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More Recently …



From there to here …

g Through a few short-term, somewhat accidental, 
interactions

g I will discuss one example
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Takeaway …



Picture from Wikipedia

Moral of the Story #1

Natural, unanswered questions at the intersection of 
previously explored problem spaces



Moral of the Story #2

Academia lets you work on things for which
you may have no competence

  Make the best use of the freedom



A Journey from
Wireless Networks to Distributed Optimization

        Consensus



Consensus, consensus, everywhere …



Consensus, consensus …

g Commit or abort ?

g Network of databases …

  agree on a common action



Consensus, consensus …

g What is the temperature?

g Network of sensors …

  agree on current temperature



Consensus, consensus …

g Should we trust        ?

g Web of trust …

  agree whether        is good or evil
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Consensus, consensus …

g  Which way?



Consensus

“Local” Algorithms



c

b
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Consensus … Local Averaging

Initially, state = input
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Consensus … Local Averaging
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Initially, state = input
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Consensus … Local Averaging

Initially, state = input

a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3



Consensus … Local Averaging

a = (1+6)/2 = 7/2

b = (1+2)/2 = 3/2

c = (1+2+6)/3 = 3
1

2
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Graph Condition for Consensus

g At least one node must be able to influence all nodes
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Change of Weights
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a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2
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Graph Condition for Average Consensus

g Every node must be able to influence all others

– Strong connectivity
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Lossy Wireless Links

(2012)



Average consensus over 
             lossy wireless links?c

b

a

Photo courtesy Alejandro Dominguez-Garcia



Implementation

g Each node “transfers mass” to neighbors via messages

g Next state = Total received mass

35
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Implementation

g Each node “transfers mass” to neighbors via messages

g Next state = Total received mass
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b = 3b/4+ c/4



Conservation of Mass

g a+b+c   constant after each iteration
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Wireless Transmissions Lossy
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Conservation of Mass
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Average Consensus over Lossy Links

g Sender and receiver views potentially inconsistent
      … message delivered or not?

g Average consensus fails

a = 3a/4+ c/4

b = 3b/4+ c/4

c = a/4+b/4+c/2
c
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c/4

X
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Average Consensus over Lossy Links
(2012)

g Solution …

 a different algorithm that can
 tolerate lossy links
 without explicit knowledge of lost messages

41



Long-term benefit for me …

g Exposure to a new class of problems

g New mathematical tools for analyzing algorithms

 è Impacted a large fraction of my work since



1980: Pease, Shostak, Lamport
     Byzantine consensus

1986: Dolev et al.
Approximate

Byzantine consensus
 

Tsitsiklis 1984
Decentralized control

Hajnal 1958
Weak ergodicity
of 
nonhomogeneous 
Markov chains

Distributed
Control

Jadbabaei 2003
Flocking problem

Distributed
Computing

1983: Fischer, Lynch, Paterson
     Asynchronous consensus

impossibility result

DeGroot 1974
Reaching a consensus

Consensus



Distributed Computing

g Faults

g Scalar inputs

g Undirected graphs, 
often complete

g Global algorithms

g Exact consensus in
synchronous systems

Consensus



1980



Distributed Computing

g Faults

g Scalar inputs

g Undirected graphs, 
often complete

g Global algorithms

g Exact consensus in
synchronous systems

Consensus



Global Algorithm

Exact Consensus



Distributed Control

g No faults

g Vector inputs

g Incomplete
(directed) graphs

g Local algorithms

g Approximate consensus

𝑓!

𝑓"
𝑓#

𝑓$

𝑓%

Consensus

Distributed Computing

g Faults

g Scalar inputs

g Undirected graphs,
often complete

g Global algorithms

g Exact consensus in
synchronous systems



Many problems should have been solved 
decades ago … but were not

g Borrowing assumptions from the other domain

g New network models

49



g Local algorithms
iAverage consensus over lossy links
iByzantine consensus over point-to-point channels
iByzantine consensus over broadcast channels

g Global algorithm
iByzantine consensus over directed graphs 
iByzantine consensus over broadcast channels

   and more …

Many problems should have been solved 
decades ago … but were not



Fault-Tolerant Consensus

with Local Algorithms



c

b

a

Local Averaging

Initially, state = input

52

a = (a+c)/2

b = (b+c)/2

c = (a+b+c)/3



Graph Condition for Consensus

g At least one node must be able to influence all nodes

c

b

a

c

b

a



Byzantine Fault Model

g No constraint
on misbehavior
of faulty agents



b

a

Local Averaging

Initially, state = input

a = (a+c)/2

b = (b+c)/2
c = 2Byzantine

node
C

c =1



b

a

Local Averaging

Initially, state = input

a = (a+c)/2

b = (b+c)/2
c = 2Byzantine

node
C

c =1

No consensus !



Graph Condition for Consensus
with Byzantine faults

g Goal is to achieve consensus among
the non-faulty agents

57



Graph Condition for Consensus
with Byzantine faults

g At least one node must be able to influence all nodes

c

b

a

c

b

a

Insufficient with faults



b

a

c = 2
Byzantine

node
C c =1

Graph condition for local Byzantine consensus 
algorithms is now known (2012)



Fault-Tolerant Consensus

over Broadcast Channels



Wireless Broadcast

g Wireless transmissions (potentially) received by all 
neighbors of the sender

g Does this benefit Byzantine consensus?



b

a

c = 2

Byzantine
node

C

Misbehavior can be detected

c =1

Wireless Broadcast



Graph Condition for Byzantine Consensus 
Global Algorithms 

g Point-to-point networks (1982)
 

 2f + 1 connectivity
 3f + 1 nodes

f faulty
nodes



Graph Condition for Byzantine Consensus 
Global Algorithms 

g Point-to-point networks (1982)
 

 2f + 1 connectivity
 3f + 1 nodes

g Broadcast channels (2018)

 3f/2 + 1 connectivity
         2f  node degree

f faulty
nodes



Fault-Tolerant

Distributed Optimization



Averaging

g Input of node i = 𝑎!

g Compute average of 𝑎!"s

S

a1

a2

a1

a2

S is a trusted server



Fault-Tolerant Averaging

g What to do if some nodes send bogus values?

S

a1

a2

a1

z

Byzantine



Averaging è Optimization

g Input of node i = 𝑎!

g Average of 𝑎!"s  = 

             where

of user data for training models. While such machine learning applications can improve user experience, they
also threaten the user’s privacy [26]. Motivated by these examples in the context of distributed optimization,
we ask the following question:

Can agents collaboratively learn underlying model parameters
without leaking private information?

The paper presents two privacy-preserving algorithms for distributed optimization, which can be used
for improving privacy in distributed machine learning. Although our work is motivated by machine learn-
ing applications, the proposed solutions have applications wherever distributed optimization formulation is
adopted.

We consider a distributed optimization problem involving S agents, each of whom has access to a local
convex objective function fi(x). In the context of machine learning for classification, the local objective
function may be a loss function that measures the accuracy of classification on the training dataset using a
given choice of model parameters – here x denotes the vector of model parameters. As an example, in the
context of classification task, fi(x) may denote the logistic loss function for the data items stored at agent i
– the loss depends on the parameters of the classification hypothesis, and the goal is to identify parameters
that minimize the loss over all the agents (i.e., over data stored at all the agents). In Section 6.2, we will
elaborate on the application of our work to machine learning.

Problem 1. The set of S agents need to distributedly compute the optimum of the global objective function,
which consists of the sum of the local objective functions. That is,

Distributedly find x
⇤

2 argmin
x2X

SX

i=1

fi(x) (1)

where X is the set that contains all feasible values for parameter vector x.

The local objective function fi(x) at each agent i is assumed to be a convex function. Additional
assumptions regarding the objective functions and the communication network interconnecting the agents
are detailed later.

1.1 Contributions

In this paper we present three algorithms for privacy-preserving distributed optimization:
• Randomized State Sharing (RSS, Algorithm 1) :

– Our privacy-preserving algorithm uses randomization. However, unlike di↵erential privacy schemes, our
strategy preserves optimality by introducing correlation between the randomness added to local model
parameter estimates.

– We prove asymptotic convergence in a deterministic setting (every execution) and argue its privacy
using the privacy analysis developed for a special case.

• Function Sharing (FS, Algorithm 4):

– We show that Function Sharing strategy (Algorithm 4, presented in [1]) simulates a special case of RSS
algorithm. If the random perturbations added to local iterates in RSS algorithm are state dependent,
then the RSS algorithm imitates FS algorithm.

– The deterministic convergence is shown to easily follow from the convergence analysis for RSS Algorithm.

• Randomized State Sharing - Locally Balanced (RSS-LB, Algorithm 3):

– RSS-LB is a distributed learning algorithm that uses locally balanced randomization to perturb the
parameter estimates (perturbations add to zero at each node). Unlike RSS, agents do not share the
same perturbed estimate with neighbors. Neighbors receive dissimilar estimates from agent j.

– We show deterministic convergence of RSS-LB.

2

i

𝑓! 𝑥 = (𝑥 − 𝑎!)"



Many Applications

  argmin ∑𝑓! 𝑥 	



Rendezvous
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Rendezvous
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  argmin ∑𝑓! 𝑥 	



Machine Learning

g Data is distributed
across different
agents

Agent 1 Agent 2

Agent 3 Agent 4



g Data is distributed
across different       è   Collaborate to learn
agents



Minimize
global loss

!𝑓! 𝑥

      𝑓% 𝑥 𝑓& 𝑥

𝑓$ 𝑥𝑓# 𝑥

Machine Learning



  argmin ∑𝑓! 𝑥 	



Gradient Method
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Gradient Method

𝑓 𝑥 = 	)𝑓! 𝑥

x2
x3

x0

x1

𝑥"#$ ⟵ 𝑥" − 𝜆!
!

𝛻𝑓! 𝑥"



Gradient Method

𝑓 𝑥 = 	)𝑓! 𝑥

𝑥"#$ ⟵ 𝑥" − 𝜆!
!

𝛻𝑓! 𝑥"

x2
x3

x0

x1



Distributed Optimization

g Each agent 𝑖 knows own cost function 𝑓! 𝑥
and it can compute 𝛻𝑓! 𝑥

g Need to cooperate to minimize ∑𝑓! 𝑥

 è Distributed algorithms



Architectures
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Parameter Server

g Server maintains estimate 𝑥' 𝑥#
Server



g Server maintains estimate 𝑥'

In each iteration

g Agent i
iReceives 𝑥' from server

Server

𝑥' 𝑥' 

Parameter Server

𝑥#



g Server maintains estimate 𝑥'

In each iteration

g Agent i
iReceives 𝑥' from server
iUploads gradient 𝛻𝑓!(𝑥') 

Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥') 

Parameter Server

𝑥#



Parameter Server

g Server maintains estimate 𝑥'

In each iteration

g Agent i
iReceives 𝑥' from server
iUploads gradient 𝛻𝑓!(𝑥') 

g Server updates estimate

	 𝑥"#$	⟵ 	𝑥" 	− 𝜆	!𝛻𝑓! 𝑥"

Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥') 

𝑥#



Many Variations

… stochastic optimization
… asynchronous
… gradient compression
… acceleration
… shared memory

Server



Adversarial Agents

g Fault-tolerant
distributed optimization

 How to optimize
 if agents inject
 bogus information?

 

f1(x) + f2(x) + f3(x) 

Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥') 



Fault-Tolerant Optimization

2015 …
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Minimize global 
loss

/𝑓! 𝑥

      

𝑓% 𝑥 𝑓& 𝑥

𝑓$ 𝑥𝑓# 𝑥

Machine Learning

Faulty agent can
adversely affect
model parameters



Parameter Server

g Server maintains estimate 𝑥'

In each iteration

g Agent i
iDownloads 𝑥' from server
iUploads gradient 𝛻𝑓!(𝑥') 

g Server updates estimate

	 𝑥"#$	⟵ 	𝑥" 	− 𝜆	!𝛻𝑓! 𝑥"

𝑥#
Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥') 



Parameter Server

g Server maintains estimate 𝑥'

In each iteration

g Agent i
iDownloads 𝑥' from server
iUploads gradient 𝛻𝑓!(𝑥') 

g Server updates estimate

𝑥"#$	⟵ 	𝑥" 	− 𝜆	Filtered−Gradient

𝑥#
Server

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥') 
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But what do we mean by fault-tolerance?



Fault-Tolerance

g Optimize over only good agents …  set G



Fault-Tolerance

g Optimize over only good agents …  set G

argmin)
!∈%

𝑓! 𝑥
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Is this achievable?



 It Depends
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redundancy



Independent
functions

“Enough”
redundancy

Is this achievable?argmin)
!∈%

𝑓! 𝑥
Is this achievable?

Approximate
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argmin∑!∈' 𝑓! 𝑥  = argmin∑!∈'
$
|'|
𝑓! 𝑥

Approximation



argmin∑!∈' 𝑓! 𝑥  = argmin∑!∈'
$
|'|
𝑓! 𝑥

argmin ∑!∈# 𝛼! 	𝑓! 𝑥

Approximation

without
necessarily
knowing 𝛼!’s



Independent
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“Enough”
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Is this achievable?

Approximate



Independent
functions

“Enough”
redundancy

Is this achievable?argmin)
!∈%

𝑓! 𝑥
Is this achievable?

ExactApproximate



(2020)



An “Extreme” Example

Stochastic machine learning

g Agents draw samples from
identical data distribution

g Filter on stochastic gradients

Agent 1 Agent 2



Independent
functions

“Enough”
redundancy

Is this achievable?argmin)
!∈%

𝑓! 𝑥
Is this achievable?

Approximate Exact
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Status

g Many papers, various groups
 ... particularly fault-tolerant stochastic learning

– Various filters for gradients
– Variations on underlying assumptions

g A tutorial available from my website

g A survey to be available soon (from another group)



Picture from Wikipedia

Moral of the Story #1

Natural, unanswered questions at the intersection of 
previously explored problem spaces



Moral of the Story #2

Academia lets you work on things for which
you may have no competence

  Make the best use of the freedom



Thanks!
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Independent Functions

Provably impossible to compute
     

  argmin)
!∈%

𝑓! 𝑥



g Clip the largest 𝑡 norms to equal 𝑡 + 1th norm
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Norm Filter
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g Clip the largest 𝑡 norms to equal 𝑡 + 1th norm

     Filtered gradient = 

Norm Filter
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g Clip the largest 𝑡 norms to equal 𝑡 + 1th norm

     Filtered gradient = 

Norm Filter
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𝛻𝑓$ 𝑥' = 3 

𝛻𝑓% 𝑥' = 2 
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Exact optimum computed despite faulty agents
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An Example of Redundancy

𝑛 agents
𝑓 bad agents

g Aggregate cost of ANY 𝑛 − 2𝑓	 agents has

    argmin identical to desired argmin)
!∈%

𝑓! 𝑥



Another Approximation

g Relax the notion of “enough redundancy”

g Produce output within distance ε of “true” minimum

argmin)
!∈%

𝑓! 𝑥



Challenges

g Privacy-preserving
distributed optimization

 How to collaborate 
 without revealing
 own cost function?

  

𝛻𝑓#(𝑥') 𝛻𝑓%(𝑥') 


