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Abstract—In this work, we investigate efficient algorithms for
accessing information stored in a large number of RFID tags.
Interrogators, equipped with RFID scanners, regularly arrive at
the tag system, read from and write messages to the tags, and then
leave. We develop techniques for the interrogators to read the
newest messages from the tags as quickly as possible, since newer
information is often the most relevant and interesting. We borrow
ideas from aloha and query tree, two traditional singulation
schemes, to form our many-tag access algorithms. Our query
tree-based algorithms access tags faster, but are not as robust as
our aloha-based algorithms. We study two scenarios. In the static
scenario, the tag population is fixed. Here, it is naive to initially
singulate all the tags, and then query them afterward to read
the newest messages. Our results indicate that better-performing
algorithms instead progressively segment the tag population at
each round to find the newest messages. In the dynamic scenario,
tags are continually arriving and departing, causing information
to quickly disappear. We combat this by encoding messages,
dividing the coded bits into multiple chunks, and then spreading
them across multiple tags. This requires us to access a large
number of tags when reading. Therefore, our results show that
better-performing algorithms initially singulate all the tags (as
opposed to the static scenario), and then continually querythem
afterward individually for data chunks in order to recover t he
newest messages.

I. I NTRODUCTION

RFID (radio frequency identification) technology is moving
beyond its namesake of object identification. In particular,
system designers are leveraging the user memory of passive
RFID tags as storage systems. In this work, we investigate
efficient algorithms to access information stored in a large
number of tags.

A. Motivating application domains

We consider three potential application areas to motivate
many-tag information access. This is by no means an exhaus-
tive list.

1) Supply chain management:Passive RFID technology is
traditionally used in warehousing and supply chain manage-
ment. As goods move from factory production to consumer
consumption, tags affixed to pallets and shipment containers
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aid in the tracking process. RFID interrogators (scanners)at
various checkpoints scan the tags for their unique IDs, allow-
ing the tracking system to monitor the flow of goods. Tags
can also carry tracking history information, further improving
the system.

2) RFID tag fields: In many mapping and localization
applications, tags are distributed over a large physical area.
As people or mobile robots equipped with interrogators move
through the tag field, they can access the tags, reading from
and writing to them messages, such as location information
for use in various algorithms.

3) Whiteboarding: A system of many tags can form a
digital whiteboard. Users equipped with interrogators can
collaborate with each other by sharing information via the
tags’ storages.

B. Many-tag information access

We introduce the termmany-tag to emphasize that tag
multiplicity plays a defining role in the systems we consider.
In single-tag scenarios, or multi-tag systems with a small
number of tags (less than50), we can use traditional means
of tag access. That is, an interrogator first singulates1 the tags,
learning their IDs. Then, it reads and writes information by
querying the tags individually according to their IDs. In this
work, we consider many-tag systems, where an interrogator’s
scan range is powerful enough to encompass upwards of1000
tags. (Equivalently, the interrogator transmit power may be
weaker, but the tags are positioned more densely in space.)
In these scenarios, we need algorithms that quickly access the
information of interest. For example, we are often interested in
reading the newest information, because it is the most relevant.
Symmetrically, if we are writing information to an already
full storage system and are forced to overwrite something, we

1Singulation is the process whereby an interrogator learns the unique IDs
(and thus the presence) of a set of tags. In passive RFID, the interrogator scans
the batteryless tags, powering their chips. The interrogator queries the tags
with certain conditions. Tags respond by sending their unique IDs. If only one
tag responds, the interrogator learns its ID. If multiple tags respond, there is a
collision. The interrogator resolves these collisions over several query rounds
to learn all the IDs.
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often choose to replace the oldest information. In this work,
we focus on these two ideas.

We also note that our algorithms provide a black box inter-
face for users. That is, a user equipped with an interrogator
can interact with a system of tags, oblivious to the physical
layer communications. She does not know the number of tags
present, and does not need to access tags on an individual
basis. In this sense, our algorithms are a form of middleware
for RFID tag storage.

C. Summary of contributions

In this work, we borrow two traditional RFID singulation
algorithms, aloha and query tree, to form our many-tag access
algorithms. Our query tree-based algorithms access tags faster,
but are not as robust as our aloha-based algorithms. We first
study the static case, where the tag population is fixed. In
this scenario, our results indicate that the better-performing
algorithms progressively segment the tag population at each
round to find the newest information. In the dynamic case,
tags are continually arriving and departing. We anticipatethat
this will cause information to quickly disappear. Therefore,
we combat this by encoding information, dividing the coded
bits into multiple chunks, and spreading them across multiple
tags. This requires us to access a large number of tags when
reading information. Therefore, our results show that the
better-performing algorithms initially singulate all thetags,
and then continually query them individually for data chunks
in order to recover information.

D. Outline

In Section II, we review relevant background literature. In
Section III, we introduce our system model, and detail and
evaluate our algorithms, for the static case. In Section IV,we
generalize our ideas to the dynamic case. Section V concludes
and provides future work.

II. BACKGROUND LITERATURE

To the best of our knowledge, researchers are not cur-
rently studying information access in many-tag systems. We
therefore review background literature that does already use
tag storage, but could benefit even more using our proposed
algorithms.

A. Manufacturing and supply chain management

In [1], the authors use RFID for smart parts manufacturing.
As automobile parts affixed with tags move through the
production line, interrogators scan the tags to ensure the
processes are correct. For example, a particular process may
require certain safety components to be present. Also, as these
smart parts move between different domains (such as plants,
automobile dealers, and repair shops), interrogators can scan
them for service histories. Storing information inline in the
tags themselves is helpful, since it may be difficult for these
different domains to access a centralized information database.
In this way, we can affix more tags to more parts or sub-
components, or even affix multiple tags to a single part for

redundancy. The number of tags quickly increases, and there-
fore many-tag information access becomes very important.

In [2], the authors consider asset management in the supply
chain. Tags are affixed to shipping containers in order to
track them. Similar to smart parts above, these containers
move through many different domains, and storing history
information inline in the tags is a good design choice. We
can again affix many tags to these containers, and access their
information using our algorithms.

B. RFID tag fields

In [3], [4], [5], tags are distributed over a large physical area.
Mobile robots equipped with interrogators move through the
tag field, reading from and writing to the tags, for localization
and mapping. In these works, the authors focus on scanning
the tags for their IDs, and use tag storage to store tracking
information. In [6], [7], we also consider a tag field, but with
people carrying interrogators. We focus on tag storage for
applications such as search and rescue. If the tags are deployed
densely enough, or interrogators have sufficient scan range,
they can potentially scan up to1000 tags at any given moment.
In these situations, many-tag information access algorithms
become very useful.

C. Whiteboarding

In [8], the authors develop a system to collect information
in a post-disaster scenario. RFID tags are deployed at disaster
sites, after an earthquake for example. After authorities access
the damage at a site, the results are stored in the tags. At
a later stage, information can be easily aggregated since it
is stored at the sites themselves. This is important, since a
communications system may be unavailable. As well, we can
further generalize using tags in these situations. For exam-
ple, first responders can deploy tags at various key strategic
locations, such as the ground zero location(s), medical tents,
emergency shelters, and parking lots. People read and writeto
the tags, as well as carry them between these locations. This
creates an ad-hoc communications network (which may also
be delay-tolerant [9], [10]) for people to share messages, such
as rescue status updates, food and medical supplies availability,
and any other pertinent information. In essence, we can view
the dynamic systems of tags as digital whiteboards, where we
can apply our many-tag information access algorithms.

III. STATIC RFID SYSTEM

A. System model

We first consider the static case where there is a system of
n passive RFID tags fixed in a physical area. Each tag can
store one message and an associated timestamp. Interrogators
regularly arrive at the system, read from and write messages
to the tags (by scanning them), and then leave. In particular,
interrogator arrivals are modeled as a Poisson process with
rate λI arrivals per second. We assume that the tag access
time (reading and writing) during each interrogator’s stayis
negligible compared to the interrogators’ inter-arrival times.
Therefore, there is at most one interrogator at the system
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any given time. (That is, we do not consider the interrogator
collision problem [11], since it is beyond the scope of this
work.) During each interrogator’s stay, it writesX messages
to X different tags, whereX is a non-negative geometric
random variable with mean1−p

p
, wherep ∈ (0, 1), andX is

independent across stays. The interrogator first writes to any
empty tags. Then, for any remaining messages, it overwrites
existing messages in the tags, starting with the oldest one,
and then the second oldest, . . . When an interrogator writes a
message to a tag, it also writes a timestamp of the current time
to the tag. (Note that we say a tag is “new” or “old” if the
timestamp it is currently storing is large or small, respectively.)

B. Algorithms

Reading and writing require finding the newest or oldest
messages, respectively, which are symmetric processes in the
following algorithms. Therefore, we only focus on reading.In
particular, when an interrogator arrives at a system of tags
already in steady state (all tags are full), these algorithms
find the m different newest tags (learn their unique IDs)
with the m newest messages, wherem ∈ {1, . . . , n}. Then,
the interrogator queries each of thesem tags individually to
recover the messages. The algorithms are categorized into
two classes,aloha-basedand query tree-based. Aloha-based
algorithms include{aloha-normal, aloha-max, aloha-half}.
Query tree-based algorithms include{query tree-normal,
query tree-max}.

1) Aloha-based:These class of alogrithms use aloha sin-
gulation [12]. In aloha, the interrogator singulatesn tags in
multiple query rounds. In each round, the interrogator first
broadcastsN ∈ {16, 32, 64, 128, 256} to all the tags, which
is the number of tag response time slots.N depends on the
interrogator’s estimate of the tag population size. ([12] shows
that N > 256 is not necessary.) The interrogator then listens
for N time slots. Each tag randomly (uniformly) chooses one
of those time slots to respond in with its ID. The interrogator
learns the ID of a tag if no other tags respond in the same slot
as it does. (There are no collisions in that slot.) At each round,
the estimate ofn, which we calln̂, changes in general, and
thereforeN changes too. This repeats over multiple rounds
until the interrogator is confident that is has singulated99%
of the tags, as detailed in [12].

In the first round, we initializeN to 16. In subsequent
rounds, we doubleN if all slots in the previous round have
collisions. Otherwise, we chooseN according ton̂, which
we calculate with the following. First, we need a lookup table
(stored in the interrogator) withEn

0
, En

1
, andEn

≥2
, which is the

expected number of empty slots, single occupancy slots, and
collision slots, respectively, in the previous round, for varying
values ofn of N . These formulas are derived in [12].

En
0

= N

(

1 −
1

N

)n

, En
1

= n

(

1 −
1

N

)n−1

, and (1)

En
≥2

=
Nn − (N − 1)

n−1
(N + n − 1)

Nn−1
. (2)

Now, let s0, s1, s≥2 be the number of empty slots, single
occupancy slots, and collision slots, respectively, measured
from the previous round. Then,

n̂ := argmin
n

∣

∣

∣

∣

(

En
0

En
1

En
≥2

)

− (s0 s1 s≥2)
∣

∣

∣

∣ . (3)

(Note that we use theEn
0
, En

1
, and En

≥2
values associated

with the previous round’sN in the above minimization.) The
interrogator then choosesN for the current round according
to the following ranges of̂n, as shown in [12].

n̂ ∈ [1, 9] [10, 27] [28, 56] [57, 129] [130,∞)
N 16 32 64 128 256

In aloha-normal, the interrogator first uses aloha to singu-
late all the tags. Tags respond with their respective timestamps,
in addition to their IDs. The interrogator therefore learnsall
the tags’ IDs, and their associated timestamps. It knows which
tags are new. It then queries them newest tags individually
according to their IDs for them newest messages.

For aloha-max, let TS = {tsi}i be the set of timestamps
the interrogator has collected from single-occupancy timeslots
in the current read session. InitializeTS with TS := {−∞}.
In each aloha round, first lettslargest := maxi TS. Then, the
interrogator broadcastsN and tslargest to the tags. If a tag
with timestampts, has ts > tslargest, it responds (in one
of the N time slots), with its ID andts. For each single-
occupancy time slot, the interrogator learns an ID and an
associatedts, and updatesTS := TS ∪ ts. In this way,
with each round,tslargest increases, and the interrogator pro-
gressively queries an effectively smaller proportion of the tag
population. When tags no longer respond to the interrogator’s
broadcast, the interrogator knows thattslargest contains the
largest timestamp among all the tags. It then queries that tag
(using the ID associated withtslargest) to read the newest
message. To find the second newest message, (the third newest,
. . . , and themth newest), the interrogator first mutes the
newest tag it just read from (tell it not to respond anymore
for this read session), and updatesTS := TS \ tslargest. The
interrogator then repeats the above process. It becomes faster
to find each subsequent newest message, sinceTS contains
increasingly more timestamps.

Determiningn̂ is more difficult in aloha-max than aloha-
normal, since the effective tag population size (tags that should
respond) changes with each round. To keep track of the tag
population, we first estimate the number of tags that are written
to in a given periodT with the mean.

E [number of messages written inT seconds]

=

∞
∑

i=0

E [number of messages written|i arrivals inT ]

×P (i arrivals inT ) .

=

∞
∑

i=0

i
1 − p

p

e−λIT (λIT )
i

i!
=

1 − p

p
λIT. (4)

Then, at each round, the interrogator doublesN , if s0 and
s1 are both zero in the previous round. Otherwise, it first
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TABLE I
ALOHA-BASED COMMUNICATIONS

Aloha-normal

I
N

−−−−−−−−−→ {Tj}
n
j=1

For j ∈ {1, . . . , n},

in kth
Tj

time slot: I
IDj,tsj

←−−−−−−−−− Tj ,

Aloha-max

I
N,tslargest

−−−−−−−−−→ {Tj}
n
j=1

For j ∈ {1, . . . , n}, if tsj > tslargest,

then inkth
Tj

time slot:I
IDj ,tsj

←−−−−−−−−− Tj

Aloha-half

I
N,tsaverage

−−−−−−−−−→ {Tj}
n
j=1

For j ∈ {1, . . . , n}, if tsj > tsaverage,

then inkth
Tj

time slot:I
IDj ,tsj

←−−−−−−−−− Tj

estimateŝn for the previous round using (3). Then, it estimates
the time spread (of messages’ timestamps) of this previous
round by taking the difference between the maximum and
minimum timestamps collected in this previous round. We
call this Tspread. From (4), it estimates1−p

p
λITspread as the

number of tags written to in that particular time frame (which
is in the past). In the current round, the tags written to in
that time frame do not respond, since they are segmented out
with the interrogator broadcastingtslargest. The interrogator
then updates the estimated number of tags that respond in the
current round to bên := ⌈n̂− 1−p

p
λITspread⌉. (If n̂ turns out

to be non-positive, set it to1.) N is then determined from
this new n̂ using the same ranges described above for aloha
singulation. Note that aloha-max requires an interrogatorto
know the statistics of previous interrogators. Namely it has to
know λI andp.

In aloha-half, we assume that the interrogator does not
know the statistics of previous interrogators. This makes it
difficult to estimate the effective tag population size dynam-
ically (and therefore adjustN accordingly). So instead of
usingtslargest as the “cut-off time”, the interrogator uses the
median. That is, a tag responds in the current round only if
its timestamp is greater than the median of the timestamps
collected by the interrogator in the previous round. Therefore,
the tag population estimate is easily updated asn̂ := ⌈ n̂

2
⌉.

(Again set n̂ to be 1 if it is non-positive.) In essence,
the interrogator is approximately halving the effective tag
population in each round. When only one tag responds to the
interrogator’s broadcast, it knows that that tag is the largest
timestamp tag. Everything else is the same as aloha-max.

We summarize the communications of the aloha-based
algorithms in a single round in Table I.I is the interrogator,
tslargest is the largest timestamp it has collected so far, and
tsaverage is the average of the timestamps it collected in the
previous round.Tj is thejth tag, with ID IDj , andtsj is its
stored timestamp, wherej ∈ {1, . . . , n}. Tj responds in the
kth

Tj
time slot (if necessary), wherekth

Tj
∈ {1, . . . , N}.

2) Query tree-based:These class of algorithms use query
tree singulation [13]. In query tree, the interrogator singulates

Fig. 1. Query tree singulation for a4 bit tag ID space. Each node in the
tree has an associated bit string indicating its position inthe tree. The leaves
indicate potential tags in the system. Shaded leaves mean that that tag is not
in the system. Non-shaded leaves are tags in the system. Their bit strings
represent their tag IDs.

the n tags in multiple rounds. In each round, the interrogator
broadcasts a bit string. A tag that has an ID that prefix matches
the bit string responds with its entire ID. If only one tag
responds, then that tag is successfully singulated. Then the
interrogator chooses another bit string for the next round.
Otherwise, multiple tags respond, and there is a collision.
The interrogator then uses a longer bit string in the next
round. Essentially, the interrogator walks through a binary
tree starting at the root (using either depth-first search or
breadth-first search) until it singulates all the tags. Notethat
not all nodes have to be visited. For example, in Fig. 1,
when the bit string01 is queried, only the tag with ID0110
responds, and therefore it is singulated right away. Nodes
010, 011, 0100, 0101, 0110, 0111 are not visited. (These bit
strings are not queried.)

In query tree-normal, the interrogator first uses query tree
to singulate all the tags. Tags respond with their respective
timestamps, in addition to their IDs. The interrogator therefore
learns all the tags’ IDs, and their associated timestamps. It then
queries them newest tags individually according to their IDs
for the m newest messages.

In query tree-max, the interrogator progressively queries
an effectively smaller proportion of the tag population with
each round, similar to aloha-max. LetTS = {tsi}i be the
set of timestamps the interrogator has collected in the current
read session. In each query tree round, first lettslargest :=
maxi TS Then, the interrogator broadcasts a bit string and
tslargest. If a tag with timestampts, hasts > tslargest, and an
ID prefix match with the bit string, it responds with its ID and
ts. (Note that timestamps are in general not in order according
to IDs.) Each time the interrogator successively receives atag’s
response (no collision), it updatesTS := TS∪ts. In this way,
tslargest increases, and the interrogator progressively queries
an effectively smaller proportion of the tag population with
each round. When tags no longer respond to the interrogator’s
broadcast, or query tree is complete,tslargest contains the
largest timestamp among all the tags. The interrogator then
queries that tag (using the ID associated withtslargest) to
read the newest message. The interrogator repeats the above
process, updatingTS and muting tags, similar to aloha-max,
to find the second newest message, the third newest, . . . ,mth

newest.



5

TABLE II
SIMULTANEOUS BITS TRANSMITTED IN EACH ROUND

Aloha-based

Aloha-normal Interrogator queries:3 bits
Tags respond:N (96 + 17) bits

Aloha-max
Interrogator queries:3 + 17 bits
Tags respond:N (96 + 17) bits

Aloha-half
Interrogator queries:3 + 17 bits
Tags respond:N (96 + 17) bits

Query tree-based

Query tree-normal
Interrogator queries:

length(bit string) bits
Tags respond:96 + 17 bits

Query tree-max
Interrogator queries:

length(bit string) +17 bits
Tags respond:96 + 17 bits

C. Evaluation

1) Simulation performance metric:We simulate our algo-
rithms. We are interested in themessage access time. In
particular, since reading and writing are symmetric (finding
the newest and oldest tags are effectively the same), we focus
on reading. To compare the different algorithms, we abstract
out the wireless transfer bit rates between the interrogator and
tags. We only count the total number of simultaneous bits
that are transmitted through the air interface to find the IDs
of them newest tags. (We say “simultaneous”, since multiple
tags may respond at the same time. Additionally, tags may not
respond, but time may still elapse, for the case of empty time
slots in the aloha-based algorithms.)

Note that we are only measuring the time the interrogator
uses to find the IDs of them newest tags carrying them newest
messages. Afterward, the interrogator reads actual message
data by querying these tags individually. Since this is the same
for all the algorithms, we do not include this message data
transfer time in our metric.

In our simulations, we consider the UHF Class 1 Gen
2 passive RFID tag [14], which uses a96-bit unique ID.
Timestamps are chosen to be17 bits long, giving us a precision
of seconds in a24 hour period.N requires3 bits, since
it can take on5 different values. We summarize the time
(simultaneous bits transmitted) required for each query round
of the algorithms in Table II.

2) Simulation results and discussion:We simulate the
average message access time when the system is in steady
state, forλI = 1 arrival per second. Results are shown in
Fig. 2. Figs. 2(a), 2(b), and 2(c) plot access time against the
number of tags,n. Fig. 2(d) plots againstm. Fig. 2(a) shows
that aloha-normal and query tree-normal are naive schemes.
They require singulating all the tags initially, using a lotof
query rounds, thus resulting in a long access time. Aloha-
max and aloha-half perform well, with the former better (as
shown in Fig. 2(b)), as expected, since it is more aggressivein
segmenting the tag population. Of course, the tradeoff is that
aloha-max requires knowing the interrogators’ statistics. Query
tree-max is even better, since it segments the population, while
performing query tree. The interrogator is effectively pruning
the query tree with each round, allowing it to quickly find the

newest tag with the largest timestamp.

For aloha-max and aloha-half, we see that varyingp changes
the performance very little, as shown in Fig. 2(d). In particular,
it may slightly change how the tag populationn is estimated
in each round. The query tree-based algorithms do not use
p in their algorithms, and therefore their performances are
independent ofp. That is, these algorithms just look at the
relative ordering of the timestamps.

Fig. 2(d) shows how the access time varies asm is in-
creased. We see that the marginal time to read each additional
message is very small. That is, finding the newest tag takes the
most time. Finding the second newest, third newest, . . . ,mth

newest requires little time, since the interrogator has already
collected many timestamps, and thus has a “head start” in
finding subsequent newest tags.

We see that the query tree-based algorithms perform better
than the aloha-based ones. Both query tree and aloha do not
require knowing the tag population size. However, aloha does
continually estimate the number of tags with each round.
Therefore, the aloha-based algorithms must pay this cost of
N (96 + 17) bits in the access time in each round, which is
especially wasteful in the initial rounds when the interrogator
is still learning the tag population size. However, aloha-based
algorithms are in general more robust. Even if the environment
changes (such as obstructing objects changing the wireless
propagation characteristics) quickly within one interrogator
access session, aloha handles this gracefully, since in each
round, the interrogator scans all the tags it can and singulates
them, whether or not those tags were scannable in previous
rounds. In contrast, suppose in the query tree-based algorithms,
the interrogator misses scanning a tag initially because of
an obstructing object. The algorithms may quickly prune out
the segment of the tree with that tag ID. Later when the
obstruction is gone and that tag is within the scan range,
the interrogator cannot singulate it, even if the tag carries the
newest message.

In our algorithms, we use timestamps. In practice, there are
difficulties with this. First, we need to transmit the timestamps
and store them in tags, which requires storage overhead.
Second, interrogators need access to a synchronized clock,
which is not necessarily trivial, depending on the granularity
of the timestamps. Instead of using timestamps, one may
consider logical sequence numbers. But aloha-max and aloha-
half cannot use sequence numbers since they rely on the
relative times of interrogator arrivals. The other algorithms can
use sequence numbers. With sequence numbers, the problem
of finding the newest message can become trivial. That is, if
the interrogator knows what the newest sequence number has
been assigned so far, it can use that right away to find the
newest message. However, this is not possible if interrogators
do not communicate with each other or they come from
different domains. Additionally, if tags dynamically arrive and
leave (which we address in the next section), it becomes
difficult to track sequence numbers. Therefore, we argue for
using timestamps, despite its difficulties.
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Fig. 2. Average message access time,λI = 1 arrival per second

IV. DYNAMIC RFID SYSTEM

A. System model

1) Tag and reader dynamics:In the dynamic case, tags
are continually arriving and departing, and therefore the tag
population size changes dynamically. We model the situation
as anM/M/∞ queueing system. That is, tags arrive according
to a Poisson process at a rate ofλT arrivals per second. Each
tag stays for an exponential time with mean1

µT
seconds, and

then departs, independent of all other tags. Therefore, at steady
state,E [number of tags in system] = λT

µT
. (That is, for the

dynamic RFID system, we define steady state as when the
queueing system of tags is at steady state. Thus, there are
likely to be non-full tags in steady state, as opposed to thatof
the case of the static RFID system.) Without loss of generality,
we takeλT = 1. Then, we varyµT ∈ (0, 1). As 1

µT
increases,

the expected tag population size increases. Also note that if
µT is large, tags leave sooner, and therefore the lifetimes of
messages in the system are reduced. That is, a message is
effectively destroyed if enough of the multiple tags carrying it
(using message encoding, explained below) are no longer in
the system.

Interrogators arrive according to a Poisson process at a
rate of λI arrivals per second. After an interrogator arrives,

it reads and writes very quickly, and then leaves. In particular,
we assume this tag access occurs on a very small time scale
compared to the tag dynamics. Practically, it means we can
assume the tag population is fixed when an interrogator is
accessing tags. We are, nonetheless, interested at how the
tag access time varies at this microscopic level. During each
interrogator’s stay, it writesX messages, whereX is a non-
negative geometric random variable with mean1−p

p
, where

p ∈ (0, 1), and X is independent across stays. When an
interrogator writes a message to a tag, it includes a timestamp
of the current time. IfλI is large, or if p is large, or both,
more messages are written to tags. Ultimately, this reduces
the lifetimes of messages stored in the system, since they are
quickly replaced.

2) Message encoding and tag storage queue:The lifetimes
of messages are reduced if tags quickly leave and/or interroga-
tors come often and overwrite a lot of messages. Therefore,
we use Reed Solomon coding [15] to alleviate this problem.
To store ak-byte message, an interrogator first encodes it into
a q-byte codeword using anRS (q, k) code. The codeword is
then divided intoq one-byte chunks, and written to different
tags. To recover the message later, an interrogator must recover
at least anyk out of the q chunks (reading from multiple
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tags), and also know their respective positions in the codeword.
Therefore, we associate a sequence number with each of the
q chunks. The sequence number thus requires⌈log2q⌉ bits.
When an interrogator writes a message chunk to a tag, it
includes the sequence number and a timestamp. The timestamp
also serves as a message ID, identifying which chunks belong
to which message, since all the chunks of the same message
share the same timestamp.

A tag’s storage is maintained as a first-in first-out (FIFO)
queue withl storage slots. That is, when a tag arrives at the
system, it is empty. As interrogators write message chunks
to it (with associated sequence numbers and timestamps), by
inserting chunks at the back of the queue, existing chunks are
pushed through the queue. When the queue is full, the next
incoming message chunk forces out the oldest existing chunk
in the tag. In other words, the new chunks are at the back,
and the old chunks are at the front. To access (read) chunks
from the queue, an interrogator specifies theith newest chunk
in the queue, wherei ∈ {1, . . . , queue size}.

When an interrogator wants to writeq message chunks of a
message (with associated sequence numbers and timestamp),
it first singulates all the tags. It then writes to any empty
storage slots in the tags’ queues first. If there areqremain

remaining chunks andn tags in the system, it writes to the
min (n, qremain) tags (inserting chunks at the back of their
respective queues) with the oldest timestamps. This is repeated
until there are no more remaining chunks to be written. In
essence, an interrogator spreads out the chunks among the
tags as much as possible, while at the same time replacing the
oldest information in the system. The interrogator can easily
find the tags with the oldest timestamps by examining just the
timestamps of each of the chunks at the front of each queue.

B. Algorithms

In this work, we focus on reading messages. As before, the
following algorithms find them newest messages stored in
the tag system. Note that an interrogator only has to recover
k chunks of a message to reconstruct and thus read it. If there
are less thank chunks remaining in the system, that message
is effectively destroyed, and can no longer be accessed.

1) Aloha-based:Aloha-normal is similar to its counterpart
in Section III-B. In stage1, the interrogator uses aloha to
first singulate all the tags, learning their IDs. Then in stage
2, it queries tags individually, reading message chunks from
them. That is, it reads the newest chunk (and sequence
number) from every tag, and then the second newest from
every tag, . . . . After each read, the interrogator recovers as
many messages as possible. That is, if at leastk chunks of
a message are recovered, the message itself is recovered. The
interrogator stops reading chunks when it has recoveredm
messages. (These being them newest messages). Messages
in the system that have fewer thank surviving chunks are
considered destroyed.

Note that it is difficult to use the aloha-max and aloha-
half algorithms from before, because even if we know the
interrogator statistics, we do not know if the interrogator

necessarily can spread message chunks evenly across the
tags, especially if there are very few tags. Tags arriving and
departing also add to the uncertainty, making these algorithms
infeasible.

2) Query tree-based:Query tree-normal is the same as
aloha-normal, except that the interrogator uses query treein the
initial singulation process of stage1. Everything else in stage
2 is the same, with the interrogator querying tags individually
for their message chunks.

Query tree-max is similar to its counterpart in Section
III-B. Let TS = {tsi}i be the set of timestamps the inter-
rogator has collected in the current read session. In stage
1, the interrogator finds the largest timestamp among all
message chunks in all tags. In each query tree round, first
let tslargest := maxi TS Then, the interrogator broadcasts a
bit string andtslargest. If a tag with its largest (among all
its chunks) unflagged timestampts, has ts > tslargest, and
an ID prefix match with the bit string, it responds with its
ID and ts. Each time the interrogator successively receives
a tag’s response (no collision), it updatesTS := TS ∪ ts. In
this way,tslargest increases, and the interrogator progressively
queries an effectively smaller proportion of the tag population
with each round. Stage1 ends when tags no longer respond
to the interrogator’s broadcast, or query tree is complete.
tslargest contains the largest unflagged timestamp among
all message chunks in all tags. In stage2, we focus on
tsinterest := tslargest. First, the interrogator broadcasts a
notification, telling tags that havetsinterest to flag it (so that
it will be ignored in future iterations of stage1). Then, the
interrogator singulates these tags that havetsinterest, using
query tree on the IDs. If a tag hastsinterest (and an ID
that prefix matches the broadcast string), it responds with the
associated message chunk and sequence number (in addition
to its ID). Stage2 ends when the interrogator has collected
k chunks, or has completed the singulation (in which case it
may have collected less thank chunks, and therefore it knows
that the message is no longer alive in the system). To find
the next newest message, first updateTS := TS \ tslargest.
Then, the interrogator goes through stage1 and2 again. This
process repeats until the interrogator has recoveredm newest
messages.

C. Evaluation

1) Performance metrics:We simulate our algorithms. We
are interested in themeasured message lifetime per byte
of a message in steady state. That is, a message is “born”
when an interrogator writes itsq constituent chunks to tags.
It is destroyed when fewer thank chunks remain in the
system, which may occur if chunks are overwritten. This is the
“death” time. However, the message may also be destroyed
if tags leave. In that case, we take the “death” time to
be when the next interrogator arrives at the system. Thus,
it is a measured lifetime, because it is with respect to an
interrogator discovering that the message is no longer alive.
We normalize the lifetime by dividing byk message bytes, for
a fair comparison of different coding schemes.
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We are also interested in themessage access time per byte,
which is similar to that in Section III-C1. However, in this
case we do include the actual message data transfer time in
the metric, since there are differences in message sizes.

As before, tags use a96-bit unique ID. Timestamps are17
bits long andN requires3 bits. We takeq = 32 chunks,
and vary k ∈ {16, 20, 24, 28}. Therefore, chunk sequence
numbers requirelog

2
q = 5 bits. The actual message data for

each chunk is1 byte = 8 bits. We use timestamps as unique
message IDs. Therefore, each chunk, along with the sequence
number and message ID, requires8 + 5 + 17 = 30 bits. A
typical tag (such as the Alien Higgs-3 family [16]) has512
bits of user storage. So we take each tag to have space for
⌊512/30⌋ = 17 storage slots.

2) Simulation results and discussion:We simulate the av-
erage measured lifetime of a message per byte in steady state.
We plot this against the expected tag population sizeE [n] =
λT

µT
. We takeλT = 1, and varyµT ∈ { 1

100
, 1

200
, . . . , 1

1000
}.

Results are shown in Fig. 3. As expected, as interrogators come
more often (λI large), message lifetimes are reduced, since
chunks are overwritten more quickly. We see that increasing
k reduces the per byte lifetimes. That is, the coding buffer
per byte ofq−k

k
bytes is reduced, and messages are destroyed

sooner.
We simulate the average message access time per byte in

steady state, forλI = 0.2 and p = 1

2
. Results are shown in

Fig. 4. Increasingk improves performance. However, this is
only when the message is still alive. The points in Fig. 4 only
average the simulation iterations where there are still at leastk
message chunks in the tags. (As already discussed above, the
average measured message lifetime per byte is small when
k and λI are large.) In the most extreme case, whenk =
28, E [n] = 100, andm = 5, the message is not alive in74%
of the simulation iterations. Fork = 16, only theE [n] = 100
cases have a non-zero percentage (and just less than8%) of
not being alive. In other words, Figs. 3 and 4 together show
a tradeoff, summarized below. That is, we cannot have both
long per byte lifetimes and short per byte access times with
the same system parameters.

k Coding buffer
Performance metrics (per byte)

Message lifetime Message access time
small large long long
large small short short

We see in Fig. 4 that query tree-max performs the worst.
It requires two stages to operate, and is thus slow. Aloha-
normal is better, and query tree-normal is the best. These two
“normal” schemes are bad in the static RFID system because
they singulate all the tags initially. However, in the dynamic
system, since message chunks are spread over many tags, it
is actually advantageous to first find the IDs of the all the
tags, and then do message recovery. This is the key difference
between the static and dynamic cases.

V. CONCLUSION AND FUTURE WORK

In this work, we investigate many-tag access algorithms
for RFID storage systems. We borrow ideas from traditional

singulation algorithms, but modify them to make tag access
efficient in systems with many tags. We study both static
and dynamic situations. In the static case, query tree-max
provides very good performance. The aloha-based algorithms
perform not as well, but are more robust. In the dynamic
situation, tags are continually arriving and departing. Weuse
message encoding and spread chunks across tags to combat
tags departing and being overwritten. Therefore, when reading
(and recovering) messages, we need to find the IDs of a large
number of the tags. The best algorithms in this case require
first singulating all the IDs of the tags (which was a naive
strategy in the static case).

In this work, we focused on reading the newest messages,
and overwriting the oldest ones. In future work, we consider
random access of information, keyed to a filename, for exam-
ple. This requires more sophisticated algorithms and requires
more overhead in terms of access time and tag storage. In
particular, we need robust distributed data structures, tokeep
track of information in the tags.
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