
Response Time in Data Broadcast Systems:Mean, Variance and Trade-O� �Shu Jiang Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112, USAEmail: fjiangs,vaidyag@cs.tamu.eduURL: http://www.cs.tamu.edu/faculty/vaidya/mobile.htmlAbstractData broadcast has been suggested as a promisingmethod of information dissemination [1, 15]. In suchan environment, the information server cannot a�ordto serve the requests from a large population of usersindividually. Instead, the server uses a broadcastchannel to deliver information to all users. A sin-gle transmission of a data item satis�es all pendingrequests for that item. The response time of a re-quest depends on the broadcast time of the desireddata item, which is scheduled by the server accordingto the overall demands for various data items. There-fore, the response time may vary in a large range. Weargue that, in addition to mean response time, thevariance of response time should also be taken intoaccount by the broadcast scheduler.In this paper, we address the issue of variance opti-mization in regard to response time. Building on ourprevious research on mean response time optimization,we propose an algorithm which can minimize the vari-ance of response time. Furthermore, we evaluate analgorithm that facilitates a trade-o� between the meanand variance of response time. Numerical examplesthat illustrate the performance of our algorithms arealso presented.1 IntroductionIn any client/server information system, user responsetime is one of the most important factors to evaluatethe system's quality of service. It is even more critical�This research is supported in part by Texas Advanced Tech-nology Program under grants 009741-052-C and 010115-248,and National Science Foundation Grant MIP-9423735.

in a broadcast data delivery system [5]. In a broad-cast system, server plays an active role and broadcastsdata items to the whole user community repeatedly,whereas any user who desires a particular data itemlistens to the channel until the data is broadcasted.Needless to say, the schedule of broadcast a�ectsuser response time. Several researchers have pro-posed various scheduling schemes [3, 4, 6, 7, 8, 10, 14].But almost all of them evaluate the e�ectiveness ofscheduling schemes based on how they reduce the over-all mean response time. The variance of response timehas long been neglected. In the real world, it is hardto �nd two users having exactly same demand pat-terns. Actually, some users' demand patterns maylargely deviate from the overall demand pattern andtheir own mean response time may be much worsethan the overall mean. In this paper, we address thisproblem by introducing variance of response time as aperformance metric. Contributions of this paper areas follows:� The paper determines the relationship between abroadcast schedule and the variance of responsetime it may achieve. Starting from the analyt-ical results, we developed a condition satisfyingwhich results in minimal variance of responsetime. Based on this condition, we propose andevaluate an algorithm that can reduce the vari-ance.� In general, the objective in designing broadcastschedule is likely to be to achieve both low meanand low variance of response time. However, thesetwo goals are often contradictory. We proposeand evaluate an algorithm that achieves a trade-o� between the mean and variance.



The rest of the paper is organized as follows. InSection 2, we de�ne the problem and introduce nota-tions. Section 3 reports our analysis results regardingthe relationship between broadcast schedule and re-sponse time. Those results are then used in Section 4to propose scheduling schemes which can minimize themean response time, reduce the variance of responsetime, or implement a balance between these two met-rics. Section 5 discusses our simulations and somenumerical results. We summarize our conclusions inSection 6.2 Problem De�nitionThe focus of this paper is on a pure push-based system[2] in which server broadcasts data items based ona known demand distribution for the various items.1We de�ne the demand probability of item i as theprobability that item i is requested in a client requestand denote it with pi. Let M be the total numberof available items at the server and these items arenumbered from 1 to M . It holds that PMi=1 pi = 1.The size of an item is another important factor toconsider when server makes broadcast schedule. Wemeasure the item size (or length) in terms of timetaken when being broadcasted. li represents length ofitem i.Response time of a request is de�ned as the du-ration of time from when the request is made untilthe desired item starts transmission on channel, i.e.the waiting time a user has to spend getting the re-quest satis�ed[5]. It is important to minimize the re-sponse time (in some literatures it is also called accesstime[6, 9, 13]) so as to reduce the idle time at theusers.The mean of response time has long been the pri-mary performance metric. Several scheduling schemeshave been proposed which are able to reduce or evenminimize the mean response time [12, 13, 14]. How-ever, minimizing the mean response time most bene�tsa \virtual" user whose request pattern happens to becoincident with the overall item demand pattern onwhich the broadcast schedule is based. An individ-ual user whose demand pattern di�ers from the over-all demand pattern may experience a mean responsetime greatly worse than the optimal value. To accu-rately evaluate the quality of service experienced by1Our ideas can also be applied to a pull-based system byreplacing demand probability pi in the discussion below withthe number of requests pending for item i.
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. . . . . .Figure 1: An example broadcast schedulereal users, the variance of response time should alsobe taken into account.In the next section, we will determine a conditionsatisfying which results in minimal variance.3 AnalysisFirst, we make an assumption about the user requestgeneration process. As pointed out in [12], when theuser population is large enough, we may assume thatthe aggregate request generation process is Poissonwith constant rate.Second, for the theoretical development, we con-sider broadcast schedules with Equal Spacing prop-erty. In such a schedule, the transmissions of any par-ticular item on broadcast channel are equally spaced.Let si; 1 � i � M be the spacing between consec-utive instances of item i. We refer to the vector< s1; s2; : : : ; sM > as schedule vector. Figure 1 isa snapshot of a broadcast schedule that illustrates theconcept of item spacing on broadcast.Based on the two assumptions above, we can cal-culate the mean response time � and the variance ofresponse time �2, as follows. Detailed derivations arepresented in Appendix I.� = 12 MXi=1 sipi (1)and �2 = 13 MXi=1 pis2i � (12 MXi=1 sipi)2 (2)or �2 = 13 MXi=1 pis2i � �2 (3)Based on the above expressions, we have obtainedtwo useful results, of which the �rst one was presentedin an earlier paper [13].



Previously Known Result: Minimizingthe Mean Response Time[13]Note that the expected mean response time and vari-ance of response time are only decided by the schedulevector (i.e., by si's). Using the expression for mean re-sponse time, [13] derives a property satisfying whichresults in a schedule that minimizes the mean responsetime �. Speci�cally, if the equality below is satis�ed,then the mean response time is minimized.s2i pili = constant; 8i; 1 � i �M (4)New Result: Minimizing the Varianceof Response TimeSimilar to the above property for minimizing themean, we found the property which, if satis�ed, mini-mizes the variance of response time.Theorem 1 Given the demand probability pi of eachitem i, the minimal variance of response time, �2, isachieved when the schedule vector possesses the fol-lowing property, assuming that transmissions of eachitem i are equally spaced by si.pis2ili (23si � �) = constant; 8i; 1 � i �M (5)Appendix II presents the proof.The above two results provide valuable insight intothe relationship between the schedule vector and thequality of service, as well as the theoretical basisfor designing the scheduling algorithms. In the nextsection, we introduce a broadcast scheduling schemewhich is based on these observations. We also evaluatean algorithm that can trade the mean with variance.4 Scheduling AlgorithmsThe results stated above imply that minimal mean orvariance of response time can be achieved if the sched-ule used by server satis�es the condition in Equation4 or 5, respectively. Unfortunately, it is intractableto �nd an optimal schedule. Therefore, we proposea heuristic-based scheduling scheme by which servermakes the decision regarding which item to broadcastnext. Whenever an item �nishes broadcasting, theserver calls the algorithm presented below to choosenext appropriate item. The algorithm uses a decisionrule motivated by the above analytical results. Our al-gorithms attempt to achieve the equality in Equation

4 or 5, depending on whether mean or variance is tobe minimized, respectively. We later present anotheralgorithm that can trade the mean response time withthe variance of response time.The �rst algorithm below, for reducing mean re-sponse time, appeared in out previous work [13]. Thenew algorithms proposed in this paper are based onthis algorithm.Reducing Mean Response Time [13]Let Q be the current time and Ri be the time whenitem i was most recently transmitted.(If item i hasnever been broadcasted, Ri is initialized to -1.) De�neFi as Fi = (Q �Ri)2pi=li (6)Fi is de�ned similar to the left hand side of Equa-tion 4. Notice that Q changes continually and Ri isupdated whenever item i is transmitted. To keep thevalues of all Fi's as close to each other as possible, theitem j with maximum F value is broadcasted.Algorithm for reducing mean responsetime [13]:Step 1. For each item i, 1 � i � M , update thevalue of Fi.Step 2. Determine maximum Fi over all items.Let Fmax denote the maximum value.Step 3. Choose item j such that Fj = Fmax.If this equality holds for more than oneitem, choose any one of them arbitrarily.Step 4. Broadcast item j.Step 5. Rj = Q.The de�nition of Fi in this algorithm is inspired byEquation 4. [13] has showed that the above algorithmresults in near-optimal mean response time. In therest of this paper, we will refer to it as Mean OptimalAlgorithm.Proposed Algorithm for Reducing Vari-ance of Response TimeWe can modify the above algorithm to reduce the vari-ance of response time by replacing the de�nition of Fiwith the following one, motivated by Equations 5 and1.(Note that we replace si in Equations 5 and 1 with



(Q� Ri) to obtain the expression below.)Fi = pi(Q� Ri)2li �23(Q�Ri)� 12 MXi=1 pi(Q�Ri)� (7)With this de�nition, we are now trying to maintainthe equality in Equation 5 to the extent possible. Wewill refer to the new algorithm as Variance OptimalAlgorithm in next section. Note that the name Vari-ance Optimal may be a misnomer, as the algorithm isnot proved to achieve near-optimal variance (as we donot know a tight lower bound on variance).Proposed Algorithm to Achieve aTrade-O� Between Mean and VarianceIn general, minimal mean and minimal variance of re-sponse time are two contradictory goals. When meanresponse time is reduced to minimal, the variance mayclimb to an unacceptable high. If we minimize thevariance, mean response time may become too large.To achieve a trade-o� between a small mean and asmall variance response time, we consider a third al-gorithm that attempts to achieve the equality below.s�i pili = constant; 8i; 1 � i � M (8)When � = 2, the above equation reduces to Equa-tion 4. Also, observe that the dominant exponentof si in Equation 5 is 3. Therefore, we expect thata scheduling algorithm that attempts to achieve theabove equality, with � = 3, will have performance ap-proaching that of the variance optimal algorithm pre-sented above. Based on Equation 8, we present a newexpression to calculate Fi for each item.Fi = (Q �Ri)�pi=li; 2 � � � 3 (9)The scheduling algorithm that uses the above Fiexpression will be referred to as �-algorithm. When� = 2, the �-algorithm reduces to Mean OptimalAlgorithm. The �-algorithm was also evaluated bySu and Tassiulas [12]. They simulated an algorithm,equivalent to the �-algorithm, for various values of�, and empirically showed that � = 2 minimizes themean response time. We obtained the same result an-alytically in our prior work [13]. Su and Tassiulas,however, did not consider the impact of varying � onthe variance of the response time. When � is pickedclose to 3, it is expected to produce a schedule whichcan make the variance of response time small(due to
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Figure 2: The lower bounds on mean and vari-ance of response time when �-algorithm is usedas scheduling algorithm and other system pa-rameter settings are: M = 250, � = 0:75,Increasing Length distribution( � and length dis-tribution are de�ned in Section 5).the cubic term in Equation 5). Although we cannotprovide any analytical evidence for this claim, the sim-ulation results in next section support it indeed.As shown in Appendix III, it is possible to derivegood lower bounds on mean and variance of responsetime achieved by the �-algorithm. The lower boundsfor one set of length and demand probability distribu-tions are plotted in Figure 2. Our experience showsthat the �-algorithm typically yields mean and vari-ance quite close to the lower bounds. Thus, Figure2 shows how the value of � a�ects the mean-variancetrade-o�.25 Performance EvaluationIn this section, we present some numerical results fromour simulation of a broadcast data delivery system.The server uses various algorithms we presented aboveto do scheduling. The user requests are generated ac-cording to a Poisson process. For each experiment,1 million requests are generated and served. Other2An alternative approach to achieve a trade-o� between themean and variance would be to de�ne Fi as a linear interpola-tion between the expressions used for mean optimal and vari-ance optimal algorithms. We have not evaluated this alternativeapproach as yet.



simulation parameters are described below.5.1 Demand Probability DistributionOf ItemsIn our simulation, the demand probabilities of allitems follow Zipf distribution, with item 1 being themost frequently requested, and itemM being the leastfrequently requested. The Zipf distribution may beexpressed as follows:pi = c�1i�� ; 1 � i � Mwhere c = 1PMi=1( 1i )� is a normalizing factor, and � isa parameter named access skew coe�cient. When � =0, Zipf distribution reduces to a uniform distributionwith each item equally likely to be requested. How-ever, the distribution becomes increasingly \skewed"as � increases(that is, the di�erence among items withrespect to the degree of popularity becomes more sig-ni�cant).5.2 Length Distribution Of ItemsThe following three length distributions are consideredin our simulations:1. Equal Length Distribution:All items are equally sized and the size is 1, with-out loss of generality.2. Increasing Length Distribution:In this case, the lengths of M items follow anincreasing function, i.e. item 1, the most popu-lar item, is the smallest item whereas item M ,the most unpopular item, is the longest item interms of transmission time. The length distribu-tion function is as follows,li = lmin + (i� 1)(lmax � lmin)M � 1with lmin = 1 and lmax = 250:3. Decreasing Length Distribution:In this case, the length distribution function isli = lmax � (i � 1)(lmax � lmin)M � 1with lmin = 1 and lmax = 250:

M 250� 0.25,0.5,0.75,1.0,1.25,1.5li Equal, Increasing, Decreasing� 2.2, 2.6, 3Table 1: Parameter Settings5.3 Simulation ResultsTable 1 shows the parameter settings for our simula-tions. We conducted a number of experiments underdi�erent combinations of the parameter settings. Ineach experiment, the response time of every request iscaptured. After sampling 1 million requests, we plotthe mean and variance values in the following �gures.5.3.1 Validation of algorithmsAs we mentioned before, our algorithms are heuris-tic based. In each algorithm, we de�ne a vari-able Fi for each item i and obtain a variable groupfF1; F2; : : : ; FMg. The variable values keep changingand depend on the broadcast schedule generated bythe algorithm. As we know, an ideal schedule shouldmaintain the equality in Equation 4, 5 or 8 respec-tively. Since the de�nition of Fi is derived from one ofthe equalities, a schedule that can make the variablegroup \small", i.e. all variable values in the groupare close to each other, is desired. To reach the goal,we manipulate the changes of Fi values by choosingthe item with maximum value to broadcast and thus\pulling it back". In order to verify that this heuristicdoes work, we record the values of Fmax's in simula-tion experiments. Figure 3 plots the data we capturedin an experiment. Clearly, the Fi variable values aree�ectively bounded. Similar results are obtained forother algorithms and presented in [11].5.3.2 Equal Length CaseIn the �rst simulation experiment, we let all items beof size 1 and examine the user response time whendemand distribution of items varies. The simulationresults are shown in Figure 4. In this �gure, thegraph whose y-axis is labeled \Mean" plots the meanresponse time when using di�erent scheduling algo-rithms. Also, the second graph with y-axis labeled\Variance" plots the variance of response time. Thenumber marked on each curve in these graphs is thevalue of � used for that curve. From left to right along
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Figure 3: The change of Fmax (�-algorithm with � =2:6)the x-axis, the algorithms we used in the experimentare numbered consecutively from 1 to 5 and they are(1) Mean Optimal Algorithm, (2) �-algorithm with� = 2:2, (3) �-algorithm with � = 2:6, (4) �-algorithmwith � = 3, and (5) Variance Optimal Algorithm.The key observations are as follows. As we ex-pected, the lowest mean response time is achievedwhen server uses the Mean Optimal Algorithm, andthe lowest variance of response time when VarianceOptimal Algorithm. The performance of �-algorithmsfalls between the Mean Optimal Algorithm and Vari-ance Optimal Algorithm. When � changes from 2.2to 2.6 and then to 3, the measured mean responsetime is observed to increase gradually while varianceis dropping at the same time.However, the e�ectiveness of �-algorithm and Vari-ance Optimal Algorithm in reducing variance of re-sponse time is challenged when the skew in user de-mands for items is small. When � = 0:25, eithermean or variance does not show any signi�cant changewhen di�erent algorithms are adopted. Actually, for� = 0:25, the mean response time results produced by5 algorithms are so close with each other that the dif-ference between the maximum value and the minimalvalue is less than 1 time unit and all are very close tothe theoretically minimal value.When � increases but is still less than 1.25, theskew in user demands becomes a little large but nottoo large. For instance, when � = 0:75 and the num-ber of items is 250, about half user requests are for
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push-based data broadcast system, where there is nodirect channel for users to send requests explicitly, itis possible for the server to reduce the variance of re-sponse time by making appropriate broadcast sched-ules. In particular, we found a property satisfyingwhich results in a schedule with minimal variance ofresponse time. Based on the property, we proposeda scheduling algorithm that attempts to minimize thevariance of response time as well as an algorithm thatcan trade mean response time with variance of re-sponse time.Simulation was conducted to evaluate the perfor-mance of these algorithms. Our �-algorithm performsbest when user item demands are medium skewed ande�ectively implements the trade-o� between mean andvariance. However, when user demands are lightly orseverely skewed, all algorithms present almost sameperformance and the Mean Optimal Algorithm[13] isstill a good alternative.The evaluation presented in this paper assumeda push-based system. Our algorithms can be eas-ily adapted to achieve low variance in pull-basedsystems[2]. In this case, the number of requests pend-ing for a particular item can be used in place of de-mand probability of the item.A Appendix I: Mean and Vari-ance of Response TimeIn section 2, we de�ne the response time t of any userrequest as the duration time from when the requestis made until the desired item appears on broadcastchannel. Based on the assumption that all the userswork independently from each other in terms of re-questing data items and getting served, we claim thatboth the generation of requests and the item asked ina request are random events. Two random variablescan be de�ned: T , the issue time of the request, andI, the item required in the request.I is a discrete random variable taking integer valuesfrom 1 to M. The probability of item i being requested,i.e. I taking value i, is just the demand probability ofitem i we de�ned in section 2, pi. SoProb[I = i] = piFurther, if a request for item i comes at time T ,its response time t falls in the range (0; si] dependingon where T resides between two consecutive broad-casts of item i. Since we assume that request arrival



is governed by a Poisson process, the request comesequally likely at any time. In the case of item i beingrequested, t is uniformly distributed over (0; si] andthe probability density function of t, qi(t), is:qi(t) = � 1si ; 0 < t � si0 ; otherwiseSince t is a continuous random variable, cumulativedistribution function for t is obtained as:P [t � xjI = i] = Fi(x) = Z x�1 qi(t)dt; x realwhere Fi(x) is the cumulative distribution function fort given that I = i.Above is the conditional probability of t. Usingthe Multiplication Rule, we may have the cumulativedistribution function F (x) for t.P [t � x] = F (x)= MXi=1(Prob[I = i]Prob[t � xjI = i])= MXi=1(piFi(x))Let g(t) be the probability density function of ran-dom variable t. It follows that,g(t) = MXi=1 piqi(t) (10)Now, we will be able to derive the expressions for�, the mean response time, and �2, the variance ofresponse time.A.1 Expressions for �Mean response time � is the expected value of t. Bythe de�nition of expected value, we have� = Z 10 tg(t)dt= Z 10 (t MXi=1(piqi(t)))dt= Z 10 MXi=1 pi(tqi(t))dt

= MXi=1 pi Z 10 tqi(t)dt= MXi=1 pi Z si0 tsi dt= 12 MXi=1 sipiA.2 Expressions for �2The variance of response time t is the expected valueof random variable (t � �)2. So, we have�2 = Z 1�1(t � �)2g(t)dt= Z 1�1(t � �)2 MXi=1(piqi(t))dt= Z 1�1 MXi=1(pi(t � �)2qi(t))dt= MXi=1 Z 1�1 pi(t� �)2qi(t)dt= MXi=1 Z si0 pi(t � �)2 1si dt= MXi=1 pisi [ 13(t� �)3jsi0 ]= 13 MXi=1 pis2i � ( MXi=1 pisi)� + ( MXi=1 pi)�2Since � = 12PMi=1 sipi and PMi=1 pi = 1, the aboveequation can be further simpli�ed as�2 = 13 MXi=1 pis2i � �2or �2 = 13 MXi=1 pis2i � (12 MXi=1 sipi)2B Appendix II: Minimizing theVarianceTheorem 1 Given the demand probability pi of eachitem i, the minimal variance of response time, �2, is



achieved when the schedule vector possesses the fol-lowing property, assuming that transmissions of eachitem i are equally spaced by si.pis2ili (23si � �) = constant; 8i; 1 � i �MProof:�2 is a multi-variable function of s1; s2; � � � ; sM .However, only M-1 of the s0is can be changed inde-pendently instead of M. To �nd this fact, let us de�nethe share of bandwidth that each item occupies. Foritem i, it is broadcast once every si time period andeach transmission takes li time. So, the percentage oftime taken by item i during the broadcast is lisi . Toutilize the bandwidth of broadcast channel to its fullextent, we should makel1s1 + l2s2 + : : :+ lM�1sM�1 + lMsM = 1orsM = lM (1� l1s1 � l2s2 � : : :� lM�1sM�1 )�1 (11)Back to our objective of minimizing the �2, we haveto �nd the schedule vector which makes @�2@si = 0; 8i.We now solve these equations, beginning with 0 =@�2@s1 .0 = @�2@s1 = @@s1 [ 13 MXi=1 pis2i � (12 MXi=1 pisi)2]= p1[ 23s1�12( MXi=1 pisi)]+pM [ 23sM�12( MXi=1 pisi)]@sM@s1(12)From Equation 11, it can be found that@sM@s1 = �s2Ms21 � l1lMBy substitution, Equation 12 becomes0 = p1[ 23s1�12( MXi=1 pisi)]�pMs2Ms21 � l1lM [ 23sM�12( MXi=1 pisi)]which implies thatp1s21l1 (23s1 � 12 MXi=1 pisi) = pMs2MlM (23sM � 12 MXi=1 pisi)Similarly,p2s22l2 (23s2 � 12 MXi=1 pisi) = pMs2MlM (23sM � 12 MXi=1 pisi)

: : :pM�1s2M�1lM�1 (23sM�1 � 12 MXi=1 pisi)= pMs2MlM (23sM � 12 MXi=1 pisi)In other words,p1s21l1 (23s1 � 12 MXi=1 pisi) = p2s22l2 (23s2 � 12 MXi=1 pisi)= : : := pMs2MlM (23sM � 12 MXi=1 pisi)This is equivalent to saying thatpis2ili (23si � 12 MXi=1 pisi) = constant; 8i; 1 � i � Mor pis2ili (23si � �) = constant; 8i; 1 � i � MThus, we have proved Theorem 1.C Appendix III: Lower Boundsfor the �-AlgorithmIn the ideal situation, �-algorithm can create a sched-ule making the equation s�i pili = C to be true, whereC is a constant. In the following, we will derive thevalue of C, and the values of si's when the ideal con-dition holds. Then, both the mean and variance ofresponse time can be obtained. They serve to be thelower bounds of mean and variance of response timerespectively, which can be attained by an �-algorithm.From the equation s�i pili = C; i = 1; 2; � � � ;M , itfollows that si = (C � lipi ) 1� (13)Let ri be the share of bandwidth by item i duringbroadcast. Since each transmission of item i takes litime and item i is transmitted every si time period,we have ri = lisi . As PMi=1 ri = 1,
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