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Abstract in a broadcast data delivery system [5]. In a broad-

Data broadcast has been suggested as a promising
method of information dissemination [1, 15]. In such
an environment, the information server cannot afford
to serve the requests from a large population of users
individually. Instead, the server uses a broadcast
channel to deliver information to all users. A sin-
gle transmission of a data item satisfies all pending
requests for that item. The response time of a re-
quest depends on the broadcast time of the desired
data item, which is scheduled by the server according
to the overall demands for various data items. There-
fore, the response time may vary in a large range. We
argue that, in addition to mean response time, the
variance of response time should also be taken into
account by the broadcast scheduler.

In this paper, we address the issue of variance opti-
mization in regard to response time. Building on our
previous research on mean response time optimization,
we propose an algorithm which can minimize the vari-
ance of response time. Furthermore, we evaluate an
algorithm that facilitates a trade-off between the mean
and variance of response time. Numerical examples
that illustrate the performance of our algorithms are
also presented.

1 Introduction

In any client/server information system, user response
time is one of the most important factors to evaluate
the system’s quality of service. It is even more critical
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cast system, server plays an active role and broadcasts
data items to the whole user community repeatedly,
whereas any user who desires a particular data item
listens to the channel until the data is broadcasted.

Needless to say, the schedule of broadcast affects
user response time. Several researchers have pro-
posed various scheduling schemes [3, 4, 6, 7, 8, 10, 14].
But almost all of them evaluate the effectiveness of
scheduling schemes based on how they reduce the over-
all mean response time. The variance of response time
has long been neglected. In the real world, it is hard
to find two users having exactly same demand pat-
terns. Actually, some users’ demand patterns may
largely deviate from the overall demand pattern and
their own mean response time may be much worse
than the overall mean. In this paper, we address this
problem by introducing variance of response time as a
performance metric. Contributions of this paper are
as follows:

e The paper determines the relationship between a
broadcast schedule and the variance of response
time it may achieve. Starting from the analyt-
ical results, we developed a condition satisfying
which results in minimal variance of response
time. Based on this condition, we propose and
evaluate an algorithm that can reduce the vari-
ance.

e In general, the objective in designing broadcast
schedule is likely to be to achieve both low mean
and low variance of response time. However, these
two goals are often contradictory. We propose
and evaluate an algorithm that achieves a trade-
off between the mean and variance.



The rest of the paper is organized as follows. In
Section 2, we define the problem and introduce nota-
tions. Section 3 reports our analysis results regarding
the relationship between broadcast schedule and re-
sponse time. Those results are then used in Section 4
to propose scheduling schemes which can minimize the
mean response time, reduce the variance of response
time, or implement a balance between these two met-
rics. Section 5 discusses our simulations and some
numerical results. We summarize our conclusions in
Section 6.

2 Problem Definition

The focus of this paper is on a pure push-based system
[2] in which server broadcasts data items based on
a known demand distribution for the various items.’
We define the demand probability of item ¢ as the
probability that item 7 is requested in a client request
and denote it with p;. Let M be the total number
of available items at the server and these items are
numbered from 1 to M. It holds that Ziﬂilpi = 1.
The size of an item is another important factor to
consider when server makes broadcast schedule. We
measure the item size (or length) in terms of time
taken when being broadcasted. I; represents length of
item 3.

Response time of a request is defined as the du-
ration of time from when the request is made until
the desired item starts transmission on channel, i.e.
the waiting time a user has to spend getting the re-
quest satisfied[5]. It is important to minimize the re-
sponse time (in some literatures it is also called access
time[6, 9, 13]) so as to reduce the idle time at the
users.

The mean of response time has long been the pri-
mary performance metric. Several scheduling schemes
have been proposed which are able to reduce or even
minimize the mean response time [12, 13, 14]. How-
ever, minimizing the mean response time most benefits
a “virtual” user whose request pattern happens to be
coincident with the overall item demand pattern on
which the broadcast schedule is based. An individ-
ual user whose demand pattern differs from the over-
all demand pattern may experience a mean response
time greatly worse than the optimal value. To accu-
rately evaluate the quality of service experienced by

1Our ideas can also be applied to a pull-based system by
replacing demand probability p; in the discussion below with
the number of requests pending for item z.
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Figure 1: An example broadcast schedule

real users, the variance of response time should also
be taken into account.

In the next section, we will determine a condition
satisfying which results in minimal variance.

3 Analysis

First, we make an assumption about the user request
generation process. As pointed out in [12], when the
user population is large enough, we may assume that
the aggregate request generation process is Poisson
with constant rate.

Second, for the theoretical development, we con-
sider broadcast schedules with Equal Spacing prop-
erty. In such a schedule, the transmissions of any par-
ticular item on broadcast channel are equally spaced.
Let s;,1 < ¢ < M be the spacing between consec-
utive instances of item i. We refer to the vector
< 81,82,...,8m > as schedule vector. Figure 1 is
a snapshot of a broadcast schedule that illustrates the
concept of item spacing on broadcast.

Based on the two assumptions above, we can cal-
culate the mean response time u and the variance of
response time o2, as follows. Detailed derivations are
presented in Appendix I.
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Based on the above expressions, we have obtained
two useful results, of which the first one was presented
in an earlier paper [13].



Previously Known Result: Minimizing
the Mean Response Time[13]

Note that the expected mean response time and vari-
ance of response time are only decided by the schedule
vector (i.e., by s;’s). Using the expression for mean re-
sponse time, [13] derives a property satisfying which
results in a schedule that minimizes the mean response
time u. Specifically, if the equality below is satisfied,
then the mean response time is minimized.

2
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= constant,Vi,1 <i< M (4)

New Result: Minimizing the Variance
of Response Time

Similar to the above property for minimizing the
mean, we found the property which, if satisfied, mini-
mizes the variance of response time.

Theorem 1 Given the demand probability p; of each
item 1, the minimal variance of response time, o?, is
achieved when the schedule vector possesses the fol-
lowing property, assuming that transmissions of each
item 1 are equally spaced by s;.
2
l%(;si — @) = constant,Vi,1 <i< M (5)
1

Appendix IT presents the proof.

The above two results provide valuable insight into
the relationship between the schedule vector and the
quality of service, as well as the theoretical basis
for designing the scheduling algorithms. In the next
section, we introduce a broadcast scheduling scheme
which is based on these observations. We also evaluate
an algorithm that can trade the mean with variance.

4 Scheduling Algorithms

The results stated above imply that minimal mean or
variance of response time can be achieved if the sched-
ule used by server satisfies the condition in Equation
4 or 5, respectively. Unfortunately, it is intractable
to find an optimal schedule. Therefore, we propose
a heuristic-based scheduling scheme by which server
makes the decision regarding which item to broadcast
next. Whenever an item finishes broadcasting, the
server calls the algorithm presented below to choose
next appropriate item. The algorithm uses a decision
rule motivated by the above analytical results. Our al-
gorithms attempt to achieve the equality in Equation

4 or 5, depending on whether mean or variance is to
be minimized, respectively. We later present another
algorithm that can trade the mean response time with
the variance of response time.

The first algorithm below, for reducing mean re-
sponse time, appeared in out previous work [13]. The
new algorithms proposed in this paper are based on
this algorithm.

Reducing Mean Response Time [13]

Let Q be the current time and R; be the time when
item ¢ was most recently transmitted.(If item 4 has
never been broadcasted, R; is initialized to -1.) Define
F; as

Fi = (Q — Ri)’pi/li (6)

F; is defined similar to the left hand side of Equa-
tion 4. Notice that Q changes continually and R; is
updated whenever item 7 is transmitted. To keep the
values of all F;’s as close to each other as possible, the
item j with maximum F value is broadcasted.

Algorithm for reducing mean response
time [13]:

Step 1. For each item ¢, 1 <7 < M, update the
value of F;.

Step 2. Determine maximum F; over all items.
Let F,,,z denote the maximum value.

Step 3. Choose item j such that F; = Fqs.
If this equality holds for more than one
item, choose any one of them arbitrarily.

Step 4. Broadcast item j.

Step 5. R; = Q.

The definition of F; in this algorithm is inspired by
Equation 4. [13] has showed that the above algorithm
results in near-optimal mean response time. In the
rest of this paper, we will refer to it as Mean Optimal
Algorithm.

Proposed Algorithm for Reducing Vari-
ance of Response Time

We can modify the above algorithm to reduce the vari-
ance of response time by replacing the definition of F;
with the following one, motivated by Equations 5 and
1.(Note that we replace s; in Equations 5 and 1 with



(@ — R;) to obtain the expression below.)

F, = @(;(Q—Ri)—%;ﬁ(Q_Ri» (7)

With this definition, we are now trying to maintain
the equality in Equation 5 to the extent possible. We
will refer to the new algorithm as Variance Optimal
Algorithm in next section. Note that the name Vari-
ance Optimal may be a misnomer, as the algorithm is
not proved to achieve near-optimal variance (as we do
not know a tight lower bound on variance).

Proposed Algorithm to Achieve a
Trade-Off Between Mean and Variance

In general, minimal mean and minimal variance of re-
sponse time are two contradictory goals. When mean
response time is reduced to minimal, the variance may
climb to an unacceptable high. If we minimize the
variance, mean response time may become too large.
To achieve a trade-off between a small mean and a
small variance response time, we consider a third al-
gorithm that attempts to achieve the equality below.

= constant, Vi, 1 <1< M (8)

When a = 2, the above equation reduces to Equa-
tion 4. Also, observe that the dominant exponent
of s; in Equation 5 is 3. Therefore, we expect that
a scheduling algorithm that attempts to achieve the
above equality, with o = 3, will have performance ap-
proaching that of the variance optimal algorithm pre-
sented above. Based on Equation 8, we present a new
expression to calculate F; for each item.

Fi=(Q - Ri)*pi/li,2<a <3 (9)

The scheduling algorithm that uses the above F;
expression will be referred to as a-algorithm. When
a = 2, the c-algorithm reduces to Mean Optimal
Algorithm. The a-algorithm was also evaluated by
Su and Tassiulas [12]. They simulated an algorithm,
equivalent to the a-algorithm, for various values of
a, and empirically showed that a = 2 minimizes the
mean response time. We obtained the same result an-
alytically in our prior work [13]. Su and Tassiulas,
however, did not consider the impact of varying o on
the variance of the response time. When « is picked
close to 3, it is expected to produce a schedule which
can make the variance of response time small(due to
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ance of response time when a-algorithm is used
as scheduling algorithm and other system pa-
rameter settings are: M = 250, 8 = 0.75,
Increasing Length distribution( 6 and length dis-

tribution are defined in Section 5).

the cubic term in Equation 5). Although we cannot
provide any analytical evidence for this claim, the sim-
ulation results in next section support it indeed.

As shown in Appendix III, it is possible to derive
good lower bounds on mean and variance of response
time achieved by the a-algorithm. The lower bounds
for one set of length and demand probability distribu-
tions are plotted in Figure 2. Our experience shows
that the a-algorithm typically yields mean and vari-
ance quite close to the lower bounds. Thus, Figure
2 shows how the value of o affects the mean-variance
trade-off.2

5 Performance Evaluation

In this section, we present some numerical results from
our simulation of a broadcast data delivery system.
The server uses various algorithms we presented above
to do scheduling. The user requests are generated ac-
cording to a Poisson process. For each experiment,
1 million requests are generated and served. Other

2 An alternative approach to achieve a trade-off between the
mean and variance would be to define F; as a linear interpola-
tion between the expressions used for mean optimal and vari-
ance optimal algorithms. We have not evaluated this alternative
approach as yet.



simulation parameters are described below.

5.1 Demand Probability Distribution
Of Items

In our simulation, the demand probabilities of all
items follow Zipf distribution, with item 1 being the
most frequently requested, and item M being the least
frequently requested. The Zipf distribution may be
expressed as follows:

1 2]
pi:C<—,> 71§i§M

2

where ¢ = is a normalizing factor, and 6 is

1

2 ()
a parameter named access skew coefficient. When 6 =
0, Zipf distribution reduces to a uniform distribution
with each item equally likely to be requested. How-
ever, the distribution becomes increasingly “skewed”
as @ increases(that is, the difference among items with
respect to the degree of popularity becomes more sig-
nificant).

5.2 Length Distribution Of Items

The following three length distributions are considered
in our simulations:

1. Equal Length Distribution:
All items are equally sized and the size is 1, with-
out loss of generality.

2. Increasing Length Distribution:
In this case, the lengths of M items follow an
increasing function, i.e. item 1, the most popu-
lar item, is the smallest item whereas item M,
the most unpopular item, is the longest item in
terms of transmission time. The length distribu-
tion function is as follows,

(i - 1)(lmaz - lmin)

li :lmin
+ M-1

with l,:n = 1 and [, = 250.

3. Decreasing Length Distribution:
In this case, the length distribution function is

(i - 1)(lmaz - lmin)
M-1

li = lmaz -

with l,:n = 1 and [, = 250.

M | 250

0 0.25,0.5,0.75,1.0,1.25,1.5

l; Equal, Increasing, Decreasing
a |22,26,3

Table 1: Parameter Settings

5.3 Simulation Results

Table 1 shows the parameter settings for our simula-
tions. We conducted a number of experiments under
different combinations of the parameter settings. In
each experiment, the response time of every request is
captured. After sampling 1 million requests, we plot
the mean and variance values in the following figures.

5.8.1 Validation of algorithms

As we mentioned before, our algorithms are heuris-
tic based. In each algorithm, we define a vari-
able F; for each item : and obtain a variable group
{F1, Fs, ..., Fap}. The variable values keep changing
and depend on the broadcast schedule generated by
the algorithm. As we know, an ideal schedule should
maintain the equality in Equation 4, 5 or 8 respec-
tively. Since the definition of F; is derived from one of
the equalities, a schedule that can make the variable
group “small”, i.e. all variable values in the group
are close to each other, is desired. To reach the goal,
we manipulate the changes of F; values by choosing
the item with maximum value to broadcast and thus
“pulling it back”. In order to verify that this heuristic
does work, we record the values of F,4;’s in simula-
tion experiments. Figure 3 plots the data we captured
in an experiment. Clearly, the F; variable values are
effectively bounded. Similar results are obtained for
other algorithms and presented in [11].

5.3.2 Equal Length Case

In the first simulation experiment, we let all items be
of size 1 and examine the user response time when
demand distribution of items varies. The simulation
results are shown in Figure 4. In this figure, the
graph whose y-axis is labeled “Mean” plots the mean
response time when using different scheduling algo-
rithms. Also, the second graph with y-axis labeled
“Variance” plots the variance of response time. The
number marked on each curve in these graphs is the
value of 6 used for that curve. From left to right along
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the x-axis, the algorithms we used in the experiment
are numbered consecutively from 1 to 5 and they are
(1) Mean Optimal Algorithm, (2) a-algorithm with
a = 2.2, (3) a-algorithm with o = 2.6, (4) a-algorithm
with o = 3, and (5) Variance Optimal Algorithm.

The key observations are as follows. As we ex-
pected, the lowest mean response time is achieved
when server uses the Mean Optimal Algorithm, and
the lowest variance of response time when Variance
Optimal Algorithm. The performance of a-algorithms
falls between the Mean Optimal Algorithm and Vari-
ance Optimal Algorithm. When o changes from 2.2
to 2.6 and then to 3, the measured mean response
time is observed to increase gradually while variance
is dropping at the same time.

However, the effectiveness of a-algorithm and Vari-
ance Optimal Algorithm in reducing variance of re-
sponse time is challenged when the skew in user de-
mands for items is small. When 8 = 0.25, either
mean or variance does not show any significant change
when different algorithms are adopted. Actually, for
6 = 0.25, the mean response time results produced by
5 algorithms are so close with each other that the dif-
ference between the maximum value and the minimal
value is less than 1 time unit and all are very close to
the theoretically minimal value.

When 6 increases but is still less than 1.25, the
skew in user demands becomes a little large but not
too large. For instance, when 8 = 0.75 and the num-
ber of items is 250, about half user requests are for
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Figure 4: Performance of different algorithms (Equal
Length Distribution) (1:Mean Optimal Algorithm,
2:a-algorithm with o = 2.2, 3:a-algorithm with o =
2.6, 4:-algorithm with o = 3, 5:Variance Optimal
Algorithm)

top 33 items and the remaining 217 items take the
burden of serving the other half requests. However,
to reduce the overall mean response time, most band-
width is given to a few items by the Mean Optimal
Algorithm. The poor service for the “not most pop-
ular” items results in a higher variance of response
time. Both a-algorithms and Variance Optimal Algo-
rithm greatly improve the situation. From the curves,
the reduction of variance brought by those algorithms
is conspicuous, and the unavoidable increase of mean
is not very significant.

In general, when @ is increased starting from 0, the
variance increases at first, but after a point, it starts
to decrease again. For instance, in Figure 4, for the
Mean Optimal Algorithm, the variance increases when
0 increases from 0.25 to 0.75, but after § = 1.0, the
variance starts decreasing. This phenomenon looks
counter-intuitive at first. In fact, when the skew in
user demands becomes extremely large, the percent-
age of requests attracted by a few hot items becomes
very large. In our example of 250 items, if § = 1.5,
top 33 items are demanded by 91% user requests. To
serve them well means to serve all well. On the other
hand, although a-algorithms and Variance Optimal
Algorithm reduce the variance of response time dras-
tically as expected, they make a large sacrifice with re-
spect to mean response time. Note the large increase
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of mean when § = 1.5 in Figure 4.

In summary, a-algorithms and Variance Optimal
Algorithm perform best in the situation with medium-
skewed demand distribution, but when user demands
are lightly skewed or severely skewed, Mean Optimal
Algorithm is still a good alternative.

5.4 Unequal Length Case

Assuming that the items follow an Increasing Length
Distribution and Decreasing Length Distribution re-
spectively, we repeated our experiment. Due to space
restriction, only the results for Increasing Length Dis-
tribution case are shown here(Figure 5). The results
for Decreasing Length Distribution case are similar
and can be found in [11].

The curves show that performance of our scheduling
algorithms is insensitive to the length distribution of
items. Same conclusion as in Equal Length case can
be drawn from both Unequal Length cases.

6 Conclusion

In this paper, we argue that from a user’s point of
view, the variance of response time is also important,
not just the mean response time. Variance of response
time affects a user’s impression about the quality of
service a system can provide. In the so-called pure

push-based data broadcast system, where there is no
direct channel for users to send requests explicitly, it
is possible for the server to reduce the variance of re-
sponse time by making appropriate broadcast sched-
ules. In particular, we found a property satisfying
which results in a schedule with minimal variance of
response time. Based on the property, we proposed
a scheduling algorithm that attempts to minimize the
variance of response time as well as an algorithm that
can trade mean response time with variance of re-
sponse time.

Simulation was conducted to evaluate the perfor-
mance of these algorithms. Our a-algorithm performs
best when user item demands are medium skewed and
effectively implements the trade-off between mean and
variance. However, when user demands are lightly or
severely skewed, all algorithms present almost same
performance and the Mean Optimal Algorithm[13] is
still a good alternative.

The evaluation presented in this paper assumed
a push-based system. Our algorithms can be eas-
ily adapted to achieve low variance in pull-based
systems[2]. In this case, the number of requests pend-
ing for a particular item can be used in place of de-
mand probability of the item.

A Appendix I: Mean and Vari-
ance of Response Time

In section 2, we define the response time ¢ of any user
request as the duration time from when the request
is made until the desired item appears on broadcast
channel. Based on the assumption that all the users
work independently from each other in terms of re-
questing data items and getting served, we claim that
both the generation of requests and the item asked in
a request are random events. Two random variables
can be defined: T, the issue time of the request, and
I, the item required in the request.

I is a discrete random variable taking integer values
from 1 to M. The probability of item ¢ being requested,
1.e. I taking value ¢, is just the demand probability of
item ¢ we defined in section 2, p;. So

ProblI =14 =p;

Further, if a request for item ¢ comes at time T,
its response time ¢ falls in the range (0, s;] depending
on where T resides between two consecutive broad-
casts of item :. Since we assume that request arrival



is governed by a Poisson process, the request comes
equally likely at any time. In the case of item i being
requested, t is uniformly distributed over (0, s;] and
the probability density function of ¢, ¢;(2), is

qi(t) = { ?

Since t is a continuous random variable, cumulative
distribution function for ¢ is obtained as:

,0<t < s
, otherwise

x
Pt<z|l =1 = F(z) = / gi(t)dt, =z real
-0
where F;(z) is the cumulative distribution function for
t given that I = 2.
Above is the conditional probability of ¢. Using
the Multiplication Rule, we may have the cumulative
distribution function F(z) for t.
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Let g(t) be the probability density function of ran-
dom variable ¢. It follows that,

Zpiqz'(t) (10)

Now, we will be able to derive the expressions for
4, the mean response time, and o2, the variance of
response time.

A.1 Expressions for y

Mean response time p is the expected value of £. By
the definition of expected value, we have

= sz/ t% t
= Zpi /Si idt
=1 0 i
1 M
= Ezsipi
=1

A.2 Expressions for o2

The variance of response time ¢ is the expected value
of random variable (¢t — p)2. So, we have

v

= 3wt wiat
M s
z;ll 1

= ZS—:[g( - %157

= 32r s—zpzwz O

Since pu = %Zf‘il s;p; and Ziﬂilpi = 1, the above
equation can be further simplified as

1 M
= gZPiS? —
=1
or

1 1
= 521‘%’5? - 5251101
=1 =1

B Appendix II: Minimizing the
Variance

Theorem 1 Given the demand probability p; of each
item 1, the minimal variance of response time, o?, is



achieved when the schedule vector possesses the fol-
lowing property, assuming that transmissions of each
item 1 are equally spaced by s;.

2
;87 2
l%(gsi — @) = constant, Vi, 1 <i: < M
i
Proof:
o? is a multi-variable function of sq,s2,:--,sn.

However, only M-1 of the sis can be changed inde-
pendently instead of M. To find this fact, let us define
the share of bandwidth that each item occupies. For
item i, it is broadcast once every s; time period and
each transmission takes /; time. So, the percentage of
time taken by item i during the broadcast is . To
utilize the bandwidth of broadcast channel to its full

extent, we should make
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Back to our objective of minimizing the o%, we have
to find the schedule vector which makes BL =0,V
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From Equation 11, it can be found that

Osp S?M I

9s1 5% lar

By substitution, Equation 12 becomes
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This is equivalent to saying that

pist 2 1 1<
L (§5i 2 z;pm) = constant, Vi, 1 <i < M
1=
or
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s

Thus, we have proved Theorem 1.

C Appendix III: Lower Bounds
for the a-Algorithm

In the ideal situation, a-algorithm can create a sched-
ule making the equation s(‘;i = C to be true, where
C is a constant. In the folfowing, we will derive the
value of C, and the values of s;’s when the ideal con-
dition holds. Then, both the mean and variance of
response time can be obtained. They serve to be the
lower bounds of mean and variance of response time
respectively, which can be attained by an a-algorithm.

From the equation s?i =C,i =1,2,---, M, it
follows that '

l; | a
s =(C+—)= 13
=(c- ) (13)
Let r; be the share of bandwidth by item 7 during
broadcast. Since each transmission of item 7 takes I;
time and item 1 1s transmltted every s; time period,
we have r; = 2. As Zl (=1,
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=1 (14)

K

]

Substituting the s; in above equation with the ex-
pression in Equation 13, we have

or
Mo, 21-2
Yl )

ok

Solving the equation above, we get

—1 (15)

M
141\«
o= (3w ) (16)
=1
Substituting the value of C into Equation 13, we
find the value of s; for item 1 as follows,

M
si=0> rl I (H)Fi=1,2, M

=1

Finally, the values of mean x and variance ¢? in this

case can be derived by substituting the above expres-
sion for s; into Equations 1 and 2.

References

[1] S. Acharya, R. Alonso, M. Franklin, and
S. Zdonik, “Broadcast disks - data management
for asymmetric communications environment,” in
ACM SIGMOD Conference, May 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik, “Balanc-
ing push and pull for data broadcast,” in ACM
SIGMOD Conference, May 1997.

[3] S. Acharya, M. Franklin, and S. Zdonik,
“Dissemination-based data delivery using broad-
cast disks,” IEFE Personal Communication,
pp- 50—60, Dec. 1995.

[4] D. Aksoy and M. Franklin, “Scheduling for large-
scale on-demand data broadcasting,” in Proc. of
INFOCOM’98, Apr. 1998.

[5] M. H. Ammar, “Response time in a teletext sys-
tem: An individual user’s perspective,” IEEE
Transactions on Communications, Nov. 1987.

[6] V. Gondhalekar, R. Jain, and J. Werth, “Schedul-
ing on airdisks: Efficient access to personalized
information services via periodic wireless data
broadcast,” in IEEE Int. Conf. Comm., June
1997.

[7] S. Hameed and N. H. Vaidya, “Log-time algo-
rithms for scheduling single and multiple chan-
nel data broadcast,” in ACM/IEEE International
Conference on Mobile Computing and Network-
ing (MOBICOM), Sept. 1997.

[8] H.V.Leong and A.Si, “Data broadcasting based
on statistical operators,” FElectronics Letters,
vol. 32, Oct. 1996.

[9] T. Imielinski, S. Viswanathan, and B. R. Badri-
nath, “Energy eflicient indexing on air,” in In-
ternational conference on Management of Data,
May 1994.

[10] T. Imielinski, S. Viswanathan, and B. R. Badri-
nath, “Data on the air - organization and access,”
IEEE Transactions of Data and Knowledge En-
gineering, July 1996.

[11] S. Jiang and N. H. Vaidya, “Scheduling algo-
rithms for a data broadcast system:minimizing
variance of the response time,” Tech. Rep. 98-
005, Computer Science Department, Texas A&M
University, College Station, Feb. 1998.

[12] C.-J. Su and L. Tassiulas, “Broadcast scheduling
for information distribution,” in Proc. of INFO-
COM’97, Apr. 1997.

[13] N. H. Vaidya and S. Hameed, “Data broadcast in
asymmetric wireless environments,” in Workshop
on Satellite Based Information Services (WOS-
BIS), Rye, NY, Nov. 1996.

[14] J. W. Wong, “Broadcast delivery,” in Proceedings
of IEEE, pp. 15661577, Dec. 1988.

[15] Z. Zdomnik, R. Alonso, M. Franklin, and
S. Acharya, “Are ‘disks in the air’ just pie in the
sky?,” in IEEE Workshop on Mobile comp. Sys-
tem, Dec. 1994.



