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A Mutual Exlusion Algorithm for Ad Ho MobileNetworks �Jennifer E. Walter a;�� Jennifer L. Welh a;��� Nitin H. Vaidya a;����a Department of Computer Siene, Texas A&M University, College Station, TX 77843-3112E-mail: jennyw�s.tamu.edu, welh�s.tamu.edu, vaidya�s.tamu.eduA fault-tolerant distributed mutual exlusion algorithm that adjusts to node mo-bility is presented, along with proof of orretness and simulation results. Thealgorithm requires nodes to ommuniate with only their urrent neighbors, mak-ing it well-suited to the ad ho environment. Experimental results indiate thatadaptation to mobility an improve performane over that of similar non-adaptivealgorithms when nodes are mobile.1. IntrodutionA mobile ad ho network is a network wherein a pair of nodes ommuni-ates by sending messages either over a diret wireless link, or over a sequene ofwireless links inluding one or more intermediate nodes. Diret ommuniationis possible only between pairs of nodes that lie within one another's transmis-sion radius. Wireless link \failures" our when previously ommuniating nodesmove suh that they are no longer within transmission range of eah other. Like-wise, wireless link \formation" ours when nodes that were too far separated toommuniate move suh that they are within transmission range of eah other.Charateristis that distinguish ad ho networks from existing distributed net-works inlude frequent and unpreditable topology hanges and highly variablemessage delays. These harateristis make ad ho networks hallenging environ-� This is an extended version of the paper presented at the Dial M for Mobility Workshop,Dallas TX, Ot. 30, 1998.�� Supported by GE Faulty of the Future and Dept. of Eduation GAANN fellowships.��� Supported in part by NSF PYI grant CCR-9396098 and NSF grant CCR-9972235.���� Supported in part by Texas Advaned Tehnology Program grant 010115-248 and NSFgrants CDA-9529442 and CCR-9972235.



2ments in whih to implement distributed algorithms.Past work on modifying existing distributed algorithms for ad ho networksinludes numerous routing protools (e.g., [8,9,11,13,16,18,19,22{24℄), wirelesshannel alloation algorithms (e.g., [14℄), and protools for broadasting and mul-tiasting (e.g., [8,12,21,26℄). Dynami networks are �xed wired networks thatshare some harateristis of ad ho networks, sine failure and repair of nodesand links is unpreditable in both ases. Researh on dynami networks has fo-used on total ordering [17℄, end-to-end ommuniation, and routing (e.g., [1,2℄).Existing distributed algorithms will run orretly on top of ad ho rout-ing protools, sine these protools are designed to hide the dynami nature ofthe network topology from higher layers in the protool stak (see Figure 1(a)).Routing algorithms on ad ho networks provide the ability to send messages fromany node to any other node. However, our ontention is that eÆieny an begained by developing a ore set of distributed algorithms, or primitives, that areaware of the underlying mobility in the network, as shown in Figure 1(b). Inthis paper, we present a mobility aware distributed mutual exlusion algorithmto illustrate the layering approah in Figure 1(b).
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(b)(a)Figure 1. Two possible approahes for implementing distributed primitivesThe mutual exlusion problem involves a group of proesses, eah of whihintermittently requires aess to a resoure or a piee of ode alled the ritialsetion (CS). At most one proess may be in the CS at any given time. Providingshared aess to resoures through mutual exlusion is a fundamental problemin omputer siene, and is worth onsidering for the ad ho environment, wherestripped-down mobile nodes may need to share resoures.Distributed mutual exlusion algorithms that rely on the maintenane of alogial struture to provide order and eÆieny (e.g., [20,25℄) may be ineÆientwhen run in a mobile environment, where the topology an potentially hangewith every node movement. Badrinath et al.[3℄ solve this problem on ellular mo-bile networks, where the bulk of the omputation an be run on wired portionsof the network. We present a mutual exlusion algorithm that indues a logial



3direted ayli graph (DAG) on the network, dynamially modifying the logialstruture to adapt to the hanging physial topology in the ad ho environment.We then present simulation results omparing the performane of this algorithmto a stati distributed mutual exlusion algorithm running on top of an ad horouting protool. Simulation results indiate that our algorithm has better aver-age waiting time per CS entry and message omplexity per CS entry no greaterthan the ost inurred by a stati mutual exlusion algorithm running on top ofan ad ho routing algorithm.The next setion disusses related work. In Setion 3, we desribe our systemassumptions and de�ne the problem in more detail. Setion 4 presents our mutualexlusion algorithm. We present a proof of orretness and disuss the simulationresults in Setions 5 and 6, respetively. Setion 7 presents our onlusions.2. Related WorkToken based mutual exlusion algorithms provide aess to the CS throughthe maintenane of a single token that annot simultaneously be present at morethan one node in the system. Requests for CS entry are typially direted towhihever node is the urrent token holder.Raymond [25℄ introdued a token based mutual exlusion algorithm in whihrequests are sent, over a stati spanning tree of the network, toward the tokenholder; this algorithm is resilient to non-adjaent node rashes and reoveries,but is not resilient to link failures. Chang et al.[7℄ extend Raymond's algorithmby imposing a logial diretion on a suÆient number of links to indue a tokenoriented DAG in whih, for every node i, there exists a direted path originatingat i and terminating at the token holder. Allowing request messages to be sentover all links of the DAG provides resiliene to link and site failures. However,this algorithm does not onsider link reovery, an essential feature in a system ofmobile nodes.Dhamdhere and Kulkarni [10℄ show that the algorithm of [7℄ an su�er fromdeadlok and solve this problem by assigning a dynamially hanging sequenenumber to eah node, forming a total ordering of nodes in the system. The tokenholder always has the highest sequene number, and, by de�ning links to pointfrom a node with lower to higher sequene number, a token oriented DAG ismaintained. Due to link failures, a node i that wants to send a request for thetoken may �nd itself with no outgoing links to the token holder. In this situation,



4i oods the network with messages to build a temporary spanning tree. One thetoken holder beomes part of suh a spanning tree, the token is passed diretly tonode i along the tree, bypassing other requests. Sine priority is given to nodesthat lose a path to the token holder, it seems likely that other requesting nodesould be starved as long as link failures ontinue. Also, ooding in responseto link failures and storing messages for delivery after link reovery make thisalgorithm ill-suited to the highly dynami ad ho environment.Our token based algorithm ombines ideas from several papers. The partialreversal tehnique from [13℄, used to maintain a destination oriented DAG in apaket radio network when the destination is stati, is used in our algorithm tomaintain a token oriented DAG with a dynami destination. Like the algorithmsof [25℄, [7℄, and [10℄, eah node in our algorithm maintains a request queue on-taining the identi�ers of neighboring nodes from whih it has reeived requestsfor the token. Like [10℄, our algorithm totally orders nodes. The lowest node isalways the urrent token holder, making it a \sink" toward whih all requestsare sent. Our algorithm also inludes some new features. Eah node dynamiallyhooses its lowest neighbor as its preferred link to the token holder. Nodes senselink hanges to immediate neighbors and reroute requests based on the status ofthe previous preferred link to the token holder and the urrent ontents of theloal request queue. All requests reahing the token holder are treated symmetri-ally, so that requests are ontinually servied while the DAG is being re-orientedand bloked requests are being rerouted.3. De�nitionsThe system ontains a set of n independent mobile nodes, ommuniating bymessage passing over a wireless network. Eah mobile node runs an appliationproess and a mutual exlusion proess that ommuniate with eah other toensure that the node yles between its REMAINDER setion (not interested inthe CS), its WAITING setion (waiting for aess to the CS), and its CRITICALsetion. Assumptions1 on the mobile nodes and network are:1. the nodes have unique node identi�ers,2. node failures do not our,3. ommuniation links are bidiretional and FIFO,1 See Setion 7 for a disussion of relaxing assumption 6.



54. a link-level protool ensures that eah node is aware of the set of nodes withwhih it an urrently diretly ommuniate by providing indiations of linkformations and failures,5. inipient link failures are detetable, providing reliable ommuniation on aper-hop basis, and6. partitions of the network do not our.The rest of this setion ontains our formal de�nitions. We expliitly modelonly the mutual exlusion proess at eah node. Constraints on the behavior ofthe appliation proesses and the network appear as onditions on exeutions.The system arhiteture is shown in Figure 2.We assume the node identi�ers are 0; 1; : : : ; n� 1. Eah node has a (mutualexlusion) proess, modeled as a state mahine, with the usual set of states, someof whih are initial states, and a transition funtion. Eah state ontains a loalvariable that holds the node identi�er and a loal variable that holds the urrentneighbors of the node. The transition funtion is desribed in more detail shortly.
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Figure 2. System ArhitetureA on�guration desribes the instantaneous state of the whole system; for-mally, it is a set of n states, one for eah proess. In an initial on�guration, eahstate is an initial state and the neighbor variables desribe a onneted undiretedgraph.A step of the proess at node i is triggered by the ourrene of an inputevent. Input events are:



6� RequestCSi: the appliation proess on node i requests aess to the CS,entering its WAITING setion.� ReleaseCSi: the appliation proess on node i releases its aess to the CS,entering its REMAINDER setion.� Revi(j;m): node i reeives message m from node j.� LinkUpi(l): node i reeives noti�ation that the link l inident on i is now up.� LinkDowni(l): node i reeives noti�ation that the link l inident on i is nowdown.The e�et of a step is to apply the proess' transition funtion, taking as inputthe urrent state of the proess and the input event, and produing as output a(possibly empty) set of output events and a new state for the proess. Outputevents are:� EnterCSi: the mutual exlusion proess on node i informs its appliationproess that it an enter the CRITICAL setion.� Sendi(j;m): node i sends message m to node j.The only onstraint on the state produed by the transition funtion is that theneighbor set variable of i must be properly updated in response to a LinkUp orLinkDown event.RequestCSi, EnterCSi, and ReleaseCSi are alled appliation events, whileSendi, Revi, LinkUpi, and LinkDowni are alled network events.An exeution is a sequene of the form C0; in1; out1; C1; in2; out2; C2; : : :,where the Ck's are on�gurations, the ink's are input events, and the outk's aresets of output events. An exeution must end in a on�guration if it is �nite. Apositive real number is assoiated with eah ini, representing the time at whihthat event ours. An exeution must satisfy a number of additional onditions,whih we now list. The �rst set of onditions are basi \syntati" ones.� C0 is an initial on�guration.� If ink ours at node i, then outk and i's state in Ck are orret aording toi's transition funtion operating on ink and i's state in Ck�1.� The times assigned to the steps must be nondereasing. If the exeution isin�nite, then the times must inrease without bound. At most one step byeah proess an our at a given time.



7The next set of onditions require the appliation proess to interat properlywith the mutual exlusion proess and to give up the CS in �nite time.� If ink is RequestCSi, then the previous appliation event at node i (if any) isReleaseCSi.� If ink is ReleaseCSi, then the previous appliation event at node i must beEnterCSi.� If outk is EnterCSi, then there is a following ReleaseCSi.The remaining onditions onstrain the behavior of the network to math theinformal desription given above. First, we onsider the mobility noti�ation.� LinkUpi(l) ours at time t if and only if LinkUpj(l) ours at time t, wherel joins i and j. Furthermore, LinkUpi(l) only ours if j is urrently not aneighbor of i (aording to i's neighbor variable). The analogous onditionholds for LinkDown.� A LinkDown never disonnets the graph.Finally, we onsider message delivery. There must exist a one-to-one andonto orrespondene between the ourrenes of Sendj(i;m) and Revi(j;m), forall i, j and m. This requirement implies that every message sent is reeived andthe network does not dupliate or orrupt messages nor deliver spurious messages.Furthermore, the orrespondene must satisfy the following:� If Sendi(j;m) ours at some time t, then the orresponding Revj(i;m) oursat some later time t0, and the link onneting i and j is ontinuously up betweent and t0. This implies that a LinkDown event for link l annot our if anymessages are in transit on l.Now we an state the problem formally. In every exeution, the followingmust hold:� If outk is EnterCSi, then the previous appliation event at node i must beRequestCSi. I.e., CS aess is only given to requesting nodes.� Mutual Exlusion: If outk is EnterCSi, then any previous EnterCSj event mustbe followed by a ReleaseCSj prior to outk.� No Starvation: If there are only a �nite number of LinkUpi and LinkDownievents, then if ink is RequestCSi, then there is a following EnterCSi.For the last ondition, the hypothesis that link hanges ease is needed beausean adversarial pattern of link hanges an ause starvation.



84. Reverse Link (RL) Mutual Exlusion AlgorithmIn this setion we �rst present the data strutures maintained at eah node inthe system, followed by an overview of the algorithm, the algorithm pseudoode,and examples of algorithm operation. Throughout this setion, data struturesare desribed for node i, 0 � i � n� 1. Subsripts on data strutures to indiatethe node are only inluded when needed.4.1. Data Strutures� status: Indiates whether node is in the WAITING, CRITICAL, or REMAIN-DER setion. Initially, status = REMAINDER.� N : The set of all nodes in diret wireless ontat with node i. Initially, Nontains all of node i's neighbors.� myHeight: A three-tuple (h1,h2,i) representing the height of node i. Links areonsidered to be direted from nodes with higher height toward nodes withlower height, based on lexiographi ordering. E.g., if myHeight1 = (2, 3, 1)and myHeight2 = (2, 2, 2), then myHeight1 > myHeight2 and the link betweenthese nodes would be direted from node 1 to node 2. Initially at node 0,myHeight0 = (0, 0, 0) and, for all i 6= 0, myHeighti is initialized so that thedireted links form a DAG in whih every node has a direted path to node 0.� height[j℄: An array of tuples representing node i's view of myHeightj for allj 2 Ni. Initially, height[j℄ = myHeightj , for all j 2 Ni. In node i's viewpoint,if j 2 N , then the link between i and j is inoming to node i if height[j℄ >myHeight, and outgoing from node i if height[j℄ < myHeight.� tokenHolder: Flag set to true if node holds token and set to false otherwise.Initially, tokenHolder = true if i = 0, and tokenHolder = false otherwise.� next: When node i holds the token, next = i, otherwise next is the node on anoutgoing link. Initially, next = 0 if i = 0, and next is an outgoing neighborotherwise.� Q: Queue ontaining identi�ers of requesting neighbors. Operations on Q in-lude Enqueue(), whih enqueues an item only if it is not already on Q, De-queue() with the usual FIFO semantis, and Delete(), whih removes a spei�editem from Q, regardless of its loation. Initially, Q = ;.� reeivedLI[j℄: Boolean array indiating whether LinkInfo message has been re-eived from node j, to whih a Token message was reently sent. Any height



9information reeived at node i from a node j for whih reeivedLI[j℄ is false willnot be reorded in height[j℄. Initially, reeivedLIi[j℄ = true for all j 2 Ni.� forming[j℄: Boolean array set to true when link to node j has been detetedas forming and reset to false when �rst LinkInfo message arrives from node j.Initially, formingi[j℄ = false for all j 2 Ni.� formHeight[j℄: An array of tuples storing value of myHeight when new link toj �rst deteted. Initially, formHeighti[j℄ = myHeighti for all j 2 Ni.4.2. Overview of the RL AlgorithmThe mutual exlusion algorithm is event-driven. An event at a node i on-sists of reeiving a message from another node j 6= i, or an indiation of linkfailure or formation from the link layer, or an input from the appliation on nodei to request or release the CS. Eah message sent inludes the urrent value of my-Height at the sender. Modules are assumed to be exeuted atomially. First, wedesribe the pseudoode triggered by events and then we desribe the pseudoodefor proedures.Requesting and releasing the CS: When node i requests aess to the CS, itenqueues its own identi�er on Q and sets status to WAITING. If node i doesnot urrently hold the token and i has a single element on its queue, it allsForwardRequest() to send a Request message. If node i does hold the token, ian set status to CRITICAL and enter the CS, sine it will be at the head ofQ. When node i releases the CS, it alls GiveTokenToNext() to send a Tokenmessage if Q is non-empty, and sets status to REMAINDER.Request messages: When a Request message sent by a neighboring node j isreeived at node i, i ignores the Request if reeivedLI[j℄ is false. Otherwise, ihanges height[j℄, and enqueues j on Q if the link between i and j is inomingat i. If Q is non-empty, and status = REMAINDER, i alls GiveTokenToNext(),provided i holds the token. Non-token holding node i alls RaiseHeight() if thelink to j is now inoming and i has no outgoing links or i alls ForwardRequest()if Q = [j℄ or if Q is non-empty and the link to next has reversed.Token messages: When node i reeives a Token message from some neighbor j,i sets tokenHolder = true. Then i lowers its height to be lower than that of thelast token holder, node j, informs all its outgoing neighbors of its new height by



10sending LinkInfo messages, and alls GiveTokenToNext(). Node i also informs jof its new height so that j will know that i reeived the token.LinkInfo messages: If reeivedLI[j℄ is true when a LinkInfo message is reeivedat node i from node j, j's height is saved in height[j℄. If reeivedLI[j℄ is false,i heks if the height of j in the message is what it was when i sent the Tokenmessage to j. If so, i sets reeivedLI[j℄ to true. If forming[j℄ is true, the urrentvalue of myHeight is ompared to the value of myHeight when the link to j was�rst deteted, formHeight[j℄. If myHeight and formHeight[j℄ are di�erent, then aLinkInfo message is sent to j. Identi�er j is added to N and forming[j℄ is set tofalse. If j is an element of Q and j is an outgoing link, then j is deleted from Q. Ifnode i has no outgoing links and is not the token holder, i alls RaiseHeight() sothat an outgoing link will be formed. Otherwise, if Q is non-empty, and the linkto next has reversed, i alls ForwardRequest() sine it must send another Requestfor the token.Link failures: When node i senses the failure of a link to a neighboring node j, itremoves j from N , sets reeivedLI[j℄ to true, and, if j is an element of Q, deletesj from Q. Then, if i is not the token holder and i has no outgoing links, i allsRaiseHeight(). If node i is not the token holder, Q is non-empty, and the link tonext has failed, i alls ForwardRequest() sine it must send another Request forthe token.Link formation: When node i detets a new link to node j, i sends a LinkInfomessage to j with myHeight, sets forming[j℄ to true, and sets formHeight[j℄ =myHeight.Proedure ForwardRequest: Selets node i's lowest height neighbor to be next.Sends a Request message to next.Proedure GiveTokenToNext: Node i dequeues the �rst node on Q and sets nextequal to this value. If next = i, i enters the CS. If next 6= i, i lowers height[next℄ to(myHeight.h1, myHeight.h2�1; next), so any inoming Request messages will besent to next, sets tokenHolder = false, sets reeivedLI[next℄ to false, and then sendsa Token message to next. If Q is non-empty after sending a Token message tonext, a Request message is sent to next immediately following the Token messageso the token will eventually be returned to i.



11Proedure RaiseHeight: Called at non-token holding node i when i loses its lastoutgoing link. Node i raises its height (in lines 1-3) using the partial reversalmethod of [13℄ and informs all its neighbors of its height hange with LinkInfomessages. All nodes on Q to whih links are now outgoing are deleted from Q. IfQ is not empty at this point, ForwardRequest() is alled sine i must send anotherRequest for the token.4.3. The RL AlgorithmWhen node i requests aess to the CS:1. status := WAITING2. Enqueue(Q; i)3. If (not tokenHolder) then4. If (jQj = 1) then ForwardRequest()5. Else GiveTokenToNext()When node i releases the CS:1. If (jQj > 0) then GiveTokenToNext()2. status := REMAINDERWhen Request(h) reeived at node i from node j:// h denotes j's height when message was sent1. If (reeivedLI[j℄) then2. height[j℄ := h // set i's view of j's height3. If (myHeight < height[j℄) then Enqueue(Q; j)4. If (tokenHolder) then5. If ((status = REMAINDER) and (jQj > 0)) then GiveTokenToNext()6. Else // not tokenHolder7. If (myHeight < height[k℄, 8 k 2 N) then RaiseHeight()8. Else if ((Q = [j℄) or ((jQj > 0) and (myHeight < height[next℄))) then9. ForwardRequest() // reroute requestWhen Token(h) reeived at node i from node j:// h denotes j's height when message was sent1. tokenHolder := true2. height[j℄ := h3. Send LinkInfo(h.h1, h.h2 �1; i) to all outgoing k 2 N and to j4. myHeight.h1 := h.h15. myHeight.h2 := h.h2 - 1 // lower my height6. If (jQj > 0) then GiveTokenToNext() Else next := i



12When LinkInfo(h) reeived at node i from node j:// h denotes j's height when message was sent1. N := N [ fjg2. If ((forming[j℄) and (myHeight 6= formHeight[j℄)) then3. Send LinkInfo(myHeight) to j4. forming[j℄ := false5. If (reeivedLI[j℄) then height[j℄ := h6. Else if (height[j℄ = h) then reeivedLI[j℄ := true7. If (myHeight > height[j℄) then Delete(Q; j)8. If ((myHeight < height[k℄, 8k 2 N) and (not tokenHolder)) then RaiseHeight()// reroute request9. Else if ((jQj > 0) and (myHeight < height[next℄)) then ForwardRequest()When failure of link to j deteted at node i:1. N := N � fjg2. Delete(Q; j)3. reeivedLI[j℄ := true4. If (not tokenHolder) then5. If (myHeight < height[k℄, 8k 2 N) then RaiseHeight()// reroute request6. Else if ((jQj > 0) and (next 62 N)) then ForwardRequest()When formation of link to j deteted at node i:1. Send LinkInfo(myHeight) to j2. forming[j℄ := true3. formHeight[j℄ := myHeightProedure ForwardRequest():1. next := l 2 N : height[l℄ � height[j℄, 8 j 2 N2. Send Request(myHeight) to nextProedure GiveTokenToNext(): // only alled when jQj > 01. next := Dequeue(Q)2. If (next 6= i) then3. tokenHolder := false4. height[next℄ := (myHeight.h1, myHeight.h2�1, next)5. reeivedLI[next℄ := false6. Send Token(myHeight) to next7. If (jQj > 0) then Send Request(myHeight) to next8. Else // next = i9. status := CRITICAL



1310. Enter CSProedure RaiseHeight():1. myHeight.h1 := 1 + mink2Nfheight[k℄.h1g2. S := fl 2 N : height[l℄.h1 = myHeight.h1g3. If (S 6= ;) then myHeight.h2 := minl2Sfheight[l℄.h2g � 14. Send LinkInfo(myHeight) to all k 2 N// Raising own height an ause some links to beome outgoing5. For (all k 2 N suh that myHeight > height[k℄) do Delete(Q; k)// Must reroute request if queue non-empty, sine just had no outgoing links6. If (jQj > 0) then ForwardRequest()4.4. Examples of Algorithm OperationWe �rst disuss the ase of a stati network, followed by a dynami network.An illustration of the algorithm on a stati network (in whih links do not failor form) is depited in Figure 3. Snapshots of the system on�guration duringalgorithm exeution are shown, with time inreasing from 3(a) to 3(e). The diretwireless links are shown as dashed lines onneting irular nodes. The arrow oneah wireless link points from the higher height node to the lower height node.The request queue at eah node is depited as a retangle, the height is shown asa 3-tuple, and the token holder as a shaded irle. The next pointers are shown assolid arrows. Note that when a node holds the token, its next pointer is diretedtowards itself.In Figure 3(a), nodes 2 and 3 have requested aess to the CS (note thatnodes 2 and 3 have enqueued themselves on Q2 and Q3) and have sent Requestmessages to node 0, whih enqueued them on Q0 in the order in whih the Requestmessages were reeived. Part (b) depits the system at a later time, where node1 has requested aess to the CS, and has sent a Request message to node 3 (notethat 1 is enqueued on Q1 and Q3). Figure 3() shows the system on�gurationafter node 0 has released the CS and has sent a Token message to node 3, followedby a Request sent by node 0 on behalf of node 2. Observe that the logial diretionof the link between node 0 and node 3 hanges from being direted away fromnode 3 in part (b), to being direted toward node 3 in part (), when node 3reeives the Token message and lowers its height. Notie also the next pointersof nodes 0 and 3 hange from both nodes having next pointers direted towardnode 0 in part (b) to both nodes having next pointers direted toward node 3
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(e)Figure 3. Operation of Reverse Link Mutual Exlusion Algorithm on Stati Networkin part (). Part (d) shows the system on�guration after node 3 sent a Tokenmessage to node 1, followed by a Request message. The Request message wassent beause node 3 reeived the Request message from node 0. Notie that theitems at the head of the nodes' request queues in part (d) form a path from thetoken holder, node 1, to the sole remaining requester, node 2. Part (e) depitsthe system on�guration after Token messages have been passed from node 1 to3, node 3 to 0, and from node 0 to 2. Observe that the middle element, h2, ofeah node's myHeight tuple dereases by 1 for every hop the token travels, sothat the token holder is always the lowest height node in the system.We now onsider the exeution of the RL algorithm on a dynami network.The height information allows eah node i to keep trak of the urrent logialdiretion of links to neighboring nodes, partiularly to the node hosen to benext. If the link to next hanges and jQj > 0, node i must reroute its request byalling ForwardRequest().Figure 4(a) shows the same snapshot of the system exeution as is shownin Figure 3(a), with time inreasing from 4(a) to 4(e). Figure 4(b) depits thesystem on�guration after node 3 has moved in relation to the other nodes inthe system, resulting in a network that is temporarily not token oriented, sinenode 3 has no outgoing links. Node 0 has adapted to the lost link to node 3 byremoving 3 from its request queue. Node 2 takes no ation as a result of theloss of its link to node 3, sine the link to next2 was not a�eted and node 2 stillhas one outgoing link. In part (), node 3 has adapted to the loss of its link to
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(d) (e)Figure 4. Operation of Reverse Link Mutual Exlusion Algorithm on Dynami Networknode 0 by raising its height and has sent a Request message to node 1 (that hasnot yet arrived at node 1). Part (d) shows the system on�guration after node1 has reeived the Request message from node 3, has enqueued 3 on Q1, and hasraised its height due to the loss of its last outgoing link. In part (e), node 1 haspropagated the Request reeived from node 3 by sending a Request to node 2,also informing node 2 of the hange in its height. Node 2 subsequently enqueued1 on Q2, but did not raise its own height or send a Request, beause node 2 hasan intat link to next2, node 0, to whih it already sent an unful�lled request.5. Corretness of Reverse Link AlgorithmThe following theorem holds beause there is only one token in the systemat any time.Theorem 1. The algorithm ensures mutual exlusion.To prove no starvation, we �rst show that, after link hanges ease, even-tually the system reahes a \good" on�guration, and then we apply a variantfuntion argument.We will show that after link hanges ease, the logial diretions on the linksimparted by height values will eventually form a \token oriented" DAG. Sinethe height values of the nodes are totally ordered, there annot be any yles in



16the logial graph, and thus it is a DAG. The hard part is showing that this DAGis token oriented, de�ned next.De�nition 1. A node i is the token holder in a on�guration if tokenHolderi =true or if a Token message is in transit from node i to nexti.De�nition 2. The DAG is token oriented in a on�guration if for every nodei; i 2 f0; : : : ; n� 1g, there exists a direted path originating at node i and termi-nating at the token holder.To prove Lemma 3, that the DAG is eventually token oriented, we �rstshow, in Lemma 1, that this ondition is equivalent to the absene of \sink"nodes [13℄, as de�ned below. We then show, in Lemma 2, that eventually thereare no more alls to RaiseHeight(). Throughout, we assume that eventually linkhanges ease.De�nition 3. A node i is a sink in a on�guration if(tokenHolderi = false) and ((myHeighti < heighti[j℄), for all j 2 Ni).Lemma 1. In every on�guration of every exeution, the DAG is token orientedif and only if there are no sinks.Proof: The only-if diretion follows from the de�nition of a token oriented DAG.The if diretion is proved by ontradition. Assume, in ontradition, that thereexists a node i in a on�guration suh that tokenHolderi = false and for whihthere is no direted path starting at i and ending at the token holder. Sine thereare no sinks, i must have at least one outgoing link that is inoming at some othernode. Sine the number of nodes is �nite, the network is onneted, and all linksare logially direted suh that no logial path an form a yle, there must exista direted path from i to the token holder, a ontradition.To show that eventually there are no sinks (Lemma 3), we show that thereare only a �nite number of alls to RaiseHeight().Lemma 2. In every exeution with a �nite number of link hanges, there existsa �nite number of alls to RaiseHeight().



17Proof: In ontradition, onsider an exeution with a �nite number of linkhanges but an in�nite number of alls to RaiseHeight(). Then, after link hangesease, some node allsRaiseHeight() in�nitely often. We �rst note that if one nodealls RaiseHeight() in�nitely often, then every node alls RaiseHeight() in�nitelyoften. To see this, onsider that a node i would all RaiseHeight() in�nitelyoften only if it lost all its outgoing links in�nitely often. But this would happenin�nitely often at node i only if a neighboring node j raised its height in�nitelyoften, and neighboring node j would only all RaiseHeight() in�nitely often if itsneighbor k raised its height in�nitely often, and so on. However, Claim 1 showsthat at least one node alls RaiseHeight() only a �nite number of times.Claim 1. No node that holds the token after the last link hange ever allsRaiseHeight() subsequently.Proof: Suppose the laim is false, and some node that holds the token afterthe last link hange alls RaiseHeight() subsequently. Let i be the �rst node todo so. By the ode, node i does not hold the token when it alls RaiseHeight().Suppose that node i sends the token to neighboring node j at time t1, setting itsview of j to be outgoing, and at a later time, t3, node i alls RaiseHeight(). Thereason i alls RaiseHeight() at time t3 is that it lost its last outgoing link. Thus,at time t2 between time t1 and t3, the link between i and j has reversed diretionin i's view from outgoing to inoming. By the ode, the diretion hange at nodei must be due to the reeipt of a LinkInfo or Request message from node j. Wedisuss these ases separately below.Case 1: The diretion hange at node i is due to the reeipt of a LinkInfo messagefrom node j at time t2. By the ode, when i sends the token to j at t1, it setsreeivedLI[j℄ to false. Therefore, when the LinkInfo message is reeived at i fromj at time t2, node i must have already reset reeivedLI[j℄ to true or i would stillsee the link to j as outgoing and would not all RaiseHeight() at time t2. Sinei alled RaiseHeight() after reeiving the LinkInfo message from j at time t2, imust have reeived the LinkInfo message node j sent when it reeived the tokenfrom i before time t2, by the FIFO assumption on message delivery. Then nodej must have reeived the token and sent it to another node, k 6= i, after whih jraised its height and sent the LinkInfo message that node i reeived at time t2.However, this violates our assumption that i is the �rst node to all RaiseHeight()after the last link hange, a ontradition.



18Case 2: The diretion hange at node i is due to the reeipt of a Request messagefrom node j at time t2. By a similar argument to ase 1, any Request reeivedfrom node j would be ignored at node i as long as reeivedLI[j℄ is false. Butthis means that node j must have alled RaiseHeight() after it reeived the tokenfrom node i and subsequently sent the Request reeived by i at time t2. Again,this violates the assumption that i is the �rst node to all RaiseHeight() after thelast link hange, a ontradition.Therefore, node i will not all RaiseHeight() at time t2 and the laim is true.Therefore, by Claim 1, there is only a �nite number of alls to RaiseHeight()in any exeution with a �nite number of link hanges.Lemma 3 follows from Lemma 2, sine if a node beomes a sink, it willeventually be informed via LinkInfo messages and will then all RaiseHeight().Lemma 3. One link hanges ease, the logial diretion on links imparted byheight values will eventually always form a token oriented DAG.Consider a node that is WAITING in an exeution at some point after linkhanges and alls to RaiseHeight() have eased. We �rst de�ne the \requesthain" of a node to be the path along whih its request has propagated. Then wemodify the variant funtion argument in [25℄ to show that the node eventuallygets to enter the CS.De�nition 4. Given a on�guration, a request hain for any node l with anon-empty request queue is the maximal length list of node identi�ers p1 =l; p2; : : : ; pj, where for eah i, 1 < i � j,� pi's queue is not empty,� pi = nextpi�1 ,� the link between pi�1 and pi is outgoing at pi�1 and inoming at pi,� no Request message is in transit from pi�1 to pi, and� no Token message is in transit from pi to pi�1.Lemma 4 gives useful information about what is going on at the end of arequest hain:



19Lemma 4. The following is true in every on�guration: Let l be a node with anon-empty request queue and let p1 = l; p2; : : : ; pj be l's request hain. Then(a) l is in Ql i� l is WAITING,(b) pi�1 is in Qpi ; 1 < i � j, and() either pj is the token holder,or a Token message is in transit to pj,or a Request message is in transit from pj to nextpj ,or a LinkInfo message is in transit from nextpj to pj with nextpj higher thanpj ,or nextpj sees the link to pj as failed.Proof: By indution on the exeution.Property (a) an easily be shown to hold, sine a node enqueues its ownidenti�er when its appliation requests aess to the CS, at whih point it hangesits status to WAITING. By the ode, at no point will a node dequeue its ownidenti�er until just before it enters the CS and sets its status to CRITICAL.Properties (b) and () are vauously true in the initial on�guration, sineno node has a non-empty queue.Suppose (b) and () are true in the (t � 1)st on�guration, Ct�1, of theexeution. It is possible to show these properties are true in the tth on�guration,Ct, by onsidering in turn every possibility for the tth event. Most of the eventsapplied to Ct�1 are easily shown to yield a on�guration Ct in whih properties(b) and () are true. Here we disuss the events for whih the outome is lesslear by presenting the problemati ases that an appear to disrupt a requesthain. We note that, in the following ases, non-token holding nodes are oftenrequired to �nd an outgoing link due to link reversals or failures. It is not hardto show that a node i that is not the token holder an always �nd an outgoinglink due to the performane of RaiseHeight().Case 1: Node i reeives a Request(h) from node j and does not enqueue j onits request queue. To ensure that j's Request is not overlooked, ausing possiblestarvation, we show that either a LinkInfo or a Token message is sent to j fromi if a Request from j is reeived at i and j is not enqueued.Case 1.1: reeivedLI[j℄ is false at i. It must be that i sent the token to j in someprevious on�guration and i has not yet reeived the LinkInfo message that j



20 must send to i upon reeipt of the token. If the token is not in transit from ito j or held by j in Ct�1, then earlier j had the token and passed it on. TheRequest reeived by i was sent before the LinkInfo message that j must sendto i upon reeipt of the token. So if j is WAITING in Ct�1, it has alreadysent a newer Request and properties (b) and () hold for this request hain inCt by the indutive hypothesis.Case 1.2: reeivedLI[j℄ is true at i. Then if j is not enqueued on i's requestqueue, it must be that myHeighti > h. Sine j viewed i as outgoing whenit sent the Request, node i must have either alled RaiseHeight() after j wasin Ni or the relative heights of i and j hanged between the time link (i; j)was �rst deteted and before j was added to Ni. In either ase, node j musteventually reeive a Linkinfo message from i and see that its link to nextj hasreversed, in whih ase j will take ation resulting in the eventual sending ofanother Request.Case 2: Node i reeives an input ausing it to delete identi�er j from its requestqueue. To ensure that j's Request is not forgotten when i alls Delete(Q; j), weshow that either node j reeived a Token message prior to the deletion, in whihase j's Request is satis�ed, or node j is noti�ed that the link to i failed, in whihase j will take the appropriate ation to reroute the request hain.Case 2.1: Node i alls Delete(Q; j) beause it reeives a LinkInfo message from jindiating that i's link to j has beome outgoing at i. Then, sine i enqueuedj, it must be that in some earlier on�guration i saw the link to j as inoming.Sine the reeipt of the LinkInfo message from j aused the link to hangefrom inoming to outgoing in i's view, it must be that the LinkInfo was sentby j when j reeived the token and lowered its height. If the token is not heldby j in Ct�1, then earlier j had the token and passed it on. If j is WAITINGin Ct�1, it has already sent a newer Request and properties (b) and () holdfor this request hain in Ct by the indutive hypothesis.Case 2.2: Node i alls Delete(Q; j) beause it reeived an indiation that link(i; j) failed. Then j must reeive the same indiation, in whih ase it antake appropriate ation to advane any request hains.Case 3: Node i reeives an input whih makes it see the link to nexti as inomingor failed. In this ase, any request hains inluding node i in Ct�1 end at i in Ct.We show that node i takes the orret ation to propagate these request hains



21by sending either a new Request or a LinkInfo message.Case 3.1: Node i reeives a LinkInfo message from neighbor j = nexti indiatingthat i's link to j has beome inoming at i. If the link to j was i's last outgoinglink, then in Ct i will all RaiseHeight(). Node i will delete the identi�ersof any nodes on outgoing links from its request queue. Node i will send aLinkInfo message to eah neighbor, inluding nodes whose identi�ers wereremoved from i's request queue. If i's request queue is non-empty it will allForwardRequest() and send a Request message to the node hosen as nexti inCt.Case 3.2: Node i reeives an indiation that the link to nexti has failed. In Ct, iwill take the same ations as it did in ase 3.1, when its link to nexti reversed.Therefore, no ation taken by node i an make properties (b) and () falseand the lemma holds.Lemma 5. One link hanges and alls to RaiseHeight() ease, for every on�g-uration in whih a node l's request hain does not inlude the token holder, thenthere is a later on�guration in whih l's request hain does inlude the tokenholder.Proof: By Lemma 3, after link hanges ease, eventually a token orientedDAG will be formed. Consider a on�guration after link hanges and alls toRaiseHeight() ease in whih the DAG is token oriented, meaning that all LinkInfomessages generated when nodes raise their heights have been delivered.The proof is by ontradition. Assume node l's request hain never inludesthe token holder. So the token an only be held by or be in transit to nodes thatare not in l's request hain. By our assumption on the exeution, no LinkInfomessages aused by a all to RaiseHeight() will be in transit to a node in l's requesthain, nor will any node in l's request hain detet a failed link to a neighboringnode. Therefore, by Lemma 4(), a Request message must be in transit froma node in l's request hain to a node that is not in l's request hain, and thenumber of nodes in l's request hain will inrease when the Request message isreeived. At this point, l's request hain will either inlude the token holder,another Request message will be in transit from a node in l's request hain toa node that is not in l's request hain, or l's request hain will have joined therequest hain of some other node. While the number of nodes in l's request hain



22inreases, the number of nodes not in l's request hain dereases, sine there area �nite number of nodes in the system. So eventually l's request hain inludesall nodes. Therefore, if the token is not eventually ontained in l's request hain,it is not in the system, a ontradition.Let l be a node that is WAITING after link hanges and alls to Raise-Height() ease. Given a on�guration s in the exeution, a funtion Vl for l isde�ned to be the following vetor of positive integers. Let p1 = l; p2; : : : ; pm bel's request hain. Vl(s) has either m + 1 or m elements hv1; v2; : : :i, dependingon whether a Request message is in transit from pm or not. In either ase, v1 isthe position of p1(= l) in Ql, and for 1 < j � m, vj is the position of pj�1 inQpj . (Positions are numbered in asending order with 1 being the head of thequeue.) If a Request message is in transit, then Vl(s) has m + 1 elements andvm+1 = n+1; otherwise, Vl(s) has only m elements. These vetors are omparedlexiographially.Lemma 6. Vl is a variant funtion.Proof: The key points to prove are:(1) Vl never has more than n entries and every entry is between 1 and n+ 1, sothe range of Vl is well-founded.(2) Most events an be easily seen not to inrease Vl. Here we disuss the re-maining events.When the Requestmessage at the end of l's request hain is reeived by nodej from node pm, l's request hain inreases in length to m + 1, Vl dereasesfrom hv1; : : : ; vm; n + 1i to hv1; : : : ; vm; v0m+1; : : :i, where v0m+1 < n + 1 sinev0m+1 is pm's position in Qj after the Request message is reeived.When a Token message is reeived by the node pm at the end of l's requesthain, it is either- kept at pm, so Vl dereases from hv1; : : : ; vm�1; vmi to hv1; : : : ; vm�1; vm�1i,- or sent toward l, so Vl dereases from hv1; : : : ; vm�1; vmi to hv1; : : : ; vm�1i,- or sent away from l, followed by a Request message, so Vl dereases fromhv1; : : : ; vm�1; vmi to hv1; : : : ; vm�1; vm � 1; n+ 1i.(3) To see that the events that ause Vl to derease will ontinue to our, onsiderthe following two ases:



23Case 1: The token holder is not in l's request hain. By Lemma 5, eventuallythe token holder will be in l's request hain.Case 2: The token holder is in l's request hain. Sine no node stays in theCS forever, at some later time the token will be sent and reeived,dereasing the value of Vl, by part (2) of this proof.One Vl equals h1i, l enters the CS. We have:Theorem 2. If link hanges ease, then every request is eventually satis�ed.6. Simulation ResultsIn this setion we disuss the stati and dynami performane of the Re-verse Link (RL) algorithm ompared to a mutual exlusion algorithm designedto operate on a stati network. We simulated Raymond's token based mutualexlusion algorithm [25℄ as if it were running on top of a \routing" layer thatalways provided shortest path routes between nodes. In this setion, we will referto this simulation as \Raymond's with routing" (RR). Raymond's algorithm wasused beause it is the stati algorithm from whih the RL algorithm was adaptedand beause it does not provide for link failures and reovery and must rely onthe routing layer to maintain logial paths if run in a dynami network. In orderto make our results more generally appliable, we made best-ase assumptionsabout the underlying routing protool used with Raymond's algorithm: that italways provides shortest paths and its time and message omplexity are zero. Ifour simulation shows that the RL algorithm is better than the RR ombinationin some senario, then the RL algorithm will also be better than Raymond'salgorithm in that senario when any real ad ho routing algorithm is used. Ifour simulation shows that the RL algorithm is worse than the RR ombinationin some senario, then it might or might not be worse in an atual situation,depending on how muh worse it is in the simulation and what are the osts ofthe routing algorithm.We simulated a 30 node system under various senarios. We hose to sim-ulate on a 30 node system beause for networks larger than 30 nodes the timeneeded for simulation was very high. Also, we envision ad ho networks to bemuh smaller sale than wired networks like the Internet. Typial numbers ofnodes used for simulations of ad ho networks range from 10 to 50 [4{6,15,18,26℄.



24In all our experiments, eah CS exeution took one time unit and eah messagedelay was one time unit. Requests for the CS were modeled as a Poisson proesswith arrival rate �req. Thus the time delay between when a node left the CSand made its next request to enter the CS is an exponential random variablewith mean 1�req time units. Link hanges were modeled as a Poisson proess witharrival rate �mob. Thus the time delay between eah hange to the graph is anexponential random variable with mean 1�mob time units. Eah hange to thegraph onsisted of the deletion of a link hosen at random (whose loss did notdisonnet the graph) and the formation of a link hosen at random.In eah exeution, we measured the average waiting time for CS entry, thatis, the average number of time units that nodes spent in their WAITING setions.We also measured the average number of messages sent per CS entry.We varied the load on the system (�req), the degree of mobility (�mob), andthe \onnetivity" of the graph. Connetivity was measured as the perentage ofpossible links that were present in the graph. Connetivity values presented inthis setion represent initial graph onnetivity. Note that a lique on 30 nodeshas 435 (undireted) links.In the graphs of our results, eah plotted point represents the average of sixrepetitions of the simulation. Thus in plots of average time per CS entry, eahpoint is the average of the averages from six exeutions, and similarly for plotsof average number of messages per CS entry.For the RR simulations, we initially formed a random onneted graph withthe desired number of links and then used breadth-�rst searh to form a spanningtree of the graph to play the part of the stati virtual spanning tree over whihnodes ommuniate in Raymond's algorithm. After the spanning tree was formed,we randomly permuted the graph while maintaining the desired onnetivity andthen alulated the shortest paths from all nodes to their neighbors in the virtualspanning tree. After this, we started the mutual exlusion algorithm and beganounting messages and waiting time per CS entry. When link hanges ourred,we did not measure the time or messages needed to realulate shortest pathroutes in the modi�ed graph. We did measure any added time and distane thatthe appliation messages traveled due to route hanges, harging one message perlink traversed.For simulations of RL, we formed a random onneted graph with the desirednumber of links, initialized the node heights and link diretions, and then startedthe algorithm and performane measurements. When link hanges ourred, the



25time and messages needed to �nd new routes between nodes were inluded in theoverall ost of performane.In this setion, part (a) of eah �gure displays results when the graph isstati, part (b) when �mob = 10�2 (low mobility), and part () when �mob =10�1 (high mobility). Our hoie for the value of the low mobility parameterorresponds to the situation where nodes remain stationary for a few tens ofseonds after moving and prior to making another move. Our hoie for thevalue of the high mobility parameter represents a muh more volatile network,where nodes remain stati for only a few seonds between moves.6.1. Average waiting time per CS entry
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26of �req beause at this rate eah node would have a request pending almost allthe time. The low load value of �req represents a muh less busy network, withrequests rarely pending at all nodes at the same time. Plots are shown for runswith 20% (87 links) and 80% (348 links) onnetivity for both the RL and RRsimulations.Figure 5 indiates that RL has better performane than RR in terms ofaverage waiting time per CS entry, up to a fator of six. The reason is thatRaymond's algorithm sends appliation messages over a stati virtual spanningtree; when a message is sent from a node to one of its neighbors in the virtualspanning tree, it may atually be routed over a long distane, thus inreasing thetime delay. In ontrast, the RL algorithm uses aurate information about theatual topology, resulting in less delay between eah request and subsequent CSentry.Both algorithms show an inrease in average waiting time per CS entry fromlow to high load in Figure 5. The higher the load, the larger is the number ofother nodes that preede a given node into the CS.The average waiting time for eah CS entry reahes its peak for the RLsimulation at around 75 time units per CS entry under the highest load. Thisis aused by an essentially round robin pattern of token traversal. However, theaverage waiting time for the RL simulation in Figure 5() at the highest loadatually dereases under high mobility. This phenomenon may be due to the fatthat, at high loads, frequent link failures break the fair pattern in whih the tokenis reeived, ausing some nodes to get the token more frequently.Figure 5 also shows that the waiting time advantage of RL over RR inreaseswith inreasing load and inreasing mobility. The inreased waiting time of RRwith inreased load when the network onnetivity is low is due to longer averageroute lengths. In the simulation trials, the average route length roughly doubledwhen the onnetivity dereased from 80% to 20%. The performane gap betweenwaiting time for RL and RR is seen to a lesser degree at high onnetivity,when average route length in RR is lower. However, it is apparent that the RRsimulation su�ers from the ombined e�ets of higher ontention and imposedstati spanning tree ommuniation paths at high loads, while RL is mainlya�eted by ontention for the CS at high loads.Finally, Figure 5 suggests that onnetivity in the range tested is immaterialto the behavior of the RL algorithm at high load, whereas a larger onnetivity isbetter for RR than a smaller onnetivity at all loads. In order to further study



27the e�et of onnetivity, we ran the experiments shown in Figure 6: the averagenumber of time units elapsed between host request and subsequent entry to theCS is plotted against network onnetivity inreasing from 10% (43 links) to 100%(435 links) along the x axis. Curves are plotted for low load, where �req = 10�3(the mean time unit between requests is 103) and high load, where �req = 1 (1mean time unit between requests) for both the RL and RR simulations.
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Figure 6. Connetivity vs. Time/CS entry for (a) zero, (b) low, and () high mobilityFigure 6 on�rms that onnetivity does not a�et the waiting time per CSentry in the RL simulation at high load. At high load, the RL algorithm does notexploit onnetivity. When load is high, the RL simulation always sends requestmessages over the path last traveled by the token, even if there is a shorter path tothe token when the request is made. At low load in RL, onnetivity does a�etthe waiting time per CS entry beause request messages are not always sent overthe path last traveled by the token. This is beause with lower load there issuÆient time between requests for token movement to hange link diretion inthe viinity of the token holder, an e�et that inreases with higher onnetivity,shortening request paths.



28 The waiting time for the RR algorithm dereases with inreasing onne-tivity, sine the path lengths between neighbors in the virtual spanning treeapproah one. However, even with a lique, when shortest path lengths are allone, the time for RR does not math that for RL. The reason is that the spanningtree used by RR for all ommuniation might have a relatively large diameter,whereas in RL neighboring nodes are always in diret ommuniation.The results of the simulations in this setion are summarized in Table 1. Thistable inludes data points from both sets of graphs depited in this subsetion.The hosen data points show average waiting time for high (80%) and low (20%)onnetivity and for high and low loads in all mobility senarios.Table 1Summary of time per CS entry.Zero Mobility Low Mobility High Mobility20%a 80%a 20%a 80%a 20%a 80%aRR high load 185 107 185 140 294 290RL high load 75 75 63 63 49 49RR low load 17 8 39 25 60 35RL low load 7 4 5 5 6 7a Initial network onnetivity.6.2. Average number of messages per CS entryThe RR algorithm sends request and token messages along the virtual span-ning tree. Eah message from a node to its virtual neighbor is onverted into asequene of atual messages, that traverse the (urrent) shortest path from thesender to the reipient.The RL algorithm sends Request and Token messages along the atual tokenoriented DAG. In addition, as the token traverses a path, eah node on thatpath sends LinkInfo messages to all its outgoing neighbors. Additional LinkInfomessages are sent, and propagated, when a link failure auses a node to lose itslast outgoing link.Our experimental results reet the relative number of routing messages forRR vs. LinkInfo messages for RL. When interpreting these results, it is important
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Figure 7. Load vs. Messages/CS Entry for (a) zero, (b) low, and () high mobilityto remember that the simulation of the RR algorithm is not harged for messagesneeded to realulate the routes due to topology hanges. Thus, if RL is betterthan RR in some situation, it will ertainly be better when routing messages areharged to it, even if they are prorated. Also, if RR is better than RL in anothersituation, depending on how muh better it is, RL might be omparable or evenbetter than RR when routing messages are harged to RR.Figure 7 plots the average number of messages reeived per CS exeutionagainst values of �req ranging from 10�4 (the mean time units between requestsis 104) to 1 (the mean time units between requests is 1) from left to right alongthe x axis. Plots are shown for runs with 20% (87 links) and 80% (348 links)onnetivity for both the RL and RR simulations.Figure 7(b) and () show that the RR algorithm sends fewer messages perCS entry than the RL algorithm in all simulation trials with mobility, althoughas load inreases the message advantage of RR dereases markedly.



30 In all situations studied, exept the RL simulation in the stati ase withhigh onnetivity, the number of messages per CS entry tends to derease as loadinreases. The reason is that, although the overall number of messages inreaseswith load in both algorithms, due to the additional token and request messages,it inreases less than linearly with the number of requests, and hene less thanlinearly with the number of CS entries. In the extreme, at very high load, everytime the token moves, it is likely to ause a CS entry.In the stati ase with high onnetivity, the RL algorithm experienes athreshold e�et around load of .01: when load is less than .01, the number ofmessages per CS entry is roughly onstant at a lower value, and when the load isabove .01, the number of messages per CS entry is roughly onstant at a highervalue. The threshold e�et beomes less pronouned as onnetivity dereases.We onjeture that some qualitative behavior of the algorithm on a 30 node graphhanges when load inreases from .001 to .01. This hange may be attributedto the observation that token movement more e�etively shortens request pathlength at high onnetivity with low load. This is beause at low load there issuÆient time between requests for nodes to reeive LinkInfo messages sent asthe token moves, ausing nodes to send requests over diret links to the tokenholder rather than over the last link on whih they sent the token. This e�etis ampli�ed at high onnetivity beause eah node is more likely to be diretlyonneted to the token holder.The RL algorithm sends more messages per CS entry than the RR algorithmwhen mobility auses link hanges, and the number of messages sent in the RLalgorithm grows very large under low loads, as an be observed in Figure 7(b) and(). When links fail and form, the RL algorithm sends many LinkInfo messagesto maintain the token oriented DAG, resulting in a higher message to CS entryratio at low loads when the degree of mobility remains onstant. However, wheninterpreting these results, it is important to note that the RL algorithm is beingharged for the ost of routing in the simulations with mobility, while the RRsimulation is not harged for routing.Figure 8 shows the results of experiments designed to understand the e�etof onnetivity on the number of messages per CS entry. In the �gure, theaverage number of messages per CS entry is plotted against network onnetivityinreasing from 10% (43 links) to 100% (435 links) from left to right on the xaxis. Curves are plotted for low load, where �req = 10�3 (the mean time unitsbetween requests is 103) and high load, where �req = 1 (the mean time units
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Figure 8. Connetivity vs. Messages/CS Entry for (a) zero, (b) low, and () high mobilitybetween requests is 1) for both the RL and RR simulations.In the stati ase, the number of RL messages per CS entry inreases linearlywith onnetivity, for a �xed load. As onnetivity inreases, the number ofneighbors per node inreases, resulting in more LinkInfo messages being sent asthe token travels. However, the number of RR messages per CS entry dereases(less than linearly) with onnetivity, sine the shortest path lengths betweenneighbors in the virtual spanning tree derease. In fat, our results for RR at100% onnetivity (when the virtual spanning tree is an atual spanning tree)and high load math the performane of approximately 4 messages per CS entryited by Raymond [25℄ at high load.Part (a) of Figure 8 shows that in the stati ase the RL algorithm usesfewer messages per CS entry below 25% onnetivity for high load and below60% onnetivity for low load.Figure 8(b) and () show that, in the dynami ases, the number of messagesper CS entry is little a�eted by onnetivity for a �xed load. In the RL algorithm,



32there are two opposing trends with inreasing onnetivity that appear to aneleah other out: higher onnetivity means more neighbors per node, whih meansmore LinkInfo messages will be sent with eah failure. On the other hand, moreneighbors per node means that it is less likely for a link failure to be that of thelast outgoing link, and thus LinkInfo messages due to failure will propagate less.For the RR ase, the logarithmi sale on the y axis in Figure 8() hides the slightderease in messages per CS entry, making both urves appear at.The results of the simulations in this setion are summarized in Table 2. Thistable inludes data points from both sets of graphs depited in this subsetion.The hosen data points show average number of messages for high (80%) and low(20%) onnetivity and for high and low loads in all mobility senarios.Table 2Summary of messages per CS entry.Zero Mobility Low Mobility High Mobility20%a 80%a 20%a 80%a 20%a 80%aRR high load 13 6 11 7 30 20RL high load 10 27 24 25 109 109RR low load 27 13 35 20 60 50RL low load 13 17 189 180 1900 1825a Initial network onnetivity.7. Conlusion and DisussionWe presented a distributed mutual exlusion algorithm designed to be awareof and adapt to node mobility, along with a proof of orretness, and simulationresults omparing the performane of this algorithm to that of a stati token basedmutual exlusion algorithm running on top of an ideal ad ho routing protool.We assumed there were no partitions in the network throughout this paper forsimpliity; partitions an be handled in our algorithm by using a method similarto that used in the TORA ad ho routing protool [22℄. In [22℄, additional labelsare used to represent the heights of nodes, allowing nodes to detet, by reognitionof the originator of a hain of height inreases, when a series of height hangeshas ourred at all reahable nodes without enountering the \destination". A
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