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Abstract—We propose a neural networks-based learning mech- and are each equipped with an RFID interrogator. As a worker
anism for tracking in an RFID tag field. As users move through moves from her office to the cafeteria, her interrogatoresrit
the field to a desired destination, they train localities of &gs, information to tags along the way, effectively marking aitity

creating digital trails. Later on, users seeking the destiation, - f . ..
but without knowledge of any path, can follow the digital trails. trail from her work location to the cafeteria. This is repasht

Training information (weights from the neural networks) is stored ~ With all workers, reinforcing the digital trails for a commo
in the tags. Our system is entirely distributed and robust to destination. The tags form something not unlike a vectod fiel
failures. over the building, with the cafeteria being the sink of thédfie
lines. We call this anRFID vector field Now, if a visitor
) ) . __equipped with an RFID interrogator wants to find the cafeteri
We propose a learning mechanism for tracking in a fielhe can easily follow the field lines from her given location.
of passive RFID tags. As mobile entities (humans or robots)We differentiate betweesystem trainersvho are the office
equipped with RFID interrogators move through the tag ﬁel%orkers updating RFID vector fields, asgstem userswvho

they leave digital trails by scanning and writing to the t9S ;0 the pyilding visitors using those fields. System traimerd

particular, if multiple entities have a common destinataon system users may interact with the tags at the same time.

know their paths, theyrain localities of tags with respect to

that destination. Later on, when a user wants to move to that [1l. L EARNING ALGORITHM

destination, but does not know the path, she scans lo&lit® oyerview

of tags, which wil pomt her in .the right dlrec'u_on. Our algorithm works on small localities of tags. For ex-
Many technologies are available for tracking and local-

ization, including GPS and WiFi-based methods. Howev%armple’ consider a small area wifh tags. When a system

these solutions often require complicated hardware anid so?amer passes through this area with a desired destin

ware infrastructure, and in the case of GPS, may not eV S the tags, and her trajectory automatically updates th

L . . .. tags. She essentially teaches the system, indirectly,ifttaat
work in indoor settings. Furthermore, in emergency siture] . )
. X . . user enters the area at a particular angle, then she shatld ex
centralized infrastructure quickly fails. In our systeme w

propose distributing passive RFID tags in a large area. Maat this particular offset angle. As more system trainerss pas

researchers believe that the push for pervasive computilhg vWOUgh the area, the tags form a classification, mappingtinp

result in tags being affixed to everyday objects, similari® tdllrecnon; to outpqt dlrectllqns..Later on, system userﬂ;lmys.
) : . . this locality use this classification to move toward the chbi

Internet of Things [1]. Furthermore, radios are mcrealgmgdestination

being integrated into personal mobile devices, includiR¢iR '

in the not-too-distant future. Finally, our system is egllir B. Training

distributed, robust, and improves or degrades gracefuitlly w Every possible group of tags represents a neural network,

changes in the tag distribution. Therefore, we believe OH[;t only some of them will be of interest. Consider a sys-

system is ideal for a variety of tracking scenarios. Presrionllem trainer passing throuah a aroup oftags. successfull
research have used tag fields for tracking [2], [3]. But in oy, P J g group g% y

3 St canning them at timef, ..., t,, wheret; <t, < ... <t,,
system, we use tags to dynamically learn a classification.

I. INTRODUCTION

without loss of generality. This group is “activated” at &),
Il. SYSTEM DESCRIPTION if ¢, —t; is less than some threshold timE, The input (for
Consider an indoor office building scenario, even though onunlng) to the group’s neural network is an-1-dimensional

vector,z = (1,0,t2 — t1,...,t, —t1). If n is large enough
for a sufficiently dense tag distributiom, is very good for
characterizing the incoming trajectory angle of the system
trainer. Usingz as the input, the neural network produces a
quantized output difference angk, This is compared to the
*This work is supported in part by NSF grant CNS-0519817. real difference angle of the system trainer’s trajectéyyyhich

ideas generalize to other situations. Passive RFID tagdiste
tributed throughout the entire building, embedded in therfip
walls, and even ceilings. Suppose the desired destinaitirei
cafeteria. Regular office workers know the cafeteria lacgti



is simply the difference in direction at timg,, and at time wherey is the learning rate, similar to [4].
t1. (We assumé can be easily calculated using an embedded
magnetometer, frequently found in mobile devices.) Thererr
9 — 6 is then fed back to train the neural network. The neur& Local and Global Performances

network itself must be stored inline in the tags, since manyWe plan to evaluate our system both locally and globally.
system trainers are likely to train the same neural netwoikocally, we want to know how well our neural network model
and they have no mechanism for communicating with eaghaps input angles to output angles. We want to know how
other. During the first time the neural network is trained, this depends on physical parameters, such as tag distmibuti
unique ID that identifies the neural network and its assediatand interrogation range. Globally, we want to know how our
RFID vector field is stored in each of thetags. The neural system behaves over an entire digital trail, ending at the
network weights are stored in the tags themselves. In supmmafesired destination. How does our system behave when there
a system trainer reads the weights at activation time, p@go are multiple RFID vector fields? Will there be bottlenecks
the training algorithm, and updates the weights in the k. anywhere along the digital trails? How can we avoid them?
calculations are performed by the interrogator, with rixsgl
weights being stored back in the tags.)

IV. SYSTEM EVALUATION

B. System Robustness

- We plan to also investigate how robust our system is under
C. Testing . . :

) ) S a variety of influences. RFID tags are not always reliably
~ A system user seeking a desired destination initially movgganned. They can even permanently fail. Our system is-inher
in a straight trajectory. Whenever she scansitiags belong-  antly robust since it is constantly being trained and upilate
ing to a neural network within the threshold tin¥, she reads oywever, we seek to characterize this behavior. Furthezmor
the weights from the tags, and produces the quantized OUtHK system itself may significantly change, for example, if
difference angle according to the neural network. She thgpyita trails change. For example, consider a confereaoenr
adjusts her trajectory by turning by that angle, and co®nUpeing renovated. During that time, how will digital trails
to move straight, until she activates the next neural nd{WOfchange, and how quickly? What are some strategies to address
D. Learning Equations dynamically changing trails?

We use a three-layer neural network. The input layer-tg: Simulation and Experimentation

hidden layer equations are We plan to use both simulation and experimentation in our

yi = f(ag),5 € {L,. ., Nhide}, (1) evaluation. To rapidly evaluate local performance, we firit
experimentally develop a statistical model of an intertoga
local scanning properties. Then we will use that model to
simulate many neural networks with different parameters.
These results will help us design the actual system. We will
affix tags to floors and walls in a large indoor space. Then,

n

where a; = > Jxvi5, andvy;,i € {1,...,n} are the
weights from thei*” input to the;j** hidden node. There are
nhide hidden nodesu; are the bias weightd. is the activation
function, which we take to be

f(u) = 1.716 tanh (2u/3) , (2)  we will move interrogators through this tag field, testing ou
according to [4]. The hidden layer-to-output layer equagio System.
are We will use the Motorola MC9090-G RFID handheld inter-
rogator [5] in our experiments.
Zk:f(ﬂk)ake{la---anout}a (3)
where B, = Z;_Lgode v o = 1, and wy,j € V. CONCLUSION

{1,....npige} are the weights from thg# hidden node to the Wg propose a Igarning mechanism for trgcking in an RFID
k" output nodek € {1,. .., now }. wor are the bias weights. tag_ f|_eld. We mot|\_/ate our pr_oposal, prowde a syste_m de-
Each k represents one of the quantized output differeng€'iPtion, and detail our leaming algorithm. We explairr ou
angles. For example if we choose the output difference 8ngpé/aluat|on plan. Our system is entirely distributed andyver

€ {0,10,...,350} degrees, then,,,; = 36. The output vector robust under a variety of conditions.
is z = (z1,...,2n,.,). Now suppose the target output vector REFERENCES
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