

Multiparty Equality Function Computation in Networks with Point-to-Point Links

Nitin Vaidya University of Illinois at Urbana-Champaign

Joint work with Guanfeng Liang

Research supported in part by National Science Foundation and Army Research Office

Background

Equality Function

Determine whether the two inputs are identical

Communication cost of an algorithm:

bits of communication required in the worst case (over all possible inputs)

Communication cost of an algorithm:

bits of communication required in the worst case (over all possible inputs)

Communication complexity of a problem:

Minimum communication cost over all algorithms to solve the problem

Equality Function

Equality Function

Who knows the outcome?

Suffices for one node to know

One more bit to inform the other

Upper Bound

Proof by construction

Lower Bound

Proof by fooling set argument

Generalization to n parties

n-Node Equality Problem

Number-in-Hand Model

Node i initially knows Xi

n-Party Equality: Complexity

Broadcast channel + Number-in-hand model

log K bits

Number-on-Forehead Model

Node i initially knows everything except Xi

n-Party Equality: Complexity

Broadcast channel + Number-on-forehead model

2 bits

Point-to-Point Networks

Private channels & number-in-hand

Upper Bound

Emulate broadcast channel using p2p links

→ (n-1) * complexity with broadcast channel

Upper Bound = 2 log K

Lower Bound =
$$\frac{3}{2} \log K$$

1.5 $\log K \leq Complexity \leq 2 \log K$

1.5 log K Not Tight

Requires at least 2 bits

2 log K Not Tight

Proof by construction for K = 6

 \implies 2 log K = log 36

K = 6

X		У
A	 :	B
	,	
\		
	C	

Z

	1	2	3	4	5	6	
AB	1	1	2	2	3	3	
AC	1	2	2	3	3	1	
BC	1	2	3	1	2	3	

	1	2	3	4	5	6	
AB	1	1	2	2	3	3	
AC	1	2	2	3	3	1	
BC	1	2	3	1	2	3	

	1	2	3	4	5	6	
AB	1	1	2	2	3	3	
AC	1	2	2	3	3	1	
BC	1	2	3	1	2	3	

	1	2	3	4	5	6	
AB	1	1	2	2	3	3	
AC	1	2	2	3	3	1	
BC	1	2	3	1	2	3	

	1	2	3	4	5	6	
AB	1	1	2	2	3	3	
AC	1	2	2	3	3	1	
BC	1	2	3	1	2	3	

$$AB(4) = 2$$

 $AC(2) = 3$
 $BC(3) \neq 1$

	1	2	3	4	5	6	
AB	1	1	2	2	3	3	
AC	1	2	2	3	3	1	
BC	1	2	3	1	2	3	

Communication Cost

$$3 \log 3 = \log 27 < \log 36 = 2 \log K$$

Can be generalized to large K and n to yield communication cost approximately

Communication Cost

$$3 \log 3 = \log 27 < \log 36 = 2 \log K$$

Can be generalized to large K and n to yield communication cost approximately

Cost of informing outcome to each other negligible for large K

	1	2	3	4	5	6	
AB	1	1	2	2	3	3	
AC	1	2	2	3	3	1	
ВС	1	2	3	1	2	3	

Reduce Search Space

"Static" Algorithms

- Node transmitting in round R its output function in round R pre-determined
 - Output ... function of initial input, and history

Fixed Algorithm: Directed Graph Representation

Fixed Algorithm: Directed Graph Representation

Equivalent Algorithm: Directed Acyclic Graph

Equivalent Algorithm

- Acyclic graph
- Output depends only on initial input

Mapping to a Bipartite Graph

 Each such algorithm can be mapped to a bipartite graph representation

	1	2	3	4	5	6
AB	1	1	2	2	3	3
AC	1	2	2	3	3	1
ВС	1	2	3	1	2	3

1,2

3,4

5,6

AB

	1	2	3	4	5	6
AB	1	1	2	2	3	3
AC	1	2	2	3	3	1
ВС	1	2	3	1	2	3

	1	2	3	4	5	6
AB	1	1	2	2	3	3
AC	1	2	2	3	3	1
BC	1	2	3	1	2	3

	1	2	3	4	5	6
AB	1	1	2	2	3	3
AC	1	2	2	3	3	1
BC	1	2	3	1	2	3

BC assigns colors to edges

	1	2	3	4	5	6
AB	1	1	2	2	3	3
AC	1	2	2	3	3	1
BC	1	2	3	1	2	3

U: # nodes on left

V:# colors

W: # nodes on right

Equality Bipartite Graph

A colored bipartite graph corresponds to a fixed algorithm for 3-node equality with cost log UVW

if and only if

(a) distance-2 colored

- (strong edge coloring)
- (b) Number of edges = K
- (c) $U \times V \geq K$
- (d) $U \times W \geq K$
- (e) $V \times W \geq K$

Fixed Algorithm Design

Find a suitable bipartite graph

- Our algorithm
 - → 6-cycle

Lower Bounds

The mapping can be used to prove lower bounds for small K

For K = 6

Least cost over all fixed algorithms is log 27

Detour ... an open conjecture

A bipartite graph with

- D1 = maximum degree on left
- D2 = maximum degree on right

can be distance-2 colored with D1 * D2 colors

Why is equality interesting?

Lower Bound on Consensus

 Mapping between Byzantine broadcast and multiple instances of equality

- \blacksquare $g_1 g_3$ are good peers
- F₁ F₃ are virtual bad sources acting with different inputs
- \blacksquare $g_{i,j}$ are virtual good peer of node j to node i

Byzantine Broadcast: n nodes, f faults

- Broadcast algorithm solves Equality (MEQ-AD)
 problem for each subset of (n-f) nodes
- n-choose-(n-f) such subsets
- Each link belongs to (n-2)-choose-(n-f-2) such subsets
- > Complexity of broadcast lower bounded by

$$EQ * n-choose-(n-f) / (n-2)-choose-(n-f-2)$$

- EQ ≥ (n-f) L /2 bits for equality of L bits among n-f nodes
- → Broadcast of L bits requires at least

$$L * n(n-1)/2(n-f-1)$$

Our algorithms for broadcast/consensus:

within factor of 2 of above lower bound

Open Problems

Open Problems

- Characterizations of communication complexity for point-to-point networks
 - Alternatives to Yao model seem more appropriate
- Equality for larger networks
- Lower bounds on
 - Equality
 - Byzantine consensus
 - Byzantine broadcast ...

Thanks!

Thanks!

The MEQ(n,M) Problem

■ n nodes each given x_i from $\{1,...,M\}$, to check if all x_i are equal

Each node computes
$$EQ(x_1, \dots, x_n)$$
 = Each node computes $EQ(x_1, \dots, x_n)$ otherwise

$$\exists i, EQ_i = 1 \Leftrightarrow EQ(x_1, \dots, x_n) = 1$$

Graph Representation an Algorithm

Transform to a partially ordered DAG

Graph Representation an Algorithm

 $F_{i,j}$ depends on x_i only

Definition of Complexity

Complexity of an algorithm

$$C(P) = \sum_{i \in \mathcal{I}} \log_2 |F_{i,j}|$$
• Complexity of MEQ(n, M_2)

$$C_{MEQ}(n,M) = \min_{P \text{ solves } MEQ(n,M)} C(P)$$

Upper Bound by Construction

- Send $x_1,..., x_{n-1}$ to node n
- Set $EQ_1 = ... = EQ_{n-1} = 0$
- Compute $EQ_n = EQ(x_1,...,x_n)$

$$C_{MEQ}(n,M) \le (n-1)\log_2 M$$

Cut-Set Lower Bound

- Fooling Set argument
 - Every node must send + receive ≥ log₂M

Neither bound is tight

MEQ(3,6)

$$\frac{n}{2}\log_2 6 < C_{MEQ}(3,6) = 3\log_2 3 < 2\log_2 6$$

Proof by Strong Edge Coloring

MEQ(3,M) algorithm

- = bipartite graph with M edges
- + distance-2 edge coloring scheme

Summary

- Introduce the MEQ problem
- Existing techniques give loose bounds
- New technique to reduce space
- Connection among distributed source coding, distributed algorithm, and graph coloring

Future Work

- \blacksquare MEQ(3,M) is open
 - Optimize over $F_{i,j}$ = find an optimal bipartite graph + strong coloring
- Even given |F_{i,i}| is open
- Looking for new techniques

(a) Graph representation of ${\cal P}$

(b) An equivalent protocol of P with (c) An iid partially ordered extra 5 flipped protocol of P

Figure 3: Complexity of the proposed protocol v.s. upper bound 2k

x	1	2	3	4	5	6
s_{AB}	1	1	2	2	3	3
s_{AC}	1	2	2	3	3	1
s_{BC}	1	2	3	1	2	3

Table 1: A protocol for MEQ-AD(3,6)