Efficient Access Algorithms for
Dynamic Many-tag Passive RFID Storage Systems
Technical Report

Victor K.Y. Wu* and Nitin H. Vaidya

Department of Electrical and Computer Engineering

University of lllinois at Urbana-Champaign
Email: {vwu3, nhv @illinois.edu

Abstract—In this work, we investigate efficient algorithms for
accessing information stored in a large number of RFID tags.
Interrogators, equipped with RFID scanners, regularly arrive at
the tag system, read from and write messages to the tags, anuen
leave. We develop techniques for the interrogators to readhie
newest messages from the tags as quickly as possible, sinesver
information is often the most relevant and interesting. We lorrow
ideas from aloha and query tree, two traditional singulatin
schemes, to form ourmany-tag access algorithms. Our query
tree-based algorithms access tags faster, but are not as no&t as
our aloha-based algorithms. We study two scenarios. In thetatic
scenario, the tag population is fixed. Here, it is naive to irially
singulate all the tags, and then query them afterward to read
the newest messages. Our results indicate that better-periming
algorithms instead progressively segment the tag populaih at
each round to find the newest messages. In the dynamic scenari
tags are continually arriving and departing, causing information

Roy H. Campbell
Department of Computer Science
University of lllinois at Urbana-Champaign
Email: rhc@illinois.edu

aid in the tracking process. RFID interrogators (scannats)
various checkpoints scan the tags for their unique IDsyallo
ing the tracking system to monitor the flow of goods. Tags
can also carry tracking history information, further imyirgy

the system.

2) RFID tag fields: In many mapping and localization
applications, tags are distributed over a large physiceh.ar
As people or mobile robots equipped with interrogators move
through the tag field, they can access the tags, reading from
and writing to them messages, such as location information
for use in various algorithms.

3) Whiteboarding: A system of many tags can form a
digital whiteboard. Users equipped with interrogators can
collaborate with each other by sharing information via the

to quickly disappear. We combat this by encoding messages,tags’ storages.

dividing the coded bits into multiple chunks, and then spreaing

them across multiple tags. This requires us to access a largeg. Many-tag information access

number of tags when reading. Therefore, our results show thia
better-performing algorithms initially singulate all the tags (as
opposed to the static scenario), and then continually querthem
afterward individually for data chunks in order to recover t he
newest messages.

I. INTRODUCTION

RFID (radio frequency identification) technology is movin
beyond its namesake of object identification. In particul
system designers are leveraging the user memory of passive
RFID tags as storage systems. In this work, we investig
efficient algorithms to access information stored in a lar

number of tags.

A. Motivating application domains

We introduce the termmany-tagto emphasize that tag
multiplicity plays a defining role in the systems we consider
In single-tag scenarios, or multi-tag systems with a small
number of tags (less thas0), we can use traditional means
of tag access. That is, an interrogator first singulaties tags,
learning their IDs. Then, it reads and writes information by

uerying the tags individually according to their IDs. Insth
ork, we consider many-tag systems, where an interrogator’
n range is powerful enough to encompass upward80of

EI%S. (Equivalently, the interrogator transmit power may b
YFeaker, but the tags are positioned more densely in space.)

In these scenarios, we need algorithms that quickly actess t
information of interest. For example, we are often intexdsh
reading the newest information, because it is the mostaatev

We consider three potential application areas to motivadg mmetrically, if we are writing information to an already
many-tag information access. This is by no means an exhayfr siorage system and are forced to overwrite somethireg, w

tive list.

1) Supply chain managemernassive RFID technology is

1Singulation is the process whereby an interrogator learasunique IDs

traditionally used in warehousing and supply chain managend thus the presence) of a set of tags. In passive RFIDntdgator scans

ment. As goods move from factory production to consum
consumption, tags affixed to pallets and shipment contain

*This work is supported in part by NSF grant CNS-0519817.

gte batteryless tags, powering their chips. The intermrggtieries the tags

with certain conditions. Tags respond by sending their umips. If only one

%(g responds, the interrogator learns its ID. If multiplgstaespond, there is a

collision. The interrogator resolves these collisionsraeveral query rounds
to learn all the IDs.

often choose to replace the oldest information. In this workedundancy. The number of tags quickly increases, and-there
we focus on these two ideas. fore many-tag information access becomes very important.

We also note that our algorithms provide a black box inter- In [2], the authors consider asset management in the supply
face for users. That is, a user equipped with an interrogatdrain. Tags are affixed to shipping containers in order to
can interact with a system of tags, oblivious to the physicabhck them. Similar to smart parts above, these containers
layer communications. She does not know the number of tageve through many different domains, and storing history
present, and does not need to access tags on an individofdrmation inline in the tags is a good design choice. We
basis. In this sense, our algorithms are a form of middlewacan again affix many tags to these containers, and access thei
for RFID tag storage. information using our algorithms.

C. Summary of contributions B. RFID tag fields

In this work, we borrow two traditional RFID singulation In [3], [4], [5], tags are distributed over a large physicada
algorithms, aloha and query tree, to form our many-tag accédobile robots equipped with interrogators move through the
algorithms. Our query tree-based algorithms access tatgrfa tag field, reading from and writing to the tags, for localiaat
but are not as robust as our aloha-based algorithms. We fasd mapping. In these works, the authors focus on scanning
study the static case, where the tag population is fixed. e tags for their IDs, and use tag storage to store tracking
this scenario, our results indicate that the better-pariiog information. In [6], [7], we also consider a tag field, but kit
algorithms progressively segment the tag population ah egeeople carrying interrogators. We focus on tag storage for
round to find the newest information. In the dynamic casépplications such as search and rescue. If the tags areyéeplo
tags are continually arriving and departing. We anticightg densely enough, or interrogators have sufficient scan range
this will cause information to quickly disappear. Therefor they can potentially scan up @00 tags at any given moment.
we combat this by encoding information, dividing the codelih these situations, many-tag information access algosth
bits into multiple chunks, and spreading them across nialtigpecome very useful.
tags._ Th|§ requires us to access a large number of tags Wla:e.nWhiteboarding
reading information. Therefore, our results show that thé

better-performing algorithms initially singulate all thags, In [8], the authors develop a system to collect information
and then continually query them individually for data chsnkin @ post-disaster scenario. RFID tags are deployed attelisas
in order to recover information. sites, after an earthquake for example. After authoriteeess

the damage at a site, the results are stored in the tags. At
D. Outline a later stage, information can be easily aggregated since it

In Section II, we review relevant background literature. |#§ stored at the sites themselves. This is important, since a
Section I, we introduce our system model, and detail arfgPmmunications system may be unavailable. As well, we can
evaluate our algorithms, for the static case. In Sectiony, further generalize using tags in these situations. For exam
generalize our ideas to the dynamic case. Section V congludie, first responders can deploy tags at various key stategi

and provides future work. locations, such as the ground zero location(s), medicas$ ten
emergency shelters, and parking lots. People read and tarite
[I. BACKGROUND LITERATURE the tags, as well as carry them between these locations. This

To the best of our knowledge, researchers are not cgreates an ad-hoc communications network (which may also
rently studying information access in many-tag systems. V¢ delay-tolerant [9], [10]) for people to share messagesh s
therefore review background literature that does alreasly (S rescue status updates, food and medical supplies aligilab

tag storage, but could benefit even more using our proposdtl any ot.her pertinent informatio.n.. In essence, we can view
algorithms. the dynamic systems of tags as digital whiteboards, where we

can apply our many-tag information access algorithms.
A. Manufacturing and supply chain management

In [1], the authors use RFID for smart parts manufacturing.
As automobile parts affixed with tags move through th&- System model
production line, interrogators scan the tags to ensure theéWe first consider the static case where there is a system of
processes are correct. For example, a particular procegs mapassive RFID tags fixed in a physical area. Each tag can
require certain safety components to be present. Also,emethstore one message and an associated timestamp. Intengato
smart parts move between different domains (such as plamegularly arrive at the system, read from and write messages
automobile dealers, and repair shops), interrogators can sto the tags (by scanning them), and then leave. In particular
them for service histories. Storing information inline imet interrogator arrivals are modeled as a Poisson process with
tags themselves is helpful, since it may be difficult for thegate A\; arrivals per second. We assume that the tag access
different domains to access a centralized informationtiiega. time (reading and writing) during each interrogator’s sisy
In this way, we can affix more tags to more parts or sulmegligible compared to the interrogators’ inter-arriviahes.
components, or even affix multiple tags to a single part fatherefore, there is at most one interrogator at the system

IIl. STATIC RFID SYSTEM

any given time. (That is, we do not consider the interrogatblow, let sg, s1,s>2 be the number of empty slots, single
collision problem [11], since it is beyond the scope of thisccupancy slots, and collision slots, respectively, messu
work.) During each interrogator’s stay, it writeéé messages from the previous round. Then,

to X different tags, whereX is a non-negative geometric . . n o pn

random variable with mea#-2, wherep € (0,1), and X is i := argmin |[(Ef B} EZ,) — (s0 51 s22)|]- 3)
independent across stays. The interrogator first writes10 Note that we use thesy, £, and EZ, values associated
empty tags. Then, for any remaining messages, it overwritggh the previous round'sV in the above minimization.) The

existing messages in the tags, starting with the oldest ofigerrogator then chooses for the current round according
and then the second oldest, ... When an interrogator writegpathe following ranges of., as shown in [12].

message to a tag, it also writes a timestamp of the curreet tim
to the tag. (Note that we say a tag is “new” or “old” if the
timestamp it is currently storing is large or small, resjwety.)

fe | [1,9] | [10,27] | [28,56] | [57,129] | [130, 00)
N [16 32 64 128 256

In aloha-normal, the interrogator first uses aloha to singu-
late all the tags. Tags respond with their respective tiamaps,
in addition to their IDs. The interrogator therefore leaails
Reading and writing require finding the newest or oldeste tags’ IDs, and their associated timestamps. It knowshwhi
messages, respectively, which are symmetric processé® inthgs are new. It then queries the newest tags individually
following algorithms. Therefore, we only focus on readiy. according to their IDs for then newest messages.
particular, when an interrogator arrives at a system of tagsFor aloha-max let TS = {ts;}; be the set of timestamps
already in steady state (all tags are full), these algosthithe interrogator has collected from single-occupancy siots
find the m different newest tags (learn their unique IDsjn the current read session. InitializeS with 7S := {—oc}.
with the m newest messages, whewe € {1,...,n}. Then, In each aloha round, first 1@k, ges; := max; T'S. Then, the
the interrogator queries each of thesetags individually to interrogator broadcast®y’ and ts;q.4es: to the tags. If a tag
recover the messages. The algorithms are categorized W¢h timestampts, hasts > tSiargest, it responds (in one
two classesaloha-basedand query tree-basedAloha-based of the N time slots), with its ID andts. For each single-
algorithms include{aloha-normal, aloha-max, aloha-half. occupancy time slot, the interrogator learns an ID and an
Query tree-based algorithms includguery tree-normal, associatedts, and updatesI'S := 7S U ts. In this way,
query tree-max}. with each round¢s;q¢es: inCreases, and the interrogator pro-
1) Aloha-based:These class of alogrithms use aloha sirgressively queries an effectively smaller proportion af thg
gulation [12]. In aloha, the interrogator singulatesags in population. When tags no longer respond to the interrogator
multiple query rounds. In each round, the interrogator firbroadcast, the interrogator knows thaj,,4.s+ contains the
broadcastsV € {16,32,64,128,256} to all the tags, which largest timestamp among all the tags. It then queries tlgat ta
is the number of tag response time slads.depends on the (using the ID associated withs;,g.s:) t0 read the newest
interrogator’s estimate of the tag population size. ([I&@ws message. To find the second newest message, (the third pnewest
that N > 256 is not necessary.) The interrogator then listens., and them!* newest), the interrogator first mutes the
for N time slots. Each tag randomly (uniformly) chooses ongewest tag it just read from (tell it not to respond anymore
of those time slots to respond in with its ID. The interrogatdor this read session), and updai®s := T'S \ £Siqrgest- The
learns the ID of a tag if no other tags respond in the same sioterrogator then repeats the above process. It becomies fas
as it does. (There are no collisions in that slot.) At eactndyu to find each subsequent newest message, siffteontains
the estimate of:, which we calln, changes in general, andincreasingly more timestamps.
therefore N changes too. This repeats over multiple rounds Determiningn is more difficult in aloha-max than aloha-
until the interrogator is confident that is has singula®&; normal, since the effective tag population size (tags thatikl
of the tags, as detailed in [12]. respond) changes with each round. To keep track of the tag
In the first round, we initializeN to 16. In subsequent population, we first estimate the number of tags that ardemrit
rounds, we doubleV if all slots in the previous round haveto in a given periodl’ with the mean.
collisions. Otherwise, we choos¥ according ton, which
we calculate with the following. First, we need a lookup &bl

B. Algorithms

E [number of messages written i seconds

oo

(stored in the interrogator) withy, £, andEZ,, which is the — Z E [number of messages writtgrarrivals in 7’
expected number of empty slots, single occupancy slots, and :—;
collision slots, respectively, in the previous round, farying x P (i arrivals inT) .
values ofn of N. These formulas are derived in [12].
n n— = 1—peMT ()\IT)i 1-p
. 1 . 1\ =3 : = AT (4)
Eo—N(l_N> ,El_n<1—ﬁ> , and 1) ; P 0! p !
N —(N=1)""'(N4+n-1) Then, at each round, the interrogator doubMésif s, and

E%, = N1 :) s1 are both zero in the previous round. Otherwise, it first

TABLE |

ALOHA-BASED COMMUNICATIONS /\ \
P ; -

I——— T},

00 01
Aloha-normal Forj e {1,....n}. .o SN / \
ID;ts; .‘ 001 010 011 1 101
|nk“lt|meslotl<—T s G/ VR o GRS s G A S
N]t"lungat '0010‘ /0011 0100 0101 0110‘ 0111 1000‘ 1001\ 1010 1011‘
I {TJ};L=1 e NS N S e S . . S
Aloha-max Forj € {1,...,n}, if ts; > tsiargest: Fig. 1. Query tree singulation for 4 bit tag ID space. Each node in the
IDj,ts; tree has an associated bit string indicating its positiothentree. The leaves
then in kth time slot: /| «——— T} indicate potential tags in the system. Shaded leaves meanhtt tag is not
N tsaverage in the system. Non-shaded leaves are tags in the systemr Bihaitrings
I {7} represent their tag IDs.

Aloha-half .

Forj e {1,...,n}, if ts; > tsaverage,
ID Jtsj

then |nk”l time slot: [«+—————— T3

then tags in multiple rounds. In each round, the interrogator
broadcasts a bit string. A tag that has an ID that prefix matche
the bit string responds with its entire ID. If only one tag
estimates: for the previous round using (3). Then, it estimatetesponds, then that tag is successfully singulated. Then th
the time spread (of messages’ timestamps) of this previdogerrogator chooses another bit string for the next round.
round by taking the difference between the maximum ardtherwise, multiple tags respond, and there is a collision.
minimum timestamps collected in this previous round. WeEhe interrogator then uses a longer bit string in the next
call this Tpreqq. From (4), it estlmateé—/\ITspmad as the round. Essentially, the interrogator walks through a hjinar
number of tags written to in that pamcular time frame (Whictree starting at the root (using either depth-first search or
is in the past). In the current round, the tags written to ipreadth-first search) until it singulates all the tags. Nt
that time frame do not respond, since they are segmented bat all nodes have to be visited. For example, in Fig. 1,
with the interrogator broadcasting;,,¢.s:. The interrogator when the bit string)1 is queried, only the tag with 1110
then updates the estimated number of tags that respond innggponds, and therefore it is singulated right away. Nodes
current round to bé := [n — %AlTspread]. (If A turns out 010,011,0100,0101,0110,0111 are not visited. (These bit
to be non-positive, set it td.) N is then determined from strings are not queried.)
this newn using the same ranges described above for alohan query tree-normal, the interrogator first uses query tree
singulation. Note that aloha-max requires an interrogéor to singulate all the tags. Tags respond with their respectiv
know the statistics of previous interrogators. Namely & ha timestamps, in addition to their IDs. The interrogator #iere
know A\; andp. learns all the tags’ IDs, and their associated timestanhgseh

In aloha-half, we assume that the interrogator does nepueries then newest tags individually according to their IDs
know the statistics of previous interrogators. This makes for the m newest messages.
difficult to estimate the effective tag population size dyra In query tree-max, the interrogator progressively queries
ically (and therefore adjustV accordingly). So instead of an effectively smaller proportion of the tag population hwit
usingtsiargest @s the “cut-off time”, the interrogator uses theeach round, similar to aloha-max. L&S = {ts;}; be the
median. That is, a tag responds in the current round onlysiét of timestamps the interrogator has collected in thesotirr
its timestamp is greater than the median of the timestamsid session. In each query tree round, firsttd@t, gest =
collected by the interrogator in the previous round. Thenef max; 7'S Then, the interrogator broadcasts a bit string and
the tag population estimate is easily updatednas= (%1. tSiargest- If @ tag with timestamps, hasts > ts;qrgest, @nd an
(Again setn to be 1 if it is non-positive.) In essence, ID prefix match with the bit string, it responds with its ID and
the interrogator is approximately halving the effectivg tats. (Note that timestamps are in general not in order according
population in each round. When only one tag responds to tttelDs.) Each time the interrogator successively receivieg'a
interrogator’s broadcast, it knows that that tag is thedatg response (no collision), it updatéss := 7'SUts. In this way,
timestamp tag. Everything else is the same as aloha-max. tsiarqest iNCreases, and the interrogator progressively queries

We summarize the communications of the aloha-based effectively smaller proportion of the tag population twit
algorithms in a single round in Table I.is the interrogator, each round. When tags no longer respond to the interrogator’
tsiargest 1S the largest timestamp it has collected so far, arlstoadcast, or query tree is complets;,, 4. contains the
tsaverage 1S the average of the timestamps it collected in thargest timestamp among all the tags. The interrogator then
previous round7} is the j** tag, with ID ID;, andts; is its queries that tag (using the ID associated Wi, gest) tO
stored timestamp, wherg e {1,...,n}. T; responds in the read the newest message. The interrogator repeats the above
kth time slot (if necessary), WheriéTh € {1 ,N}. process, updatin@'S and muting tags, similar to aloha-max,

2) Query tree-basedThese class of algorlthms use queryo find the second newest message, the third newestn!". ,
tree singulation [13]. In query tree, the interrogator silages newest.

TABLE Il

SIMULTANEOUS BITS TRANSMITTED IN EACH ROUND newest tag with the largest timestamp.
For aloha-max and aloha-half, we see that varyimhanges
Aloha-based the performance very little, as shown in Fig. 2(d). In pautc,
i Interrogator queries3 bits ; i F oA H
Aloha-normal | . FC ndN (96 + 17) bits !t may slightly change how the tag populatm_ms estimated
Alohamax Interrogator queriess + 17 bits in each round. The query tree-based algorithms do not use
Tags respondiV (96 + 17) bits p in their algorithms, and therefore their performances are
Aloha-half Interrogator queries3 + 17 blts . R . .
Tags respondiV (96 + 17) bits independent of. That is, these algorithms just look at the
Query tree-based relative ordering of the timestamps.
Interrogator queries: . . . o
Query tree-normal length(bit string) bits Fig. 2(d) shows how the access time variesnass in-
;igfrc::?;:r"gizr;s” bits creased. We see that the marginal time to read each additiona
Query tree-max length(bit string) +17 bits message is very small. That is, finding the newest tag tales th
Tags respond96 + 17 bits most time. Finding the second newest, third newest, m"

newest requires little time, since the interrogator hasaaly
collected many timestamps, and thus has a “head start” in
C. Evaluation finding subsequent newest tags.

1) Simulation performance metridVe simulate our algo- We see that the query tree-based algorithms perform better
rithms. We are interested in thmessage access timdn than the aloha-based ones. Both query tree and aloha do not
particular, since reading and writing are symmetric (findinf€quire knowing the tag population size. However, alohasdoe
the newest and oldest tags are effectively the same), wes fo€@ntinually estimate the number of tags with each round.
on reading. To compare the different algorithms, we abstrakherefore, the aloha-based algorithms must pay this cost of
out the wireless transfer bit rates between the interrogatd 2V (96 + 17) bits in the access time in each round, which is
tags. We only count the total number of simultaneous bigspecially wasteful in the initial rounds when the inteatoy
that are transmitted through the air interface to find the 108 still learning the tag population size. However, alolaesdx
of the m newest tags. (We say “simultaneous”, since mump@lgorithms are in general more robust. Even if the enviramme
tags may respond at the same time. Additionally, tags may rfé@anges (such as obstructing objects changing the wireless
respond, but time may still elapse, for the case of empty tinRéopagation characteristics) quickly within one intestuy
slots in the aloha-based algorithms.) access session, aloha handles this gracefully, since in eac

Note that we are only measuring the time the interrogattund, the interrogator scans all the tags it can and sitegila
uses to find the IDs of the: newest tags carrying the newest them, whether or not those tags were scannable in previous
messages. Afterward, the interrogator reads actual messkegynds. In contrast, suppose in the query tree-based tigusj
data by querying these tags individually. Since this is traes the interrogator misses scanning a tag initially because of
for all the algorithms, we do not include this message da@ obstructing object. The algorithms may quickly prune out
transfer time in our metric. the segment of the tree with that tag ID. Later when the

In our simulations, we consider the UHF Class 1 GepPstruction is gone and that tag is within the scan range,
2 passive RFID tag [14], which uses %-bit unique ID. the interrogator cannot singulate it, even if the tag cartiee
Timestamps are chosen to bebits long, giving us a precision NEWest message.
of seconds in a4 hour period. N requires3 bits, since In our algorithms, we use timestamps. In practice, there are
it can take on5 different values. We summarize the timelifficulties with this. First, we need to transmit the tim@sips
(simultaneous bits transmitted) required for each quemywdo and store them in tags, which requires storage overhead.
of the algorithms in Table II. Second, interrogators need access to a synchronized clock,

2) Simulation results and discussionVe simulate the which is not necessarily trivial, depending on the graritylar
average message access time when the system is in stezEdthe timestamps. Instead of using timestamps, one may
state, forA\; = 1 arrival per second. Results are shown igonsider logical sequence numbers. But aloha-max and-aloha
Fig. 2. Figs. 2(a), 2(b), and 2(c) plot access time agairst thalf cannot use sequence numbers since they rely on the
number of tagsp. Fig. 2(d) plots againstu. Fig. 2(a) shows relative times of interrogator arrivals. The other aldumis can
that aloha-normal and query tree-normal are naive schemese sequence numbers. With sequence numbers, the problem
They require singulating all the tags initially, using a taft of finding the newest message can become trivial. That is, if
query rounds, thus resulting in a long access time. Alohthe interrogator knows what the newest sequence number has
max and aloha-half perform well, with the former better (alseen assigned so far, it can use that right away to find the
shown in Fig. 2(b)), as expected, since it is more aggressivenewest message. However, this is not possible if interoygat
segmenting the tag population. Of course, the tradeoffas ttdo not communicate with each other or they come from
aloha-max requires knowing the interrogators’ statistiggery different domains. Additionally, if tags dynamically areiand
tree-max is even better, since it segments the populatibile w leave (which we address in the next section), it becomes
performing query tree. The interrogator is effectivelymng difficult to track sequence numbers. Therefore, we argue for
the query tree with each round, allowing it to quickly find theising timestamps, despite its difficulties.

>

5 T T T T T T T T 16 - -
O aloha—max, m = 1 \4
45 O- - aloha-normal, m = 1 B A aloha-max, m =3 5
A--- aloha-max, p=1/2, m=1 14 - g aloha-max, m =5 v B
— 4r @ - aloha-half, p=1/2, m=1 4 _ Z a:o:a—:a:? m= ; o 5
B V- query tree—normal, m = 1 2 aloha-hali, m = 3
E 3.5} e < query tree—-max, m =1 Yy E 12 > aloha-half, m = 5 5 N v B
& &
s 4 8 > v
s °f ' 1 2 10| . |
5 v 5 5
7} 7}
§ 25F 5 v - g iva
g 2 v 1 g° & R S T <
£ v E A °
2 15¢ E @ a A 3
@ v [x] o 6 i & Pay o) ~
E a o £ 4 o A s}
=0 74 o s 2] : i = v o é\ o)
v] A iN 4 o B
0.5} =} A A A- A A & T 2
S T S S S e B AU A0
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Tag population size (n tags) Tag population size (n tags)
(a) Comparison of all algorithms for reading newest message (b) Aloha-max and aloha-halfy = %
x 10* «10°
4.5 T T T T T T T T T T T %
O--- query tree-max, m = 1 a 16 - . B TIETETEEEIERES o : Lt
A query tree-max, m = 3 & o e
47 =] query tree-max, m =5 ’ A
. _1ar - 4
B a5k 2 “ 4 B O aloha-max, p = 1/2
E ’é A aloha-max, p = 1/6
@ =) AN 7] L - = 4
=1 o] 2 12 o aloha—half, p = 1/2
£ 3p o 7 g V- aloha-half, p = 1/6
%) VAN 0
= © = < query tree—max
2 A 2 10} —
g 25F o 5 R 2
f_‘:g =] PN (o] E A A
E IS - 1 E o) 2 % °)
3z A o Q) o
ué 15 o — uE>
(= A e} = 6 4
10 © i
& L . . < 3
4 4 <«
0‘?OO 200 300 400 500 600 700 800 900 1000 1 2 3 4 5
Tag population size (n tags) Number of newest messages to read (m)
(c) Query tree-max (d) n = 1000 tags
Fig. 2. Average message access tilhg,= 1 arrival per second
IV. DYNAMIC RFID SYSTEM it reads and writes very quickly, and then leaves. In paldicu
A. System model we assume this tag access occurs on a very small time scale

compared to the tag dynamics. Practically, it means we can

are continually arriving and departing, and therefore tg (assume the tag population is fixed when an interrogator is
y g b 9 accessing tags. We are, nonetheless, interested at how the

population size changes dynamically. We model the situati?a access time varies at this microscopic level. Durindheac
as anM /M /oo queueing system. That is, tags arrive accordin 9 P :

to a Poisson process at a rate)gf arrivals per second. Eachﬂterrqgators stay., It writest messages, WherK,'S a non-
R . negative geometric random variable with me, where
tag stays for an exponential time with mega seconds, and p

then departs, independent of all other tagsﬂq'i'hereforeeaﬂy p (0,1), and X is independent across stays. When an
' . . . interrogator writes a message to a tag, it includes a timgsta
state, E [number of tags in systém= 2Z. (That is, for the n : . o
[9 yste mr (&fethe current time. If\; is large, or ifp is large, or both,

dynamic RFID system, we define steady state as when . . .
Qre messages are written to tags. Ultimately, this reduces

queueing system of tags is at steady state. Thus, theret e lifetimes of messages stored in the system, since tley ar
likely to be non-full tags in steady state, as opposed todhat ~ 9 Y ' y
quickly replaced.

the case of the static RFID system.) Without loss of gertgrali
we takeAr = 1. Then, we varyur € (0,1). As HLT increases, 2) Message encoding and tag storage quetiee lifetimes
the expected tag population size increases. Also note thabi messages are reduced if tags quickly leave and/or igafro
ur is large, tags leave sooner, and therefore the lifetimes tofs come often and overwrite a lot of messages. Therefore,
messages in the system are reduced. That is, a messageeizise Reed Solomon coding [15] to alleviate this problem.
effectively destroyed if enough of the multiple tags camgyit To store ak-byte message, an interrogator first encodes it into
(using message encoding, explained below) are no longeraig-byte codeword using aRS (¢, k) code. The codeword is
the system. then divided intog one-byte chunks, and written to different
Interrogators arrive according to a Poisson process ata@s. To recover the message later, an interrogator musteec
rate of A\; arrivals per second. After an interrogator arrivegt least anyk out of the ¢ chunks (reading from multiple

1) Tag and reader dynamicstn the dynamic case, tags

tags), and also know their respective positions in the codéw necessarily can spread message chunks evenly across the
Therefore, we associate a sequence number with each of tdugs, especially if there are very few tags. Tags arriving an
g chunks. The sequence number thus requjieg2q| bits. departing also add to the uncertainty, making these algust
When an interrogator writes a message chunk to a tag,infeasible.
includes the sequence number and a timestamp. The timestam®) Query tree-basedQuery tree-normal is the same as
also serves as a message ID, identifying which chunks belaigha-normal, except that the interrogator uses queryririe
to which message, since all the chunks of the same messanial singulation process of stadge Everything else in stage
share the same timestamp. 2 is the same, with the interrogator querying tags indivigual

A tag's storage is maintained as a first-in first-out (FIFOfpr their message chunks.
gueue withl storage slots. That is, when a tag arrives at the Query tree-max is similar to its counterpart in Section
system, it is empty. As interrogators write message chunkkB. Let T'S = {ts;}; be the set of timestamps the inter-
to it (with associated sequence numbers and timestamps),rogator has collected in the current read session. In stage
inserting chunks at the back of the queue, existing churds dr, the interrogator finds the largest timestamp among all
pushed through the queue. When the queue is full, the nexéssage chunks in all tags. In each query tree round, first
incoming message chunk forces out the oldest existing chuek ¢s;,,es: := max; T'S Then, the interrogator broadcasts a
in the tag. In other words, the new chunks are at the badkt string andts;q,4es:. If @ tag with its largest (among all
and the old chunks are at the front. To access (read) chuiitsschunks) unflagged timestantp, hasts > tsjqrgest, and
from the queue, an interrogator specifies ttfenewest chunk an ID prefix match with the bit string, it responds with its
in the queue, wherée {1, ..., queue sizé. ID and ts. Each time the interrogator successively receives

When an interrogator wants to writemessage chunks of aa tag’s response (no collision), it updatBs := T'S U ts. In
message (with associated sequence numbers and timestathfgway,ts;.-qcs: iNCreases, and the interrogator progressively
it first singulates all the tags. It then writes to any emptgueries an effectively smaller proportion of the tag popaia
storage slots in the tags’ queues first. If there @rg..;, With each round. Stagé ends when tags no longer respond
remaining chunks and tags in the system, it writes to theto the interrogator's broadcast, or query tree is complete.
min (7, gremain) tags (inserting chunks at the back of theits;,,q.+ contains the largest unflagged timestamp among
respective queues) with the oldest timestamps. This isatede all message chunks in all tags. In stage we focus on
until there are no more remaining chunks to be written. W¥,terest = tSiargest. First, the interrogator broadcasts a
essence, an interrogator spreads out the chunks among rtbfication, telling tags that havis;,,;c-.s; t0 flag it (so that
tags as much as possible, while at the same time replacing itheill be ignored in future iterations of stagg). Then, the
oldest information in the system. The interrogator canlgasinterrogator singulates these tags that h&wgc,cs:, Using
find the tags with the oldest timestamps by examining just tlygiery tree on the IDs. If a tag haS;,erest (@nd an 1D
timestamps of each of the chunks at the front of each quetigat prefix matches the broadcast string), it responds \uith t

. associated message chunk and sequence number (in addition

B. Algorithms to its ID). Stage2 ends when the interrogator has collected

In this work, we focus on reading messages. As before, thechunks, or has completed the singulation (in which case it
following algorithms find them newest messages stored irmay have collected less thanchunks, and therefore it knows
the tag system. Note that an interrogator only has to recovkat the message is no longer alive in the system). To find
k chunks of a message to reconstruct and thus read it. If théie next newest message, first updats := 7'S \ tsiargest-
are less thart chunks remaining in the system, that messagthen, the interrogator goes through stdgand2 again. This
is effectively destroyed, and can no longer be accessed. process repeats until the interrogator has recoveratkwest

1) Aloha-basedAloha-normal is similar to its counterpart messages.
in Section 1lI-B. In stagel, the interrogator uses aloha to)
first singulate all the tags, learning their IDs. Then in stad>- Evaluation
2, it queries tags individually, reading message chunks from1) Performance metricsWe simulate our algorithms. We
them. That is, it reads the newest chunk (and sequerare interested in theneasured message lifetime per byte
number) from every tag, and then the second newest fraha message in steady state. That is, a message is “born”
every tag, After each read, the interrogator recovers when an interrogator writes itg constituent chunks to tags.
many messages as possible. That is, if at léashunks of It is destroyed when fewer thak chunks remain in the
a message are recovered, the message itself is recovered.skistem, which may occur if chunks are overwritten. This & th
interrogator stops reading chunks when it has recoveted “death” time. However, the message may also be destroyed
messages. (These being the newest messages). Message$ tags leave. In that case, we take the “death” time to
in the system that have fewer thansurviving chunks are be when the next interrogator arrives at the system. Thus,
considered destroyed. it is a measured lifetime, because it is with respect to an

Note that it is difficult to use the aloha-max and alohanterrogator discovering that the message is no longee aliv
half algorithms from before, because even if we know thé&/e normalize the lifetime by dividing by message bytes, for
interrogator statistics, we do not know if the interrogataa fair comparison of different coding schemes.

We are also interested in tineessage access time per byte singulation algorithms, but modify them to make tag access
which is similar to that in Section IlI-C1. However, in thisefficient in systems with many tags. We study both static
case we do include the actual message data transfer timai dynamic situations. In the static case, query tree-max
the metric, since there are differences in message sizes. provides very good performance. The aloha-based algosithm

As before, tags use @-bit unique ID. Timestamps arg7 perform not as well, but are more robust. In the dynamic
bits long andN requires3 bits. We takeq = 32 chunks, situation, tags are continually arriving and departing. ifge
and varyk € {16,20,24,28}. Therefore, chunk sequencemessage encoding and spread chunks across tags to combat
numbers requirdog, ¢ = 5 bits. The actual message data fotags departing and being overwritten. Therefore, wheningad
each chunk isl byte = 8 bits. We use timestamps as uniquéand recovering) messages, we need to find the IDs of a large
message IDs. Therefore, each chunk, along with the sequenaenber of the tags. The best algorithms in this case require
number and message ID, requirgs- 5 + 17 = 30 bits. A first singulating all the IDs of the tags (which was a naive
typical tag (such as the Alien Higgs-3 family [16]) ha$2 strategy in the static case).
bits of user storage. So we take each tag to have space foin this work, we focused on reading the newest messages,
[512/30] = 17 storage slots. and overwriting the oldest ones. In future work, we consider

2) Simulation results and discussiolVe simulate the av- random access of information, keyed to a filename, for exam-
erage measured lifetime of a message per byte in steady stple. This requires more sophisticated algorithms and requi
We plot this against the expected tag population §iZ@e] = more overhead in terms of access time and tag storage. In
z—;. We takeAr = 1, and varyur € {ﬁ, ﬁ, cey ﬁ}. particular, we need robust distributed data structuregetp
Results are shown in Fig. 3. As expected, as interrogatongcotrack of information in the tags.
more often §; large), message lifetimes are reduced, since
chunks are overwritten more quickly. We see that increasing REFERENCES
k reduces the per byte lifetimes. That is, the coding buffefy z. Li, R. Gadh, and B. S. Prabhu, “Applications of RFID Teology
per byte of% bytes is reduced, and messages are destroyedand Smart Parts in Manufacturing, ASME Proc. Design Engineering
sooner. Technical Conferences (DETC3alt Lake _C_|ty, UT, Sep.-Oct. 2004.

. . [2]. T. Inaba, “Value of Sparse RFID Traceability Information Asset Track-

We simulate the average message access time per byte inng during Migration Period, ifProc. IEEE International Conference on

steady state, fon; = 0.2 andp = % Results are shown in RFID (RFID), Las Vegas, NV, Apr. 2008, pp. 183-190.

; ; ; ie id3] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philims‘Mapping
Fig. 4. Increasing: improves performance. However, this IS{ and Localization with RFID Technology, iRroc. IEEE International

only when the. message is St.i” alive. The points in Fig- 4 only conference on Robotics and Automation (ICR¥&w Orleans, LA, Apr.
average the simulation iterations where there are stitéadtk 2004, vol. 1, pp. 1015-1020.

; i [. Kleiner, J. Prediger, and B. Nebel, “RFID Technologgsed Explo-
message chunks in the 1ags. (AS already discussed above’ﬁh%ﬁon and SLAM for Search and Rescue, Rmoc. IEEE International

average measured message lifetime per byte is small whenconference on Intelligent Robots and Systems (IR@Sjjing, China,
k and \; are large.) In the most extreme case, whier= Oct. 2006, pp. 4054-4059.

_ _ i i [5] J. Bohn and F. Mattern, “Super-distributed RFID Tag #&sfructures,
28, E[n] = 100, andm = 5, the message is not alive ii% Lecture Notes in Computer Sciendgerlin, Germany. Springer, 2004.

of the simulation iterations. Fdr = 16, only the E' [n] = 100 vol. 3295.

cases have a non-zero percentage (and just less8tiiarof [6] V.K.Y. Wu and N.H. Vaidya, “RFID Trees: A Distributed RBI Tag
; ; ; Storage Infrastructure for Forest Search and RescueProt. |IEEE

not being alive. In (.)ther words, Flgs.. 3 and 4 together show Conference on Sensor, Mesh, and Ad Hoc Communications amiis

a tradeoff, summarized below. That is, we cannot have both (secon) Boston, MA, Jun. 2010, pp. 253-260.

long per byte lifetimes and short per byte access times with V.K.Y. Wu and N.H. Vaidya, “Exploiting Space-Time Cotations in an

the same system parameters. RFID Tag Fi_eld for Localization and Tracki‘ng,"‘ iRroc. |IEEE Global
y P Communications Conference (GLOBECQMfMami, FL, Dec. 2010. [To
Performance metrics (per byte) appear]

k| Coding buffer Message lifetimel Message access timle [8] A. Shibayama, Y. Hisada, M. Mirakami, M. Endo, S. Zama Takizawa,

small large long long M. Hosokawa, and T. Ichii, “A Stud_y on the Digaster InformqtiC_oI-
large small short short lection Support System, Incorporating Information and @amication
Technology,” in Proc. World Conference on Earthquake Engineering
We see in Fig. 4 that query tree-max performs the worst, Beiling China, Oct. 2008. .
. . Tg] K. Fall, “A Delay-Tolerant Network Architecture for CHanged Inter-
It requires two stages to operate, and is thus slow. Aloha- nets,” inProc. ACM Conference on Applications, Technologies, Aechi
normal is better, and query tree-normal is the best. These tw tures, and Protocols for Computer Communicatiokarlsruhe, Germany,

“normal” schemes are bad in the static RFID system because 2903- _ _ _
[10] Z. Yang and H. Wu, “Featherlight Information Network ttviDelay-

they smgqlate all the tags 'mt'a”y' However, in the dynam Endurable RFID Support (FINDERS),” iffroc. IEEE Conference on
system, since message chunks are spread over many tags, itensor, Mesh, and Ad Hoc Communications and Netwétkse, Italy,

is actually advantageous to first find the IDs of the all the Jun. 2009.

. . 11] D.W. Engels, “The Reader Collision ProblenWhitepaper Sep. 2006.
tags, and then do message recovery. This is the key differe] H. Vogt, “Multiple Object Identification with Passive FRD Tags.”

between the static and dynamic cases. in Proc. IEEE Conference on Systems, Man, and Cybernetics YSMC
Hammamet, Tunisia, Oct. 2002.
V. CONCLUSION AND FUTURE WORK [13] C. Law, K. Lee, and K.-Y. Siu, “Efficient Memoryless Poabl for

| hi K . . | ith Tag ldentification,” inProc. ACM International Workshop on Discrete
n this work, we Investigate many-tag access algorithms Algorithms and Methods for Mobile Computing and Commuiocaf

for RFID storage systems. We borrow ideas from traditional Boston, MA, Aug. 2000, pp. 75-84.

45

Time (seconds)

%
<

45 T T T T T T T T
O k=16 bytes
L A~ k=20 bytes |
40 [=] k = 24 bytes
v k=28 bytes
35 b
]
30 o g
251 @]
© A
20 5 A b
VAN
15 o A i
& =]
10 - © ViY [5] - 7
o N o ?
5F £ v
aN & < v AV
R = v v
v v
) i i i i i i i
100 200 900

(b) A\; = 0.6 arrivals per second

Fig. 3. Average measured message lifetime per Qyﬁe,%

O - k = 16 bytes
a0l 2 k=20bytes © i
=) k = 24 bytes
vk = 28 bytes o
351 : B
[©)
30 q
o
E 25p e 5
=1 aN
) ©
< L AN 4
.g 20 A
= fo]
15 5 A i
A i & O
L - A . i
10 & . 5 @
b v
5¢ o & 2 e i - v b
IS =] v v
v
J Y ‘ ‘ ‘ ‘ ‘ ‘ ‘
100 200 300 400 500 600 700 800 900 1000
Expected tag population size (E[n] = >\T/ o tags)
(@) A\; = 0.2 arrivals per second
x 10°
6 T T T = T T T T
o aloha-normal, m =1
A aloha—normal, m =3
=] aloha-normal, m =5 X
5 V- - query tree—normal, m = 1 X]
§ < query tree—normal, m = 3 x
= > query tree-normal, m = 5 “
% al * query tree-max, m =1 i
& X - query tree—-max, m = 3
5 +--- query tree-max, m=5
b= Vs
- x
S 3F *
2
i} + *
] x R
= *
E * * * ©
@ 2[x 1
£ * 8
L *
Lok LB ,
| i
g8 8§ g o5& § 9§ 3
100 200 300 400 500 600 700 800 900 1000
Expected tag population size (E[n] = >\T/ o tags)
(@) k = 16 bytes
x 10°
6 T T T T T T T T 1
O- - aloha—normal, m = 1
A aloha—normal, m = 3 +
O--- aloha-normal, m =5 +
5r V- query tree—normal, m = 1 + 7
§ < query tree-normal, m =3 +
=1 & - query tree—normal, m=5
E 41 * query tree-max, m =1 i
& x--- query tree—max, m = 3
@ +--- query tree-max, m =5 x
= + B «
S 3r “ B
o
g + *
8
= < g
5 2r I §
x
[x
e * 8 |
* * 5 8
*
b g & & & & &8 58 %
100 200 300 400 500 600 700 800 900 1000

Expected tag population size (E[n] =)\T ! o tags)

(c) k = 24 bytes

Time (simultaneous bits transmitted)

300 400 500 600 700 800
Expected tag population size (E[n] =)\T / Ky tags)

1000

(d) kK = 28 bytes

Fig. 4. Average message access time per byte= 0.2 arrivals per secondy = %

300 500
Expected tag population size (E[n] =)\T / th

a

00
gs)

x 10
6 T T T T T T = T
o aloha-normal, m =1 +
A aloha—normal, m = 3 i
@ aloha-normal, m =5
5K V- - query tree—normal, m = 1 b
3z <1 query tree—normal, m
= > -+ query tree-normal, m =5
£ 4l *- - query tree-max, m = 1 x |
s X query tree—max, m = 3 “ x
E + query tree-max, m =5 “
= x
2 3| - —
5
g % 8
£ *
El + .
£ *
£ 5L x . 4
2 *
» oK * B
E x
= T * 8
1 * Lt 4
r 8
* B g
s 5 & § & & § §
100 200 300 400 500 600 700 800 900 1000
Expected tag population size (E[n] = A/ p . tags)
(b) & = 20 bytes
x 10°
6 T T T T T T T T
O- - aloha-normal, m = 1 1
A aloha—normal, m = 3
4--- aloha-normal, m =5 +
S V- query tree-normal, m = 1 i 7
< query tree—normal, m +
[> - query tree—normal, m = 5 +
4l * query tree—-max, m =1 i
X query tree—-max, m =3
+ query tree—-max, m =5
+ x
3t “ * —
+ P x
2 x
S]
- g
~ %* * *
17: * 8 q
* * 8 g
* B
o @ g § HEEE- 3 - SERRREES. " & & ik
100 200 400 600 700 8 900 1000

[14] “EPCglobal UHF Class 1 Gen 2EPCglobal [Online]. Available:
http://www.epcglobalinc.org/standards/uhfc1g2.

[15] S.B. Wicker, Error Control Systems for Digital Communication and
Storage Prentice-Hall, USA, 1994.

[16] “Alien RFID ICs,” Alien Technology [Online]. Available:
http://www.alientechnology.com/tags/fiit.php

10

