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Background



Equality Function

A B

K-valued input K-valued input

Determine whether the two inputs are identical



m Communication cost of an algorithm:

# bits of communication required
in the worst case (over all possible inputs)



m Communication cost of an algorithm:

# bits of communication required
in the worst case (over all possible inputs)

®m Communication complexity of a problem:

Minimum communication cost
over all algorithms to solve the problem

[Andrew Yao, STOC 1979]
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Equality Function

A B

K-valued input K-valued input

Who knows the outcome?

Suffices for one node to know
One more bit to inform the other



Upper Bound

log K

Proof by construction



Lower Bound

log K

Proof by fooling set argument



Generalization fo n parties
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n-Node Equality Problem
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Number-in-Hand Model

K-valued
input A
Broadcast

Channel

Node i initially knows Xi
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n-Party Equality : Complexity

® Broadcast channel + Number-in-hand model

log K bits
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Number-on-Forehead Model

Broadcast

Channel

Node i initially knows everything except Xi
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n-Party Equality : Complexity

m Broadcast channel + Number-on-forehead model

2 bits
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Point-to-Point Networks

Private channels & number-in-hand
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Upper Bound

Emulate broadcast channel using p2p links

2 (n-1) * complexity with broadcast channel
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K-valued
input

Upper Bound = 2 log K

K bits

K bits
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Lower Bound = %log K

K-valued input

cut =log K identical value

{ at Band C
by 2-node C
lower bound
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15log K < Complexity < 2 logK

Neither bound tight
in general



1.5 log K Not Tight

K=2 C

Requires at least 2 bits
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2 log K Not Tight

Proof by construction
for K=6

—> 2 log K =log 36
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Example

4
~> B AB(4) = 2
AC(2) = 3
1 BCR)# 1 <«
2 3 4 5
AB 1 2 2 3
AC 2 3 3
BC 2 3 1 2



Communication Cost

3log3=1log27 < log36=2logK

Can be generalized to large K and n to yield
communication cost approximately

0.92 (n-1) log K
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Communication Cost

3log3=1log27 < log36=2logK

Can be generalized to large K and n to yield
communication cost approximately

0.92 (n-1) log K

Cost of informing outcome to each other negligible
for large K
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Reduce Search Space

"Static" Algorithms

® Node transmitting inround R &
its output function in round R
pre-determined

® Output ... function of initial input, and history

32



Fixed Algorithm: Directed Graph Representation

1, fl
B, fs
A
X

\
C

Round number R , function f used in round R

Y
B
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Fixed Algorithm: Directed Graph Representation

1, fl
B, fs
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X
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Round number R , function f used in round R

Y
B
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Equivalent Algorithm: Directed Acyclic Graph

35
Round number R , function f used in round R



Equivalent Algorithm

m Acyclic graph
® Output depends only on initial input
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Mapping to a Bipartite Graph

® Each such algorithm can be mapped to a bipartite
graph representation
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AB

AC

BC

Example

1,2

34

5,6

AB
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AB
AC

BC

Example

1,2

34

5,6

AB

AC
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AB

AC

BC

Example

12 61

34 23
4

5 ) ———(4 5
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1 2 3
AB 1 1 2
AC 1 2 2
BC 1 2 3

3
BC = ?

Example
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1 2 3
AB 1 1 2
AC 1 2 2
BC 1 2 3

3
BC = ?

BC assigns colors to edges
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U: # nodes on left
V : # colors
W . # nodes on right

BC = 2
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Equality €=> Bipartite Graph

A colored bipartite graph corresponds to a
fixed algorithm for 3-node equality with
cost log UVW

if and only if

(@) distance-2 colored (strong edge coloring)
) Number of edges = K

© UxV > K

@) UxW 2 K
@ VXW > K

| —
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Fixed Algorithm Design

® Find a suitable bipartite graph

® Our algorithm \

2> 6-cycle ~_

TN

o
-9
@
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Lower Bounds

® The mapping can be used to prove lower bounds
for small K

For K=6

® Least cost over all fixed algorithms is
log 27
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Detour ... an open conjecture

A bipartite graph with

B D1 = maximum degree on left
® D2 = maximum degree on right

can be distance-2 colored with D1 * D2 colors
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Why is equality interesting ?
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Lower Bound on Consensus

® Mapping between Byzantine broadcast

and multiple instances of equality
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B g, - g3 are good peers

® F, - F; are virtual bad sources acting with different
inputs

m g, ; are virtual good peer of node j to node i



Byzantine Broadcast:
n nodes, f faults

® Broadcast algorithm solves Equality (MEQ-AD)
problem for each subset of (n-f) nodes

® n-choose-(n-f) such subsets

® Each link belongs to (n-2)-choose-(n-f-2) such
subsets

> Complexity of broadcast lower bounded by

EQ * n-choose-(n-f) / (n-2)-choose-(n-f-2)
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m EQ 2 (n-f)L /2 bits for equality of
L bits among n-f nodes

> Broadcast of L bits requires at least

L * n(n—1)/2(n—f—1)

Our algorithms for broadcast/consensus:

within factor of 2 of above lower bound
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Open Problems
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Open Problems

® Characterizations of communication complexity
for point-to-point networks
® Alternatives to Yao model seem more appropriate

® Equality for larger networks

® Lower bounds on
® Equality
® Byzantine consensus
® Byzantine broadcast ...
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Thanks |
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Thanks |
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The MEQ(n,M) Problem

® n nodes each given x; from {1,.., M}, to check if all
X; are equal

- 0 ifx=--=x,
m Each noog(gcéhibhf(eg EQ1  otherwise

Hi,EQZ- =l< EQ(xla'”axn) =1
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Graph Representation an Algorithm

mTransform to a partially ordered DAG
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Graph Representation an Algorithm
2

uF,,

Fas

1

IF\)

mF; ; depends on x; only

o
3
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Definition of Complexity

® Complexity of an algorithm

C(P) = E log,

m Complexity of MEQ(n,MJ

F,

Coro(m,M)= min  C(P)

P solves MEQ(n, M)
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Upper Bound by Construction

® Send x;,..., X, 1 o node n
m Set EQI = ... = EQn—l =0

m Compute EQ, = EQ(Xq,..., X,)

> C,y(n,M)<(n-1)log, M
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Cut-Set Lower Bound

® Fooling Set argument
- Every node must send + receive > log,M

8> Cypp(n, M) = glog2 M
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Neither bound is tight

MEQ(3.,6)

(Al |

glog2 6<C,;0(3,6) =3log, 3 <2log, 6
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Proof by Strong Edge Coloring

MEQ(3.M) algorithm
= bipartite graph with M edges
+ distance-2 edge coloring scheme




Summary

B Tntroduce the MEQ problem
m Existing techniques give loose bounds

® New technique to reduce space

® Connection among distributed source coding,

distributed algorithm, and graph coloring

70



Future Work

B MEQ(3,M) is open
® Optimize over F;; = find an optimal bipartite graph +
strong coloring

= Even given |Fi,jl is open

® Looking for new techniques
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(a) Graph representation of P (b) An equivalent protocol of P with (c¢) An iid partially ordered ec
Step 5 flipped protocol of P
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Figure 3: Complexity of the proposed protocol v.s. upper bound 2k



x [ 1]2[3[4]5]6
sapl1]11272]37[3
sac T2 23737]1
spe 11213123

Table 1: A protocol for MEQ-AD(3.6)



