node

C




Local Averaging

Initially, state = input No consensus !

Byzantine
node

C




Graph Condition for Consensus
with Byzantine faults

®m (Goal is to achieve consensus among
the non-faulty agents

57



Graph Condition for Consensus
with Byzantine faults

m At least one node must be able to influence all nodes

P N

Insufficient with faults
b <

- |
F/ . JO s

s = PN
\ _a‘ \ _a‘,
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Graph condition for local Byzantine consensus
algorithms is now known (2012)

Byzantine
node

C




Fault-Tolerant Consensus

over Broadcast Channels



Wireless Broadcast

B Wireless transmissions (potentially) received by all
neighbors of the sender

B Does this benefit Byzantine consensus?



Byzantine
node

C

Wireless Broadcast

Misbehavior can be detected



Graph Condition for Byzantine Consensus
Global Algorithms

®m Point-to-point networks (1982)

2f + 1 connectivity
3f + 1 nodes

f faulty
nodes



Graph Condition for Byzantine Consensus
Global Algorithms

®m Point-to-point networks (1982)

2f + 1 connectivity
3f + 1 nodes

f faulty

nodes
®m Broadcast channels (2018)

3f/2 + 1 connectivity
2f node degree



Fault-Tolerant

Distributed Optimization



Averaging

® |[nput of node i =aq;

m Compute average of a;s

S is a trusted server



Fault-Tolerant Averaging

® What to do if some nodes send bogus values?

Byzantine



Averaging =» Optimization

® |[nput of node i =aq;

B Average of a;s = argmin Z fi(z)
i

where

filx) = (x — a;)°



argmin ), f;(x)
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Machine Learning

m Data is distributed
across different
agents

Agent 1 Agent 2
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m Data is distributed
across different =» Collaborate to learn
agents




Machine Learning

_ rf1(x) f2(x)
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Minimize
global loss
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Gradient Method




Gradient Method

- AZ £ ()

Xk+1 < Xk
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Gradient Method




Distributed Optimization

m Each agent i knows own cost function f;(x)
and it can compute Vf;(x)

® Need to cooperate to minimize ) f;(x)

=>» Distributed algorithms



Architectures




Parameter Server

B Server maintains estimate x;,

Xk

Server

g




Parameter Server

B Server maintains estimate x;,

In each iteration

m Agent;
® Receives x;, from server

Xk

Server




Parameter Server

B Server maintains estimate x;,

In each iteration

Vi1 (xk)

m Agent;
® Receives x;, from server
’ .
Uploads gradient Vf;(x;)

Xk
Server
/TN
Vf3(xk)
N\
=



Parameter Server

B Server maintains estimate x;,

In each iteration

| Vf1(xk)
m Agenti
® Receives x;, from server
® Uploads gradient V£;(x;)

B Server updates estimate

Xk
Server
7T N
Vf3(xk)
N\
&

Xp+1 € X — A Z Vfi (i)



Many Variations

.. stochastic optimization
.. asynchronous

.. gradient compression
.. acceleration

.. Shared memory



Adversarial Agents

O F_aul_t-tolerant_ o Server
distributed optimization / =

F19) + f() + f(x) VH0G)
=

How to optimize
If agents inject
bogus information?




Fault-Tolerant Optimization

2015 ...
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Machine Learning

Faulty agent can
adversely affect
model parameters

f1(x)
=ClEEBE < 2o
Oﬂ.ﬁﬁ ﬂ.‘.ﬁ .
NAGY ~ B HimlZ Minimize global
H’.. s ard loss
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f3(x) fa(x)




Parameter Server

B Server maintains estimate x;,

Xk

In each iteration

Server

| Vf1(xk)
m Agenti
® Downloads x,; from server
® Uploads gradient Vf;(x)

B Server updates estimate

/1

> <

\ =/

Xp+1 € X — A Z Vfi (i)




Parameter Server

B Server maintains estimate x;, N
k

Server

In each iteration / i

| Vi (i)

B Agent:

® Downloads x;, from server @

° : \ =/
Uploads gradient V f; (x;)

B Server updates estimate

Xp4+q1 <— X, — AFiltered—Gradient <mmm
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Fault-Tolerant Multi-Agent Optimization:
Optimal Iterative Distributed Algorithms *

Lili Su
Electrical and Computer Engineering
Coordinated Science Laboratory
University of lllinois at Urbana-Champaign

lilisu3@illinois.edu

ABSTRACT

This paper addresses the problem of distributed multi-agent
optimization in which each agent ¢ has a local cost function
hi(z), and the goal is to optimize a global cost function con-
sisting of an average of the local cost functions. Such opti-
mization problems are of interest in many contexts, includ-
ing distributed machine learning and distributed robotics.

We consider the distributed optimization problem in the
presence of faulty agents. We focus primarily on Byzan-
tine failures, but also briefly discuss some results for crash
failures. For the Byzantine fault-tolerant optimization prob-
lem, the ideal goal is to optimize the average of local cost
functions of the non-faulty agents. However, this goal also
cannot be achieved. Therefore, we consider a relaxed version
of the fault-tolerant optimization problem.

The goal for the relaxed problem is to generate an output

Nitin H. Vaidya
Electrical and Computer Engineering
Coordinated Science Laboratory
University of lllinois at Urbana-Champaign

nhv@illinois.edu

gorithm has a simple iterative structure, with each agent
maintaining only a small amount of local state. We show
that the iterative algorithm ensures two properties as time
goes to oco: consensus (i.e., output of non-faulty agents be-
comes identical in the time limit), and optimality (in the
sense that the output is the optimum of a suitably defined
global cost function). After a finite number of iterations,
the algorithm satisfies these properties approximately.
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ABSTRACT

This paper addresses the problem of distributed multi-agent
optimization in which each agent ¢ has a local cost function
hi(z), and the goal is to optimize a global cost function con-
sisting of an average of the local cost functions. Such opti-
mization problems are of interest in many contexts, includ-
ing distributed machine learning and distributed robotics.

We consider the distributed optimization problem in the
presence of faulty agents. We focus primarily on Byzan-
tine failures, but also briefly discuss some results for crash
failures. For the Byzantine fault-tolerant optimization prob-
lem, the ideal goal is to optimize the average of local cost
functions of the non-faulty agents. However, this goal also
cannot be achieved. Therefore, we consider a relaxed version
of the fault-tolerant optimization problem.

The goal for the relaxed problem is to generate an output
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global cost function). After a finite number of iterations,
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Fault-Tolerance in Distributed Optimization:
The Case of Redundancy
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ABSTRACT

This paper considers the problem of Byzantine fault-tolerance in
distributed multi-agent optimization. In this problem, each agent
has a local cost function. The goal of a distributed optimization
algorithm is to allow the agents to collectively compute a minimum
of their aggregate cost function. We consider the case when a certain
number of agents may be Byzantine faulty. Such faulty agents may
not follow a prescribed algorithm, and they may send arbitrary or
incorrect information regarding their local cost functions. Unless
a fault-tolerance mechanism is employed, traditional distributed
optimization algorithms cannot tolerate such faulty agents.

A reasonable goal in presence of faulty agents is to minimize
the aggregate cost of the non-faulty agents. However, we show
that this goal is impossible to achieve unless the cost functions of
the non-faulty agents have a minimal redundancy property. We
further propose a distributed optimization algorithm that allows
the non-faulty agents to obtain a minimum of their aggregate cost
if the minimal redundancy property holds. The scope of our algo-

Nitin H. Vaidya
Department of Computer Science
Georgetown University
Washington DC, USA

such that
n
w" € argmuiln ZQ,’(W). (1)
i=1

As a simple example, Q;(w) may denote the cost for an agent i
(which may be a robot or a person) to travel to location w from
their current location, and w* is a location that minimizes the total
cost of meeting for all the agents. Such multi-agent optimization
is of interest in many practical applications, including distributed
machine learning [6], swarm robotics [26], and distributed sens-
ing [25]. Most of the prior work, however, assumes the agents to
be fault-free, i.e., they cooperate and follow a prescribed algorithm.
We consider a scenario wherein some of the agents may be faulty.

Su and Vaidya [30] introduced the problem of distributed opti-
mization in the presence of Byzantine faulty agents. The Byzantine
faulty agents may behave arbitrarily [19]. In particular, the faulty
agents may send incorrect and inconsistent information in order




An “Extreme” Example

Stochastic machine learning

Agent 1 Agent 2

® Agents draw samples from ﬂ" EO‘
identical data distribution - -
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R TR VST

m Filter on stochastic gradients



argmin Z fi (x)

IEG

Independent
functions

“Enough”
redundancy

Approximate




(2023)

Impact of Redundancy on Resilience
in Distributed Optimization and Learning

Shuo Liu Nirupam Gupta Nitin H. Vaidya
Georgetown University Ecole Polytechnique Fédérale de Georgetown University
Washington DC, USA Lausanne (EPFL) Washington DC, USA
sl1539@georgetown.edu Lausanne, Switzerland nitin.vaidya@georgetown.edu
nirupam.gupta@epfl.ch
ABSTRACT Conference on Distributed Computing and Networking (ICDCN 2023), January

This paper considers the problem of resilient distributed optimiza-
tion and stochastic learning in a server-based architecture. The
system comprises a server and multiple agents, where each agent
has its own local cost function. The agents collaborate with the
server to find a minimum of the aggregate of the local cost func-
tions. In the context of stochastic learning, the local cost of an
agent is the loss function computed over the data at that agent. In
this paper, we consider this problem in a system wherein some of
the agents may be Byzantine faulty and some of the agents may
be slow (also called stragglers). In this setting, we investigate the
conditions under which it is possible to obtain an “approximate”
solution to the above problem. In particular, we introduce the no-
tion of (f, r; €)-resilience to characterize how well the true solution
is approximated in the presence of up to f Byzantine faulty agents,
and up to r slow agents (or stragglers) — smaller € represents a
better approximation. We also introduce a measure named (f,r;€)-
redundancy to characterize the redundancy in the cost functions of
the agents. Greater redundancy allows for a better approximation
when solving the problem of aggregate cost minimization.

In this paper, we constructively show (both theoretically and
empirically) that (f, r; O(€))-resilience can indeed be achieved in

4-7, 2023, Kharagpur, India. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3571306.3571393

1 INTRODUCTION

With the rapid growth in the computational power of modern com-
puter systems and the scale of optimization tasks, e.g., training of
deep neural networks [39], the problem of distributed optimization
in a multi-agent system has gained significant attention in recent
years. This paper considers the problem of resilient distributed
optimization and stochastic learning in a server-based architecture.

The system under consideration consists of a trusted server and
multiple agents, where each agent has its own “local” cost func-
tion. The agents collaborate with the server to find a minimum of
the aggregate cost functions (i.e., the aggregate of the local cost
functions) [9]. Specifically, suppose that there are n agents in the
system where each agent i has a cost function Q; : R4 — R. The
goal then is to enable the agents to compute a global minimum x*
such that

x* € arg min " Qi(x). (1)



Status

B Many papers, various groups
... particularly fault-tolerant stochastic learning

— Various filters for gradients
— Variations on underlying assumptions

m A tutorial available from my website

®m A survey to be available soon (from another group)



Moral of the Story #1

Natural, unanswered questions at the intersection of
previously explored problem spaces

Picture from Wikipedia



Academia lets you work on things for which
you may have no competence

Make the best use of the freedom
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Provably impossible to compute
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Norm Filter

m Clip the largest t norms to equal t + 1" norm

V() =1
Vi(x)| =3
Vis(xp)| = 2

Filtered gradient = Vfi(xx) + %sz(xk) + Vs (xi)

Exact optimum computed despite faulty agents
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An Example of Redundancy

n agents
f bad agents

m Aggregate cost of ANY n — 2f agents has

argmin identical to desired argminz fi(x)
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Another Approximation

® Relax the notion of “enough redundancy”

® Produce output within distance € of “true” minimum

argmin 2 fi(x)

LEG



Challenges

B Privacy-preserving
distributed optimization

Vf1(xk) Vis(xk)

How to collaborate
without revealing
own cost function?



