
c© 2008 Vartika Bhandari

PERFORMANCE OF WIRELESS NETWORKS SUBJECT TO CONSTRAINTS
AND FAILURES

BY

VARTIKA BHANDARI

B.Tech., Indian Institute of Technology Kanpur, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Professor Nitin H. Vaidya, Chair
Professor Tarek Abdelzaher
Professor P. R. Kumar
Professor Klara Nahrstedt

Abstract

Recent years have seen a proliferation in the use of wireless multi-hop networks in diverse

scenarios ranging from community mesh networks to wireless sensor networks. As wireless

networks find application in such wide-ranging arenas and are deployed at large scale, they

will increasingly need to operate in the presence of heterogeneous, and often constrained,

hardware capabilities. Furthermore, fault-tolerant communication algorithms will be re-

quired to provide the building blocks for reliable operation in the face of failure and/or

disruption. In this dissertation, we have investigated performance and fault-tolerance is-

sues in networks of such wireless devices. We have studied two specific problem domains,

viz., throughput performance in multi-channel wireless networks where devices have het-

erogeneous and constrained channel switching capabilities, and feasibility of fault-tolerant

broadcast in single channel wireless networks where devices can exhibit Byzantine or crash-

stop failure.

ii

To Mom and Dad

iii

Acknowledgments

Many influences in my life—family, teachers, friends, alma maters, etc.—have contributed

directly or indirectly to this dissertation. This is an endeavour to acknowledge but a few of

them.

This dissertation owes much to my advisor Prof. Nitin Vaidya. As his student, I have

had the freedom to seek my trajectory, while always having access to his advice. My

frequent discussions with him, in which I have appreciated his openness to differing points

of view, have played an important role in shaping this research.

I thank Prof. Abdelzaher, Prof. Kumar and Prof. Nahrstedt for serving on my doctoral

committee, and for their insightful comments. Many past and current colleagues in the

Wireless Networking Group have been very helpful in myriad ways during my graduate

school days; I thank all of them, in particular Romit Roy Choudhury, Pradeep Kyasanur,

Matthew Miller and Jungmin So.

I acknowledge the Vodafone U.S. Foundation, the National Science Foundation, the

U.S. Army Research Office, and the Motorola Center for Communication for financially

supporting this research. I also thank Lila Rhoades and other staff at the Coordinated

Science Laboratory for help with various administrative matters.

I reserve the final word of acknowledgement for my parents. They laid the foundation

for this moment, in my childhood, by fostering in me a spirit of independent thought, and a

fascination with the realm of ideas. And their unwavering support, and faith in me, through

the years, have made this dissertation—and everything leading up to it—possible.

iv

Table of Contents

List of Tables . ix

List of Figures . x

List of Abbreviations . xii

Chapter 1 Introduction . 1
1.1 Outline . 3

Chapter 2 Interface Heterogeneity in a Multi-Channel Wireless Network 5
2.1 Some Models for Channel Switching Constraints 7

2.1.1 Adjacent (c, f) Assignment . 7
2.1.2 Random (c, f) Assignment . 8

2.2 Asymptotic Capacity Analysis . 8
2.3 Assumed Network Model . 9
2.4 Related Work . 10
2.5 Constraints that Limit Capacity . 13
2.6 Some Results about the Traffic Model . 15
2.7 A Remark on the Proof Technique . 16

Chapter 3 Adjacent (c, f) Assignment . 18
3.1 Model Definition . 18
3.2 Summary of Results . 19
3.3 Conditions for Connectivity . 19

3.3.1 Necessary Condition for Connectivity 19
3.3.2 Sufficient Condition for Connectivity 21

3.4 Upper Bound on Capacity . 21
3.5 Lower Bound on Capacity . 22

3.5.1 Routing . 24
3.5.2 Load Balance within a Cell . 30
3.5.3 Transmission Schedule . 33

3.6 The Case of Untuned Radios . 34
3.6.1 Upper Bound on Capacity . 36
3.6.2 Lower Bound on Capacity . 36

3.7 Discussion . 38

v

Chapter 4 Random (c, f) Assignment . 39
4.1 Model Definition . 39
4.2 Summary of Results . 40
4.3 Preliminaries . 40
4.4 Conditions for Connectivity . 44

4.4.1 Necessary Condition for Connectivity 44
4.4.2 Sufficient Condition for Connectivity 45

4.5 Upper Bound on Capacity . 48
4.6 A Sub-Optimal Lower Bound on Capacity 48

4.6.1 Routing . 49
4.6.2 Load Balance within a Cell . 53
4.6.3 Transmission Schedule . 56

4.7 Optimal Lower Bound on Capacity . 57
4.7.1 Routing and Channel Assignment 68
4.7.2 Load Balance within a Cell . 82
4.7.3 Transmission Schedule . 85

4.8 Discussion . 87

Chapter 5 Scheduling in Multi-Channel Wireless Networks 90
5.1 Related Work . 91
5.2 Preliminaries . 92
5.3 Scheduling in Multi-channel Wireless Networks 97
5.4 Summary of Results . 100
5.5 Maximal Schedulers . 100
5.6 Centralized Greedy Maximal Scheduler . 102

5.6.1 Extension to Multiple Interfaces per Node 110
5.6.2 The Special Case of |C| Interfaces per Node 111

5.7 A Rate-Proportional Maximal Multi-Channel (RPMMC) Scheduler 111
5.8 On Scheduling with Heterogeneous Interfaces 113
5.9 Discussion . 114
5.10 Future Directions . 115

Chapter 6 Channel/Interface Management in a Heterogeneous Multi-
Channel Multi-Radio Network . 116
6.1 Related Work . 116
6.2 General Design/Architectural Principles . 119
6.3 The Model . 121
6.4 Interference and Interface Conflicts . 123
6.5 The Heterogeneous Multi-Channel Link Layer (HMCLL) Protocol 125

6.5.1 Neighborhood and Channel/Traffic Statistics Maintenance 126
6.5.2 Interface Management . 135
6.5.3 Packet Scheduling: Channel and Interface Binding 140

6.6 Evaluation . 147
6.6.1 Test Topologies . 149
6.6.2 Random Topologies . 166

6.7 Discussion . 168
6.8 Future Directions . 169

vi

Chapter 7 Reliable Broadcast in Failure-prone Wireless Networks 173
7.1 Assumptions . 173
7.2 Problem Definition . 174

7.2.1 Implications of Reliable Local Broadcast Assumption 175
7.3 Related Work . 175

7.3.1 Crash-stop Failures . 177
7.3.2 Reliable Local Broadcast . 178
7.3.3 Fault Detection . 179

Chapter 8 Reliable Broadcast with Locally Bounded Failures 180
8.1 Preliminaries . 180
8.2 Summary of Results . 181
8.3 A General Sufficient Condition . 182
8.4 Byzantine Failures in a Grid Network . 186
8.5 Crash-Stop Failures in a Grid Network . 190
8.6 Euclidean Metric . 191
8.7 An Alternative Broadcast Algorithm . 194

8.7.1 Comparison of the Two Algorithms 203
8.8 Discussion . 204
8.9 Future Directions . 204

Chapter 9 Reliable Broadcast with Probabilistic Failures 205
9.1 Preliminaries . 205
9.2 Summary of Results . 208
9.3 General Necessary Condition for Byzantine Failures 209
9.4 Byzantine Failures in a Grid Network: Necessary Condition 211
9.5 Byzantine Failures in a Grid Network: Sufficient Condition 214
9.6 Byzantine Failures in a Random Network: Sufficient Condition 219
9.7 Crash-Stop Failures in a Grid Network . 221
9.8 Conditions in Euclidean Metric . 225
9.9 Non-Toroidal Networks . 226
9.10 Discussion . 226

Chapter 10 Reliable Local Broadcast with Byzantine Failures 229
10.1 How a Lossy Wireless Channel Inhibits Reliable Local Broadcast 230
10.2 Causal Ordering and Physical Clocks . 231
10.3 Loose Synchronization and Local Broadcast 232
10.4 Network Model . 235

10.4.1 Fault Model . 235
10.4.2 Communication Model . 236

10.5 The Algorithm . 237
10.6 Possible Optimizations . 242
10.7 Discussion on Synchronization Requirements 242
10.8 Using the Primitive for Multi-Hop Broadcast 243
10.9 Discussion . 244

Chapter 11 Conclusion . 246

vii

Appendix A Notation and Terminology . 248

Appendix B Proofs of Connectivity Results 249
B.1 Adjacent (c, f) Assignment: Proof of Theorem 1 250
B.2 Random (c, f) Assignment: Proof of Theorem 4 257

Appendix C Complete Proof of Scheduling Result (Theorem 13) 263

Appendix D Auxiliary Results Used in Broadcast Proofs 269
D.1 Justification for Approximate Argument used in Section 8.6 269
D.2 Calculation of Collective Area of Regions A and B1 from Section 8.6. 270

Appendix E Useful Mathematical Results 272

References . 277

Author’s Biography . 287

viii

List of Tables

6.1 Protocol Parameters . 131
6.2 Simulation Parameters . 149
6.3 Protocol Parameter Values Used in Simulations 150

8.1 Spatial Extents of Various Regions . 199

9.1 Spatial Extents of Quarter Neighborhoods 215

ix

List of Figures

3.1 Illustration of detour routing . 27
3.2 The Untuned Radio Model . 35
3.3 Untuned Radios: Upper Bound via virtual (2c+ 2, 3) channelization 36
3.4 Untuned Radios: Lower Bound via virtual (4c+ 1, 2) channelization 37

4.1 Some ways in which backbones can be connected 47
4.2 Illustration of routing along backbones . 70
4.3 Routing along a straight line . 72
4.4 Illustration of detour routing . 72
4.5 Cell H and neighboring cells during backbone construction 74
4.6 Bipartite Graph for Cell H in step k . 77
4.7 Two additional transition links for a flow lying wholly within the cell 84
4.8 Comparison of probability of sharing a channel 87
4.9 Example illustrating coupling between routes 89

5.1 2-D visualization of channel heterogeneity 98
5.2 Example of improved bound on efficiency ratio: link-interference topology is

a star with a center link and x radial links 99
5.3 Example illustrating drawbacks of oblivious interface-selection 114

6.1 General Architectural Template . 121
6.2 Example 1: Interference Conflicts . 124
6.3 Example 2: Interface Conflicts . 125
6.4 Structure of Scheduling Module . 142
6.5 Topology 1 . 151
6.6 Topology 1: CBR Traffic . 152
6.7 Topology 2 (Chain) . 153
6.8 Topology 2: CBR Traffic . 154
6.9 Topology 2: TCP Traffic . 154
6.10 Topology 2: (Extra T-Interface): TCP Traffic 155
6.11 Topology 3 . 156
6.12 Topology 4 . 156
6.13 Topology 3: CBR Traffic . 156
6.14 Topology 3: TCP Traffic . 156
6.15 Topology 4: CBR Traffic . 157
6.16 Topology 4: TCP Traffic . 157
6.17 Topology 4 with Extra T-interface: TCP Traffic 157

x

6.18 Topology 5 . 158
6.19 Topology 6 . 158
6.20 Topology 5: CBR Traffic . 159
6.21 Topology 5: TCP Traffic . 160
6.22 Topology 6.1: CBR Traffic . 161
6.23 Topology 6.1: TCP Traffic . 161
6.24 Topology 6.2: CBR Traffic . 162
6.25 Topology 6.2: TCP Traffic . 162
6.26 Topology 6.3: CBR Traffic . 162
6.27 Topology 6.3: TCP Traffic . 162
6.28 Topology 6.4: CBR Traffic . 163
6.29 Topology 6.4: TCP Traffic . 163
6.30 Topology 7 . 164
6.31 Topology 7: CBR Traffic . 165
6.32 Topology 7: TCP Traffic . 166
6.33 Random Topologies: CBR Traffic . 167
6.34 Random Topologies: TCP Traffic . 167

8.1 Equivalence of Cut Conditions . 183
8.2 Connectivity to super-source . 185
8.3 Existence of Sufficient Connectivity . 190
8.4 Network Partition due to Crash Stop Failures 191
8.5 Illustrating an Approximate Argument for Euclidean Metric 192
8.6 Approximate Construction depicting Node-Disjoint Paths (NQ from Fig. 8.5

rotated to x-axis) . 193
8.7 Impossibility Construction for Byzantine Failures in Euclidean metric . . . 195
8.8 Nodes in nbd(a, b) whose committed values P can reliably determine 198
8.9 Nodes in nbd(a, b) that are immediate neighbors of P 198
8.10 Nodes in nbd(a, b) to which P has sufficient connectivity 199
8.11 A node N in Region U . 199
8.12 Construction depicting node-disjoint paths between N and P 200
8.13 Connectivity between P and nodes in S1 . 201
8.14 Non-worst Case Location of P . 203

9.1 Division of network into disjoint neighborhoods 209
9.2 Depiction of qnbdA, qnbdB, qnbdC , qnbdD 214
9.3 Depiction of qnbdA′ , qnbdB′ , qnbdC′ , qnbdD′ 214
9.4 Node u has a quarter-neighborhood contained in nbd(a, b) 218
9.5 Subdivision of network into cells (all adjacent cells are within range) 224
9.6 Relationship between L∞ and L2 neighborhoods 225

B.1 Three Cases: Necessary Condition for Connectivity 252
B.2 Overlap Area of Neighborhoods . 253
B.3 First Case: Necessary Condition for Connectivity 254

D.1 Bounding a Simple Closed Region via Lattice Polygons 270
D.2 Region with Neck: Multiple Simple Polygons in Interior 270
D.3 Calculation of Collective Area of Regions A and B1 (from Fig. 8.6) 271

xi

List of Abbreviations

i.i.d. independently and identically distributed

w.h.p. with high probability

w.l.o.g. without loss of generality

LL Link Layer

EWMA Exponentially Weighted Moving Average

HOL Head-of-line

xii

Chapter 1

Introduction

Recent years have seen a proliferation in the use of multi-hop wireless networks, in diverse

scenarios ranging from community mesh networks, to wireless sensor networks. As these

networks are deployed and used at increasingly large scales, economic viability will be an

important concern. Moreover, in many cases, the form-factor of the devices may be dictated

by the application and deployment scenario.

Given the cost and form-factor considerations, one can anticipate that individual devices

may be limited in their functionality, and/or prone to various forms of failure. For instance,

even though a large number of frequencies may be available for operation, an individual

device’s transceiver may only be capable of tuning to a small number of frequencies. Hard-

ware failures may occur with non-negligible probability, making a device unusable. The

code on a device may possibly be corrupted or compromised. Despite these occurrences, it

is desirable that the network as a whole be capable of tolerating some degree of functional

constraints and/or failure on the part of individual nodes, without substantially degrading

overall performance.

While sensor networks constitute a major area of interest for such constrained devices,

these concerns are by no means exclusively limited to these very low-cost, low complexity

devices. One can envision more capable and complex systems being subject to similar

problems. In situations where a large number of spectrally-separated frequency bands are

available, individual devices may be equipped with re-configurable antennas having limited

re-configurability. Sometimes policy issues may enforce constraints, e.g., in cognitive radio

networks, presence of active primary users in some frequencies may render them unusable

by secondary users. Software bugs in distributed application code may lead to erroneous

behavior. Nodes may crash and be rendered nonoperational for varying periods of time.

Additionally, in certain scenarios, one may be willing to impose soft functional constraints

1

if this reduces protocol cost/complexity without significantly affecting performance.

The goal of this research has been to investigate the performance of wireless networks

that are subject to various forms of functional constraints or failures. We have focused

on two specific problem domains that are very relevant to emerging scenarios for wireless

network deployment:

Multi-channel wireless networks where nodes have radio-interfaces with hetero-

geneous and constrained capabilities Many existing wireless standards, e.g., IEEE

802.11, IEEE 802.15.4, provide for multiple frequency channels. However, most radio

transceivers in common use can typically only be active on any one of the available channels

at a time. Moreover, each device may only be equipped with a small number of transceivers

(often only one). In scenarios with multiple active users, harnessing these multiple chan-

nels can lead to substantial performance improvement by increasing the number of feasible

concurrent transmissions in the network. This requires appropriate routing and scheduling

strategies to distribute the traffic load across interfaces and channels. The complexity is

further increased when the devices may be of varying type, cost and capability. Thus, they

may have heterogeneous radio capabilities in terms of variable number of available inter-

faces. Moreover, all interfaces may not be able to switch on all channels, and all channels

may not be identical. There has been a substantial body of work on multi-channel wireless

networks in the past few years. However, much of it has considered nodes with identical

radios, with very limited effort in the direction of handling interfaces with heterogeneous

and constrained operational capabilities. With the availability of multiple unlicensed fre-

quency bands for use, it is increasingly relevant to envision devices equipped with radios

that can only operate on some part of the total available spectrum. In order to allow

a diverse set of devices to operate as part of a single network while still obtaining good

performance, sophisticated algorithms for coordination, as well as traffic-load distribution

will be required. Developing insight through formal theoretical models is an important

precursor in that direction. As part of this dissertation research, we have examined this

issue. We have developed theoretical models and formulated results for the same. We have

also designed a channel and interface management protocol for multi-channel multi-radio

wireless networks, which draws upon some of the insights from our theoretical work, and

serves as a proof-of-concept of the potential of developing a general design framework to

2

handle a wide range of heterogeneity in hardware characteristics and capabilities.

Single-channel wireless networks where nodes are prone to Byzantine or crash-

stop failures Wireless networks are increasingly finding use in critical scenarios, e.g.,

industrial monitoring and actuation, first-responder networks, etc.. In these scenarios, the

reliability of data communication is of prime importance, and may often be the most rele-

vant metric of interest. Due to fundamental differences in the nature of wired and wireless

communication, the design of reliable communication algorithms for wireless networks re-

quires a fresh approach. In particular, the wireless medium is a broadcast medium, i.e.,

a transmission can be received by many receivers in the vicinity of the transmitter. This

characteristic is both an advantage and a disadvantage from the standpoint of reliability.

The broadcast characteristic can be exploited to improve reliability by designing algorithms

that harness the presence of multiple witnesses to a transmitted message. At the same time,

it lays transmissions open to the possibility of collisions and jamming. An influential model

for the study of fault-tolerant communication in the past two decades has been the Byzan-

tine fault model, and there is a large body of work that studies Byzantine fault-tolerant

communication under different assumptions. Given the distinctive nature of the wireless

environment, new and different algorithms are needed for this task. This has led to recent

interest in studying this problem in the context of networks with a local broadcast prop-

erty. As part of this dissertation research, we have examined the potential of exploiting

the availability of multiple witnesses to a message transmission in a wireless network,, and

have established conditions for the achievability of Byzantine fault-tolerant broadcast in

a wireless network setting under certain assumed models. These results provide insight

into the potential for leveraging the broadcast nature of the wireless medium to improve

reliability.

1.1 Outline

The text of this dissertation can be broadly categorized into two parts, each pertaining to

one of the two problem domains discussed above.

Chapters 2-6 pertain to multi-channel wireless networks where devices may have hetero-

geneous and constrained capabilities. In Chapter 2, we introduce the model for analyzing

3

performance in the presence of switching constraints, discuss related work, and present

some preliminaries. In Chapter 3 and Chapter 4, we present asymptotic connectivity and

transport capacity results for adjacent (c, f) assignment and random (c, f) assignment re-

spectively, and also discuss insights obtained from these results. We consider the scheduling

implications of heterogeneous channels and radios in networks of realistic scale in Chap-

ter 5, where we present some results on performance of certain maximal scheduler in a

multi-channel wireless network. In Chapter 6, we describe the design and evaluation (via

simulation) of a channel and interface management protocol for a heterogeneous multi-

channel multi-radio network, which draws upon insights from the theoretical results in

previous chapters, as well as existing results in the literature. We also discuss interesting

directions for future work.

Chapters 7-10 pertain to reliable broadcast in failure-prone wireless networks. In Chap-

ter 7, we introduce the reliable broadcast problem and discuss related work. In Chapter 8,

we present results for a locally bounded failure model. In Chapter 9, we describe results

for a probabilistic failure model. In Chapter 10, we argue for the need, as well as the

potential, to evolve lightweight probabilistic mechanisms for reliable communication that

exploit knowledge of physical layer characteristics to achieve reliability, and sketch out a

simple algorithm for reliable local broadcast as a proof-of-concept of the same.

We conclude in Chapter 11 by summarizing the contributions of the research performed

as part of this dissertation.

General notation and terminology used extensively throughout the text is clarified in

Appendix A. Other notation and terminology is introduced prior to first use. Some well-

known facts and results that have been used in some of the proofs are compiled together in

Appendix E.

4

Chapter 2

Interface Heterogeneity in a
Multi-Channel Wireless Network

Many existing wireless standards provide for multiple frequency channels. For instance, the

widely used IEEE 802.11 standard for Wireless Local Area Networks specifies 11 channels

(of which 3 are non-overlapping) in the 2.4 GHz ISM band, and 12 channels in the 5 GHz

ISM band.1 The IEEE 802.15.4 standard for Wireless Personal Area Networks also specifies

16 channels in the 2.4 GHz band.

However, typical radio transceivers currently in common use can only be active on any

one of the available channels at a time. Moreover, each device may only be equipped with a

small number of transceivers. When there are multiple active users in the network, harness-

ing these multiple channels can lead to substantial performance improvement by increasing

the number of feasible concurrent transmissions. This requires appropriate routing and

scheduling strategies to distribute the traffic load across interfaces and channels. The com-

plexity is further increased when the devices may be of varying type, cost and capability.

Thus, they may have heterogeneous radio capabilities in terms of variable number of avail-

able interfaces. Moreover, all interfaces may not be able to switch on all channels, and

all channels may not be identical. There has been a substantial body of work on multi-

channel wireless networks in the past few years. However, much of it has considered nodes

with identical radios, with very limited effort in the direction of handling interfaces with

heterogeneous and constrained operational capabilities. Given the availability of multiple

frequency bands for unlicensed use, it is increasingly relevant to envision devices equipped

with radios that can each only operate on some part of the total available spectrum.

We briefly mention some scenarios of interest:

• The need for low-cost, low-power radio transceivers to be used in inexpensive sensor

nodes can give rise to many situations involving constrained switching. Hardware

1The number of available channels varies in different countries according to local regulations.

5

complexity (and hence cost), and/or power consumption may be significantly reduced

if each node operates only in a small spectral range, and switches between a small

subset of adjacent channels (e.g., if the transceiver uses an oscillator with limited

tunability). However, if more spectrum is available than a single device can utilize,

it may be possible at time of manufacture to lock different devices on to different

frequency ranges. Another possible scenario is one in which a node may be equipped

with a few simple radios each locked to a single frequency at time of manufacture (a

similar scenario is proposed in [93] in the context of untuned radios). Due to the small

form factor, at most one of these radios may be able to transmit at a time (receiving

simultaneously may or may not possible). Thus, the net effect may be similar to

having one transceiver that can switch on a subset of frequencies, but only be active

on one at any given time.

• Another recent trend is towards deployment of community mesh networks, where

participants in a community each deploy a wireless device at their residence, and the

resultant network can be used to extend last mile Internet connectivity, as well as

to facilitate peer-to-peer communication within the community. Such networks are

typically not likely to have a strongly centralized control, and there exists an element

of organic growth, wherein each participant may choose to equip their device with

commodity hardware in accordance with their willingness (subject to some minimum

capability required for inter-operation). For instance, in a network where all devices

are equipped with 802.11b radios, some users may choose to equip their devices with

additional 802.11a or 802.11g radios, or may substitute their 802.11b radios with

802.11g radios (802.11g is backward-compatible with 802.11b).

While it may be possible to enforce the condition of uniformity on all devices in a net-

work, and thereby simplify the task of channel coordination, doing so forfeits the possibility

of performance gains that may be achieved if heterogeneous capabilities are supported. For

instance, in the sensor network scenarios discussed above, one could manufacture all devices

to operate on the same small subset of all available frequencies, but that entails leaving the

remaining spectrum unutilized. Similarly, in the mesh network scenario, one could use

protocols that only support 802.11b, but that would imply a loss of the opportunity to

exploit the additional spectrum (in case of 802.11a), or higher transmission rates (in case

6

of 802.11g).

Motivated by such concerns, we study the implications of heterogeneous interface ca-

pabilities in a wireless network by studying the asymptotic capacity scaling behavior of a

network of devices subject to constraints on the channels they can operate on. While many

of the above discussed scenarios involve both heterogeneous interfaces and heterogeneous

channel characteristics, we focus our effort on interfaces with limited and heterogeneous

channel switching capability, and assume identical channels (we will consider the schedul-

ing implications of channel heterogeneity in Chapter 5).

In this chapter, we introduce some constraint models, describe the network model for

our asymptotic capacity results, and discuss related work. We also state and prove some

results pertaining to the traffic model.

2.1 Some Models for Channel Switching Constraints

In this section, we describe some switching constraint models that we have formulated and

studied. These models assume that each node possesses only one half-duplex interface,

which can be active on only one channel at any given time. There are c channels avail-

able. All channels are orthogonal, and of equal bandwidth. Each interface can only switch

(operate) on f channels out of c, and this set of f channels is dictated by the constraint

model. These models assume that c ≥ 2. When c = 1, f can only take one value, viz., 1.

This reduces to the case of a single channel for which connectivity and capacity results are

already known [42, 43]. Therefore, c ≥ 2 is the case of interest. Furthermore, the models

assume that 2 ≤ f ≤ c. In Section 2.5, we explain why c ≥ 2, f = 1 is disallowed.

2.1.1 Adjacent (c, f) Assignment

In this assignment model, an interface can switch between a set of f contiguous channels

where 2 ≤ f ≤ c. We assume that the available spectrum is in the form of a single

contiguous frequency band, which is divided into c channels numbered 1, 2, ..., c in order

of increasing frequency. Prior to deployment, each interface is assigned a block location i

uniformly at random from {1, ..., c− f + 1} and thereafter it can switch to any channel in

the set {i, ..., i+f−1}. This model is relevant when each individual transceiver has limited

tunability, and thus may only switch between a small set of contiguous channels. It is also

7

possible to establish a mapping between this model, and the case of untuned radios [93].

2.1.2 Random (c, f) Assignment

In this assignment model, an interface is assigned a subset of f channels (2 ≤ f ≤ c)

uniformly at random from the set of all possible channel subsets of size f . This model can

capture situations where tiny low-cost sensor nodes may be equipped with a transceiver

having a bank of f switchable filters (e.g., a design with a filter-bank has been proposed in

[86]). This model can also capture scenarios involving small form-factor nodes which are

equipped with a few simple radios, each locked to a single random frequency at manufacture

time. Due to the small form-factor (leading to a very small separation between the radios),

it would typically be infeasible for more than one radio to active simultaneously. Thus, the

net effect would be as if each node is equipped with a single radio that can switch over a

random subset of channels.

2.2 Asymptotic Capacity Analysis

In their seminal paper [43], Gupta and Kumar introduced the approach of asymptotic

capacity analysis to understand the scaling behavior of a wireless network, as the network

size increases towards infinity. They defined a quantity–the transport capacity–as a measure

of the network’s ability to transfer data.

Two network models were considered in [43]: Arbitrary networks, and Random networks.

Of these, we discuss random networks, as this the model we utilize for our results. In the

random network case, n nodes are located uniformly at random in the network region.

Each node is the source of exactly one flow. It chooses its destination by choosing a point

uniformly at random and selecting the node closest to it other than itself. Given this traffic

model, the average distance traversed by a flow is of the same order as the network diameter.

In a random-network, the per-flow network capacity is said to be Θ(λ(n)) if there exist

constants c1, c2 such that:

lim
n→∞

Pr[throughput c1λ(n) is achievable for each flow] = 1 (2.1)

lim
n→∞

Pr[throughput c2λ(n) is achievable for each flow] < 1 (2.2)

8

Two models for interference were defined in [43], viz., the Protocol Model and the Physical

Model. Of these, the Protocol Model for a random network is defined as follows:

All nodes in the network use a common transmission range r(n). A transmission from

a node A to a node B is successful if and only if the distance AB ≤ r(n) and for any other

concurrently active transmitter C, the distance BC > (1 + ∆)r(n), where ∆ is a constant

which embodies a guard-zone needed to prevent interference.

2.3 Assumed Network Model

We assume a random network with the Protocol model of interference. We now describe

the details of the model.

n nodes are located uniformly at random in a unit area torus.2 All nodes use a common

transmission range r(n), which can be appropriately selected.3.

There are c available channels of bandwidth W
c each. We focus on the case where

the total number of available channels c = O(log n). This is reasonable because, in large

scale deployments, the number of nodes will typically be much larger than the number of

available channels. Besides, when c = ω(log n), there is a substantial capacity degradation

even with unconstrained channel switching (as shown in [65]), thus making channelization

an increasing liability. Constrained switching can only lead to additional degradation, and

potentially unacceptable performance.

We assume the same traffic model as in [43]:

Each node is source of exactly one flow. It chooses a point uniformly at random (we

shall henceforth refer to these points as pseudo-destinations), and selects the node (other

than itself) lying closest to that point as its destination.

2Since the Protocol Model does not involve an explicit power constraint, the unit area assumption in the
Protocol Model can be viewed as simply a normalization of a general area A. Capacity results (in bits/sec)
for the unit-area continue to hold for a torus of general area A. Results in bit-meters/sec can be obtained
by simply multiplying the unit area results with

√
A. Results regarding critical range for connectivity also

simply require a scaling by a factor of
√

A. We also remark that from a physical standpoint, the relevant
interpretation is indeed that involving an extended network region (whose area increases as n increases),
else as argued in [28], scenarios with ever-increasing network density cease to be physically relevant.

3Although we denote it by r(n), the transmission range can potentially be a function not only of n, but
also c and f .

9

2.4 Related Work

Connectivity and Capacity of Wireless Networks There is a substantial body of

prior work on deriving the conditions under which a given network is connected, and condi-

tions for connectivity have been formulated in the context of many different network models.

For a unit area network with uniformly distributed node placement, where nodes have a

common transmission radius r(n), it was shown in [42] that if πr2 = (log n+b(n))
n , then the

network is asymptotically connected with probability 1 iff b(n) → ∞. An alternate model

was considered in [123], where nodes deployed uniformly at random may individually mod-

ulate their transmission power (and hence range) to ensure that they have a certain number

of neighbors. It was proved that each node must be connected to Θ(log n) neighbors for

asymptotic connectivity with probability 1. The issue of theta-coverage and connectivity

was considered in [124]. Another relevant body of work is that on bond percolation in

wireless networks, e.g. [34].

In [43], Gupta and Kumar defined the notion of asymptotic transport capacity of a

wireless network, and obtained results for the capacity of arbitrary and random networks

in a single-channel single-interface scenario for two models of interference, viz., the Protocol

Model and the Physical Model.

For the Protocol Model, they established that in an arbitrary network, the capacity

scales as Θ(W√
n

) bit-m/s per flow, while in a random network, it scales as Θ(W√
n log n

) bits/s.

For the Physical Model, they showed that capacity for random networks is O(W√
n

) and

Ω(W√
n log n

). It was later shown by Franceschetti et al. in [35] that under the Physical Model,

a per-flow throughput of Ω(W√
n

) can be achieved in a random network. While this may seem

as closing the gap in the result of [43], this is not strictly the case, as the model of [35] allows

use of different data-rates over different links, but stipulated a common transmission power,

whereas in [43], different transmission powers may be used, but all communication requires

the same SINR threshold, implying that it occurs at a single common rate (corresponding

to a case where only one particular modulation scheme may be available). However, a

variation of their construction proves the result for the model of [43], and this is described

in [125]. Improved capacity bounds for the Protocol Model were presented in [1]. This work

also generalized the notion of exclusion-regions to arbitrary shapes that could potentially

be used to model interference when using directional antennas.

10

It was shown in [39] that mobility can increase the capacity of a wireless network, and

in fact Θ(1) throughput per flow is attainable when each node is source and destination for

exactly one flow each. The capacity of hybrid networks (those having some infrastructure

support in the form of access points) was studied in [76] and [59].

The throughput-delay trade-off was studied in [36], and it was shown that the optimal

trade-off is given by D(n) = Θ(nT (n)) where D(n) is delay, and T (n) is throughput. The

capacity of ultra-wideband (UWB) networks was studied in [95], and [128].

It was shown in [28] that under the unit area assumption, the Physical Model breaks

down when n becomes very large, yielding a singularity, and for a model involving a non-

singular attenuation function, the per-flow capacity would be asymptotically limited to

O(1
n). Franceschetti et al [80], have recently shown that fundamental laws of physics dictate

a limit of O(1√
n

) for per-flow capacity scaling when n nodes are distributed over an area of

order n.

In [77], it is shown that for the network/traffic model of [43], and the Protocol Model of

interference, the use of network coding only yields a constant factor benefit (this constant

factor is a function of the guard zone parameter ∆ in the Protocol Model).

A concise presentation of many capacity results is available in [125].

Multi-channel Networks It was also shown in [43] that if the available bandwidth

W is split into c channels, with each node having a dedicated interface per channel, the

results remain the same as for a single-channel, single-interface scenario. However, an

interesting, and fairly common, scenario arises when the number of interfaces m at each

node may be smaller than the number of available channels c. This issue was analyzed in [65]

and it was shown that the capacity results are a function of the channel-to-interface ratio

c
m . It was also shown that in the random network case, there are three distinct capacity

regions: when c
m = O(logn), the per-flow capacity is W√

n log n
, when c

m = Ω(log n) and also

O

(
n
(

log log n
log n

)2
)

, the per flow capacity is Θ(W
√

m
nc), and when c

m = Ω

(
n
(

log log n
log n

)2
)

,

the per-flow capacity is Θ(Wm log log n
log n). The issue of interface switching delay was also

briefly considered in [65], and it was shown that access to some extra interfaces can allow

one to completely mask the switching delay.

In [63], an additional multi-channel scenario is considered where each node has two

interfaces that may each be assigned a channel based on traffic patterns, but must thereafter

11

remain fixed on those. For a permutation routing model, it was shown that the capacity

with two fixed interfaces is of the same asymptotic order as that with one fully-switchable

interface.

Constraints on Channel Availability and Tuning Situations in which some channels

may be unavailable to some nodes have been considered in some work on cognitive radio.

An area-blocking model (with a notion of a protected radius around a primary user) is

considered in [98], which is similar to the spatially correlated channel assignment model we

briefly discuss in Chapter 2. However, the goal of that work is not to determine multi-hop

capacity. In [61], a model is considered where channel-sets of neighboring nodes may differ

by at most k channels. Some algorithms for node-discovery in such networks are proposed.

None of these works has focused on obtaining a formal model of such anticipated spatially

correlated constraints for connectivity and capacity analysis.

It was proposed in [93] that extremely inexpensive wireless devices can be manufactured

if it is possible to handle untuned radios whose operating frequency may lie randomly within

some band. Additional considered possibilities were that each device may have a small

number of such untuned radios. The model of [93] involved a source and destination capable

of transmitting/receiving on all frequencies concurrently, that are spatially-separated, and

must communicate via a back-plane of devices with untuned radios. A random network

coding based approach was proposed to relay information between the source-destination

pair, and it was shown that Θ(c) throughput is achievable, where c is the maximum number

of disjoint channels possible.

On a related note, constraints that are somewhat similar in spirit are also encountered

in optical networks with wavelength-division multiplexing (WDM). In an optical network,

all nodes may not be capable of wavelength conversion (see, e.g., [108, 73]). Architectures

have been proposed for sparse wavelength conversion [108], such that only a small fraction

of nodes have wavelength conversion capability. Architectures where nodes have limited

conversion capability have also been proposed [71].

Systems/Architectures with Limited Channel-Switching A multi-channel multi-

hop network architecture has been considered in [99] in which each node has a single

transceiver, and nodes have a quiescent channel to which they tune when not transmit-

12

ting. A node wishing to communicate with a destination tunes to its quiescent channel,

and transmits the packet to a neighbor whose quiescent channel is the same as that of

the destination. Thereafter, the packet proceeds towards the destination on the quiescent

channel. This has some similarity to the model and constructions in Section 3.5 and Section

4.6. However, in their case, channel-transitions can happen trivially at the very first hop,

since the source node is always capable of tuning to the destination’s quiescent channel. In

contrast, in our models, interfaces can only switch on some channels, and this needs to be

taken into account when routing packets.

2.5 Constraints that Limit Capacity

In this section, we briefly discuss some general constraints on the capacity of the network

(for any channel assignment model). Recall that c is the total number of available channels,

each channel has bandwidth W
c , and f is the number of channels any single interface can

operate on. Furthermore, each node is equipped with a single interface.

Source-Destination Constraint for f = 1

If f = 1, but c > 1, then communication between a source and its destination is possible if

and only if they are both capable of operating on the same channel. This may not always

happen if the channels are assigned in some random manner.

To illustrate, consider the class of switching constraint models where the operational

channel-set assigned to individual nodes is i.i.d. Suppose, the probability that i and dst(i)

operate on a common channel is at most p. If the traffic model is such that any single node

can be the destination of only up to D(n) flows, then we argue thus:

We can obtain at least ⌊ n
2D(n)+1⌋ source-destination pairs, such that the nodes in each

pair are distinct, leading to independent probabilities). The probability that, in at least

one of the n source-destination pairs, the source and destination do not operate on the

same channel can be lower bounded by the probability that the source and destination in

at least one of these distinct pairs do not operate on a common channel. This probability

is at least 1− p⌊
n

2D(n)+1
⌋

= 1− e− ln 1
p
⌊ n
2D(n)+1

⌋
. When log

(
1
p

)
= ω(2D(n)+1

n), this probability

converges to 1, as n→∞. Hence, the network would have zero capacity. For the adjacent

(c, f) and random (c, f) assignments studied in this dissertation, with c ≥ 2, c = O(log n),

13

this condition indeed holds. Therefore f = 1 when c ≥ 2 yields zero capacity. Therefore,

our model definitions (Section 2.1) disallow this possibility.

When f > 1, as in the rest of the discussion on asymptotic transport capacity in this

dissertation, this constraint does not apply.

Connectivity Constraint

This constraint was first formulated in [43]. Given that each node is a source in the assumed

traffic model, if even a single node is isolated (i.e., partitioned from the rest of the network),

this would imply that the capacity is trivially zero. Thus, at the very least one requires that

no node be isolated. Suppose the necessary condition to avoid isolated nodes is that r(n) =

Ω(g(n)). It follows from the interference model that each transmission occupies a Θ(1
r(n)2

)

area, this limits the spatial re-use in the network to O(1
(g(n))2

) concurrent transmissions on

any single channel. Besides, each source-destination is separated by average Θ(1) distance

(see [43] for details) and hence average Θ(1
r(n)) hops. This limits the per-flow throughput

to O(W
nr(n)).

Interference Constraint

It was established in [65] that the per flow capacity is constrained to O(W
√

1
cn) when

each node possesses a single interface that is capable of switching to any channel. Since it

is always possible to simulate a switching constraint model in a network where interfaces

can switch to any channel, any throughput achievable with switching constraints is also

achievable in the unconstrained switching case. Therefore, the upper bound of O(W
√

1
cn)

also applies to adjacent (c, f)-assignment, and random (c, f)-assignment.

Destination Bottleneck Constraint

This constraint was first articulated in [65]. If the traffic model is such that some node

can be the destination of up to D(n) flows, the per-flow throughput is constrained to be

O(W
D(n)), since the destination must time-share its interface between these D(n) flows.

In the region c = O(logn), the connectivity constraint turns out to be asymptotically

dominant.

14

2.6 Some Results about the Traffic Model

As stated in Section 2.3, we assume the traffic model of [43]. We now establish some general

results pertaining to this traffic model.

Lemma 1. The number of flows for which any node is the destination is O(log n) w.h.p.

Proof. Consider a flow’s pseudo-destination D′. Consider a circle of radius
√

100 log n
πn , and

hence area 100 log n
n centered around this pseudo-destination. Applying Lemma 60 to the set

of n nodes, each such circle contains Θ(log n) nodes, w.h.p. In a rare scenario, one of these

nodes could potentially be the source node for that flow. However, the circle still has more

than one node other than the flow’s source. Thus, the flow will select some node within this

circle as its destination. Hence, a flow will only be assigned a destination within distance√
100 log n

πn from its pseudo-destination. Therefore, a node can only be the destination for

flows whose pseudo-destination lies within a distance
√

100 log n
πn from it. Applying Lemma

60 to the set of n pseudo-destinations, each circle of this size contains O(logn) pseudo-

destinations w.h.p. Thus the number of flows for which any node is the destination is

O(logn) w.h.p.

Lemma 2. For large n, at least one node is the destination for Ω(log n) flows with a

probability at least 1
e (1− 1

e)(1− δ), where δ > 0 is an arbitrarily small constant.

Proof. The necessary condition for connectivity in [42] (Theorem 2.1 of [42]) was established

by proving that if we consider R(n) such that πR2(n) = log n+b(n)
n , where lim sup b(n) =

b <∞, then with positive probability, there exists at least one node x which is isolated, i.e.,

there is no other node within distance R(n) of x. In the context of [42], this was utilized by

interpreting R(n) as transmission range, and thus obtaining a lower bound for connectivity.

However, we now exploit that result in a different manner to prove our lemma as follows:

Choose R(n) =
√

log n+1
πn , i.e., b(n) = b = 1. Note that in this proof, R(n) is not the

transmission range; it is merely a chosen distance value. Invoking Theorem 2.1 from [42],

with probability p there exists a node x such that there is no other node within a distance

R(n) from it, where lim inf
n→∞

p ≥ e−b(1 − e−b) = 1
e (1 − 1

e). It follows (see Theorem 2.1 in

[42]) that p ≥ (1− ǫ)1
e (1− 1

e), for any ǫ > 0, and sufficiently large n. Call this event E1.

Conditioned on the occurrence of event E1, and therefore the existence of such a node

x, let us consider the Voronoi tessellation generated by the n nodes. Evidently, the area of

15

the Voronoi polygon of x is at least π(R(n)
2)2 = πR2(n)

4 = log n+1
4n . Note that this tessellation

constitutes a spatial partition of the network area. From the definition of the traffic model,

it follows that if a flow’s pseudo-destination falls within the polygon of node x, then x is

selected as that flow’s destination, unless x is itself the source of that flow (since a generator

(node) is always the nearest node to points within its own Voronoi polygon). Recall that

pseudo-destination locations are chosen uniformly at random over the unit torus. Let

Xi, 1 ≤ i ≤ n be indicator variables such that Xi = 1 if x is flow i’s destination, and 0 else.

Then Pr[Xi = 1|E1] = 0 if x is the source of flow i (and there is exactly one such i).

For all other values of i, x would be selected as flow i’s destination if either (1) flow i’s

pseudo-destination falls in x’s Voronoi polygon (the probability of this event is given by the

area of x’s Voronoi polygon, and is thus at least log n+1
4n , or (2) if flow i’s pseudo-destination

falls within the polygon of its own source, and x is the next-nearest node (we can ignore

this latter possibility, as we only require a lower bound, and we therefore pretend that x is

chosen as the destination of flow i if and only if flow i’s pseudo-destination falls within x’s

Voronoi polygon).

In light of the above, it can be seen that for all i such that x is not the source of flow i:

Pr[Xi = 1|E1] ≥ log n+1
4n . Let X =

∑
i: x not source of i

Xi. Thus E[X|E1] ≥ (1− 1
n) log n+1

4 ≥ log n
4

for large n. Furthermore, the Xi’s are independent. Therefore, application of the Chernoff

bound from Lemma 53 (with β = 1
2) yields that:

Pr[X ≤ log n

8
|E1] ≤ Pr[X ≤ E[X|E1]

2
|E1] ≤ exp(−E[X|E1]

8
) ≤ exp(− log n

32
) =

1

n
1
32

(2.3)

Denote by E2 the event that some node indeed is destination for at least log n
8 flows. Using

(2.3), we obtain that Pr[E2|E1] ≥ 1 − 1

n
1
32

. Also, Pr[E2] ≥ Pr[E1] Pr[E2|E1]. Hence at least

one node is a destination for Ω(logn) flows with a probability at least (1−ǫ)e−b(1−e−b)(1−
1

n
1
32

) ≥ 1
e (1− 1

e)(1− δ) for any chosen δ > ǫ, and sufficiently large n.

2.7 A Remark on the Proof Technique

We make a remark on the proof techniques that are used in Chapter 3 and Chapter 4. It is

to be noted that many of the intermediate lemmas in the proofs are conditioned on certain

desirable events proved to occur w.h.p. in prior lemmas. Let a generic undesirable event

16

be denoted by Ei (i.e., ¬Ei is the desirable event). Note that the following is always true:

Pr[E1 ∪ E2] = Pr[E1] + Pr[¬E1] Pr[E2|¬E1] ≤ Pr[E1] + Pr[E2|¬E1] (2.4)

In light of this, it is not hard to see that the probability that even one of the undesirable

events from any of these lemmas occurs, can be upper-bounded via by summing up the

individual (in some cases, conditional) probability of occurrence of each undesirable event,

as bounded by each lemma (i.e., by essentially applying a union bound on the possibly

conditional probabilities). Since a proof comprises a small constant number of lemmas,

and each lemma proves that the (possibly conditional on previous lemmas) probability of

occurrence of some undesirable event goes to 0 (or equivalently shows that the probability

of occurrence of the complementary desirable event goes to 1), this sum will also go to zero.

Hence, the probability that even one of the undesirable events happens goes to 0. Where

not explicitly stated, this union-bound argument is implicitly applied.

17

Chapter 3

Adjacent (c, f) Assignment

In this chapter, we present capacity results for the adjacent (c, f) assignment model that

was introduced in Chapter 2. We begin by defining the adjacent (c, f) assignment model

in Section 3.1, and summarize the chapter results in Section 3.2. We present necessary

and sufficient conditions for connectivity in Section 3.3. Section 3.4 presents an upper

bound on capacity. A capacity-achieving lower bound construction in described in Section

3.5. In Section 3.6, we show how our results for adjacent (c, f) assignment can be used to

obtain results for the case of untuned radios. We conclude with a brief discussion on the

implications of the capacity result in Section 3.7.

3.1 Model Definition

In the adjacent (c, f) model, the frequency band is divided into c channels numbered 1, 2,

..., c in order of increasing frequency, but an individual interface can only use f channels

(2 ≤ f ≤ c). Prior to deployment, each interface is assigned a block location i uniformly

at random from 1, ..., c− f + 1 and thereafter it can switch between the set i, ..., i+ f − 1 .

Thus, the probability that an interface is assigned block location i (where 1 ≤ i ≤ c−f +1)

is 1
c−f+1 .

Since channel i occurs in min{i, c − i + 1, f, c − f + 1} blocks, and each block has a

probability 1
c−f+1 of being assigned:

Pr[a given interface can switch on channel i] = padj
s (i) =

min{i, c− i+ 1, f, c− f + 1}
c− f + 1

(3.1)

Since we consider only single-interface nodes for the results in this chapter, there is

a one-to-one mapping between interfaces and nodes. Thus, we often use the term node

instead of interface in the following discussion.

18

The probability that a node with block location i can operate on a common channel (we

often refer to this as sharing a channel) with another randomly chosen node is given by:

padj(i) =
(1 + min{i− 1, f − 1}+ min{c− f + 1− i, f − 1})

c− f + 1
(3.2)

It is evident that:

min{ f

c− f + 1
, 1} ≤ padj(i) ≤ min{ 2f − 1

c− f + 1
, 1} (3.3)

3.2 Summary of Results

We prove the following results:

1. We show that in the regime c = O(log n), the critical transmission range for connec-

tivity with adjacent (c, f) assignment is Θ(
√

c log n
fn).

2. We establish the per-flow capacity under adjacent (c, f) assignment for the regime

c = O(logn) as Θ(W
√

f
cn log n).

A preliminary version of the chapter results was reported in [7].

3.3 Conditions for Connectivity

3.3.1 Necessary Condition for Connectivity

We obtain a necessary condition for connectivity through an adaptation of the proof tech-

niques used to obtain the necessary condition for connectivity in [42].

Theorem 1. With an adjacent (c, f) channel assignment (when c = O(log n)), if p =

min{ 2f−1
c−f+1 , 1} and πr2(n) = (log n+b(n))

pn , where b = lim
n→∞

b(n) < +∞ then:

lim inf
n→∞

Pr[disconnection] ≥ e−b(1− e−b)

where by disconnection we imply the event that there is a partition of the network.

Proof. We present a proof-sketch here. The detailed proof is described in Appendix B.

19

Given that a node has block location i, the probability that it can operate on a common

channel with another random node within its range is given in (3.3), and denoted by padj(i).

Note that padj(i) is different for different block locations i primarily because nodes with

blocks at the fringes of the band are less likely to share channels with other nodes. Since

we are deriving a necessary condition for connectivity, it is valid to make the following

assumption for the purpose of this proof:

Channel pairs (i, c − f + i + 1), 1 ≤ i ≤ f − 1 possess magical capabilities, such that

communication on channel i ends up being visible on channel c − f + i + 1, and vice-

versa. Thus, if a node has channel i, then it can also communicate with a node that does

not share any channel with it, but has channel c − f + i + 1. Another way to view this

situation is that although nodes are assigned channels as per the adjacent (c, f) model,

c−f + i+ 1, 1 ≤ i ≤ f −1 is actually an alias for i. Thus, at the time of network operation,

a node having channel c− f + i+ 1, 1 ≤ i ≤ f − 1 uses channel i instead (i.e., c− f + i+ 1

serves as an alias for i).

Under this assumption, ∀ i : padj(i) = min{ 2f−1
c−f+1 , 1}. If the network is disconnected

under this assumption, then it must necessarily be so otherwise. This can be argued as

follows: suppose we are given a network instance with nodes assigned adjacent channels as

per the adjacent (c, f) model, and we then impose the assumption stated above. Suppose

this new network is disconnected. Now the imposed assumption is removed, but the channel

block assigned to each node remains unchanged. Then, in the new scenario, some nodes that

were earlier able to communicate, will not be able to do so anymore; however those nodes

that were incapable of communicating will preserve their status quo. Hence, a necessary

condition for the hypothetical network would remain valid even in the actual network.

Therefore, to establish a necessary condition for connectivity with adjacent (c, f) as-

signment, we estabslish a necessary condition for connectivity in a scenario where we have

the additional assumption described above. This proof is an adaptation of a similar proof

in [42] (Theorem 2.1 in [42]).

We focus on the disconnection event where singleton sets are partitioned from the rest

of network. Recall that p = min{ 2f−1
c−f+1 , 1}. When f ≥ c+2

3 , p = 1, i.e., any pair of nodes

that are within range can communicate with each other as they can operate on at least one

common channel, and the necessary condition result from [42] applies directly. Thus, we

20

need to consider only f < c+2
3 for which p = 2f−1

c−f+1 .

The probability that a node x is isolated, i.e., cannot communicate with any node is

give by p1 = (1− pπr2(n))(n−1). We can also obtain an upper bound p2 on the probability

that two nodes x and y are both isolated.

When lim
n→∞

sup b(n) < +∞, it can be shown that:

Pr[disconnection] ≥
∑

x

Pr[x is only isolated node]

≥
∑

x

Pr[x isolated]−
∑

x,y

Pr[x and y both isolated]

≥ θe−(b+ǫ) − (1 + ǫ)e−2(b+ǫ)

for any θ < 1, ǫ > 0, and large n

(3.4)

Therefore, if lim
n→∞

sup b(n) < +∞, the network is asymptotically disconnected with

some positive probability. The detailed proof is described in Appendix B.

Corollary 1. With an adjacent (c, f) assignment, the critical transmission range for con-

nectivity in the regime c = O(logn) is Ω(
√

c log n
fn).

Proof. Whenever f ≥ c+2
3 , p = 1 < 3f

c in Theorem 1, and the necessary condition require

πr2(n) > log n
n > c log n

3fn . Whenever, f < c+2
3 , p = 2f−1

c−f+1 ≤
3f
c , and the necessary condition

again requires that πr2(n) > c log n
3fn . Hence with adjacent (c, f) assignment, connectivity

requires that r(n) = Ω(
√

c log n
fn).

3.3.2 Sufficient Condition for Connectivity

It can be shown that having r(n) = a1

√
c log n

fn , for some suitable constant a1, suffices to

ensure that the network is asymptotically connected w.h.p. This will be evident from our

lower bound construction for capacity. Therefore, the proof is not presented separately.

3.4 Upper Bound on Capacity

We proved in Theorem 1 that to avoid isolated nodes r(n) must be Ω(
√

c log n
fn). Then by

the connectivity constraint mentioned in Section 2.5 of Chapter 2, the per flow throughput

is limited to O(W
√

f
cn log n).

21

3.5 Lower Bound on Capacity

We present a constructive proof that achieves a per-flow throughput of Ω(W
√

f
cn log n). This

construction has similarity to the constructions in [43, 36, 65], but has certain distinctive

features that stem from the need to address the channel switching constraints.

The surface of the unit torus is divided into square cells of area a(n) each. The trans-

mission range r(n) is set to
√

8a(n), thereby ensuring that any node in a given cell is within

range of any other node in any adjoining cell. Since we utilize the Protocol Model [43], a

node C can potentially interfere with an ongoing transmission from node A to node B, only

if BC ≤ (1 + ∆)r(n). Thus, a transmission by A in a given cell can only be affected by

transmissions in cells with some point within a distance (2 + ∆)r(n) from it, and all such

cells must lie within a circle of radius O((1 + ∆)r(n)). Since ∆ is independent of n, the

number of cells that interfere with a given cell is only some constant (say γ).

We choose a(n) = 100c log n
fn (and hence r(n) =

√
800c log n

fn).

The following result follows from an application of Lemma 59:

Lemma 3. The number of nodes in any cell lies between 50c log n
f and 150c log n

f with proba-

bility at least 1− 50 log n
n .

Definition 1. (Preferred Channels) Channels i for which padj
s (i) ≥ f

2c are deemed preferred

channels.

For any set of f contiguous channels, at least ⌈f
2 ⌉ of the channels have padj

s (i) ≥ f
2c .

Hence, each node can switch on x ≥ ⌈f
2 ⌉ ≥

f
2 preferred channels. Also note that non-

preferred channels only occur at the fringes of the frequency band.

Lemma 4. If there are at least 50c log n
f nodes in every cell H, then at least 12 logn nodes

in each cell are capable of switching on each of the preferred channels, with probability at

least 1− q1, where q1 = O(1
n2).

Proof. Let us consider one particular cell H, with xH ≥ 50c log n
f nodes. Let Xij = 1 if node

j can switch on preferred channel i, and 0 else. Pr[Xij = 1] = padj
s (i) ≥ f

2c , since i is a

preferred channel. For a given i, all the Xij ’s are independent. Let Xi =
∑
i∈H

Xij . Then:

E[Xi] = padj
s (i)xH ≥ 25 log n

22

Applying the Chernoff bound in Lemma 53 (setting β = 1
2) , we obtain:

Pr[Xi ≤ 12 log n] ≤ Pr[Xi ≤
25

2
log n] ≤ exp(−25 log n

8
) ≤ 1

n
25
8

(3.5)

The number of preferred channels is at most c = O(logn). Application of the union bound

over all such channels yields:

Pr[Xj ≤ 25 log n for any preferred j] ≤ c

n
25
8

= O(
logn

n
25
8

)

Since there are 1
a(n) = fn

100c log n ≤ n cells, another application of the union bound yields:

Pr[Xi < 12 logn in any cell] = O(
1

n2
) (3.6)

Each cell indeed has at least 50c log n
f nodes w.h.p. (Lemma 3). Thus, a union bound

argument (as was explained in Section 2.7) can be invoked to show that each cell has at

least 12 log n nodes on every preferred channel w.h.p.

Lemma 5. If there are at least 50c log n
f nodes in every cell H, then, for all adjacent preferred

channels i and i + 1, there are at least 12 log n nodes in each cell capable of switching on

both channels i and i+ 1, with probability at least 1− q2, where q2 = O(1
n2).

Proof. Let us consider one particular cell H with xH nodes, where xH ≥ 50c log n
f . Let

Xij = 1 if node j can switch on both channel i and i + 1 (where both i and i + 1 are

preferred), and 0 else. For a given i, all the Xij ’s are independent.

Then Pr[Xij = 1] ≥ ⌈ f

2
⌉

c−f+1 ≥
f
2c . Let Xi =

∑
j∈H

Xij . Then E[Xi] ≥ 25 log n. By

application of the Chernoff bound from Lemma 53 (with β = 1
2) , we obtain:

Pr[Xi ≤ 12 log n] ≤ Pr[Xi ≤
25

2
log n] ≤ exp(−25 log n

8
) ≤ 1

n
25
8

(3.7)

i cannot take more than c− 1 distinct values, and c− 1 = O(logn). By taking a union

bound over all such possibilities, we obtain that Pr[Xi ≤ 12 log n for any preferred i, i+1] ≤
(c−1)

n
25
8

= O(log n

n
25
8

). Since there are 1
a(n) = fn

100c log n < n cells, another application of the union

23

bound yields:

Pr[Xi ≤ 12 logn in any cell] = O(
1

n2
) (3.8)

From Lemma 3, each cell has at least 50c log n
f nodes w.h.p. Thus, each cell has at least

12 log n nodes on every pair of adjacent preferred channels (i, i+ 1) w.h.p.

Lemma 6. If there are at least 50c log n
f nodes in every cell, and if i and i + x are both

preferred channels, where x ≤ ⌊f
2 ⌋, then there are at least 12 log n nodes in the cell capable

of switching on both channels i and i+ x with probability at least 1− q3, where q3 = O(1
n2).

Proof. Note that since i is preferred, it follows that i ≥ ⌈f
2 ⌉. A node can switch on both i

and i + x if its block location lies between max{1, i + x − f + 1} and i. This probability

is min{i,f−x}
c−f+1 . Since x ≤ ⌊f

2 ⌋, this probability is at least
⌈ f

2
⌉

c−f+1 ≥
f
2c . Thereafter the proof

argument is the same as that of Lemma 5.

3.5.1 Routing

We denote the source of a flow by S, the pseudo-destination by D′, and the actual desti-

nation by D. We begin by briefly summarizing the routing strategy used in [43]. In [43],

one node in each cell was designated the relay for all routes traversing that cell but not

originating/terminating in it; a flow’s route traversed the cells intersected by the straight

line SD′ (i.e., they were relayed through the assigned relay nodes in the sequence of cells

intersected by the straight-line SD′) and thereafter needed to take at most one extra-hop

to reach the actual destination D, which necessarily lay either in the same cell as D′ or in

one of the 8 adjacent cells.

Lemma 7. The number of straight-line SD′D routes that traverse any cell is O(n
√
a(n)).

Proof. From Lemma 61 (Appendix E) we know that the number of SD′ straight-lines

traversing a single cell are O(n
√
a(n)). We must now consider the number of routes whose

last D′D hop may enter this cell. If D is in the same cell as D′, there is no extra hop.

Otherwise, the number of flows for which D′ lies in one of the 8 adjacent cells is O(na(n))

w.h.p. (since applying Lemma 59 to the set of n pseudo-destinations) yields that the number

24

of pseudo-destinations in any cell is O(na(n)) w.h.p.). Since na(n) = O(n
√
a(n)), the total

number of traversing routes is O(n
√
a(n)).

Hereafter, we shall refer to this routing strategy as straight-line routing, since it basically

comprises a straight-line except for the last hop.

If there were no constraints on channel switching, one could envision determining the

cells that a route should traverse using a routing strategy similar to that in [43]. We do

remark that, even in the absence of switching constraints, in a multi-channel network with

c channels where each node has fewer than c interfaces, it does not suffice to designate a

single relay node in each cell, as multiple nodes must be concurrently active within a cell

to harness the available bandwidth (see [65]).

In the presence of the switching constraints imposed by the adjacent (c, f) assignment, a

feasible route must comprise more than just a sequence of nodes from source to destination

such that consecutive nodes are with range of each other. Rather, a feasible route must

comprise a sequence of nodes v0 = S, v1, ..., vk, vk+1 = D such that for all 0 ≤ i ≤ k: (1) vi

and vi+1 are with range of each other (2) they can operate on some common channel.

To be able to find such a feasible route w.h.p., the route of a flow may need to traverse

a certain minimum number of intermediate nodes (i.e., a feasible sequence of nodes leading

from v0 = S to vk+1 = D must have a certain minimum number of nodes). We elaborate

further:

We begin by observing that the source must transmit on one of the channels that its

interface can switch on. Similarly, the destination must receive on one of the channels

that its interface can switch on. Suppose the source uses channel l to transmit, and the

destination chooses to use channel r to receive:

We assume w.l.o.g. that l ≤ r. Suppose r − l = k′⌊f
2 ⌋ + m (0 ≤ m < ⌊f

2 ⌋). Thus

k′ = r−l−m

⌊ f

2
⌋ ≤ c−1

f−1
2

= 2(c−1)
f−1 ≤ 4c

f . From the model, and the definition of a preferred

channel, it follows that, given two preferred channels l and r all channels l ≤ i ≤ r must

also necessarily be preferred. In light of this, using the result proved in Lemma 6, one can

see that it is always possible to transition from l to r in at most k′ + 1 ≤ 4c
f + 1 steps:

l→ l + ⌊f
2 ⌋, l + ⌊f

2 ⌋ → l + 2⌊f
2 ⌋, ..., l + k′⌊f

2 ⌋ → l + k′⌊f
2 ⌋+m = r.

More specifically, we can find a sequence of nodes v0 = S, v1, v2, ...vk′ , vk′+1 = D such

that v0 and v1 both can operate on channel l, v1 and v2 can both operate on channel l+⌊f
2 ⌋

25

and so on.1 It is also evident that a sequence of nodes that allows a transition from channel

l to channel r must comprise at least |r−l|
f nodes.

More generally, we can try to find a feasible route which comprises a sequence of nodes

v0 = S, v1, ...vi, ...,vi+k′+1...vk = D, such that (1) v0, ..., vi can all operate on channel l,

(2) for all i ≤ m < i + k′: vm and vm+1 can both operate on channel l + m⌊f
2 ⌋, (3) vi+k′

and vi+k′+1 can both operate on channel r, and (4) vi+k′+2, ..., vk can all operate on r. The

subsequence vi, ..., vi+k′+1 comprises the transition sequence in this route. Links on this

route that lie before the transition sequence use the source channel l to transmit the flow’s

packets, while links that lie after the transition sequence use the destination channel r.

Links (vi+x−1, vi+x), 1 ≤ x ≤ k′ in the transition sequence use channel l + x⌊f
2 ⌋ for x ≤ k′

and link vi+k′ , vi+k′+1 uses channel r.

From the above it is evident that a feasible route must comprise a certain minimum

number of intermediate relay nodes, i.e., must traverse a certain mimumum number of

hops.

We now address the issue of how the channels l and r are chosen by S and D respectively.

Channel Selection and Transition Initially, after each source has chosen a random

destination, the each flow is assigned an initial source channel, as well as a target destination

channel in the following manner:

The source S of a flow has an assigned contiguous channel-set (say (i, ..., i + f − 1)),

while the destination D also has an assigned contiguous channel-set (say (j, ..., j + f − 1)).

One of the x ≥ f
c preferred channels available at the source is selected uniformly at random

as the source channel. One of the y ≥ f
2 preferred channels available at the destination is

selected as the channel on which the flow reaches the destination. The choice of destination

channel can be made using any arbitrary criterion from amongst all preferred channels that

the destination can operate on.

To ensure that each route has enough hops to assure a feasible transition sequence, we

stipulate that the straight-line cell-to-cell path be followed if either the chosen source and

destination channels are the same, or if the straight-line segment SD′ comprises h ≥ 4c
f

intermediate hops. If S and D′ (hence also D) lie close to each other, the hop-length of

the straight line cell-to-cell path can be much smaller. In this case, a longer detour path

1When l ≥ r, the transitions are of the form l → l − ⌊ f

2
⌋, ..., r.

26

S

D′
D

P

Figure 3.1: Illustration of detour routing

is chosen. Consider a circle of radius 4c
f r(n) centered at S. Choose a point on this circle,

say P. In the considered c = O(log n) regime, P can be any point on the circle. The route

is obtained by traversing cells along SP and then PD′D. This ensures that the route has

at least the minimum required hop-length (provided by segment SP). This situation is

illustrated in Fig. 3.1. Flows that follow such a detour route shall hereafter be referred to

as detour-routed flows, whereas the remaining flows (which follow a straight-line route) will

be referred to as non-detour-routed flows.

The route of a flow comprises two phases: a progress-on-source-channel phase, and

a transition phase. Intuitively, while in the progress-on-source-channel phase, the flow’s

packets are transmitted at each hop on the chosen source-channel l. Once in the transition

phase, the packets get transmitted along a sequence of channels that constitute a transition

from l to r, as was described earlier. Once the transition sequence has reached channel r,

the packets are transmitted along any remaining hops on r, till they are received at the

destination.

The initial hops of the route of a non-detour-routed flow constitute the progress-on-

source-channel phase. The flow remains in this phase till there are only ⌈4c
f ⌉ intermediate

hops left to the destination. At this point, it enters transition mode. A detour-routed flow

is always in transition mode.

Lemma 8. Suppose the event addressed in Lemma 6 holds. Suppose a flow’s selected

27

preferred source channel is l and its selected preferred destination channel is r. Then, after

having traversed h ≥ ⌈4c
f ⌉ + 1 cells (recall that 2 ≤ f ≤ c) , it is guaranteed to have made

the transition.

Proof. The event considered in Lemma 6 is that each cell has at least 12 log n nodes on

each pair of preferred channels (i, x), for all x ≤ ⌊f
2 ⌋. Given that the chosen source channel

is l, the flow packets are transmitted on l on those hops where the flow is in progress-

on-source-channel mode. When the flow moves into transition mode, the first relay node

in this phase chooses as next-hop a node having channel pair (l, l + ⌊f
2 ⌋) in the next cell

(the exact method for choosing relay nodes is described later), and transmits the flow’s

packets to it using channel l. This node then chooses a next hop having channel pair

(l + ⌊f
2 ⌋, l + 2⌊f

2 ⌋), and sends packets to it over channel l + ⌊f
2 ⌋, and the process continues

till the flow has found a transition into the chosen destination channel r. This requires at

most ⌈4c
f ⌉ intermediate hops, which are obtained by traversing at most ⌈4c

f ⌉+ 1 cells. Once

the transition to destination channel r is done, flow packets are transmitted on channel r

for the remaining hops (if any) to the destination.

The event considered in Lemma 6 holds w.h.p., and therefore, each flow will be able to

find such a transition sequence w.h.p.

Lemma 9. If the number of distinct flows traversing any cell is x in case of pure straight-

line routing, it is at most x + O(n c2

f2 r
2(n)) =⇒ x + O(log4 n) even with detour routing

2.

Proof. Since a detour route lies within a circle of radius 4c
f r(n) around the source, the extra

detour-routed flows that may possibly pass through a cell (compared to the case where

only straight-line routing is performed) are those whose sources lie within a distance 4c
f r(n)

from this cell. All such possible sources fall within a circle of radius (4c
f + 1)r(n), and hence

area ac(n) = π(4c
f + 1)2r(n)2. Any circle of this radius has O(nac(n)) nodes, and hence

at most O(nac(n)) sources w.h.p. (Lemma 60). Therefore, the number of detour-routed

flows that traverse the cell is O(nac(n)) = O(n c2

f2 r
2(n)), and the total number of flows is

x+O(n c2

f2 r
2(n)) =⇒ x+O(log4 n) w.h.p.

2This is a loose upper bound. The actual number of detour-routed flows traversing a cell is much smaller.

28

Lemma 10. The number of flow-links traversing any cell in transition phase (counting

repeat traversals separately) is O(log4 n) w.h.p.

Proof. First let us account for the SD′ stretch of each flow’s route, without considering the

possible additional last hop. We account for it explicitly later in this proof.

By our construction, a non-detour routed flow enters the transition phase only when

it is ⌈4c
f ⌉ intermediate hops away from its destination. All such flows must have their

pseudo-destinations within a circle of radius Θ(c
f r(n)) centered in the cell. The number of

destinations that lie within a circle of radius Θ(c
f)r(n) from the cell is Θ(n(c

f)2r2(n)) =⇒
O(c3

f3 log n) w.h.p., (by suitable choice of α(n) = O(c3

f3) in Lemma 60). Thus the number of

non-detour routed flows that may traverse a cell is O(c3

f3 log n).

A detour-routed flow is always in transition phase. By Lemma 9, there are O(log4 n)

such flows traversing any cell. Each such flow can only traverse a cell at most twice along

the SPD′ stretch. This yields O(log4 n) detour-routed flows (including repeat traversals).

Also, the cell may be traversed/re-traversed by some flows on their additional last hop.

There are O(na(n)) pseudo-destinations in the adjacent cells w.h.p., and thus O(na(n)) =

O(c log n
f) =⇒ O(log2 n) such last hop flow traversals. Thus the number of flows transi-

tioning in any cell is O(c3

f3 logn)) + O(log4 n) + O(log2 n). Taking note that c = O(log n),

it follows that the number of flows traversing the cell while in their transition phase is

O(log4 n) w.h.p.

Relay Node Selection We now describe how a relay node is assigned to a flow’s route

in each cell.

A flow-link is said to enter a cell H on a channel j if the flow’s route includes a hop (link)

(vi−1, vi), where vi−1 is in a cell adjacent to H, vi is in H , and vi−1 transmits the flow’s

packets to vi using channel j (this naturally implies that both vi−1 and vi can operate on

channel j). Similarly, a flow-link is said to leave a cell H on channel j if the route includes

a link (vi, vi+1), where vi is in H, vi+1 is in a cell adjacent to H, and vi transmits the flow’s

packets to vi+1 using channel i

When a flow-link must enter a cell in progress-on-source-channel phase on a certain

channel, then, amongst all nodes in that cell capable of switching on that channel, it is

assigned to the node which has the least number of flow-links entering on that channel

assigned to it so far. In the transition phase of a flow, a flow-link may need to be assigned

29

a relay node that can operate on a specific pair of channels (to facilitate transition). It can

be assigned to any node in the cell that satisfies the requirement. Similarly, once a flow in

transition phase has already completed to the transition, the remaining links on the route

will enter the remaining cells on its route on the destination channel. Such a flow-link can

be assigned to any node in the cell that can switch on the destination channel.

3.5.2 Load Balance within a Cell

Recall that each cell has O(na(n)) nodes w.h.p., and O(n
√
a(n)) flows traversing it w.h.p.

Per-Channel Load

Lemma 11. The number of flow-links that enter any cell on any single channel is O(
n
√

a(n)

c)

w.h.p.

Proof. Consider a cell H.

A flow’s route may enter a channel i in the cell in any of the following circumstances:

1. The flow’s source channel is i and it is in the progress-on-source-channel phase

2. The flow’s route is in the transition phase, and transitioning through i

3. The flow’s route is in the transition phase, its destination channel is i, and it has

already made a transition

We first account for the flow-routes in progress-on-source-channel phase:

From our construction, and by our choice of a(n), each flow stays in progress-on-source-

channel phase, till there are ⌈4c
f ⌉ intermediate hops left to the destination. Thus, a flow is

on its source channel in a given cell if its destination is more than ⌈4c
f ⌉ intermediate hops

away.

Denote the number of flow-routes traversing the cell in progress-on-source channel phase

by m. Then m = O(n
√
a(n)) (from Lemma 7).

Let Xij be an indicator variable which is 1 if flow-route j enters the cell on channel i,

and is 0 else.

From the model definition, each source’s interface is assigned a block of f contiguous

channels in an i.i.d. manner, and it chooses one channel uniformly from x ≥ ⌈f
2 ⌉ ≥

f
2

30

preferred channels in this channel block. Furthermore, the sequence of cells traversed by a

flow’s route is chosen in a manner independent of the channels the source can switch on.

Hence, the probability that a flow-route in progress-on-source-channel phase is on a par-

ticular preferred channel i is at most 2padj
s (i)
f =

(
2
f

)(
min{f,c−f+1,i,c−i+1}

c−f+1

)
≤
(

2
f

)(
min{f,c−f+1}

c−f+1

)
=

2
max{f,c−f+1} ≤ 4

c , yielding:

1

c
≤ Pr[Xij = 1] ≤ 4

c

Xi =
∑

j Xij denotes the number of flow-routes in progress-on-source-channel phase

that enter the cell on channel i. Evidently:

m

c
≤ E[Xi] ≤

4m

c

The Xij ’s are i.i.d. random variables for a given i, as each flow’s source channel is

chosen in an i.i.d. manner (though they may not be independent for different i, since

Xij = 1 =⇒ Xik = 0 ∀k 6= i). Hence we may set (1 + β)E[Xi] = max{4e2m
c , 3 log n} (note

that β ≥ e2 − 1 > 0), and apply the Chernoff bound from Lemma 51 to obtain:

Pr[Xi ≥ max{4e2m

c
, 3 log n}] ≤

(
eβ

(1 + β)(1+β)

)E[Xi]

≤
(

e

(1 + β)

)(1+β)E[Xi]

≤
(

eE[Xi]

max{4e2m
c , 3 logn}

)(1+β)E[Xi]

≤ exp(−(1 + β)E[Xi]) ≤ exp(−max{4e2m

c
, 3 logn})

(3.9)

The number of preferred channels cpref cannot exceed c. Applying the union bound over

the cpref ≤ c preferred channels, the probability that there are max{4e2m
c , 3 logn} or more

flow-links entering on any single channel is at most c exp(−max{4e2m
c , 3 log n}). Taking

another union bound over all 1
a(n) = fn

100c log n cells, the probability this happens in any cell

of the network is less than fn
100 log n exp(−max{4e2m

c , 3 log n}) = O(1
n2).

Observing that max{4e2m
c , 3 log n} = O(

n
√

a(n)

c), this proves that the number of non-

transitioning flows that enter any cell on a given channel is O(
n
√

a(n)

c) w.h.p.

We now need to account for the fact that some of the flow-routes may be in the transi-

31

tion phase, and may either be transitioning through an intermediate channel or may have

transitioned to the destination channel. From Lemma 10 the number of flow-links for such

flows which traverse the cell (counting repeat traversals separately) is O(log4 n) w.h.p. Even

if they were all to enter on the same channel, the additional contribution to the load would

be O(log4 n).

Hence the per-channel load in all cells is at most O(
n
√

a(n)

c)+O(log4 n) =⇒ O(
n
√

a(n)

c)

w.h.p.

Lemma 12. The number of flow-links that leave any given cell on any single channel is

O(
n
√

a(n)

c) w.h.p.

Proof. The flows whose routes leave a cell fall into two categories: (1) those that originate

at some node in the cell, and (2) those that entered the cell but did not terminate there

(i.e., were relayed through the cell). The former can be no more than the number of nodes

in the cell, i.e. Θ(na(n)) = Θ(c log n
f) = O(log2 n). For the latter, note that any flow-link

that leaves the cell, must then enter one of the 8 adjacent cells. Thus, the former can be no

more than 8 times the maximum number of flow-links entering a cell on any one channel,

which has been established as O(
n
√

a(n)

c) = O(
√

n log n
cf) in Lemma 11. Hence, the total

number of flow-links leaving any given cell on a given channel is O(
n
√

a(n)

c) w.h.p.

Per-Node Load

Lemma 13. The number of flow-links that are assigned to any single node in any cell is

O(
n
√

a(n)

c) w.h.p.

Proof. A node is always assigned an outgoing link for the single flow for which it is the

source. A node is also assigned an incoming link for each flow for which it is the destination

(any such flows terminate in that cell), and there are O(logn) such flows for any node w.h.p.

(from Lemma 1).

Additionally, a node may act as a relay node on the routes of other flows. For each such

flow, it is assigned an incoming and an outgoing link (as it must receive the flow’s packets,

and then transmit them on to a next hop node).

It may be assigned as relay for some flow-routes that are in the transition phase, and for

which it serves as one of the nodes in the channel-transition sequence, or it may be assigned

32

as relay for some flow-routes in transition phase which have completed the transition, if it

can operate on their destination channel. From Lemma 10 there are O(log4 n) such flow-

links traversing a cell w.h.p. (counting possible repeat traversal by some detour-routed

flows, as well as any additional last hop traversals separately). Resultantly, the number of

such flow-links assigned to a node is O(log4 n).

It may also be assigned as relay for flow-routes that are in progress-on-source-channel

phase while they traverse the cell. We have already established in Lemma 11, that the

number of flows that enter on a given channel in any cell is O(
n
√

a(n)

c) w.h.p. From our

routing and channel transition strategy, flow-links in the progress-on-source-channel phase

of a route are always operated on the source’s selected preferred channel. From Lemma 4,

there are at least 12 log n nodes on each preferred channel in each cell w.h.p. As per our

previously described relay node selection strategy, when a relay node is to be assigned to an

incoming flow-link in progress-on-source-channel phase in a cell on a certain channel, then

amongst all nodes in the cell capable of switching on that channel, it is assigned to the node

which has the least number of entering flow-links assigned on that channel so far. By using

such an assignment strategy, it follows that no node can have more than O(
n
√

a(n)

c log n) such

flow-links assigned on any single channel, and no more than O(
fn
√

a(n)

c log n) =⇒ O(
n
√

a(n)

c)

such flow-links assigned overall (recall that c = O(logn), and f ≤ c).
For each incoming flow-link assigned to a node for relaying, there is a corresponding

outgoing flow-link (as the node is a relay).

Thus, the resultant number of assigned flows per node is 1 + O(log n) + O(log4 n) +

O(
n
√

a(n)

c) = O(
n
√

a(n)

c).

3.5.3 Transmission Schedule

We noted earlier that each cell can face interference from at most a constant number γ of

nearby cells, where γ is a constant. The resultant cell-interference graph has a chromatic

number at most 1 + γ. Therefore, it is possible to obtain a global interference-free TDMA

schedule having 1 + γ time slots in each round. In any slot, if a cell is active, then all cells

that interfere with it are inactive. The next issue is that of intra-cell scheduling. We need

to schedule transmissions so as to ensure that, at any time instant, there is at most one

transmission on any given channel in the cell. Besides, we also need to ensure that no node

33

is expected to transmit or receive more than one packet at any time instant. We use the

following procedure to obtain an intra-cell schedule:

We construct a conflict graph based on the nodes in the active cell, and its adjacent

cells , as follows:

We create a separate vertex for each flow-link leaving the cell (note that the hop-sender

of each such flow-link shall lie in the active cell, and the hop-receiver shall lie in one of

the adjacent cells). Since the flow-link operates on an assigned channel, each vertex in the

graph has an implicit associated channel. Besides, each vertex has an associated pair of

nodes corresponding to the hop endpoints. Two vertices are connected by an edge if either

(1) they have the same associated channel, or (2) at least one of their associated nodes is

the same.

The scheduling problem reduces to obtaining a vertex-coloring of this graph. If we have a

vertex coloring, then it ensures that (1) a node is never simultaneously sending/receiving for

more than one flow-link (2) no two flow-links on the same channel are active simultaneously.

The number of neighbors of a graph vertex is upper bounded by the number of flow-links

leaving the active cell on that channel, and the number of flow-links assigned to the flow’s

two hop endpoints (both hop-sender and hop-receiver). From Lemma 12 and Lemma 13,

the degree of the conflict graph is O(
n
√

a(n)

c) + O(
n
√

a(n)

c) =⇒ O(
n
√

a(n)

c). Since any

graph with maximum degree d has chromatic number at most d+ 1, the conflict graph can

be colored in O(
n
√

a(n)

c) colors.

Therefore, the cell-slot can be divided into O(
n
√

a(n)

c) = O(

q
cn log n

f

c) equal length sub-

slots, and all flow-links get a sub-slot for transmission.

This yields that each flow will get Ω(W
√

f
cn log n) throughput.

Combining this with the upper bound from Section 3.4, we obtain the following theorem:

Theorem 2. With an adjacent (c, f)-channel assignment, where c = O(logn), the network

capacity is Θ(W
√

f
cn log n) per flow.

3.6 The Case of Untuned Radios

It was proposed in [93] that extremely inexpensive wireless devices can be manufactured

if it is possible to handle untuned radios whose operating frequency may lie randomly

within some band. A random network coding based approach was described in [93] to relay

34

B

Center frequency (uniformly distributed over (F1, F2)

Figure 3.2: The Untuned Radio Model

information between a single source-destination pair using such devices as relays. In this

section, we obtain capacity results for a randomly deployed network of n nodes with one

untuned radio each, with our assumed model, i.e., n random source-destination pairs, and

store-and-forward routing.

The untuned channel model is as follows: each node possesses a transceiver with center

frequency uniformly distributed in the range (F1, F2), and admits a spectral bandwidth B

(Fig. 3.2). Let c = ⌊F2−F1
B ⌋. Then c is the maximum number of disjoint channels that could

be possibly obtained if each channel occupied a frequency band of width B. For simplicity,

the rest of the discussion assumes that c = ⌊F2−F1
B ⌋ = F2−F1

B (i.e., the interval (F1, F2) is

chosen to be a multiple of B).

However the channels of operation of these radios are untuned and hence partially

ovelapping, rather than disjoint. As per the assumption in [93], two nodes can communicate

directly if the center frequency of one is admitted by the other, i.e., if there is at least 50%

overlap between two channels, communication is possible. We consider the issue of capacity

of a network of n nodes, deployed uniformly at random, where each node has an untuned

radio, and each node is the source of one flow, with a randomly chosen destination.

Even though each node only possesses a single radio and stays on a single sub-band,

due to the partial overlap between sub-bands, it is still possible to ensure that any pair of

nodes will be connected via some path. Contrast this to the case of orthogonal channels,

where we argued in Section 2.5 that when f = 1, and c > 1, some pairs of nodes are

disconnected from each other because they do not share a channel. It is possible to map

the partial overlap feature of the untuned channel case to adjacent (2c+2, 3) and (4c+1, 2)

35

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

Figure 3.3: Untuned Radios: Upper Bound via virtual (2c+ 2, 3) channelization

assignment, and obtain upper and lower bounds. Note that f ≥ 2 allows for all nodes to

be connected, even with orthogonal channels.

3.6.1 Upper Bound on Capacity

We map the untuned radio scenario to a scenario involving (2c + 2, 3) adjacent channel

assignment (Fig. 3.3).

We perform a virtual channelization of the band (F1, F2) into 2c orthogonal sub-bands.

We add an additional (virtual) sub-band of the same width at each end of the band, to get

2c + 2 orthogonal channels, numbered 1, ..., 2c + 2. Thus 1 and 2c + 2 are the artificially

added channels. If a radio’s center frequency lies within virtual channel i, it is associated

with virtual channel block (i − 1, i, i + 1), and i − 1 is called its primary virtual channel.

Thus the primary channel can only be one of 1, 2, ..., 2c (since the center frequency can only

fall in 2, .., 2c + 1). If a node’s primary channel is i, it is capable of communicating with

all nodes with primary virtual channel i − 2 ≤ j ≤ i + 2 in the virtual channelization. In

the actual situation, the node with the untuned radio would be able to communicate with

some subset of those nodes. Thus, if a pair of nodes cannot communicate directly in the

virtual channelization, they cannot do so in the actual situation either, and disconnection

events in the former are preserved in the latter. The probability that a node has virtual

channel block (j, j + 1, j + 2) is 1
2c , i.e., the same as for adjacent (2c + 2, 3) assignment,

and the assignment of each node is independent. Therefore, the necessary condition for the

(virtual) (2c+ 2, 3) assignment continues to hold for the corresponding untuned radio case.

This yields an upper bound on capacity of O(W
√

1
cn log n).

3.6.2 Lower Bound on Capacity

It can be shown that a schedule constructed for an adjacent (4c+ 1, 2) assignment can be

used almost as-is with untuned radios (except that the number of subslots in the cell-slot

must increase by a constant factor to avoid interference due to overlap).

36

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

Figure 3.4: Untuned Radios: Lower Bound via virtual (4c+ 1, 2) channelization

We perform a virtual channelization of the band (F1, F2) into 4c + 1 orthogonal sub-

bands. If a radio’s center frequency lies within virtual channel i, it is associated with virtual

channel block (i, i+ 1), and i is called its primary virtual channel.

Thus, if a pair of nodes can operate on a common channel in the virtual channelization,

then they are always capable of direct communication in the actual untuned radio situation.

The probability that a radio has virtual channel block (i, i+1) is 1
4c , which is the same as for

adjacent (4c+ 1, 2) assignment, and the assignment of each node is independent. In the ad-

jacent (4c+1, 2) assignment, all channel are orthogonal and can operate concurrently. With

untuned radios, we assume that two nodes can interfere if there is some spectral overlap.

Thus, a transmission by a node on center frequency F can interfere with transmissions by

nodes with center frequency in the range (F −B,F +B). Hence, the transmission schedule

for untuned radios is made to follow the additional constraint that if a node with primary

virtual channel i is active then no node with primary channel i − 5 ≤ j ≤ i + 5 should be

active simultaneously. This can decrease capacity by a factor of 11, but would not affect

the order of the asymptotic results. Also, in the actual network involving untuned radios,

a transceiver can use upto B = F2−F1
c spectral bandwidth, while in the adjacent (4c+ 1, 2)

case, it would be F2−F1
4c+1 , leading to the possibility of having a higher data-rate in the former,

given the same transmission power, modulation, etc. However this can only affect capacity

by a small constant factor, which does not affect the order of the results.

In the adjacent (4c + 1, 2) case, our construction performs transitions to ensure that a

source on channels (i, i+1) and a destination on channels (i+ j, i+ j+1) can communicate

over j ≤ 4c hops. In the untuned radio case, transitioning occurs through nodes that

provide the required virtual channel pair, and the same transition strategy as for (4c+ 1, 2)

assignment continues to work. Hence the capacity is Ω(W
√

1
cn log n) per flow.

We re-emphasize that even though f = 1, the untuned nature of the radios allows

for a progressive shift in the frequency over which the packet gets transmitted, thereby

allowing a step-by-step transition from the source’s center frequency to a frequency admitted

37

by the destination. The adjacent (c, f) model captures this progressive frequency-shift

characteristic, and is thus able to model the untuned radio situation.

The upper and lower bounds proved in this section lead to the following:

Theorem 3. In the regime c = O(logn), the capacity of a randomly deployed network of

untuned radios is Θ(W
√

1
cn log n) per flow.

3.7 Discussion

The capacity-achieving construction provides some useful insights. As is intuitive, when all

nodes cannot switch on all channels, the transmission range needs to be larger to preserve

network connectivity. This leads to a loss of capacity compared to the case of unconstrained

switching. Also, it may no longer be possible to use the straight-line path towards the

destination, and a flow may need to traverse a larger number of hops (detour routing) in

order to ensure that the destination is reached. However, when the number of channels

is much smaller than the number of nodes, the increase in the length of the routes is not

asymptotically significant, and only affects the capacity by a constant factor. Taking all

factors into account, given situations where each radio-interface can only be manufactured

to switch on f channels out of a total of c available channels (where c = O(logn)), it is

beneficial in the asymptotic regime to attempt to use all channels by assigning different

channel subsets to different nodes, rather than follow the naive approach of using the same

f channels at all nodes. In the latter case, the per-flow capacity would be reduced to

Θ(W f
c
√

n log n
). Thus, the use-all-channels approach outperforms the f-common-channels

approach by a factor of Θ(
√

c
f). For instance, even when f = 2, utilizing all channels yields

a capacity of the order of
√
c channels.

38

Chapter 4

Random (c, f) Assignment

In this chapter, we present connectivity and capacity results for the random (c, f) assign-

ment model that was introduced in Chapter 2. We begin by defining the random (c, f)

assignment model in Section 4.1, and thereafter summarize the chapter results in Section

4.2. In Section 4.3, we state and prove some preliminary results used by subsequent proofs.

We present necessary and sufficient conditions for connectivity in Section 4.4. Section 4.5

presents an upper bound on capacity. In Section 4.6 we describe a sub-optimal lower bound

construction for capacity. The optimal lower bound construction in described in Section 4.7.

Finally, in Section 4.8, we discuss the implications of the capacity result, and the insights

that can be obtained from it.

4.1 Model Definition

In the random (c, f) assignment model, each radio-interface is assigned a subset of f chan-

nels from a total of c available channels (2 ≤ f ≤ c) uniformly at random from all such

possible subsets. This leads to the following:1

Pr[a given interface can switch on channel i] = prnd
s (i) =

f

c
= prnd

s , ∀i (4.1)

1The number of ways of selecting k objects from a set of m objects, i.e.,
`

m

k

´

is usually defined as m!
k!(m−k)!

for m ≥ k ≥ 0. For k > m ≥ 0 or k > 0 > m, one can uniformly define
`

m

k

´

to be 0, as there exists no
way of selecting k objects from a set of m objects under these circumstances. In this chapter, we use this

convention for notational convenience. It is also to be noted that the expression
k

Q

i=1

`

m−k+i
i

´

yields m!
k!(m−k)!

for 0 < k ≤ m and is 0 for k > m ≥ 0.

39

Pr[two given interfaces can switch on at least one common channel] = prnd

= 1−
(
c−f
f

)
(

c
f

) = 1−
(

1− f

c

)(
1− f

c− 1

)
...

(
1− f

c− f + 1

) (4.2)

Evidently: f ≥ c− f + 1 =⇒ prnd = 1.

Since we consider only single-interface nodes for the results in this chapter, there is a

one-to-one mapping between interfaces and nodes. Thus, as also in Chapter 3, we often use

the term node instead of interface in the following discussion.

4.2 Summary of Results

We prove the following results:

1. We show that in the regime c = O(log n), the critical range for connectivity with

random (c, f) assignment is Θ(
√

log n
prndn).

2. We establish the per-flow capacity with random (c, f) assignment for the regime c =

O(log n) as Θ(W
√

prnd

n log n).

It can be shown that prnd ≥ 1 − e− f2

c . Hence, the implication of this capacity result is

that, when f = Ω(
√
c), random (c, f) assignment yields capacity of the same order as

attainable via unconstrained switching. Thus, for the random (c, f) assignment model,
√
c-

switchability is sufficient to make order-optimal use of all c channels, when c = O(log n).

A preliminary version of the chapter results was reported in [7, 6].

4.3 Preliminaries

In this section, we state and prove some results that are required for the proofs that follow.

Lemma 14. For c ≥ 2, and 2 ≤ f ≤ c:

cprnd

f
≤ min{ c

f
, 2f} (4.3)

Proof. Since prnd ≤ 1, it follows that:

40

cprnd

f
≤ c

f
(4.4)

If f ≥
√

c
2 :

cprnd

f
≤
√

2c ≤ 2f ∵ prnd ≤ 1 (4.5)

Now consider the case f <
√

c
2 , i.e., 2f2

c < 1. It is to be noted that f <
√

c
2 =⇒ 2f

c < 1

for all c ≥ 2. We take note of the following inequality:

ln

(
(1− 2f

c
)f

)
= f ln (1− 2f

c
)

= f

[(
−2f

c

)
− 1

2

(
−2f

c

)2

+
1

3

(
−2f

c

)3

−
]

=

(
−2f2

c

)
− 1

2f

(
−2f2

c

)2

+
1

3f2

(
−2f2

c

)3

−

≥
(
−2f2

c

)
− 1

2

(
−2f2

c

)2

+
1

3

(
−2f2

c

)3

−

= ln(1− 2f2

c
)

∴ (1− 2f

c
)f ≥ 1− 2f2

c
(since lnx is an increasing function of x)

(4.6)

Noting that c− f + 1 > c
2 and c− f + 1 > f whenever f <

√
c
2 , we obtain that:

1− prnd =

(
1− f

c

)(
1− f

c− 1

)
...

(
1− f

c− f + 1

)

≥ (1− f

c− f + 1
)f > (1− 2f

c
)f ≥ 1− 2f2

c
using (4.6))

∴ prnd ≤
2f2

c

∴
cprnd

f
≤ 2f

(4.7)

From (4.4), (4.5) and (4.7):
cprnd

f
≤ min{ c

f
, 2f}

Lemma 15. min{ c
f , 2f} ≤

√
2c

Proof. For a given c, we have 2 ≤ f ≤ c. Thus, given c, c
f is a monotonically decreasing

41

function of f , while 2f is a monotonically increasing function of f . c
f = 2f =

√
2c at

f =
√

c
2 . For f ≤

√
c
2 , min{ c

f , 2f} = 2f ≤
√

2c, and for f >
√

c
2 , min{ c

f , 2f} = c
f ≤
√

2c.

Thus min{ c
f , 2f} ≤

√
2c.

Lemma 16. The following inequality holds for all 2 ≤ f ≤ c:
(

2
(
c−f
f

)
−
(
c−2f

f

)
(

c
f

)
)
≤ 1− p2

rnd

40

Proof. We begin by observing that
(c−f

f)
(c

f)
= 1− prnd.

Consider the following three cases:

Case 1: f ≥ c− f + 1

This implies that prnd = 1. Noting that the L.H.S cannot exceed =2(1− prnd) = 0, the

result follows trivially.

Case 2: c−f+1
2 ≤ f < c− f + 1

This implies that
(c−2f

f)
(c

f)
= 0. Moreover:

(
c−f
f

)
(

c
f

) =

f∏

i=1

(
1− f

c− i+ 1

)
≤
(

1− f

c− f + 2

)(
1− f

c− f + 1

)

≤
(

1− f

2f + 1

)(
1− f

2f

)
≤
(

3

5

)(
1

2

)
=

3

10
(recall that f ≥ 2)

Therefore, L.H.S. is upper bounded by 2
(

3
10

)
− 0 = 6

10 ≤ 1 − 1
40 ≤ 1 − p2

rnd

40 (since

prnd ≤ 1).

Note that when 2f < c− f + 1:

(
2(c−f

f)−(c−2f
f)

(c
f)

)
= 2

f∏
i=1

(
1− f

c−i+1

)
−

f∏
i=1

(
1− 2f

c−i+1

)
.

The next two cases pertain to this regime.

Case 3: f < c−f+1
2 and

f∑
i=1

f
c−i+1 > 0.8

Set xi = f
c−i+1 . Note that 1 − prnd =

f∏
i=1

(1 − xi) ≤
f∏

i=1
e−xi = e−

P
xi < e−0.8 ≤ 0.45.

Therefore prnd ≥ 0.55. Hence:

2

f∏

i=1

(1− xi)−
f∏

i=1

(1− 2xi) ≤ 2

f∏

i=1

(1− xi) ≤ 0.9 ≤ 1− prnd

10
≤ 1− p2

rnd

10
≤ 1− p2

rnd

40
(4.8)

Case 4: f < c−f+1
2 and

f∑
i=1

f
c−i+1 ≤ 0.8

42

Denote by I2m+1≤f the indicator variable which is 1 if 2m+ 1 ≤ f and 0 else. We first

prove the following inequality:

2

f∏

i=1

(1− xi)−
f∏

i=1

(1− 2xi)

=


2− 2

∑

i

xi + 2

∑
i

(xi
∑
j 6=i

xj)

2!
− 2

∑
i

(xi
∑
j 6=i

(xj
∑

k 6=i,j

(xk)))

3!
++ 2(−1)fx1x2...xf




−


1−

∑

i

(2xi) +

∑
i

((2xi)
∑
j 6=i

(2xj))

2!
+ ...+ (−1)f (2x1)(2x2)...(2xf)




= 1 + (2− 22)

∑
i

(xi
∑
j 6=i

(xj))

2!
− (2− 23)

∑
i

(xi
∑
j 6=i

(xj
∑

k 6=i,j

xk))

3!
++ (−1)f (2− 2f)x1x2...xf

= 1−
∑

i


xi


∑

j 6=i

xj




+

∑

i


xi

∑

j 6=i


xj

∑

k 6=i,j

xk






+

⌊ f

2
⌋∑

m=2


(2− 22m)

(2m)!

∑

i1


xi1


∑

i2 6=i1


xi2 ...

∑

i2m 6=i1,i2,...

xi2m








−(2− 22m+1)

(2m+ 1)!

∑

i1


xi1

∑

i2 6=i1


xi2 ...

∑

i2m+1 6=i1,i2,...

xi2m+1




 I2m+1≤f




= 1−
∑

i


xi


∑

j 6=i

xj




+

∑

i

xi


∑

j 6=i

xj


∑

k 6=i,j

xk






+

⌊ f

2
⌋∑

m=2


(2− 22m)

(2m)!

∑

i1


xi1

∑

i2 6=i1

xi2


...

∑

i2m 6=i1,i2,...

xi2m
(1

− (2− 22m+1)

(2m+ 1)(2− 22m)

∑

i2m+1 6=i1,i2,...

xi2m+1I2m+1≤f










= 1− 0.2
∑

i


xi

∑

j 6=i

xj


−


0.8

∑

i

xi


∑

j 6=i

xj




−

∑

i


xi

∑

j 6=i


xj


∑

k 6=i,j

xk








−
⌊ f

2
⌋∑

m=2


(22m − 2)

(2m)!

∑

i1


xi1

∑

i2 6=i1

xi2


...

∑

i2m 6=i1,i2,...

xi2m
(1

− (22m+1 − 2)

(2m+ 1)(22m − 2)

∑

i2m+1 6=i1,i2,...

xi2m+1I2m+1≤f










43

≤ 1− 0.2
∑

i


xi

∑

j 6=i

xj


 whenever

∑

i

xi ≤ 0.8

∵ 1− (22m+1 − 2)

(2m+ 1)(22m − 2)

∑

i2m+1 6=i1,i2,...

xi2m+1I2m+1≤f ≥ 0 ∀m ≥ 2 when
∑

i

xi ≤ 0.8

Set xi = f
c−i+1 . By assumption

∑
i
xi =

f∑
i=1

f
c−f+1 ≤ 0.8. Also

∑
i

(xi
∑
j 6=i

xj) ≥ f(f − 1)f2

c2
≥

1
2(f2

c)2 ≥ 1
2(prnd

2)2 =
p2

rnd

8 (applying Lemma 14). Hence 2
f∏

i=1
(1 − xi) −

f∏
i=1

(1 − 2xi) ≤

1− 0.2
∑
i
xi
∑
j 6=i

xj ≤ 1− p2
rnd

40 .

4.4 Conditions for Connectivity

We now show that the critical range for connectivity with random (c, f) assignment in the

regime c = O(logn) is Θ(
√

log n
prndn).

4.4.1 Necessary Condition for Connectivity

Theorem 4. With a random (c, f) channel assignment (when c = O(logn)), if πr2(n) =

(log n+b(n))
pn , where p = prnd = 1 − (1 − f

c)(1 − f
c−1)...(1 − f

c−f+1), and c = O(logn), and

lim sup
n→∞

b(n) = b < +∞ then:

lim inf
n→∞

Pr[disconnection] ≥ e−b(1− e−b)

where by disconnection we imply the event that there is a partition of the network.

Proof. The proof is obtained by an adaptation of the proof technique used in [42]. We

provide a proof-sketch here. The detailed proof is described in Appendix B.

We focus on the disconnection events where some node(s) are isolated.

From the model definition, the probability that two nodes in range of each other can

operate on at least one common channel is p = prnd where 1−prnd = (1− f
c)(1− f

c−1)...(1−
f

c−f+1).

The probability that a node x is isolated, i.e., cannot communicate with any other node,

is give by p1 = (1−pπr2(n))(n−1). One can also obtain an upper bound p2 on the probability

44

that two nodes x and y are both isolated. It can be shown that:

Pr[disconnection] ≥
∑

x

Pr[x is only isolated node]

≥
∑

x

Pr[x isolated]−
∑

x,y 6=x

Pr[x and y both isolated]

≥ np1 − n(n− 1)p2

≥ θe−b − (1 + ǫ)e−2b where b = lim sup
n→∞

b(n)

for any θ < 1, ǫ > 0, and large n

(4.9)

Therefore, if lim sup
n→∞

b(n) = b < +∞, the network is asymptotically disconnected with

some positive probability.

Corollary 2. With a random (c, f) assignment, the necessary condition for connectivity is

that r(n) = Ω(
√

log n
prndn), else the network is disconnected with some positive probability.

4.4.2 Sufficient Condition for Connectivity

Theorem 5. With random (c, f) assignment, in the regime c = O(logn), if πr2(n) =

800π log n
prndn , then:

lim
n→∞

Pr[network is connected] = 1

Proof. The construction is based on per-node structures termed as backbones.

Consider a subdivision of the unit torus into square cells of area a(n) = 100 log n
prndn . Noting

that prnd ≥ f
c = Ω(1

log n), and setting α(n) = 1
prnd

in Lemma 59, there are at least 50 log n
prnd

nodes in each cell with probability at least 1− 50 log n
n . Choose r(n) =

√
8a(n). Resultantly,

a node in any given cell has all nodes in adjacent cells within its range.

Within each cell, we categorize nodes as either transition facilitators or backbone can-

didates (the meaning of these terms shall become clear later) in the following manner: We

choose ⌊2 log n
prnd
⌋ nodes uniformly at random, and set them apart as transition facilitators.

This leaves at least ⌈48 log n
prnd

⌉ nodes in each cell that can be deemed as backbone candidates.

Consider any node in any given cell. The probability that it can communicate with any

other random node in its range is prnd. Hence, the probability that in an adjacent cell, there

45

is no backbone candidate node with which it can communicate is at most (1−prnd)
⌈ 48 log n

prnd
⌉ ≤

1
e48 log n = 1

n48 (applying Fact 2).

The probability that a given node cannot communicate with any node in some adjacent

cell is thus at most 8
n48 (applying the union bound over all 8 possible adjacent cells). By

applying the union bound over all n nodes, the probability that at least one node is unable

to communicate with any backbone candidate node in at least one of its adjacent cells is at

most 8
n47 .

We associate with each node x a set of nodes and links B(x) called the backbone for x.

B(x) is constructed as follows:

Throughout the procedure, cells that are already covered by the under-construction

backbone are referred to as filled cells. x is by default a member of B(x), and its cell is the

first filled cell. From each adjacent cell, amongst all backbone candidate nodes sharing at

least one common channel with x, one node (and hence also the link between that node and

x) is chosen uniformly at random and added to B(x). Thereafter, from each unfilled cell

bordering a filled cell, of all nodes sharing at least one common channel (and hence a feasible

link) with some node already in B(x), one is chosen uniformly at random, and is added to

B(x) (the link on the basis of which this node was chosen is added as a backbone link); the

cell containing the chosen node gets added to the set of filled cells. This process continues

iteratively, till there is one node from every cell in B(x). From our earlier observations, for

all nodes x, B(x) will eventually cover all cells with probability at least 1− 8
n47 . Note that

from any node in B(x) there is a path to x comprising entirely of links in the backbone.

Now consider any pair of nodes x and y. If there exists a connected path between some

node in B(x) and some node in B(y) then x and y are connected. This can occur in many

different ways. Consider three possibilities (Fig. 4.1.)

If B(x) and B(y) have a common node (Fig. 4.1(a)), then the two nodes are obviously

connected, as one can proceed from x on B(x) towards one of the common nodes, and

thence to y on B(y), and vice-versa.

Suppose the two backbones are disjoint. Then x and y are still connected if there is some

cell such that the node belonging to B(x) in that cell (let us call it qx) can communicate

with the node belonging to B(y) in that cell (let us call it qy), either directly, or through

a third node. qx and qy can always communicate directly if they share a common channel

46

���
���
���
���

(a)

��
��
��
��

(b)

���
���
���
���

(c)

qx = qy

qx

qy

qx

qy

z

Figure 4.1: Some ways in which backbones can be connected

(Fig. 4.1(b)). Hence, the case of interest is one in which no cell has qx and qy sharing a

channel.

Consider a particular cell, with qx and qy as the respective backbone members. If qx

and qy do not share a common channel, we consider the event that there exists a third node

amongst the transition facilitators in the cell through whom they can communicate (Fig.

4.1(c)). Given backbones B(x) and B(y), and given a network cell in which qx and qy do

not share a channel, the probability that they can both communicate with a given third

node z that did not participate in backbone formation and is known to lie in the same cell,

is independent of the probability of a similar event in another cell.

Therefore, the overall probability can be lower-bounded by obtaining for one cell the

probability of qx and qy communicating via a third node z in the cell given they have no

common channel, taking into account that each cell has at least ⌊2 log n
prnd
⌋ possibilities for z,

and treating it as independent across cells. We elaborate on this further:

Let qx have the set of channels C(qx) = {cx1 , ..., cxf
}, and qy have the set of channels

C(qy) = {cy1 , ..., cyf
}, such that C(qx) ∩ C(qy) = φ.

Consider a third node z amongst the transition facilitators in the same cell as qx and qy.

Denote the set of z’s chanels by C(z). We desire that C(z)∩C(qx) 6= φ and C(z)∩C(qy) 6= φ.

Note that a node x is a member of its own backbone. Thus qx = x in x’s cell, and

if x is a transition facilitator, this would imply that qx = x is not a backbone candidate.

To maintain uniformity and clarity, let us therefore only consider cells other than those

in which x and y lie (this can lead to the exclusion of at most 2 cells). In any such cell,

qx and qy are both backbone candidates, and if they do not share a common channel, it

implies that they can communicate through a given transition facilitator z with probability

47

pz = 1−
(

2(c−f
f)−(c−2f

f)
(c

f)

)
≥ p2

rnd

40 (Lemma 16).

There are ⌊2 log n
prnd
⌋ possibilities for z within that cell if neither x and y lie in the cell (since

in that case qx, qy are both backbone candidates), and all the possible z nodes have i.i.d.

channel assignments. Thus, the probability that qx and qy cannot communicate through

any z in the cell is at most (1 − pz)
⌊ 2 log n

prnd
⌋
, and the probability they can indeed do so is

pxy ≥ 1− (1− pz)
⌊ 2 log n

prnd
⌋
.

The number of such cells is at least 1
a(n) − 2 = prndn

100 log n − 2. Therefore, the probability

that this happens in none of the prndn
100 log n − 2 cells is at most (1 − pxy)

prndn

100 log n
−2 ≤ (1 −

pz)
(⌊ 2 log n

prnd
⌋)(prndn

100 log n
−2) ≤ e

−(
p2
rnd
40

)(⌊ 2 log n

prnd
⌋)(prndn

100 log n
−2)

= e
−Ω(n

log2 n
)

(recall that c = O(logn)

and therefore prnd = Ω(1
log n), and of course prnd ≤ 1).

Applying the union bound over all
(
n
2

)
< n2

2 node pairs, the probability that some pair

of nodes are not connected is at most n2e
−Ω(n

log2 n
)

2 ≤ 1
2e

−Ω(n

log2 n
)+2 log n

. Applying another

union bound over this probability, the probability that some of the cells are not sufficiently

populated (as mentioned earlier, this probability is at most 50 log n
n), and the probability

that some backbone cannot be grown fully (at most 8
n47), we obtain that the probability of

a connected network converges to 1, as n→∞.

4.5 Upper Bound on Capacity

Theorem 4 established that unless r(n) = Ω(
√

log n
prndn), some node is isolated with positive

probability. In Section 2.5 of Chapter 2, we discussed how the need to have r(n) = Ω(g(n))

implies that capacity is constrained to be O(W
ng(n)). In light of this, it follows that, for the

random (c, f) model in the regime c = O(logn), the per flow capacity is O(W
√

prnd

n log n) .

4.6 A Sub-Optimal Lower Bound on Capacity

We describe a construction CR1 that achieves a per-flow throughput of Ω(W
√

f
cn log n).

Though it is not optimal, this construction is of interest for the following reasons:

• The optimal procedure uses this construction for f < 100.

• This construction involves a simple routing and scheduling procedure, in contrast to

the optimal procedure for f ≥ 100 described in Section 4.7. Thus, it exemplifies a

48

performance-complexity trade-off.

This construction is quite similar to the construction for adjacent (c, f) assignment.

The surface of the unit torus is divided into square cells of appropriate area a(n) each.

The transmission range is set to
√

8a(n), thereby ensuring that any node in a given cell

is within range of any other node in any adjoining cell. The number of cells that interfere

with a given cell is only some constant (say γ). We choose a(n) = 100c log n
fn .

Lemma 17. There are at least 50c log n
f and at most 150c log n

f nodes in every cell w.h.p.

Proof. By application of Lemma 59, we can show that the number of nodes in any cell lies

between 50c log n
f and 150c log n

f with probability at least 1− 50 log n
n .

Lemma 18. If there are at least 50c log n
f nodes in every cell, then with probability at least

1−O(1
n4), for each of the c channels, there are at least 25 log n nodes in each cell that can

switch on that channel.

Proof. Let us consider one particular cell H. Let Xij = 1 if node j can switch on channel

i, and 0 else. Pr[Xij = 1] = f
c , and, for a given i, all the Xij ’s are independent. Let

Xi =
∑
j∈H

Xij .Then E[Xi] ≥ 50 log n. By application of the Chernoff bound in Lemma 53

(with β = 1
2) , we obtain:

Pr[Xj ≤ 25 logn] ≤ exp(−50 log n

8
) <

1

n6
(4.10)

Since there are c = O(log n) channels, the union bound yields that Pr[Xi ≤ 25 log n for any i ∈
1, 2, ..., c] ≤ c

n6 = O(log n
n6) =⇒ O(1

n5). Further, since there are 1
a(n) = fn

100c log n < n cells,

another application of the union bound yields:

Pr[less than 25 logn nodes per channel in any cell] = O(
1

n4
) (4.11)

4.6.1 Routing

Initially, each flow is assigned a source channel l, as well as a target destination channel

r. The source channel for a flow originating at node S is chosen according to the uniform

49

distribution from the f channels available at S. The destination channel may be chosen

from amongst the f channels available at destination D in any manner.

We need to find a feasible path from S to D. To obtain a feasible path, we try to find

a sequence of nodes v0 = S, v1, v2, ...,vi, ..., vk = D such that, for all 0 ≤ m ≤ i, vm can

operate on channel l, and for all i ≤ m ≤ k, vm can operate on r. Thus, node vi on the route

is capable of switching (operating) on both l and r, and this node serves as a transition

point for the flow’s route. To be able to find such a node vi, we may need to inspect a

certain minimum number of cells.

Lemma 19. If each flow traverses and inspects h ≥ ⌈ 2(c−1)
25(f−1)⌉ distinct cells, where the cells

to be inspected are chosen in a manner independent of channel presence in that cell (the

cells inspected by any single flow should be distinct; two flows may traverse the same cell),

a transition-point (relay node) that can switch on both the flow’s source channel, and the

flow’s destination channel will be found by each flow w.h.p.

Proof. Consider a particular flow. From Lemma 17, each cell has at least 50c log n
f nodes

w.h.p. The probability that there is no node capable of operating on both channels i and j

in a given cell along the flow’s route is at most (1− f(f−1)
c(c−1))

50c log n

f (since nodes are assigned

channels in an i.i.d. manner). Thus the probability of not finding such a node after h hops

is at most (1− f(f−1)
c(c−1))

(50hc log n

f
)
. If h ≥ ⌈ 2(c−1)

25(f−1)⌉, then after traversing h distinct cells, the

probability of not finding such a node is at most (1− f(f−1)
c(c−1))

4c(c−1) log n

(f(f−1) ≤ exp(−4 log n) ≤ 1
n4 .

Applying the union bound over all n flows, the probability that this should happen

for even one flow is at most 1
n3 . Hence, all flows will have be able to make the required

transition w.h.p., after traversing h ≥ ⌈ 2(c−1)
25(f−1)⌉ distinct hops.

Note that 2(c−1)
25(f−1) ≤ 4c

25f . Thus, if we ensure that each flow’s route passes through at

least ⌈ 4c
25f ⌉ intermediate cells, we will be able to find an end-to-end feasible route for each

flow w.h.p. Therefore, we adopt the following routing strategy:

The (almost) straight-line SD′D path is followed if either source and destination chan-

nels are the same, or if the straight-line segment SD′ provides h ≥ ⌈ 4c
25f ⌉ intermediate

hops. If S and D′ (hence also D) lie close to each other, the hop-length of the straight line

cell-to-cell path can be much smaller. In this case, a detour path is chosen, in a manner

similar to that described in Chapter 3 for adjacent (c, f) assignment, and depicted in Fig.

4.4, by considering a circle of radius ⌈4c
f ⌉r(n) centered at S, selecting a point P on the

50

circumference of that circle, and routing the flow along the sequence of cells traversed by

SP, PD′, and then a possible additional last hop.

Similar to the construction for adjacent (c, f) assignment described in Chapter 3, we

associate two phases with a flow’s route: a progress-on-source-channel phase, and a ready-

for-transition phase. We stipulate that a non-detour-routed flow stays in the progress-on-

source-channel phase along the route, till there are only ⌈ 4c
25f ⌉ intermediate hops left to the

destination. At this point, it enters a ready-for-transition phase, and is prepared to make

a transition given an appropriate relay node that provides the requisite channel-pair for

transition (the relay selection strategy is described later). A detour-routed flow is always

in ready-for-transition phase.

The need to perform detour routing for some source-destination pairs does not have any

substantial effect on the number of flow-routes that traverse a cell.

Lemma 20. The number of straight-line SD′D flow-routes that traverse any cell is O(n
√
a(n)).

Proof. From Lemma 61, the number of SD′ straight-lines traversing a single cell areO(n
√
a(n)),

yielding O(n
√
a(n)) flow-routes.

We must now separately consider the number of routes whose last D′D hop may enter

this cell. If D is in the same cell as D′, there is no extra hop. Otherwise, the number of

flows for which D′ lies in one of the 8 adjacent cells is O(na(n)) w.h.p. (since it follows

from Lemma 59 (applied to the set of n pseudo-destinations) that the number of pseudo-

destinations in any cell is O(na(n))). Since na(n) = O(n
√
a(n)), the total number of

traversing flow-routes is O(n
√
a(n)).

Lemma 21. If the number of flow-routes traversing any cell is x with only straight-line

routing, it is x+O(n
(

c
f

)2
r(n)2) =⇒ x+O(log4 n) with detour routing.

Proof. The detour occurs only when the straight-line route has less than ⌈ 4c
25f ⌉ intermediate

hops, and the new route lies entirely within a circle of radius ⌈ 4c
25f ⌉r(n) around the source.

Thus, the extra flows that may pass through a cell (compared to straight-line routing)

are only those whose sources lie within a distance ⌈ 4c
25f ⌉r(n) from some point in this cell.

All such possible sources fall within a circle of radius (1 + ⌈ 4c
25f ⌉)r(n), and hence area

ac(n) = π
(

1 + ⌈ 4c
25f ⌉

)2
r2(n). Noting that the source locations are i.i.d., and applying

Lemma 60, any circle of this area has O(nac(n)) nodes, and hence O(nac(n)) sources w.h.p.

51

Thus, the number of extra flows that traverse any cell due to detour routing is O(nac(n)).

Each such flow may traverse a cell at most twice along the SPD′ segment, and possibly

once more in the additional last hop. Therefore, the total number of flow-routes is x +

O(n
(

c
f

)2
r2(n)) =⇒ x+O(log4 n) w.h.p.

Lemma 22. The number of flow-routes traversing any cell is O(n
√
a(n)) even with detour

routing.

Proof. This follows from Lemma 20, Lemma 21 and the observation that O(log4 n) =⇒
O(n

√
a(n)) for our choice of a(n).

Lemma 23. The number of flow-routes traversing any cell in ready-for-transition phase is

O(log4 n) w.h.p.

Proof. We first account for the flows traversing the cell along the SD′ segment, and later

account for the possible additional D′D hop.

By our construction, a non-detour-routed flow enters the ready-for-transition phase only

when it is Θ(c
f) hops away from its destination. All such flows must have their pseudo-

destinations within a circle of radius Θ(c
f r(n)) centered in the cell. The number of pseudo-

destinations that lie within any circle of radius Θ(c
f r(n)) from the cell is Θ(n c2

f2 r
2(n)) =

O(c3

f3 log n) =⇒ O(log4 n) w.h.p. (by suitable choice of α(n) in Lemma 60, and by

observing that c = O(logn)).

A detour-routed flow is always in ready-for-transition phase. From Lemma 21, there

are at most O(log4 n) such flows, and they can traverse a cell at most twice along the SD′

(more precisely SPD′) segment, yielding O(log4 n) distinct flow-routes.

We now account for the fact that all the above routed flows could have an additional

last D′D hop that may need to be counted separately. As argued in the proof of Lemma

20, these yield O(na(n)) = O(c log n
f) =⇒ O(log2 n) additional traversals.

Hence the number of flow-routes traversing any cell in ready-for-transition phase (count-

ing repeat traversals separately) is O(log4 n) w.h.p.

Relay Node Selection In the progress-on-source-channel phase, the flow’s packets are

transmitted on the source channel. During this phase, the next hop node is chosen to be

the node in the next cell which has the smallest number of flow-links assigned so far for

relaying on that channel, amongst all nodes that can switch on the source channel.

52

In the ready-for-transition phase, the goal is to seek a relay node that can operate on

both the source channel and the destination channel, and therefore is capable of serving

as the transition point. It makes use of the first opportunity that presents itself, i.e., if a

node in an on-route cell provides the source-destination channel pair, the flow is assigned

to that node for relaying (the flow’s packets are receievd by the node on the source channel,

and transmitted to the next hop node on the destination channel). Once it has made

the transition into the destination channel, it remains on that channel. In the ready-for-

transition phase, it may be assigned to any eligible node that provides either the transition

opportunity, or the source channel (for flows yet to find a transition), or the destination

channel (for flows that have already transitioned into their destination channel).

4.6.2 Load Balance within a Cell

A flow-link is said to enter a cell H on a channel j if the flow’s route includes a hop (link)

(vi−1, vi), where vi−1 is in a cell adjacent to H, vi is in H , and vi−1 transmits the flow’s

packets to vi using channel j (this naturally implies that both vi−1 and vi can operate on

channel j). Similarly, a flow-link is said to leave a cell H on channel j if the route includes

a link (vi, vi+1), where vi is in H, vi+1 is in a cell adjacent to H, and vi transmits the flow’s

packets to vi+1 using channel j.

Per-Channel Load Recall that each cell has O(na(n)) nodes w.h.p., and O(n
√
a(n))

flows traversing it w.h.p.

Lemma 24. The number of flow-links that enter any cell on any single channel is O(
n
√

a(n)

c)

w.h.p.

Proof. Consider a particular cell H. A flow-link may enter the cell on channel i if:

1. The flow’s source channel is i and it is in progress-on-source-channel phase

2. The flow is in ready-for-transition phase, its source channel is i, but is yet to find a

transition into the destination channel

3. The flow is in ready-for-transition phase, its destination channel is i, and it has already

made a transition

53

Recall that the sequence of cells traversed by a flow was chosen in a manner that did

not depend on the channels the source node can switch on. Since each node’s interface is

assigned a random subset of f channels, and it further makes an i.i.d. choice of a source

channel from amongst these, it follows that a flow’s source channel can be any of 1, 2, ..., c

with equal probability. Furthermore, the source channels for different flows are independent.

However, the destination channels of flows are not necessarily independent, since two flows

with the same destination are more likely to have the same destination channel.

Thus, if a flow-link enters the cell in progress-on-source-channel phase (also referred to

as a non-transitioning flow-link), it is equally likely to be on any channel:

Pr[flow-link is on channel i] =
1

c
, ∀1 ≤ i ≤ c

Denote the number of flow-links entering the cell inprogress-on-source-channel phase by

m. From Lemma 20 and Lemma 22, it follows that m = O(n
√
a(n)).

Let Xij be an indicator variable which is 1 if flow-link j enters the cell on channel i,

and is 0 else.

Then Xi =
∑

j Xij denotes the number of flow-links in progress-on-source-channel phase

that enter the cell on channel i, and E[Xi] = m
c . The Xij ’s are i.i.d. random variables for

a given i, as each flow’s source channel is chosen in an i.i.d. manner (though they may not

be independent for different i, since Xij = 1 =⇒ Xkj = 0 ∀k 6= i). Hence, we may set

(1+β)E[Xi] = max{ e2m
c , 3 log n}(note that β ≥ e2−1 > 0) apply the Chernoff bound from

Lemma 51, and obtain that:

Pr[Xi ≥ max{e
2m

c
, 3 logn}]

≤
(

eβ

(1 + β)(1+β)

)E[Xi]

≤
(

e

(1 + β)

)(1+β)E[Xi]

≤
(

eE[Xi]

max{ e2m
c , 3 logn}

)(1+β)E[Xi]

≤ exp(−(1 + β)E[Xi])

≤ exp(−max{e
2m

c
, 3 logn})

(4.12)

54

Taking the union bound over all c channels, the probability that any channel has more than

max{ e2m
c , 3 logn} flows is at most c exp(−max{ e2m

c , 3 logn}). Taking another union bound

over all 1
a(n) = fn

100c log n cells, this probability is at most fn
100 log n exp(−max{ e2m

c , 3 log n}) =

O(1
n2).

Since max{ e2m
c , 3 logn} = O(

n
√

a(n)

c) (note thatm isO(n
√
a(n)) and logn isO(

n
√

a(n)

c)),

we have proved that the number of flow-links that enter any cell in progress-on-source-

channel phase on any single channel is O(
n
√

a(n)

c).

We now account for the flow-links that enter a cell in their ready-for-transition phase.

From Lemma 23 there are O(log4 n) flow-routes traversing any cell in this phase w.h.p.

(counting repeat traversals separately). Thus, the additional overhead posed by the corre-

sponding flow-links on any channel is O(log4 n) w.h.p.

Hence, the per-channel load in each cell is at mostO(
n
√

a(n)

c)+O(log4 n) =⇒ O(
n
√

a(n)

c)

w.h.p.

Lemma 25. The number of flow-links that leave any cell on any single channel is O(
n
√

a(n)

c)

w.h.p.

The proof follows by taking note of Lemma 24, and then applying the same argument

as that for Lemma 12.

Per-Node Load

Lemma 26. The number of flow-links that are assigned to any one node in any cell is

O(
n
√

a(n)

c) w.h.p.

Proof. A node is always assigned an outgoing link for the single flow for which it is the

source. A node is also assigned an incoming flow-link for flows for which it is the destination

(these flows terminate in that cell), and there are O(log n) such flows for any node w.h.p.

(Lemma 1).

In addition, a node may be assigned flow-links as a relay on the routes of other flows

(for each such route, it is assigned an incoming link as well as an outgoing link).

Some of these flows may be in the ready-for-transition phase: for these flows it may

provide the required channel pair to facilitate a transition, or provide the source channel

(flows yet to find a transition) or destination channel (flows that have already transitioned).

55

From Lemma 23, there are O(log4 n) such flow-routes traversing the cell w.h.p. Thus, a

node or channel can only have O(log4 n) such flow-links assigned for relaying.

It may also be assigned as a relay on the routes of flows that are in progress-on-source-

channel phase, and do not originate in the cell. We have already established in Lemma 24,

that the number of flow-links that enter on a given channel in any cell is O(
n
√

a(n)

c) w.h.p.

By construction, we have chosen cell sizes such that there are at least 25 log n nodes on each

channel in each cell w.h.p. (Lemma 18). Also c = O(log n). A flow-link in progress-on-

source-channel phase is always assigned to the node with least load on that channel so far

(from amongst all nodes in that cell capable of switching on that channel). From Lemma

24, and the fact that each node can switch on only f channels, the number of such flows

that are assigned to any one node is O(
fn
√

a(n)

c log n) =⇒ O(
n
√

a(n)

c) w.h.p.

The resultant number of assigned flow-links per node is 1 + O(logn) + O(log4 n) +

O(
n
√

a(n)

c) =⇒ O(
n
√

a(n)

c).

4.6.3 Transmission Schedule

The transmission schedule is obtained in a manner similar to the procedure in Section 3.5.3

of Chapter 3, by first obtaining a global inter-cell schedule (recall that the cell-interference

graph has chromatic number at most 1 + γ, where γ is a constant independent of n), and

then constructing a conflict graph for intra-cell scheduling. From Lemmas 25 and 26, the

degree of the conflict graph is O(
n
√

a(n)

c)+O(
n
√

a(n)

c) = O(
n
√

a(n)

c). It is well-known that a

graph with maximum node degree d has chromatic number at most d+ 1, and so the graph

can be colored using O(
n
√

a(n)

c) colors.

Thus, the cell-slot is divided into O(
n
√

a(n)

c) = O(

q
cn log n

f

c) equal length subslots, and

each outgoing flow-link gets assigned a slot for transmission on its assigned channel at

the per-channel rate of W
c (the slot-assignment is obtained via the conflict-graph coloring

described earlier). This yields that each flow will get Ω(W
√

f
cn log n) throughput.

In light of the above, we obtain the following theorem:

Theorem 6. With a random (c, f) channel assignment, when c = O(logn), construction

CR1 achieves throughput of Ω(W
√

f
cn log n) for each flow.

56

4.7 Optimal Lower Bound on Capacity

In this section, we present a construction CR∗ that achieves Ω(W
√

prnd

n log n) throughput for

each flow. In light of the upper bound of O(W
√

prnd

n log n) established in Section 4.5, CR∗

is optimal for the regime c = O(log n). This establishes the capacity with random (c, f)

assignment as Θ(W
√

prnd

n log n) in the regime c = O(logn).

We first present a construction CR2 that achieves Ω(W
√

prnd

n log n) when f ≥ 100 (thus

necessarily c ≥ 100).

We now describe construction CR2.

Subdivision of network region into cells Similar to previous constructions, the surface

of the unit torus is divided into square cells of area a(n) each, and the transmission range is

set to
√

8a(n), thereby ensuring that any node in a given cell is within range of any other

node in any adjoining cell.

We choose a(n) = 250 max{log n,c}
prndn = Θ(log n

prndn) (since c = O(log n)).

Lemma 27. Each cell has at least 4na(n)
5 = 200 max{log n,c}

prnd
and at most 6na(n)

5 = 300 max{log n,c}
prnd

nodes w.h.p.

Proof. We have chosen a(n) = 250 max{log n,c}
prndn . Thus a(n) ≥ 100 log n

prndn . If c ≤ log n, we can set

α = 2.5
prnd

> 1 in Lemma 59, and when c > log n, i.e., c = κ log n(for some κ > 1) (recall

that c = O(log n)), we can set α = 2.5κ
prnd

> 1 (noting that in either case α ≤ n
100 log n for

large enough n), to obtain that the following holds with probability at least 1− 50 log n
n for

all cells H:

250 max{log n, c}
prnd

− 50 log n ≤ Pop(H) ≤ 250 max{log n, c}
prnd

+ 50 log n

where Pop(H) denotes the number of nodes in cell H.

Thereafter, noting that 250 max{log n,c}
prnd

− 50 log n ≥ 200 max{log n,c}
prnd

, and 250 max{log n,c}
prnd

+

50 log n ≤ 300 max{log n,c}
prnd

, completes the proof.

The following facts will also be used extensively in subsequent proofs:

f

c
≤ prnd ≤ 1 (4.13)

57

For large n, since c = O(logn), and 2 ≤ f ≤ c:

na(n) =
250 max{log n, c}

prnd
= O(log2 n)

n
√
a(n)

c
=

1

c

√
250nmax{log n, c}

prnd
= Ω(

√
n

log n
)

∴ g(n) = O(na(n)) =⇒ g(n) = O(
n
√
a(n)

c
)

(4.14)

1√
a(n)

=

√
prndn

250 max{log n, c} = O(

√
n

log n
)

n
√
a(n)

c
=

1

c

√
250nmax{log n, c}

prnd
= Ω(

√
n

log n
)

∴ g(n) = O(
1√
a(n)

) =⇒ g(n) = O(
n
√
a(n)

c
)

(4.15)

Some properties of SD′D routing Recall that we use the traffic model of [43], where

each source S first chooses a pseudo-destination D′, and then selects the node D nearest

to it as the actual destination. In [43], the flow traversed cells intersected by the straight

line SD′, and then took an extra last hop if required (we refer to this as SD′D routing).

As we will show later, it may not always suffice to use SD′D routing. However, this is still

an important component of our routing procedure. We state and prove certain relevant

properties:

Lemma 28. Given only straight-line SD′ routing (no additional last-hop), the number of

flows that enter any cell on their i-th hop is at most ⌊5na(n)
4 ⌋ w.h.p., for any i.

Proof. Let us consider the straight-line part SD′ of an SD′D route. All the n SD′ lines

are i.i.d. Denote by Xk
i the indicator variable which is 1 if the flow k enters a cell H on its

i-th hop. Then, as observed in [36] (proof of Lemma 3 in [36]), for i.i.d. straight lines, the

Xk
i ’s are identically distributed, and Xk

i and X l
j are independent for k 6= l. However, for

a given flow k, at most one of the Xk
i ’s can be 1 as a flow-route only traverses a cell once

along the straight line SD′. Then Pr[Xk
i = 1] = a(n) = 250 max{log n,c}

prndn .

Let Xi =
n∑

k=1

Xk
i . Then E[Xi] = na(n). Also, for a given i, the Xk

i ’s are independent

58

[36]. Then by application of the Chernoff bound from Lemma 52 (with β = 1
4):

Pr[Xi ≥
5E[Xi]

4
] ≤ exp(−E[Xi]

48
)

∴ Pr[Xi ≥
1250 max{logn, c}

4prnd
] ≤ exp(−250 max{log n, c}

48prnd
) <

1

n5

(4.16)

The maximum value that i can take is 2√
a(n)

=
√

2nprnd

250 max{log n,c} < n. Also the number of

cells is 1
a(n) ≤ n. By application of union bound over all i, and all cells H, the probability

that Xi ≥ 5E[Xi]
4 is less than 1

n3 , and hence, the number of flows that enter any cell on any

hop is less than 5na(n)
4 = 1250 max{log n,c}

4prnd
with probability at least 1 − 1

n3 . Since Xi is an

integer, this implies that it is at most ⌊5na(n)
4 ⌋ w.h.p.

Lemma 29. If a node is destination of some flow, that flow’s pseudo-destination must lie

within either the same cell, or an adjacent cell w.h.p.

Proof. It was shown in the proof of Lemma 1 that a flow will be assigned to a destination

lying within a circle of radius
√

100 log n
πn centered around the pseudo-destination w.h.p.

Conversely, if a flow is assigned to a node, then the pseudo-destination must lie within a

circle of of radius
√

100 log n
πn centered around the node.

It is easy to see that a circle of radius
√

100 log n
πn centered at a node will fall completely

within the cells adjacent to the node’s cell (by our choice of cell-area a(n)). Hence, if a

node is destination of some flow, that flow’s pseudo-destination must lie within either the

same cell, or an adjacent cell.

Lemma 30. The number of SD′D routes that traverse any cell is O(n
√
a(n)) w.h.p.

Proof. Consider a cell H. From Lemma 61 (which is obtained from a lemma in [36]), we

know that the number of SD′ straight-lines traversing any single cell are O(n
√
a(n)). We

must now consider the number of routes whose last D′D hop may enter this cell H. If

D is in the same cell as D′, there is no extra hop. Let us now consider the case that D′

lies in one of the 8 adjacent cells, but D lies in the cell H (from Lemma 29, we know

that D lies in cell H only if D′ lies in H or its adjacent cells). The number of flows for

which D′ lies in one of the 8 cells adjacent to H is O(na(n)) w.h.p. (by applying Lemma

59 to the set of n pseudo-destinations). Also from (4.14), and the fact that c > 1, we

59

know that O(na(n)) =⇒ O(n
√
a(n)). Therefore, the total number of traversing routes is

O(n
√
a(n)).

Having stated and proved these preliminary lemmas, we now establish some proper-

ties of the spatial distribution of channels, and thereafter describe our scheduling/routing

procedure:

Definition 2. (Usability Threshold for Channel Use) The usability threshold for channel

use is denoted by Mu, and Mu = ⌈9fna(n)
25c ⌉ = ⌈90f max{log n,c}

cprnd
⌉.

Lemma 31. If there are at least 200 max{log n,c}
prnd

nodes in every cell, of which we choose

180 max{log n,c}
prnd

nodes uniformly at random as candidates to examine, then, in each cell,

amongst those 180 max{log n,c}
prnd

candidate nodes, at least c − ⌊f
4 ⌋ channels have at least Mu

candidate nodes capable of switching on them, w.h.p.

Proof. Consider any single cell H. Denote by S the set of 180 max{log n,c}
prnd

nodes lying in

cell H that are chosen uniformly at random for examination. Denote by Iji the indicator

variable that is 1 if a node j can switch on channel i and 0 else. Then: Pr[Iji = 1] = f
c

and for a given i, the Iji are independent. Xi =
∑

j∈S Iji is the number of nodes in S
capable of switching on channel i. Then E[Xi] = f

c

(
180 max{log n,c}

prnd

)
, and we can see that

Mu = ⌈E[Xi]
2 ⌉.

In light of Lemma 14, we obtain the following:

E[Xi] =
180f max{log n, c}

cprnd
(4.17)

E[Xi] ≥
180 max{log n, c}

min{2f, c
f }

≥ 90 max{log n, c}
f

(4.18)

E[Xi] ≥ 180f from (4.17) (noting that prnd ≤ 1) (4.19)

E[Xi] ≥
180 max{log n, c}

min{2f, c
f }

≥ 180 max{log n, c}√
2c

> 90 max{ logn√
c
,
√
c} ≥ 90

√
log n

(by applying Lemma 15)

(4.20)

From the preceding equations, it also follows that:

Mu ≥
⌈

max{45 max{logn, c}
f

, 90f, 45
√

logn}
⌉

60

Let I ′i denote an indicator variable which is 1 if Xi <
E[Xi]

2 , and 0 else. Applying the

Chernoff bound in Lemma 53:

Pr[I ′i = 1] = Pr[Xi <
E[Xi]

2
] ≤ Pr[Xi ≤

E[Xi]

2
] ≤ exp(−E[Xi]

8
) (4.21)

Besides, the I ′i’s are negatively correlated, as each node has a uniformly random subset

of f channels assigned to it, and thus, in the given set of nodes S, having some channel (say

i) assigned to a large number of nodes can only decrease the presence of another channel

(say k).

Let X =
∑c

i=1 I
′
i. Then, noting2 that log c ≤ E[Xi]

200 ∀c ≥ 2:

E[X] ≤ c exp(−E[Xi]

8
) = exp(−E[Xi]

8
+ log c) ≤ exp(−3E[Xi]

25
)

(∵ log c ≤ E[Xi]

200
∀c ≥ 2)

(4.22)

Due to the negative correlation of I ′i’s, we can still apply the Chernoff bound (see

Lemma 55). By setting (1+β)E[X] = f
4 in Lemma 51 (from (4.22) E[X] ≤ exp(−3E[Xi]

25) ≤
exp(− 3

25(180f)) < f
4 , yielding β > 0), we obtain by appropriate substitutions at each step,

the following:

Pr[X ≥ ⌈f
4
⌉] ≤ Pr[X ≥ f

4
] ≤

(
eβ

(1 + β)1+β

)E[X]

<

(
e

1 + β

)(1+β)E[X]

=

(
4eE[X]

f

) f

4

≤




4e exp(− 3
25

(
90 max{log n,c}

f

)

f




f

4

from (4.18) and (4.22)

=


4e exp(−270 max{log n,c}

25f)

f




f

4

=
exp

(
−270 max{log n,c}

100

)

(f
4e)

f

4

≤ exp (−2.7 max{log n, c})
(1
2e)

f

4

2From (4.20): E[Xi]
200

≥ 180 max{log n,c}
200

√
2c

≥ 9 max{log n,c}
10

√
2c

≥ 9
√

c

10
√

2
≥ log c whenever c ≥ 2.

61

≤ exp (−2.7 max{log n, c})
(1

e2)
f

4

(since f ≥ 2)

≤ exp(−2.7 max{log n, c}) exp(
f

2
) (4.23)

≤ exp(−2 max{log n, c}) ≤ 1

n2
(since f ≤ c)

Applying the union bound over all 1
a(n) ≤ n cells in the network, the probability that this

happens in any cell is at most 1
n . Thus, with probability at least 1 − 1

n , X < ⌈f
4 ⌉, i.e.,

X ≤ ⌊f
4 ⌋ (since X is an integer). Hence, each cell has at least c − ⌊f

4 ⌋ channels with

Xi ≥ E[Xi]
2 candidate nodes capable of switching on them. Therefore, from the definition

of X, each cell has at least c− ⌊f
4 ⌋ channels with Xi ≥ ⌈E[Xi]

2 ⌉ candidate nodes capable of

switching on them (since Xi is also an integer). From (4.17) and the definition of Mu, we

know that Mu = ⌈E[Xi]
2 ⌉. This proves the result.

Similar to the proof of Theorem 5, the approach involves constructing a routing struc-

ture (backbone) for each node. However, in this case, we only need to construct routing

structures that can provide a route between the n chosen SD pairs, and not all node pairs.

Thus, the constructed backbones are partial backbones in that, unlike the proof of Theorem

5, they do not cover all cells in the network. Moreover, since our concern is not merely

connectivity but also capacity, these partial backbones need to be constructed carefully, to

ensure that no bottlenecks are formed.

Similar to the proof of Theorem 5, we begin by classifying all nodes as either backbone

candidates or transition facilitators.

Conditioning on Lemma 27, there are at least 200 max{log n,c}
prnd

nodes in each cell w.h.p.

Initially, in each cell, we choose 180 max{log n,c}
prnd

nodes uniformly at random as backbone

candidates. The remaining nodes (which are at least 20max{log n,c}
prnd

in number) are deemed

transition facilitators.3

We next define a notion of a channel being proper in a cell:

3The number of nodes in either category must be an integer. Here, for simplicity we assume that we can in-
deed select exactly 180 max{log n,c}

prnd
as backbone candidates and the remaining nodes are at least 20 max{log n,c}

prnd
.

If these two quantities are not integers, but one can select at least ⌈ 180 max{log n,c}
prnd

⌉ backbone candidates and

still have at least ⌈ 20 max{log n,c}
prnd

nodes left as transition facilitators, the results will evidently continue to

hold. It is also possible to conceive of a scenario where there are exactly 200 max{log n,c}
prnd

nodes in the cell, but
180 max{log n,c}

prnd
and 20 max{log n,c}

prnd
are not integers. In such a scenario, one can select ⌈ 180 max{log n,c}

prnd
⌉ nodes

as backbone candidates and ⌊ 20 max{log n,c}
prnd

⌋ as transition facilitators, without affecting the results (except

for a minor change in the probability calculations involving transition facilitators).

62

Definition 3. (Proper Channel) A channel i is deemed proper in cell H if at least Mu

backbone candidate nodes in H are capable of switching (operating) on it.

Note that being proper is a property defined with respect to a specific cell, i.e., a channel

can be proper in one cell and not proper in another.

Lemma 32. For each cell of the network, the following is true w.h.p.: if the number of

proper channels in the cell is c′, then c′ ≥ c− ⌊f
4 ⌋ ≥ c− ⌊ c

4⌋ ≥ ⌈3c
4 ⌉ ≥ 3c

4 .

Proof. The proof follows from Lemma 27 and Lemma 31.

We now prove a property that plays an important role in proving that traffic load can

be distributed without creating bottlenecks:

Lemma 33. 4

Consider a cell H. Let Wi be the set of all nodes in the 8 adjacent cells H(k), 1 ≤ k ≤ 8,

that are capable of switching on channel i.

For a set of nodes B, define CH(B) as:

CH(B) = {j|j proper in H and ∃u ∈ B capable of switching on j}

If f ≥ 100, the following holds w.h.p.:

∀H, ∀ channels i, ∀B ⊆ Wi such that |B| = ⌈fna(n)

4c
⌉ : |CH(B)| ≥ ⌈3c

8
⌉

Proof. We condition on the node-locations, and their conforming to the high-probability

event of Lemma 27. Consider a cell H. Let c′ be the number of proper channels in H.

Having conditioned on (and thus fixed) the node-locations (and thereby node-population

in each cell), channel-presence in each cell is independent of other cells, as channel assign-

ment is done independently for each node.

Then we can show that: c′ ≥ c − ⌊f
4 ⌋ ≥ c − ⌊ c

4⌋ ≥ ⌈3c
4 ⌉ ≥ 3c

4 , with probability at least

1− 1
n2 , by following the proof argument of Lemma 31 up to (4.23) (just prior to application

of the union bound over all cells in the proof of that lemma).

4This can be viewed as a special variant of the Coupon Collector’s problem [83], where there are c different
types of coupons, and each box has a random subset of f different coupons. Some other somewhat different
variants having multiple coupons per box have been considered in work on coding, e.g., [33].

63

If c′ < 3c
4 , then we assume that our desired event does not happen for the purpose of

obtaining a bound. This probability is at most 1
n2 .

We now focus on the case where c′ ≥ 3c
4 .

Consider a particular channel i.

Recall thatWi is the set of nodes in the cells adjacent to H that are capable of switching

on channel i.

We first bound the probability that |Wi| ≥ 2400e2 max{log n, c}.
Let Yij be an indicator variable that is 1 if node j in cells adjacent to H is capable of

switching on channel i, and 0 else. Then we know that Pr[Yij = 1] = f
c , and for a given i,

the Yij ’s are independent. Let Yi =
8∑

k=1

∑
j∈H(k)

Yij (recall that H(k), 1 ≤ k ≤ 8, are the cells

adjacent to H). Since the node-locations, and hence cell-populations, conform to the high

probability event of Lemma 27, therefore: E[Yi] ≤ 8
(

6fna(n)
5c

)
= 48

5

(
250f max{log n,c}

cprnd

)
=

2400f max{log n,c}
cprnd

. Setting (1 + β)E[Yi] = 2400e2 max{log n, c}, observing from (4.13) that

β ≥ e2cprnd

f − 1 > 0 and applying the Chernoff bound from Lemma 51:

Pr[|Wi| ≥ 2400e2 max{log n, c}] = Pr[Yi ≥ 2400e2 max{log n, c}]

≤
(

eβ

(1 + β)(1+β)

)E[Yi]

<

(
e

1 + β

)(1+β)E[Yi]

≤
(

fe

e2cprnd

)2400e2 max{log n,c}

=

(
f

ecprnd

)2400e2 max{log n,c}

≤
(

1

e

)2400e2 max{log n,c}
(∵

f

cprnd
≤ 1)

= exp(−2400e2 max{log n, c}) ≤ 1

n2400e2

(4.24)

Denote by Ei,H the event that, for given i and H: ∃B ⊆ Wi such that |B| = ⌈fna(n)
4c ⌉ and

|CH(B)| < ⌈3c
8 ⌉. Let pub(x) be an upper-bound on Pr

[
Ei,H

∣∣∣|Wi| = x, c′ ≥ 3c
4

]
. Note that,

having conditioned on (and hence fixed) the node-locations, |Wi| is independent of whether

c′ ≥ 3c
4 or not.

64

If pub(x) is a non-decreasing function of x, then the following holds:

Pr

[
Ei,H

∣∣∣c′ ≥ 3c

4

]

= Pr

[
|Wi| ≤ b|c′ ≥

3c

4

]
Pr

[
Ei,H

∣∣∣|Wi| ≤ b, c′ ≥
3c

4

]

+ Pr

[
|Wi| > b|c′ ≥ 3c

4

]
Pr

[
Ei,H

∣∣∣|Wi| > b, c′ ≥ 3c

4

]

≤ Pr [|Wi| ≤ b] Pr

[
Ei,H

∣∣∣|Wi| ≤ b, c′ ≥
3c

4

]
+ Pr [|Wi| > b]

=
∑

x≤b

Pr [|Wi| = x] Pr

[
Ei,H

∣∣∣|Wi| = x, c′ ≥ 3c

4

]
+ Pr [|Wi| > b]

≤
∑

x≤b

Pr [|Wi| = x] pub(x) + Pr [|Wi| > b]

≤
∑

x≤b

Pr [|Wi| = x] pub(b) + Pr [|Wi| > b]

= pub(b)
∑

x≤b

Pr [|Wi| = x] + Pr [|Wi| > b]

= pub(b) Pr [|Wi| ≤ b] + Pr [|Wi| > b]

≤ pub(b) + Pr [|Wi| > b]

(4.25)

We now find such an upper-bound pub(x) that is a non-decreasing function of x:

Note that we only need to explicitly consider x ≥ ⌈fna(n)
4c ⌉, else there exist no subsets

B ⊆ Wi satisfying |B| = ⌈fna(n)
4c ⌉; thus the event Ei,H cannot occur, and trivially: pub(x) = 0

for 0 ≤ x < ⌈fna(n)
4c ⌉.

If |Wi| = x ≥ ⌈fna(n)
4c ⌉, then from Lemma 62, the number of subsets ofWi of cardinality

m = ⌈fna(n)
4c ⌉ is given by:

(
x
m

)
≤
(

xe
m

)m
.

Consider a subset B ⊆ Wi of specified cardinality m = ⌈fna(n)
4c ⌉. Denote by Xj the

indicator variable which is 1 if channel j is not a member of CH(B) and 0 else.

Recall that each node in B has one channel known to be i, but the remaining f − 1

channels assigned to it are an i.i.d. chosen subset from the remaining c−1 available channels.

Thus:

Pr[x ∈ Wj(j 6= i)|x ∈ Wi] =
f − 1

c− 1
≥ f − 1

c
=
f

c

(
1− 1

f

)
≥ 99f

100c
(∵ f ≥ 100) (4.26)

From (4.26), Pr[Xj = 1] = (1 − f−1
c−1)|B| ≤ (1 − 99f

100c)⌈
fna(n)

4c
⌉ ≤ e−

99f

100c
⌈ fna(n)

4c
⌉ (applying

65

Fact 2). Furthermore, for a given B, the Xj ’s are negatively correlated.

Let X =
∑

j proper in H
j 6=i

Xj . Then E[X] ≤ c′e−
99f

100c
⌈ fna(n)

4c
⌉. Setting (1 + β)E[X] = c′

2 , one

can see that β = c′
2E[X] −1 ≥ c′

2c′e−
99f
100c

⌈ fna(n)
4c

⌉
−1 ≥ e

99f2na(n)

400c2

2 −1 ≥ e
495
16

2 −1 > 0 (recall that

na(n) = 250 max{log n,c}
prnd

≥ 250c max{log n,c}
2f2 ≥ 125c2

f2 , from Lemma 14). Hence, we can apply

the Chernoff bound from Lemma 51 to obtain that:

Pr[X ≥ c′

2
] ≤

(
eβ

(1 + β)(1+β)

)E[X]

<

(
e

(1 + β)

)(1+β)E[X]

=

(
2eE[X]

c′

) c′
2

≤
(

2ec′ exp(− 99f
100c⌈

fna(n)
4c ⌉)

c′

) c′
2

=

(
2e exp(− 99f

100c
⌈fna(n)

4c
⌉)
) c′

2

=

(
exp(− 99f

100c
⌈fna(n)

4c
⌉+ (1 + ln 2))

) c′
2

≤
(

exp

(
− 99f

100c
⌈fna(n)

4c
⌉+ (1 + ln 2)

)) 3c
8

(∵ −
99f

100c
⌈

fna(n)

4c
⌉ + (1 + ln 2) < 0 and c

′ ≥
3c

4
)

= exp

(
−297f

800
⌈fna(n)

4c
⌉+

3c(1 + ln 2)

8

)

< exp

(
−297f

800
⌈fna(n)

4c
⌉+

4f

125
⌈fna(n)

4c
⌉
)

(∵ na(n) =
250 max{log n, c}

prnd

≥
250c max{log n, c}

2f2
, ∴

3c(1 + log 2)

8
< c ≤

4f

125
⌈

fna(n)

4c
⌉)

≤ exp

(
−265f

800
⌈fna(n)

4c
⌉
)

(4.27)

Due to integrality of X, X < c′
2 =⇒ X ≤ ⌊ c′

2 ⌋ =⇒ |CH(B)| ≥ ⌈ c′
2 ⌉ ≥ ⌈3c

8 ⌉.
Taking the union bound over all possible subsets B, we obtain that the probability it hap-

pens for any such subset B is at most
(

xe
m

)m
exp(−265f

800 ⌈
fna(n)

4c ⌉) which is an increasing func-

tion of x (recall that m = ⌈fna(n)
4c ⌉). Thus we obtain: pub(x) =

(
xe
m

)m
exp(−265f

800 ⌈
fna(n)

4c ⌉)
for x ≥ ⌈fna(n)

4c ⌉. Resultantly, pub(x) is an increasing function of x.

66

For b = 2400e2 max{logn, c}:

pub(b) = pub(2400e2 max{log n, c})

=

(
2400e3 max{log n, c}

⌈ fna(n)
4c
⌉

)⌈
fna(n)

4c
⌉

exp

(
−265f

800
⌈fna(n)

4c
⌉
)

≤
(

2400e3 max{log n, c}
fna(n)

4c

)⌈
fna(n)

4c
⌉

exp

(
−265f

800
⌈fna(n)

4c
⌉
)

≤
(

9600e3cprnd

250f

)⌈
fna(n)

4c
⌉

exp

(
−265f

800
⌈fna(n)

4c
⌉
)

≤ exp

(
(3 + log

960

25
+ log

cprnd

f
)⌈fna(n)

4c
⌉
)

exp

(
−265f

800
⌈fna(n)

4c
⌉
)

< exp

(
(3 + log 40 + log 2f)⌈fna(n)

4c
⌉
)

exp

(
−265f

800
⌈fna(n)

4c
⌉
)

(using Lemma 14)

(4.28)

Note that:

∀ f ≥ 100 : f ≥ 8(3 + log 40 + log 2f) (4.29)

Therefore:

pub(b) ≤ exp

(
f

8
⌈fna(n)

4c
⌉
)

exp

(
−265f

800
⌈fna(n)

4c
⌉
)

= exp

(
−165f

800
⌈fna(n)

4c
⌉
)
< exp

(
−f

5
⌈fna(n)

4c
⌉
)

≤ exp

(
−f

2na(n)

20c

)
≤ exp

(
−125 log n

20

)
<

1

n6

(from Lemma 14 and our choice of a(n))

(4.30)

From (4.24), (4.25), and (4.30): Pr[Ei,H|c′ ≥ 3c
4] ≤ pub(b)+Pr[|Wi| ≥ b] ≤ 1

n6 + 1

n2400e2
<

1
n5 .

Since there are c = O(logn) channels i to consider, we take a union bound over them

to obtain that:

Pr[Ei,H for any i in H|c′ ≥ 3c

4
] ≤ cPr[Ei,H for a given i in H|c′ ≥ 3c

4
])

67

Thus:

Pr[Ei,H for any i in H] ≤ Pr[c′ <
3c

4
] + Pr[c′ ≥ 3c

4
](cPr[Ei,H for a given i in H|c′ ≥ 3c

4
])

≤ Pr[c′ <
3c

4
] + cPr[Ei,H for a given i in H|c′ ≥ 3c

4
] ≤ 1

n2
+

c

n5

We take another union bound over all 1
a(n) = prndn

250 max{log n,c} <
n
c cells H to obtain that

the probability this occurs in any cell is at most 1
cn + 1

n4 .

Finally, recall that we conditioned our proof on the node-locations conforming to the

high-probability event of Lemma 27. The probability that this event does not occur is

at most 50 log n
n (as proved in Lemma 27), and we can obtain a bound by assuming that

whenever that event fails to hold, the event in the statement of this lemma fails to hold.

This completes the proof that C(B) ≥ c′−⌊ c′
2 ⌋ ≥ ⌈ c′

2 ⌉ ≥ ⌈3c
8 ⌉ for all specified subsets B of

interest, for all channels i, and in all cells H with probability at least 1− 1
cn − 1

n4 − 50 log n
n >

1− 2
n −

50 log n
n .

4.7.1 Routing and Channel Assignment

There are two inter-related aspects of the routing procedure: determining the sequence

of cells a route should traverse, and finding a feasible sequence of nodes/links along that

sequence of cells which provides an end-to-end route from source to destination, while

avoiding bottleneck formation.

We begin by addressing the issue of finding a feasible sequence of nodes/links that

can provide an end-to-end route from source to destination, given a sequence of cells to

traverse. We introduce routing structures that can facilitate this. We then show that if

the number of cells traversed is at least a certain minimum number, then an end-to-end

feasible route can be found, and describe a method of choosing the cell-sequence for each

route. Thereafter we address the issue of constructing the routing structures in a manner

that ensures load-balance.

Partial Backbones The routing strategy is based on constructing source and destina-

tion routing structures, in a manner similar to the backbones used to prove the sufficient

condition for connectivity. However, instead of constructing a full backbone for each node

covering each cell of the network, only a partial backbone is constructed for each node x.

68

The partial-backbone of a node x is denoted by Bp(x).

Bp(x) comprises a source segment Sb(x) for the flow for which x is the source. It also

comprises a collection Db(x) of destination segments D(i)
b (x) for each flow i for which x

is the destination. Sb(x) expands outwards from x to cover the sequence of cells on the

route from x to its destination in that very order. Thus, there is a path comprising nodes

and links in Sb(x) from x to any node qx ∈ Sb(x) that follows the exact sequence of cells

traversed by the route of x’s flow, up to qx’s cell. Each D(i)
b expands outwards from x to

cover the cells on the route (in reverse order) from the source of flow i to x. Thus, there is a

path from x to any node qx ∈ D(i)
b (x) that follows the reverse sequence of cells traversed by

the route of flow i up to qx’s cell (correspondingly, the path from qx ∈ D(i)
b (x) to x follows

the sequence of cells traversed by flow i’s route along that stretch).

Note that each segment is a collection of nodes (V) and links/edges (E) between some

of these nodes. Thus Sb(x) = (V (Sb(x)), E(Sb(x))), and D(i)
b (x) = (V (D(i)

b (x)), E(D(i)
b (x))).

Since we are concerned with load-balance, each link also has an assigned channel of operation

(from amongst all feasible channels for that link).

Also note that some of the segments above may traverse common cells. In particular, x’s

cell is common to all segments. x is a default member of its own backbone, and all backbone

segments. If two or more segments have a common cell other than x’s cell, it is acceptable for

each segment to have a different backbone node in that cell (and correspondingly different

incoming/outgoing backbone links), if needed. Nodes/links may also be common to the

segments if it is feasible while ensuring that each segment traverses the stipulated sequence

of cells.

The initial part of the route of a flow i with source x and destination y is along the links

of the source backbone segment Sb(x). As it approaches the destination, it then attempts

to find a transition point and move onto the destination backbone segment D(i)
b (y) (Fig.

4.2).

In light of the preceding lemmas, is easy to see that it is indeed always feasible to

construct each segment of Bp(x) for all nodes x: Consider a node in some cell of the network

which is the current terminus of the backbone-segment under construction. It needs to find

a node in the next cell to be filled such that it can communicate with that node. The node

can switch on f channels. From Lemma 32, at least f −⌊f
4 ⌋ of these f channels are proper

69

Flow enters
ready−for−transition phase

Fl
ow

 is
 in

ph
as

e

Transition from source−backbone

to destination backbone

��
��
��
��

��

��

��

�
�
�
�

�� ��

��
��

�
�
�
�

��
��
��
��

����

�
�
�
�

�
�
�
�

��

��
��

��

�
�
�
�

��

��
��
��
��
��

��

��

�
�
�
�

��

�
�
�
�

��

D
D′

S

p
ro

gr
es

s-
on

-s
ou

rc
e-

b
ac

k
b
on

e ⌈
4

p r
n
d
⌉ h

op
s

Figure 4.2: Illustration of routing along backbones

in the next cell, and therefore there are at least Mu nodes in that cell capable of switching

on each of these channels w.h.p. In light of this it is always possible to expand the segment

further.

However, our goal is more than just connectivity, and the backbone segments must

be constructed in a manner that avoids bottleneck formation. We will later describe a

backbone construction procedure that ensures load-balance. First we prove that, given

any set of feasible backbones, it is possible to find an end-to-end feasible route along the

backbone segments from the flow’s source to its destination.

Lemma 34. Suppose a flow i has source x and destination y. As described previously,

the flow’s packets are initially sent on segment Sb(x) of Bp(x) and eventually need to tran-

sition onto segment D(i)
b (y) of Bp(y) (to reach y). After having traversed ⌈ 4

prnd
⌉ distinct

intermediate cells5 (hops) while seeking a transition opportunity, the flow will have found

an opportunity to make this transition w.h.p. If the routes of each of the n flows get to

traverse at least ⌈ 4
prnd
⌉ distinct intermediate cells (note that each individual flow’s route

needs to traverse at least so many distinct cells; two different flows may share cells on their

respective routes), then all n flows are able to transition w.h.p.

5The cells must be chosen in a manner independent of channel presence in the cells.

70

Proof. Consider a flow traversing a sequence of cellsH1,H2, If the representative of Sb(x)

(let us call it qx) in Hj can communicate (directly or indirectly) with the representative

of D(i)
b (y) (let us call it qy) in Hj , it is possible to transition from Sb(x) to D(i)

b (y). If qx

and qy can operate on some common channel, this is trivially possible. If qx and qy do not

operate on a common channel, we consider the probability that the two can communicate

via a third node from amongst the transition facilitators in Hj , i.e. there exists a transition

facilitator z such that z shares at least one channel with qx and one channel with qy. In

Section 4.4.2, we showed that if qx and qy are incapable of direct communication, then

they can communicate through a given z with probability pz ≥ p2
rnd

40 . Given our choice

of cell area a(n), and conditioned on the fact that each cell has at least 200 max{log n,c}
prnd

nodes (Lemma 27), of which 180 max{log n,c}
prnd

are deemed backbone candidates and the rest are

transition facilitators, there are at least 20 max{log n,c}
prnd

≥ 20 log n
prnd

possibilities for z within that

cell (since these cells are intermediate cells, i.e., do not include the cells in which x and y lie

respectively, qx and qy themselves must be backbone candidates). All the possible z nodes

have i.i.d. channel assignments. Thus, the probability that qx and qy cannot communicate

through any z in the cell is at most (1 − pz)
20 log n

prnd , and the probability they communicate

through some z is pxy ≥ 1− (1− pz)
20 log n

prnd .

Hence, the probability that this happens in none of the ⌈ 4
prnd
⌉ distinct intermediate cells

is at most (1 − pxy)
⌈ 4

prnd
⌉ ≤ (1 − pz)

80 log n

p2
rnd ≤ (1 − p2

rnd

40)
80 log n

p2
rnd ≤ e−

80 log n

40 ≤ 1
n2 (applying

Fact 2). Applying the union bound over all n flows, the probability that all flows are able

to transition is at least 1− 1
n .

Therefore, we would like each route to traverse at least ⌈ 4
prnd
⌉ distinct intermediate cells

(hops) to be able to find a transition point from the source-backbone to the destination

backbone.

If the straight-line SD′D path for a flow (Fig. 4.3) comprises h ≥ ⌈ 4
prnd
⌉ distinct

intermediate cells, it suffices to use this route. If S and D′ (hence also D) lie close to each

other, the hop-length of the straight line cell-to-cell path can be much smaller. In this case,

a detour path SPD′D is chosen (Fig. 4.4) in a manner similar to the previously described

constructions, by choosing a point P on the circumference of a circle of radius 4
prnd

r(n)

centered at S. Since r(n) =
√

8a(n), it is easy to see that the SP segment will traverse at

least ⌈ 4
prnd
⌉ distinct intermediate cells.

71

S

D

D′

Figure 4.3: Routing along a straight line

S

D′
D

P

Figure 4.4: Illustration of detour routing

The need to perform detour routing for some source-destination pairs does not have any

substantial effect on the relaying load on a cell.

Lemma 35. If the number of flow-routes traversing in any cell is x when all flows use

straight-line routing, it is at most x + O(nr2(n)
p2

rnd

) =⇒ x + O(log4 n) w.h.p., when detour

routing is used for some of the flows as previously described.

Proof. Recall that c = O(logn). Since the detour occurs only up to a circle of radius

4
prnd

r(n), the extra flow-routes that may pass through a cell (compared to straight-line

routing) are only those whose sources lie within a distance 4
prnd

r(n) from some point in

this cell. All such possible sources fall within a circle of radius (1 + 4
prnd

)r(n), and hence

area ac(n) = Θ(r2(n)
p2

rnd

). Applying Lemma 60 to the set of n node locations (with a suitable

choice of α(n) ≥ 1), with high probability, any circle of this radius will have O(nac(n))

nodes, and hence O(nac(n)) sources. Hence, the number of extra flows that traverse the

cell due to detour routing is O(nac(n)), and each detour-routed flow’s route can traverse a

cell at most twice along the SPD′ stretch. Note that the possible additional last hop for

each flow is already accounted for in x. Thus, the total number of flow-routes (counting

repeat traversals separately) x + O(nr2(n)
p2

rnd

). Since nr2(n) = O(log n
prnd

), and prnd ≥ f
c , the

total number of flow-routes is x+O(c3 log n
f3) =⇒ x+O(log4 n) w.h.p.

Flow Transition Strategy From Lemma 34, we know that if each flow is able to inspect

⌈ 4
prnd
⌉ distinct intermediate cells, a transition opportunity will be found by all flows w.h.p.

In light of this, we use a procedure in which there are two phases associated with the route

72

of a flow. A non-detour-routed flow is initially in a progress-on-source-backbone phase,

during which its packets are sent along the links of the source backbone till there are only

⌈ 4
prnd
⌉ distinct intermediate cells left to the destination. At this point, it enters a ready-for-

transition phase, and seeks a transition to the destination backbone along the remaining

hops.6 Once it has been able to make the transition onto the destination backbone, it

proceeds towards the destination on that backbone along the remaining part of the route,

and is thus guaranteed to reach the destination.

A detour-routed flow is always in ready-for-transition phase.

Lemma 36. The number of flow-routes traversing any cell in ready-for-transition phase

(counting repeat traversals separately) is O(log4 n) w.h.p.

Proof. First let us account for the SD′ stretch of each flow’s route, without considering the

possible additional last hop. We account for it explicitly later in this proof.

In our construction, a non-detour routed flow enters the ready-for-transition phase only

when it is ⌈ 4
prnd
⌉ distinct intermediate hops away from its destination. All such flows must

have their pseudo-destinations within a circle of radius Θ(1
prnd

r(n)) centered in the cell. The

number of pseudo-destinations that lie within a circle of radius Θ(1
prnd

r(n)) from the cell is

Θ(nr2(n)
p2

rnd

) =⇒ O(c3

f3 log n) w.h.p., (by observing that prnd ≥ f
c , and using suitable choice

of α(n) in Lemma 60). Also c = O(logn). Hence there are O(log4 n) non-detour-routed

flows in ready-for-transition phase traversing the cell w.h.p.

A detour-routed flow is always in ready-for-transition phase. By Lemma 35, there are

O(log4 n) such flows traversing any cell. Each such flow can only traverse a cell twice along

the SD′ (more precisely SPD′) stretch. This yields O(log4 n) detour-routed flows (including

repeat traversals).

The cell may also be traversed by some of the above flows (both non-detour-routed and

detour-routed) on their additional last hop. From Lemma 29, the pseudo-destinations of

such flows must lie in the same cell or one of the 8 adjacent cells. Applying Lemma 59 to

the set of n pseudo-destinations, the total number of pseudo-destinations lying in these 9

cells is O(na(n)) w.h.p. Thus, the number of flows entering the cell on their additional last

hop is O(na(n)) =⇒ O(log2 n) w.h.p.

6This also implies that it would suffice to construct each destination backbone segment D(i)
b (x) for a node

x only upto this distance outwards from x.

73

Previous hop
backbone node prev. hop for at most 14 backbones

Incoming
backbone links

H

H(2) H(3)H(1)

H(8) H(4)

H(5)H(6)H(7)

in step i

Figure 4.5: Cell H and neighboring cells during backbone construction

Hence, the number of flow-routes in ready-for-transition phase in any cell is O(log4 n)

w.h.p.

Backbone Construction We now describe the procedure for constructing the backbone

Bp(x) of x.

Given a cell H, the 8 cells adjacent to cell H are denoted as H(j), 1 ≤ j ≤ 8 (Fig. 4.5).

Bp(x) is constructed as follows:

x is by default a member of Bp(x). As described earlier, Bp(x) has a source-segment Sb(x)

and a collection of destination segments D(i)
b (x) for each flow for which x is a destination.

Recall that Sb(x) comprises the SD′ route from x to its destination, and may also

have an additional last hop to D if needed. However, from Lemma 29, the only such last

hop routes that may enter a cell correspond to pseudo-destinations in the 8 adjacent cells.

Applying Lemma 59 to the set of pseudo-destinations, they are only O(na(n)) such pseudo-

destinations, and hence only O(na(n)) such last-hop flows entering the cell. These can be

accounted for separately. Therefore, we first consider the construction of the SD′ part of

Sb(x) for each node x.

Construction of Sb(x) Recall that we are only constructing the SD′ part and not con-

sidering the possible additional last hop at this stage.

74

This has two sub-stages. In the first sub-stage, we construct backbones for source nodes

whose flow does not require a detour. In the second sub-stage we construct backbones for

source nodes whose flow requires a detour.

Straight-line backbones:

For each source of a non-detour-routed flow, the SD′ segment of the route comprises

the cells intersected by the straight-line SD′. One can define an ordering on these cells that

reflects the order in which each cell is encountered when moving from S to D′ along the

straight-line. The backbone-segment Sb(x) is expanded into new cells in the same order.

This step proceeds in a synchronized hop-by-hop manner for all non-detour-routed flows

(each of which has a unique source x).

Any cell of Sb(x) in which there is already a node assigned to Sb(x) is called a filled

cell. Thus, initially x’s cell is filled. We consider the cell in Sb(x) that is entered next by

the flow’s straight-line route. We consider all nodes in that cell that can operate on one

or more common channel with x. This provides a number of alternative channels on which

the flow’s backbone can enter that cell.

Let hmax be the maximum hop-length of any non-detour-routed SD′ route. Then,

hmax = O(1√
a(n)

) and the procedure has hmax steps. In step k, for each source node x

whose flow has k or more hops, Sb(x) expands into the cell entered by x’s flow on the k-th

hop.

Each cell H performs the procedure we will now describe.

Lemma 37. If f ≥ 100, then it is possible to devise a backbone construction procedure, such

that, after step hmax of the backbone construction procedure for the SD′ part of Sb(x) (for

sources x whose flows are not detour-routed), each cell has O(
n
√

a(n)

c) incoming backbone

links on a single channel, and each node appears on O(
n
√

a(n)

c) (source) backbones, w.h.p.

Proof. We describe such a backbone construction procedure and prove its load-balance

characteristics by induction.

We remark at the outset that the proof is conditioned on the occurrence of the high

probability events in Lemma 27, Lemma 28, Lemma 32, and Lemma 33.

Recall that we are expanding backbones to cover cells in Sb(x).

At each step of the construction, we first have a channel-allocation phase, followed by a

node-allocation phase. We prove that after step k of the backbone construction procedure,

75

the following two invariants hold for all cells of the network:

• Invariant 1: Each node is assigned at most 14 new incoming backbone links during

step k. Thus after step k, it appears in a total of O(14k) =⇒ O(k) backbones.

• Invariant 2: No more than ⌊5na(n)
c ⌋ new backbone links enter the cell on a single

channel during step k. Thus, O(kna(n)
c) incoming backbones (entering the cell) are

assigned (incoming links) on any single channel after step k.

If the above two Invariants hold, then it is easy to see that after hmax steps, cell H will

have no more than 5hmaxna(n)
c = O(

n
√

a(n)

c) backbone links assigned to any single channel,

and no node occurs on more than 14hmax =⇒ O(1√
a(n)

) =⇒ O(
n
√

a(n)

c) backbones (from

(4.15)).

We prove by induction that the invariants hold, as follows:

If Invariant 1 holds at the end of step k − 1, then Invariant 2 continues to

hold after the channel-allocation phase of step k. If Invariant 2 holds after the

channel-allocation phase of step k, then Invariant 1 will continue to hold after

the node-allocation phase of step k, and thus both Invariants 1 and 2 will hold

at the end of step k.

Base Case: Before the procedure begins, at step 0, each node is assigned to its own

backbone, for which it is effectively the origin (this can also be viewed as a single backbone

link incoming to this node from an imaginary super-source). Thus, after Step 0, Invariant

1 holds trivially. Invariant 2 is trivially true.

Inductive Step:

Suppose Invariants 1 and 2 held at the end of step k − 1. Consider a particular cell H
during step k.

Let the number of proper channels in H be c′.

From Lemma 32, c′ ≥ c − ⌊f
4 ⌋ ≥ 3c

4 for each cell. Each backbone Sb(x) that enters

cell H in step k has a previous hop-node in one of the 8 adjacent cells. Also note that, as

a consequence of Lemma 32, each previous hop node has at least ⌈3f
4 ⌉ of cell H’s proper

channels available to it as choices for the link that will enter cell H (since it can operate on

f channels, of which at most ⌊f
4 ⌋ can be non-proper in cell H).

76

.

 . .

One vertex for each
backbone entering cell D
in step i

for each proper channel

Set L

Set V ⊆ L
Set N (V)

Set P
⌊5na(n)

4
⌋ vertices

Channel i1 vertices

Channel i2 vertices

Channel i3 vertices

Channel ic′−1 vertices

Channel ic′ vertices

Figure 4.6: Bipartite Graph for Cell H in step k

Channel-Allocation Construct a bipartite graph with two sets of vertices (Fig. 4.6):

one set (call it L) has a vertex corresponding to each of the (source) backbones that enter

the cell H in step k. From Lemma 28, it follows that |L| ≤ ⌊5na(n)
4 ⌋. The other set (call it

P) has ⌊5na(n)
c ⌋ ≤ 5na(n)

c vertices for each proper channel i in cell H, i.e., |P| = c′⌊5na(n)
c ⌋.

A backbone vertex is connected to all the vertices for the channels proper in H on which

the previous hop node of that backbone can switch (and which are therefore valid channel

choices for entering the cell H). We show that there exists a matching that pairs each

backbone vertex to a unique channel vertex, through an argument based on Hall’s marriage

theorem (Theorem 31). Thus, our objective is to show that for all V ⊆ L, |N (V)| ≥ |V|,

77

where N (V) ⊆ P is the union of the neighbor-sets of all vertices in V.

We first note the following:

⌈3f
4
⌉⌊5na(n)

c
⌋ ≥ 3f

4

(
5na(n)

c
− 1

)
=

15fna(n)

4c
− 3f

4

≥ 15fna(n)

4c
− 3fna(n)

1000c
≥ 29fna(n)

8c
(∵ na(n) ≥ 250c)

(4.31)

Consider the following two cases:

Case 1: |V| < 29fna(n)
8c

Consider any set V of backbone vertices such that |V| < 29fna(n)
8c . Then, since there are

at most ⌊f
4 ⌋ non-proper channels in a cell, every previous hop node has at least ⌈3f

4 ⌉ ≥
3f
4

proper channel choices. For each proper channel there are ⌊5na(n)
c ⌋ ≥ 5na(n)

c − 1 associated

channel vertices. Using (4.31), we obtain that: |N (V)| ≥ ⌈3f
4 ⌉⌊

5na(n)
c ⌋ ≥ 29fna(n)

8c . Therefore

|N (V)| ≥ |V|.

Case 2: |V| ≥ 29fna(n)
8c

Consider sets V of size at least 29fna(n)
8c . Intuitively, to show that |N (V)| ≥ |V| for all such

V, we first show that if a channel overload condition occurs, resulting in |N (V)| < |V| for

some V, then the overload must also manifest itself in some channel-aligned subset (i.e., a

subset where all incoming backbones corresponding to subset vertices have some common

proper channel i available to them). Thus, to show that no overload condition occurs, it

suffices to show that no overload condition occurs in any of these critical channel-aligned

subsets, which can be shown using Lemma 33. The argument is formalized as follows:

Let Vi be the set comprising all sets Ui ⊆ L, such that all backbone vertices in Ui have

channel i associated with them (i.e., all backbone vertices in Ui have i available to them as

a valid proper channel choice for entering H).

Claim (a) ∀U ∈ ⋃
i proper in H

Vi :

If |U| ≥ ⌈29fna(n)

8c
⌉ then |N (U)| ≥ |L|

78

Proof of Claim (a): By assumption, U ∈ Vi for some i that is proper in H. Also, since no

node can be the previous hop in step k of more flows than those assigned to it in step k−1,

and Invariant 1 held after step k − 1, therefore no previous hop node is common to more

than 14 backbone links entering H in step k. Let A be the set of distinct previous hop nodes

associated with U . If |U| ≥ ⌈29fna(n)
8c ⌉, then |A| ≥ 1

14 |U| ≥ 1
14(29fna(n)

8c) ≥ fna(n)
4c + fna(n)

112c >

fna(n)
4c + 1 ≥ ⌈fna(n)

4c ⌉ (note that fna(n)
c ≥ 250f ≥ 500 > 112).

Therefore, A contains at least one subset B satisfying |B| = ⌈fna(n)
4c ⌉. Recognizing that

all members of A, and hence all members of B, are capable of switching on channel i, we

can invoke Lemma 33 on B, to obtain that when f ≥ 100: |CH(B)| ≥ ⌈3c
8 ⌉. This yields:

N (U) ≥ |CH(B)|⌊5na(n)
c ⌋ ≥ |C(B)|

(
5na(n)

c − 1
)
≥ ⌈3c

8 ⌉
(

5na(n)
c − 1

)
≥ 15na(n)

8 − ⌈3c
8 ⌉ ≥

15na(n)
8 − 3

8

(
na(n)
250

)
− 1 ≥ 5na(n)

4 ≥ |L|.

Claim (b) Consider a set V ⊆ L.

If |N (V)| < |V| then ∃ channel i proper in H, and Si ⊆ V such that:

Si ∈ Vi and |Si| ≥ ⌈
29fna(n)

8c
⌉

(4.32)

Proof of Claim (b): Suppose |N (V)| < |V|. Let us denote by Si ⊆ V the set of all

backbone vertices in V that are associated with channel i (i.e., have channel i available

as a valid proper channel choice for entering cell H). Consider the bipartite sub-graph

GV induced by V ∪ N (V), and assign all edges unit capacity. Construct the graph G′
V =

(V ∪ N (V) ∪ {s, t}, E) where s is a source node having a unit capacity edge to all vertices

v ∈ V, and t is a sink node, connected to each vertex u ∈ N (V) via a unit capacity edge

(thus, E comprises the edges in GV and the additional edges just described).

We try to obtain a (s, t) flow g in G′
V such that all edges (s, v) are saturated. Each

vertex v ∈ V sub-divides the unit of flow received from s equally amongst all edges (v, u)

outgoing from it. Since each vertex has edges to vertices of at least ⌈3f
4 ⌉ channels, this yields

at least ⌈3f
4 ⌉⌊

5na(n)
c ⌋ ≥ 3f

4

(
5na(n)

c − 1
)
≥ 29fna(n)

8c edges (see (4.31)). Thus, each v ∈ V
contributes at most 8c

29fna(n) units of flow to a vertex u ∈ N (V), i.e., g(v, u) ≤ 8c
29fna(n) .

Hence no vertex u ∈ N (V) gets more than h(u) =
∑

v∈Si

g(v, u) = 8c|Si|
29fna(n) units of flow, where

i is the channel corresponding to vertex u. Resultantly, if |Si| ≤ ⌊29fna(n)
8c ⌋ for all channels

i that are proper in cell H, this implies that h(u) ≤ 1, and setting g(u, t) = h(u) yields the

79

desired (s, t) flow. Hence g is a valid flow that allows a unit of flow to pass through each

vertex v ∈ V. Therefore, from the Integrality Theorem (Theorem 32), we can obtain an

integer-capacity flow, which yields a matching of size |V|. Therefore, from Hall’s marriage

theorem (Theorem 31), |N (V)| ≥ |V| (else a matching of size |V| could not have existed).

This yields a contradiction. Hence, there must exist a proper channel i, and Si ⊆ V such

that Si ∈ Vi and |Si| > ⌊29fna(n)
8c ⌋. Since set-cardinality must necessarily be an integer, it

follows that |Si| ≥ ⌈29fna(n)
8c ⌉, and (4.32) holds.

Claim (c) ∀V ⊆ L such that |V| ≥ 29fna(n)
8c : |N (V)| ≥ |V|

Proof of Claim (c): Suppose |N (V)| < |V|. Then, from Claim (b), there exists a set

Si ⊆ V such that Si ∈ Vi, and |Si| ≥ ⌈29fna(n)
8c ⌉. Thus Si qualifies as a set to which Claim

(a) applies. Invoking Claim (a) on this set Si, it follows that |N (V)| ≥ |N (Si)| ≥ |L| ≥ |V|.
This yields a contradiction. Thus, |N (V)| ≥ |V|.

Taking both Case 1 and Case 2 into account, we have thus proved that ∀ V ⊆ L :

|N (V)| ≥ |V|. Therefore, from Hall’s marriage theorem (Theorem 31), each backbone

vertex can be matched with a unique channel vertex, and the corresponding backbone will

be assigned to the channel with which this vertex is associated. Thus all backbones get

assigned a channel, and (since there are ⌊5na(n)
c ⌋ channel vertices for each proper channel)

no more than ⌊5na(n)
c ⌋ incoming backbone links are assigned to any single channel.

While Hall’s marriage theorem proves that such a matching exists, the matching itself

can be computed using the Ford-Fulkerson method [22] on a flow network obtained from

the bipartite graph by adding a source with an edge to each vertex in L, a sink to which

each vertex in P has an edge, and assigning unit capacity to all edges.

Thus, Invariant 2 continues to hold after the channel-allocation phase of step k.

Node-Allocation Having determined the channel each incoming backbone link should

use to enter cell H, we need to assign a node in cell H to each backbone. For this, we again

construct a bipartite graph. In this graph, the first set of vertices (call it F) comprise a

vertex for each backbone link entering cell H in step k. The second set (call it R) comprises

14 vertices for each backbone candidate node in cell H. A vertex x in F has an edge with

a vertex y in R iff the actual backbone candidate node associated with y is capable of

switching on the channel assigned to the backbone-link associated with vertex x in the

80

preceding channel-allocation phase (this implies that y is indeed a valid relay choice for the

backbone link corersponding to x).

Each vertex x ∈ F has degree at least 14Mu, since it is assigned to a proper channel,

which by definition has at least Mu representatives in cellH, each of which has 14 associated

vertices in R. Also recall that Mu = ⌈9fna(n)
25c ⌉. Once again we seek to show that for all

V ⊆ F , |N (V)| ≥ |V|.
Consider any set V ∈ F .

Since no channel is assigned more than ⌊5na(n)
c ⌋ entering backbone links during the

channel-allocation phase of this step, the vertices in V are cumulatively associated with

at least m ≥ |V|
⌊ 5na(n)

c
⌋

distinct proper channels. Since each of these channels has at least

Mu backbone candidate nodes capable of switching on them, and any one node can only

switch on up to f proper channels, this implies that the number of distinct nodes in cell

H cumulatively associated with these m ≥ |V|
⌊ 5na(n)

c
⌋

proper channels is at least |V|Mu

f⌊ 5na(n)
c

⌋
≥

|V|⌈ 9fna(n)
25c

⌉
5fna(n)

c

≥ 9|V|
125 . Since each backbone candidate node has 14 vertices in R, it follows that

|N (V)| ≥ 14
(

9|V|
125

)
≥ 126|V|

125 > |V|.
Then invoking Hall’s Marriage Theorem again, each vertex x ∈ F can be matched

with a unique vertex y ∈ R, and the actual network node associated with y is deemed the

backbone representative for the backbone corresponding to vertex x in cell H (the matching

can again be computed via the Ford-Fulkerson method). Since there are at most 14 vertices

associated with a node, no node is assigned more than 14 incoming backbone links in step

k, and Invariant 1 continues to hold after the node-allocation phase of step k.

This proves that both Invariants 1 and 2 continue to hold after step k.

It follows that, after step hmax (where hmax ≤ 2√
a(n)

), each cell H has O(hmaxna(n)
c) =⇒

O(
n
√

a(n)

c) entering backbone links per channel, and each node appears on O(hmax) =

O(1√
a(n)

) =⇒ O(
n
√

a(n)

c) (from (4.15)) source backbones.

Detour backbones: We can construct the SPD′ stretch of backbone segment Sb(x) for

the detour-routed flows in any manner possible, i.e., by assigning links to any eligible

node/channel (at least one eligible node is known to exist since, as a consequence of Lemma

32, each node can switch on at least ⌈3f
4 ⌉ channels that are proper in the next cell).

Additional last hop: Now let us account for the possible additional last hop that some

81

flows may have, yielding an additional cell in Sb(x) (in addition to those traversed from

source x to pseudo-destination). We can extend the backbones over the additional hop in

any feasible manner (and as argued for the detour backbones, it is indeed feasible to do so).

Construction of Db(x) Note that by our routing strategy a flow will only attempt to

transition to the destination backbone when it enters ready-for-transition phase.

From Lemma 36, the total number of flows-routes traversing a cell in ready-for-transition

phase is O(log4 n) (counting possible repeat traversals), which is asymptotically dominated

by O(
n
√

a(n)

c).

Therefore, for each node x, and for each flow i for which x is the destination: we can

construct D(i)
b (x) by using any feasible nodes/channels (it is always feasible to construct

D(i)
b (x) as each node can switch on at least ⌈3f

4 ⌉ channels that are proper in the next cell

to be traversed).

4.7.2 Load Balance within a Cell

Now we show that no channel or interface bottlenecks form in the network when our de-

scribed construction is used. As in Section 4.6, we use the following terminology: A flow-link

is said to enter a cell H on a channel j if the flow’s route includes a hop (link) (vi−1, vi),

where vi−1 is in a cell adjacent to H, vi is in H , and vi−1 transmits the flow’s packets

to vi using channel j (this naturally implies that both vi−1 and vi can operate on channel

j). Similarly, a flow-link is said to leave a cell H on channel j if the route includes a link

(vi, vi+1), where vi is in H, vi+1 is in a cell adjacent to H, and vi transmits the flow’s packets

to vi+1 using channel j.

Per-Channel Load

Lemma 38. The number of flow-links that enter any cell on a given channel is O(
n
√

a(n)

c)

w.h.p.

Proof. A flow-route traversing H1,H2, ...,Hj−1,Hj may enter a cell Hj on a channel i

under the following circumstances:

1. The flow is either in progress-on-source-backbone phase, or it is in the ready-for-

transition phase, but is yet to make a transition to the destination backbone, and

82

i is the channel assigned to the source backbone link between the backbone nodes in

Hj−1 and Hj

2. The flow has already made a transition, and i is the channel assigned to the link

between the destination backbone nodes in Hj−1 and Hj

We first consider the flow-links that enter a cell in progress-on-source-backbone phase,

i.e., they are proceeding on their respective source backbone segments. Recall that these

are all non-detour-routed flows, since detour-routed flows are always in ready-for-transition

phase. The number of such flows that enter any cell on a single channel is O(
n
√

a(n)

c)

(Lemma 37).

We now need to account for the fact that some of the flow-links may enter the cell in the

ready-for-transition phase. From Lemma 36 there are O(log4 n) flow-routes traversing any

cell in ready-for-transition phase w.h.p. (recall that these include the detour-routed flows

with their repeat traversals counted separately, and also the possible additional last D′D

hop for all flows). Thus, regardless of whether they are still on their source backbone, or

have already made the transition to their destination backbone, the number of such entering

flow-links assigned to any single channel is O(log4 n).

Hence the number of flow-links entering on a single channel is O(
n
√

a(n)

c)+O(log4 n) =⇒
O(

n
√

a(n)

c) w.h.p. for each cell of the network.

Lemma 39. The number of flow-links that leave any cell on any single channel is O(
n
√

a(n)

c)

w.h.p.

Proof. Note that the flow-links that leave the cell must then enter one of the 8 adjacent

cells on that channel (as a backbone link for a flow leaves the current cell, and enters an

adjacent cell). Hence, flow-links leaving the cell on a channel can be no more than 8 times

the maximum number of flow-links entering a cell on any one channel, which has been

established as O(
n
√

a(n)

c) in Lemma 38. Therefore, the total number of flows leaving any

given cell on a given channel is also O(
n
√

a(n)

c) w.h.p.

Lemma 40. The number of additional transition links scheduled on any single channel

within any cell is O(log4 n) w.h.p.

83

��
��
��

��
��
��

��
��
��
��

qx

qy

z

Figure 4.7: Two additional transition links for a flow lying wholly within the cell

Proof. Recall the transition strategy outlined in the proof of Lemma 34, whereby the flow

locates a cell along the route where the source backbone node qx, and destination backbone

node qy are connected through a third node z. This yields two additional links qx → z, and

z → qy that lie entirely within the cell (Fig. 4.7). Note that the number of flows performing

this transition in the cell can be no more than the number of flows traversing the cell in

ready-for-transition phase. From Lemma 36 there are O(log4 n) such flows traversing any

cell w.h.p. In the worst case, we can count 2 additional links for each such flow as being all

assigned to one channel. The result follows from this observation.

Per-Node Load

Lemma 41. The number of flow-links that are assigned to any one node in any cell is

O(
n
√

a(n)

c) w.h.p.

Proof. A node is always assigned an outgoing flow-link for the single flow for which it is

the source. A node is also assigned an incoming flow-link for each flow for which it is the

destination, and from Lemma 1 there are O(log n) such flows for any node w.h.p. Besides, a

node may be assigned a pair of flow-links (incoming and outgoing) for flows that are in the

ready-to-transition phase, for which it facilitates a transition (if it is a transition facilitator)

node), or on whose source or destination backbone it occurs (if it is a backbone candidate).

There are O(log4 n) such flow-links (counting repeat traversals by the same flow, additional

last hop, and additional transition links separately) in a cell w.h.p. (Lemma 36 and Lemma

40). Thus, a node can only have O(log4 n) such flow-links assigned.

We now consider the flows in progress-on-source-backbone phase that do not originate

in the cell. Note that these must be non-detour-routed flows in their SD′ stretch. These

flows are on their source-backbone, and from Lemma 37, each backbone candidate node has

84

O(
n
√

a(n)

c) incoming flow-links assigned. Corresponding to each such incoming link, there

is an outgoing link (since the node is a relay for these flows). Thus, the total number of

such assigned flow-links is O(
n
√

a(n)

c).

Therefore, the number of flow-links assigned to any single node is 1 + O(logn) +

O(log4 n) +O(
n
√

a(n)

c) =⇒ O(
n
√

a(n)

c).

4.7.3 Transmission Schedule

Similar to adjacent (c, f) assignment, and the sub-optimal lower bound construction of

Section 4.6, we can obtain a two-level feasible transmission schedule. Since, each cell can

face interference from at most a constant number γ of nearby cells, the resultant cell-

interference graph (a graph with a vertex for each cell, and an edge between two vertices

if the corresponding cells can interfere with each other), has a chromatic number at most

1 + γ. Hence, we can come up with a global schedule having 1 + γ unit time slots in each

round. In any slot, if a cell is active, then all interfering cells are inactive.

For intra-cell scheduling, we construct a conflict graph based on the nodes in the active

cell, and its adjacent cells (note that the hop-sender of each flow shall lie in the active cell,

and the hop-receiver shall lie in one of the adjacent cells, except for transition links, for

which both lie in the active cell), as follows:

We create a separate vertex for each flow-link for which a node in the cell needs to

transmit data (repeat traversals by the same flow’s route or additional transition links

lying wholly within the cell are counted as distinct flow-links for the purpose of scheduling;

these have been accounted for while bounding the number of flow-links in a cell in previous

lemmas). Since each flow-link has an assigned channel on which it operates, each vertex

in the graph has an implicit associated channel. Besides, each vertex has an associated

pair of nodes corresponding to the hop endpoints. Two vertices are connected by an edge

if (1) they have the same associated channel, or (2) at least one of their associated nodes

is the same. The scheduling problem thus reduces to obtaining a vertex-coloring of this

graph. If we have a vertex coloring, then it ensures that (1) a node is never simultaneously

sending/receiving for more than one flow (2) no two flow-links on the same channel are

active simultaneously. Thus, the number of neighbors of a graph vertex is upper bounded

by the number of flow-links requiring a transmission in the active cell on that channel, and

85

the number of flow-links assigned to the flow’s two hop endpoints (both hop-sender and hop-

receiver). It can be seen from Lemma 39, Lemma 40 and Lemma 41 that the degree of the

conflict graph is O(
n
√

a(n)

c)+O(
n
√

a(n)

c)+O(log4 n)+O(
n
√

a(n)

c)+O(
n
√

a(n)

c) = O(
n
√

a(n)

c)

(note that O(log4 n) =⇒ O(
n
√

a(n)

c), since we showed in (4.14) that
n
√

a(n)

c = Ω(
√

n
log n)).

Thus the graph can be colored in O(
n
√

a(n)

c) colors. Hence, the cell-slot (which can be

assumed to be of unit time) is divided into O(
n
√

a(n)

c) = O(

q
n log n

prnd

c) equal length subslots,

and all the flow-links get a slot for transmission. This implies that each flow-link gets a

Ω(c
√

prnd

n log n) fraction of the slot-time. Moreover, each cell gets at least one slot in 1 + γ

slots, where γ is a constant, and each channel has bandwidth W
c . Thus, the throughput

each flow can get is Ω
((

1
1+γ

) (
W
c

) (
c
√

prnd

n log n

))
= Ω(W

√
prnd

n log n).

Theorem 7. When c = O(logn) and 100 ≤ f ≤ c, construction CR2 yields a per-flow

throughput of Ω(W
√

prnd

n log n) for random (c, f) assignment.

We now describe the construction CR∗.

Construction CR∗

• When f < 100: Use construction CR1 described in Section 4.6, which achieves a

per-flow throughput of Ω(W
√

f
cn log n) (Theorem 6). From Lemma 14, it follows that

q
f

cn log nq
prnd

n log n

= Ω(1√
f

). Thus, for f < 100,

q
f

cn log nq
prnd

n log n

= Ω(1).

• When f ≥ 100: Use construction CR2, which achieves a per-flow throughput of

Ω(W
√

prnd

n log n) whenever f ≥ 100 (Theorem 7).

This yields the following result:

Theorem 8. When c = O(logn) and 2 ≤ f ≤ c, construction CR∗ yields a per-flow

throughput of Ω(W
√

prnd

n log n).

Combining Theorem 8 with the upper bound on capacity proved in Section 4.5, we

obtain the following theorem:

Theorem 9. When c = O(log n) and 2 ≤ f ≤ c, the per-flow network capacity with random

(c, f) assignment is Θ(W
√

prnd

n log n).

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1

P
ro

ba
bi

lit
y

of
 s

ha
rin

g
at

 le
as

t o
ne

 c
ha

nn
el

f/c

Communication Probability with Constrained Switching

Max. Prob. with Adjacent (c, f) Assignment
Random (c, f) Assignment

1

Figure 4.8: Comparison of probability of sharing a channel

4.8 Discussion

We have shown that the capacity for random (c, f) assignment is Θ(W
√

prnd

n log n) in the

regime c = O(logn). It is easy to see that:

prnd = 1−
(

1− f

c

)(
1− f

c− 1

)
...

(
1− f

c− f + 1

)

note that the product in the R.H.S. above is uniformly 0 whenever f ≥ c − f + 1, as one of the terms in the product is 0

≥ 1−
(

1− f

c

)f

≥ 1− e− f2

c

(4.33)

Therefore f = Ω(
√
c) =⇒ prnd = Ω(1). To illustrate, setting f =

√
c yields prnd ≥

1 − 1
e > 1

2 . In light of (4.33), our result implies that f = Ω(
√
c) suffices for achieving

capacity of the same order as the unconstrained switching case [65, 66].

We also described a simpler construction that achieves per-flow throughput Ω(W
√

f
cn log n).

For f =
√
c, using this simpler construction would yield a capacity degradation by a factor

of the order of c
1
4 compared to the unconstrained switching case.

Fig. 4.8 is a numerical plot (obtained by setting c to 104, and varying f from 2 to c)

depicting how the probability prnd compares with the probability pmax
adj = min{ 2f−1

c−f+1 , 1}.

87

Recall that prnd is the probability that two nodes share at least one channel in random (c, f)

assignment, and pmax
adj is the upper bound on the probability that two nodes share at least

one channel in adjacent (c, f) assignment (Chapter 3). It must be remarked that though

both models allow nodes to switch between a subset of f channels, the additional degrees

of freedom obtained via the random assignment model lead to a much quicker convergence

of prnd toward 1.

It is to be noted that the optimal construction is substantially more complex than the

simpler construction and requires that all routes be constructed in lock-step. Thus the

two constructions represent an interesting trade-off in capacity versus scheduling/routing

complexity.

Moreover, the optimal construction provides many useful insights into the implications

of heterogeneous interfaces for routing in a realistic scale network. Note that the need for

a synchronized route construction procedure arose from a strong coupling between choices

of channels/relays at each hop, over and above what one would find in a network with

homogeneous interfaces.

Let us re-examine the implications of heterogeneous interfaces that are subject to switch-

ing constraints: if we have to choose a route for a flow, then the first hop transmission must

necessarily be scheduled on one of the f channels that the source can switch on (since the

source will be sending it); the first relay node must also be one that has at least one chan-

nel in common with the source node (so that it can receive the transmission); moreover

if channel x is chosen, then the relay node must be capable of switching on channel x.

Similarly, the choice of channel at each subsequent hop is limited to the channel-subset of

the hop-sender, and the choice of next relay is limited to nodes that can switch on such a

channel. Thus the choice of relay at hop i determines the channel choices and consequently

relay choices available for hop i+ 1. This leads to a coupling across hops of the same route.

Moreover, this also leads to a strong coupling across routes. It is due to these concerns

that the capacity achieving construction has a synchronized route selection procedure. We

present a simple example to illustrate this issue:

Consider nodes A,B,C,D,X, Y , each of which is equipped with a single interface. Con-

sider two flows A→ B and C → D. A,B and C,D are not neighbors, but the nodes X,Y

are neighbors of all nodes A,B,C,D, and can thus act as relays for the flows. The channel-

88

A X
1 2

43

3 4

{1, 2}{1, 3} {2, 4}

{3, 7} {4, 6}

{3, 4}

Y

B

C D

Figure 4.9: Example illustrating coupling between routes

sets of the nodes are as shown in Fig. 4.9. The first flow can use the route A
1→X 2→B or

A
3→Y 4→B. The second flow has only one choice C

3→Y 4→D. Suppose we perform route-

selection for the two flows sequentially in the order A→ B,C → D. If the first flow chooses

its route without consideration of the second flow and its constraints, it may end up choos-

ing A
3→Y 4→B. Since the second flow must necessarily choose C

3→Y 4→D, this will lead to a

bottleneck. The optimal choice is for the first flow to use route A
1→X 2→B and for the second

flow to use C
3→Y 4→D. If all interfaces could switch on all channels, this problem would not

have arisen, as regardless of which route the first flow chose, the second flow could always

choose the node-disjoint route, and use different channels on that route. Thus, interfaces

with constrained switching ability require more sophisticated routing algorithms to reduce

the chances of severe bottleneck formation due to a sub-optimal routing choice.

89

Chapter 5

Scheduling in Multi-Channel
Wireless Networks

In this chapter, we examine scheduling issues in multi-channel wireless networks, where

channels may have heterogeneous rate characteristics. We also briefly discuss the scheduling

implications of interface heterogeneity. Appropriate scheduling policies are of utmost im-

portance in achieving good throughput characteristics in a multi-hop wireless network. The

seminal work of Tassiulas and Ephremides yielded a throughput-optimal scheduler, which is

capable of scheduling all “feasible” traffic flows while maintaining stability of queues [110].

However, such an optimal scheduler is difficult to implement in practice. Consequently, var-

ious imperfect scheduling strategies, which trade-off throughput for simplicity, have been

proposed ([75, 119, 120, 103] amongst others).

When multiple orthogonal channels are available in a wireless network, it is possible to

get substantial performance improvement (compared to the use of just one of these chan-

nels) by harnessing the spectral resource to the maximum extent possible. However, this

also gives rise to non-trivial channel coordination issues. The situation is exacerbated by

variability in the achievable data-rates across different channels on a link. Such variability

may arise due to various reasons, such as the use of different modulations, different propa-

gation characteristics, or time-varying channel conditions. In this chapter, our focus is on

heterogeneity in channel rates which is time-invariant.

Computing an optimal schedule, even in a single-channel network, is usually intractable

both due to need for global information, and computational complexity. However, imper-

fect schedulers requiring limited local information can typically be designed, which provide

acceptable worst-case (and typically much better average case) performance degradation

compared to the optimal. In a multi-channel network, the local information exchange

required by even an imperfect scheduler can be quite prohibitive, as information may be

needed on a per-channel basis. For instance, Lin and Rasool [74] have described a scheduling

90

algorithm for multi-channel multi-radio wireless networks that requires information about

per-channel queues at all interfering links. This provides a strong motivation for the study

of scheduling algorithms that can operate with limited information, while still providing

acceptable worst-case performance guarantees.

In this chapter, we examine the scheduling implications of multiple channels, and het-

erogeneity in channel-rates. We begin by briefly discussing related work in Section 5.1. We

introduce the model, definitions and notation in Section 5.2. Scheduling issues that arise

in multi-channel wireless networks are discussed in Section 5.3. Section 5.4 presents a brief

summary of our results. We present a result on the cardinality of the set of links sched-

uled by any maximal scheduler in Section 5.5. In Section 5.6, we derive a lower bound on

performance of a greedy maximal scheduler, which improves upon existing bounds for this

scheduler. In Section 5.7, we describe a scheduler that operates with limited information,

and prove a lower bound on its performance. In Section 5.8, we briefly discuss the issue of

scheduling with heterogeneous radios, and in Section 5.9 we identify interesting directions

for future work.

5.1 Related Work

The issue of throughput-optimal scheduling was considered in the seminal work of Tasiulas

and Ephremides [110], in which they described the Dynamic Backpressure Scheduler, which

is throughput-optimal. The impact of imperfect scheduling on the convergence of joint

rate-control and scheduling was examined in [75].

A maximal scheduler combined with local threshold based participation rule has been

proposed in [121]. The efficiency ratio of the greedy maximal scheduler has been studied in

[25, 49, 50, 48], amongst others. It was shown in [25] that for a class of graphs, with conflicts

amongst adjacent links, greedy maximal matching yields an efficiency-ratio of 1. These

topologies are those which satisfy a certain property termed the local pooling condition. In

[49], this was generalized to σ-local pooling (σ ≤ 1), and it was shown that the greedy

maximal matching algorithm achieves an efficiency-ratio of σ in all topologies where the

local pooling factor is σ. This result was further generalized to general interference models

in [50].

A queue-loading algorithm to be used with a maximal scheduler in a multi-channel multi-

91

radio networks has been described in [74]. Cross-layer resource allocation in multi-channel

wireless networks has been considered in [81].

5.2 Preliminaries

We consider a multi-hop wireless network. For simplicity, we largely limit our discussion to

nodes equipped with a single radio-interface capable of tuning to any one available channel

at any given time. All interfaces in the network have identical operational capabilities, and

may switch between the available channels if desired, i.e., there are no switching constraints.

Many of the presented results can also be used to obtain results for the case when each

node is equipped with multiple interfaces; we briefly discuss this issue.

The wireless network is viewed as a directed graph, with each directed link in the

graph representing an available communication link. We model interference using a conflict

relation between links. Two links are said to conflict with each other if it is only feasible

to schedule one of the links on a certain channel at any given time. The conflict relation

is assumed to be symmetric. The conflict-based interference model provides a tractable

approximation of reality – while it does not capture the wireless channel precisely, it is more

amenable to analysis. Such conflict-based interference models have been used frequently in

the past work (e.g., [121, 74]).

Time is assumed to be slotted, with the slot duration being 1 unit time (i.e., we use slot

duration as the time unit). In each time slot, the scheduler used in the network determines

which links should transmit in that time slots, as well as the channel to be used for each

such transmission.

We now introduce some notation and terminology.

The network is viewed as a collection of directed links, where each link is a pair of nodes

that are capable of direct communication with non-zero rate.

• L denote the set of directed links in the network.

• C is the set of all available orthogonal channels. Thus, |C| is the number of available

channels.

• We say that a scheduler schedules link-channel pair (l, c) if it schedules link l for

transmission on channel c.

92

• rc
l denotes the rate achievable on link l by operating link l on channel c, provided

that no conflicting link is also scheduled on channel c. For simplicity, we assume that

rc
l > 0 for all l ∈ L and c ∈ C 1. The rates rc

l do not vary with time. We also define

the following terms: rmax = max
l∈L,c∈C

rc
l , and rmin = min

l∈L,c∈C
rc
l . When two conflicting

links are scheduled simultaneously on the same channel, both achieve rate 0.

• βs denotes the self-skew-ratio, defined as the minimum ratio between rates supportable

over different channels on a single link. Therefore, for any two channels c and d, and

any link l, we have
rd
l

rc
l
≥ βs. Note that 0 < βs ≤ 1.

• βc denotes the cross-skew-ratio, defined as the minimum ratio between rates support-

able over the same channel on different links. Therefore, for any channel c, and any

two links l and l′:
rc
l′

rc
l
≥ βc. Note that 0 < βc ≤ 1.

Let rl = max
c∈C

rc
l . Let σs = min

l∈L

∑

c∈C

rc
l

rl
. Note that σs ≥ 1 + βs(σs − 1). Moreover,

typically σs will be much larger than this worst-case bound. σs is largest when βs = 1,

in which case σs = |C|.

• b(l) and e(l), respectively, denotes the nodes at the two endpoints of a link. In

particular, link l is directed from node b(l) to node e(l).

• E(b(l))and E(e(l))denote the set of links incident on nodes b(l) and e(l), respectively.

Thus, the links in E(b(l)) and E(e(l)) share an endpoint with link l. Since we focus on

single-interface nodes, this implies that if link l is scheduled in a certain time slot, no

other link in E(b(l)) or E(e(l)) can be scheduled at the same time. We refer to this as

an interface conflict. Let A(l) = E(b(l)) ∪ E(e(l)). Note that l ∈ A(l). Links in A(l)

are said to be adjacent to link l. Links that have an interface conflict with link l are

those that belong to E(b(l)) ∪ E(e(l)) \ {l}. Let Amax = max
l
|A(l)|.

• I(l) denotes the set of links that conflict with link l when scheduled on the same

channel. I(l) may include links that also have an interface-conflict with link l. By

convention, l is considered included in I(l). The subset of I(l) comprising interfering

1Though we assume that rc
l > 0 for all l, c, the results can be generalized very easily to handle the case

where rc
l = 0 for some link-channel pairs

93

links that are not adjacent to l is denoted by I′(l), i.e., I′(l) = I(l) \ A(l). Let

Imax = max
l
|I′(l)|.

• Kl denotes the maximum number of non-adjacent links in I′(l) that can be scheduled

on a given channel simultaneously if l is not scheduled on that channel. Kl(|C|)
denotes the maximum number of non-adjacent links in I′(l) that can be scheduled

simultaneously on any of the |C| channels (without conflicts) if l is not scheduled for

transmission. Note that here we exclude links that have an interface conflict with l.

• K is the largest value of Kl over all links l, i.e., K = max
l

Kl. K|C| is the largest value

of Kl(|C|) over all links l, i.e., K|C| = max
l

Kl(|C|). Let Imax = max
l
|I′(l)|. It is not

hard to see that for single-interface nodes:

K ≤ K|C| ≤ min{K|C|, Imax} (5.1)

We remark that the term K as used by us is similar, but not exactly the same as

the term K used in [74]. In [74], K denotes the largest number of links that may be

scheduled simultaneously if some link l is not scheduled, including links adjacent to l.

We exclude the adjacent links in our definition of K. Throughout this text, we will

refer to the quantity defined in [74] as κ instead of K.

• Let γl be 0 if there are no other links adjacent to l at either endpoint of l, 1 if there

are other adjacent links at only one endpoint, and 2 if there are other adjacent links

at both endpoints.

• γ is the largest value of γl over all links l, i.e., γ = max
l

γl.

• Load vector: We consider single-hop traffic, i.e., any traffic that originates at a node is

destined for a next-hop node, and is transmitted over the link between the two nodes.

Under this assumption, all the traffic that must traverse a given link can be treated

as a single flow.

The traffic arrival process for link l is denoted by {λ(t)}. The arrivals in each slot t

are assumed i.i.d. with average λl. The average load on the network is denoted by

load vector
−→
λ = [λ1, λ2, ..., λ|L|], where λl denotes the arrival rate for the flow on link

l. λl may possibly be 0 for some links l.

94

• Queues: The packets generated by each flow are first added to a queue maintained at

the source node (depending on the algorithm, there could be a single queue for each

link, or a queue for each (link, channel) pair).

• Stability: The system of queues in the network is said to be stable if, for all queues Q

in the network, the following is true:

lim
t→∞

sup
1

t

t∑

τ=1

E[q(τ)] <∞

where q(τ) denotes the backlog in queue Q at time τ

(5.2)

• Feasible load vector: In each time slot, the scheduler used in the network determines

which links should transmit and on which channel (recall that each link is a directed

link, with a transmitter and a receiver). In different time slots, the scheduler may

schedule a different set of links for transmission. A load vector is said to be feasible, if

there exists a scheduler that can schedule transmissions to achieve stability (as defined

above), when using that load vector.

• Link rate vector: Depending on the schedule chosen in a given slot by the scheduler,

each link l will have a certain transmission rate. For instance, using our notation

above, if link l is scheduled to transmit on channel c, it will have rate rc
l (we assume

that, if the scheduler schedules link l on channel c, it does not schedule another

conflicting link on that channel). Thus, the schedule chosen for a time-slot yields a link

rate vector for that time slot. Note that link rate vector specifies rate of transmission

used on each link in a certain time slot. On the other hand, load vector specifies the

rate at which traffic is generated for each link.

• Feasible rate region: The set of all feasible load vectors constitutes the feasible rate-

region of the network, and is denoted by Λ. A throughput-optimal scheduler is one

that is capable of maintaining stable queues for any load vector
−→
λ ∈ Λ.

• Throughput-optimal scheduler: From the work of [110], it is known that a sched-

uler that maintains a queue for each link l, and then chooses the schedule given by

argmax−→r
∑

l qlrl, is throughput-optimal for scenarios with single-hop traffic (ql is the

backlog in link l’s queue, and the maximum is taken over all possible link rate vectors

95

−→r). Note that ql is a function of time, and queue-backlogs at the start of a time slot

are used above for computing the schedule (or link-rate vector) for that slot.

• Imperfect scheduler: It is usually difficult to determine the throughput-optimal link-

rate allocations, since the problem is typically computationally intractable. Hence,

there has been significant recent interest in imperfect scheduling policies that can be

implemented efficiently. In [75], cross-layer rate-control was studied for an imperfect

scheduler that chooses (in each time slot) link-rate vector −→s such that
∑

l qlsl ≥
δ argmax−→r

∑
qlrl, for some constant δ (0 < δ ≤ 1).

It was shown [75] that any scheduler with this property can stabilize any load-vector
−→
λ ∈ δΛ – note that if a rate vector

−→
λ is in Λ, then the rate vector δ

−→
λ is in δΛ. δΛ is

also referred to as the δ-reduced rate-region. If a scheduler can stabilize all
−→
λ ∈ δΛ,

its efficiency-ratio is said to be δ.

• Maximal scheduler: Under our assumed interference model, a schedule is said to be

maximal if (a) no two links in the schedule conflict with each other, and (b) it is not

possible to add any link to the schedule without creating a conflict (either conflict

due to interference, or an interface-conflict).

We utilize the following stability criterion (from [85]) based on Lyapunov drift:

Let
−→
U (a)(t) = (U

(a)
i (t)) be the backlog matrix, where U

(a)
i (t) is the backlog in queue i

for commodity a. Let L(
−→
U) be a non-negative function of

−→
U .

Lemma 42. (Lyapunov Stability) [85] If the Lyapunov function of unfinished work L(
−→
U)

satisfies:

E[L(
−→
U (t+ 1))− L(

−→
U (t))|−→U (t)] ≤ B − ǫ

∑

i,a

θ
(a)
i U

(a)
i (t)

for some positive constants B, θ
(a)
i , then:

lim sup
M→∞

∑

i,a

θ
(a)
i

{
1

M

M−1∑

k=0

E[U
(a)
i (kT)]

}
≤ B (5.3)

Furthermore, if there is a nonzero probability that the system will eventually empty, then

a steady state distribution for unfinished work exists, with bounded average occupancies U
a
i

96

satisfying
∑

i,a

θ
(a)
i U

a
i ≤ B (5.4)

We remark that, though the definition of stability used in [85] is different from the

definition we use (our assumed definition conforms to Strong Stability [37]), the proof of

Lemma 42 in [85] establishes stability in the sense of the alternative definition by establishing

the condition (5.3), which is equivalent to Strong Stability. Therefore, Lemma 42 can be

used for the purpose of our results.

5.3 Scheduling in Multi-channel Wireless Networks

As was discussed previously, throughput-optimal scheduling is often an intractable problem

even in a single-channel network. However, imperfect schedulers that achieve a fraction of

the stability-region can potentially be implemented in a reasonably efficient manner. Of

particular interest is the class of imperfect schedulers know as maximal schedulers, which we

defined in Section 5.2. The performance of maximal schedulers under various assumptions

has been studied in much recent work, e.g., [120, 103], with the focus largely on single-

channel wireless networks. The issue of designing a distributed scheduler that approximates

a maximal scheduler has been addressed in [51], etc.

When there are multiple channels, but each node has one or few interfaces, an addi-

tional degree of complexity is added, in terms of channel selection. In particular, when the

link-channel rates rc
l can be different for different links l, and channels c, the scheduling

complexity is exacerbated by the fact that it is not enough to assign different channels to

interfering links; for good performance, the channels must be assigned taking achievable

rates into account, i.e., individual channel identities are important.

Scheduling in multi-channel multi-radio networks has been examined in [74]. In [74],

it was argued that if a simple maximal scheduler is used in such a network, there could

possibly be an arbitrary degradation in efficiency-ratio (assuming arbitrary variability in

rates) compared to the efficiency-ratio of a maximal scheduler with identical channels. A

queue-loading algorithm was been proposed, in conjunction with which, a maximal scheduler

can stabilize any vector in
(

1
κ+2

)
Λ, for arbitrary βc and βs values. This rule requires

knowledge of of the length of queues at all interfering links.

97

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

1

1 Identical channels/gains

βc

βs

Figure 5.1: 2-D visualization of channel heterogeneity

Variability in channel gains over different links is very much a characteristic of real-world

wireless networks, and must indeed be handled by protocols and algorithms. However, if the

solutions require extensive information-exchange, the resultant performance improvement

may be offset by the increased overhead. In light of this, it is crucial to consider various

points of trade-off between information and performance. In this context, the quantities

βs, βc and σs defined in Section 5.2 prove to be useful. The quantities βs and βc can be

viewed as two orthogonal axes for worst-case channel heterogeneity (Fig. 5.1). The quantity

σs provides an aggregate (and thus averaged-out) view of heterogeneity along the βs axis.

βs = 1 corresponds to a scenario where all channels have identical characteristics, such as

bandwidth, modulation/transmission-rate, noise-levels, etc., and the link-gain is a function

solely of the separation between sender and receiver. βc = 1 corresponds to a scenario where

all links have the same sender-receiver separation, and the same conditions/characteristics

for any given channel, but the channels may have different characteristics, e.g., an 802.11b

channel with a maximum supported data-rate of 11 Mbps, and an 802.11a channel with a

maximum supported data-rate of 54 Mbps.

In this chapter, we show that in a single-interface network, a simple maximal scheduler

augmented with local traffic-distribution and threshold rules achieves an efficiency-ratio at

least
(

σs

K|C|+max{1,γ}|C|

)
. The noteworthy features of this result are:

1. This scheduler does not require information about queues at interfering links.

2. The performance degradation (compared to the scheduler of [74]) when rates are

variable, i.e., βs, βc 6= 1, is not arbitrary, and is at worst σs

|C| ≥
1+βs(|C|−1)

|C| ≥ 1
|C| . Thus,

98

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� Vertex representing a link

Channel Interference conflict

Figure 5.2: Example of improved bound on efficiency ratio: link-interference topology is a
star with a center link and x radial links

even with a purely local information based queue-loading rule, it is possible to avoid

arbitrary performance degradation even in the worst case. Typically, the performance

would be much better.

3. In many network scenarios, the provable lower bound of
(

σs

K|C|+max{1,γ}|C|

)
may actu-

ally be better than 1
κ+2 . This is particularly likely to happen in networks with single-

interface nodes, e.g., suppose we have three channels a, b, c with ra
l = 1, rb

l = 1, rc
l = 0.5

for all links l. Then, in the network in Fig. 5.2 (where the link-interference graph

is a star with x radial vertices, and there are no interface-conflicts), K|C| = x, γ =

0, σs = 2.5, and we obtain a bound of 1
0.4x+1.2 , whereas the proved lower bound of the

scheduler of [74] is 1
x+2 .

The multi-channel scheduling problem is further complicated if the rates rc
l are time-

varying, i.e., rc
l = rc

l (t). However, handling such time-varying rates is beyond the scope

of the results in this chapter, and we address only the case where rates do not exhibit

time-variation.

99

5.4 Summary of Results

For multi-channel wireless networks with single-interface nodes, we present lower bounds

on the efficiency-ratio of a class of maximal schedulers (including both centralized and

distributed schedulers), which indicate that the worst-case efficiency-ratio can be higher

when there are multiple channels (as compared to the single-channel case). More specifically,

we show that:

• The number of links scheduled by any maximal scheduler are within at least a δ

fraction of the maximum number of links activated by any feasible schedule, where:

δ = max

{ |C|
K|C| + max{1, γ}|C| ,

1

max{1,K + γ}

}

• A centralized greedy maximal (CGM) scheduler achieves an efficiency-ratio at least

max{ σs

K|C|+max{1,γ}|C| ,
1

max{1,K+γ}} This constitutes an improvement over the lower

bound for the CGM scheduler proved in [74]. Since K|C| ≤ min{K|C|, Imax} ≤ κ|C|,
this new bound on efficiency-ratio can often be substantially tighter.

• We show that any maximal scheduler, in conjunction with a simple local queue-loading

rule, and a threshold-based link-participation rule, achieves an efficiency-ratio of at

least
(

σs

K|C|+max{1,γ}|C|

)
. This scheduler is of significant interest as it does not require

information about queues at all interfering links.

Note that the text below makes the natural assumption that two links that conflict with

each other (due to interference or interface-conflict) are not scheduled in the same timeslot

by any scheduler discussed in the rest of this chapter.

5.5 Maximal Schedulers

We begin by proving a result about the cardinality of the set of links scheduled by any

maximal scheduler.

Theorem 10. Let Sopt denote the set of links scheduled by a scheduler that seeks to max-

imize the number of links scheduled for transmission, and let Smax denote the set of links

100

activated by any maximal scheduler. Then the following is true:

|Smax| ≥ max{ |C|
K|C| + max{1, γ}|C| ,

1

max{1,K + γ}}|Sopt| (5.5)

Proof. Denote by cm(l′) the channel on which a link l′ is scheduled in Smax.

Consider l ∈ Sopt ∩ Smax. Since l was not scheduled by the maximal scheduler, this

implies that at least one of the following events must be true:

1. Condition 1: Smax ∩ Sopt ∩ A(l) 6= φ.

2. Condition 2: For each channel c ∈ C, there exists some link l′c ∈ Smax ∩ I′(l), such

that cm(l′c) = c.

Now, define sets Aif and Ain as follows:

Aif = {l : l ∈ Sopt ∩ Smax and Condition 1 holds}
Ain = (Sopt ∩ Smax) \ Aif

Thus Aif comprises the set of links in Sopt ∩ Smax that have an interface conflict with

some link in the maximal-schedule, while Ain comprises the set of links in Sopt ∩Smax that

are blocked in the maximal-schedule purely by channel-interference conflicts.

For each l ∈ Ain, let Yl = Smax ∩ I′(l). Taking note of Condition 2, each link l ∈ Ain

must be blocked on each channel c ∈ C by at least one link in Yl. Any link l′ ∈ Smax can

occur in the Yl of at most K|C| non-adjacent links l ∈ Sopt.

Therefore, it follows that:

|C||Ain| ≤ K|C| |Smax| (5.6)

Any interface-conflicts experienced by links in Sopt ∩ Smax must necessarily be caused

by links in Smax∩Sopt. Since a link can only block up to γ links through interface-conflicts,

we obtain that:

|Aif | ≤ γ |Smax ∩ Sopt| (5.7)

101

Thus we obtain the following:

|Sopt|
|Smax|

=
|Smax ∩ Sopt|+ |Sopt ∩ Smax|

|Smax|
=
|Smax ∩ Sopt|+ |Aif |+ |Ain|

|Smax|

≤
|Smax ∩ Sopt|+ γ|Smax ∩ Sopt|+ K|C|

|C| |Smax|
|Smax|

from (5.7) & (5.6)

=
|Smax ∩ Sopt|+ |Smax ∩ Sopt|+ (γ − 1)|Smax ∩ Sopt|+ K|C|

c |Smax|
|Smax|

=
|Smax|+ (γ − 1)|Smax ∩ Sopt|+ K|C|

|C| |Smax|
|Smax|

≤
|Smax|+ max{0, γ − 1}|Smax|+ K|C|

|C| |Smax|
|Smax|

= 1 + max{0, γ − 1}+
K|C|
|C|

= max{1, γ}+
K|C|
|C|

(5.8)

Furthermore, consider any link l in Smax. Either l is scheduled even in Sopt, or if l is

not scheduled in Sopt, at most K links in I′(l), and γ links in A(l) \ {l} could have been

scheduled in Sopt. Thus:
|Sopt|
|Smax|

≤ max{1,K + γ} (5.9)

Combining (5.8) and (5.9), we obtain that:

|Smax| ≥ max

{ |C|
K|C| + max{1, γ}|C| ,

1

max{1,K + γ}

}
|Sopt| (5.10)

5.6 Centralized Greedy Maximal Scheduler

A centralized greedy maximal (CGM) scheduler operates in the manner described below.

In each timeslot:

1. Calculate link weights wc
l = qlr

c
l for all links l and channels c.

2. Sort the link-channel pairs (l, c) in non-increasing order of wc
l .

3. Add the first link-channel pair in the sorted list (i.e., the one with highest weight) to

102

the schedule for the timeslot, and remove from the list all link-channel pairs that are

no longer feasible (due to either interface or interference conflicts).

4. Repeat step 3 until the list is exhausted (i.e., no more links can be added to the

schedule).

In [74], it was shown that this centralized greedy maximal (CGM) scheduler can achieve

an approximation-ratio at least
(

1
κ+2

)
in a multi-channel multi-radio network, where κ

is the maximum number of links conflicting with a link l that may possibly be scheduled

concurrently when l is not scheduled. This bound holds for arbitrary values of βs and βc,

and variable number of interfaces per node.

However, this bound can be quite loose in multi-channel wireless networks where each

device has one or few interfaces.

In this section, we prove an improved bound on the efficiency-ratio achievable with the

CGM scheduler for single-interface nodes. We also briefly discuss how it can be used to

obtain a bound for multi-interface nodes.

Theorem 11. Let Sopt denote the set of links activated by an optimal scheduler that chooses

a set of link-channel pairs (l, c) for transmission such that
∑
wc

l is maximized. Let c∗(l)

denote the channel assigned to link l ∈ Sopt by this optimal scheduler.

Let Sg denote the set of links activated by the centralized greedy maximal (CGM) sched-

uler, and let cg(l) denote the channel assigned to a link l ∈ Sg.

Then:

∑

l∈Sg

w
cg(l)
l ≥ max

{
σs

K|C| + max{1, γ}|C| ,
1

max{1,K + γ}

} ∑

l∈Sopt

w
c∗(l)
l (5.11)

Proof. We denote by c∗(l) the channel on which l ∈ Sopt is activated by the optimal sched-

uler. cg(l) is the channel on which l ∈ Sg is activated by the CGM scheduler. If a link l is

not in Sopt or Sg, then, as a matter of notational convention, it can be said that c∗(l) = ⊥
or cg(l) = ⊥ respectively, where ⊥ denoted “undefined”.

Consider l ∈ Sopt ∩ Sg. Therefore, l was not scheduled by the CGM scheduler. This

implies that during some step k of the execution of the CGM algorithm, l’s status changed

from schedulable to unschedulable. This could happen for one of two reasons: (1) in

step k, some link l′ incident on one of l’s endpoints was selected by the CGM scheduler,

103

thereby making l unschedulable due to an interface-conflict (2) in step k, all c channels

became infeasible for l to be scheduled, implying that for all c ∈ C, some link l′ ∈ I′(l) was

scheduled on c by the scheduler by the end of step k.

By the definition of the CGM scheduler, a link l′ would be preferentially selected for

scheduling over l (while l was still schedulable) only if the resultant weight contribution

w
cg(l′)
l′ equals or exceeds the best weight that could be achieved by scheduling l on some

still feasible channel. Thus, at least one of the following two conditions must be true:

1. Condition 1: There exists a link l′ ∈ Sg ∩Sopt∩A(l) such that w
cg(l′)
l′ ≥ wc

l for at least

one channel c ∈ C.

2. Condition 2: For each channel c ∈ C, there exists some link l′c ∈ Sg ∩ I′(l) such that

wc
l′c
≥ wc

l .

Now, define sets Aif and Ain as follows:

Aif = {l : l ∈ Sopt ∩ Sg and Condition 1 holds}.
Ain = (Sopt ∩ Sg) \ Aif

Let Sb,m = {l : l ∈ Sg ∩ Sopt, w
cg(l)
l ≥ wc∗(l)

l }
Let Sb,s = {l : l ∈ Sg ∩ Sopt, w

cg(l)
l < w

c∗(l)
l }

Then Sb,m and Sb,s constitute a partition of Sg ∩ Sopt.

Define two subsets of Aif as follows:

Aif,1 = {l : l ∈ Aif , c
∗(l) was not available to l when l’s first interface

got used up during CGM scheduling}

Aif,2 = {l : l ∈ Aif , c
∗(l) was still available to l when l’s first interface

got used up during CGM scheduling}

From the centralized greedy nature of the scheduler, if a link l′ ∈ I′(l) was scheduled

on some c ∈ C in Sg while l was still schedulable on some subset of channels D ⊆ C, this

implies that wc
l′ ≥ wd

l for all d ∈ D.

It is true that at the time when l ∈ Sb,s was assigned cg(l), all other c ∈ C with rc
l > r

cg(l)
l

were already assigned to some other l′ ∈ I′(l), with w
cg(l′)
l′ = wc

l′ ≥ wc
l . Therefore, if Dg

l

104

is the set of channels on which l was still schedulable when l was chosen for scheduling on

cg(l), then: ∀ d ∈ Dg
l : rd

l ≤ r
cg(l)
l , and |Dg

l | ≤ |C| − 1 since c∗(l) /∈ Dg
l .

Therefore for each l ∈ Sb,s:

∑

c∈C\Dg
l

∑

l′∈I
′(l)

cg(l′)=c

w
cg(l′)
l′ ≥

∑

c∈C
wc

l −
∑

d∈Dg
l

wd
l ≥

∑

c∈C
wc

l − (|C| − 1)w
cg(l)
l (5.12)

Let B1(l) = {l′|l′ ∈ (Sg ∩ I′(l)), cg(l′) ∈ C \ Dg
l }.

∴
∑

l∈Sb,s



∑

c∈C\Dg
l

∑

l′∈I
′(l)

cg(l′)=c

w
cg(l′)
l′


 ≥

∑

l∈Sb,s

∑

c∈C
wc

l − (|C| − 1)
∑

l∈Sb,s

w
cg(l)
l

∴
∑

l∈Sb,s


 ∑

l′∈B1(l)

w
cg(l′)
l′


 ≥

∑

l∈Sb,s

∑

c∈C
wc

l − (|C| − 1)
∑

l∈Sb,s

w
cg(l)
l

(5.13)

We now consider links l ∈ Aif .

Let us denote by f(l) the link l′ in Sg∩Sopt that is the cause of blocking the first interface

of link l ∈ Aif , i.e., f(l) is the link that first caused l to experience an interface-conflict.

We first consider links l ∈ Aif,1:

It is true that if f(l) = l′ ∈ A(l) ∩ (Sg ∩ Sopt) was assigned a channel cg(l′) in Sg ∩ Sopt

while l ∈ Aif,1 was still schedulable on some subset of channels Dl ⊆ C \ {c∗(l)} then

w
cg(l′)
l′ ≥ wd

l for all d ∈ Dl, and |Dl| ≤ |C| − 1 since c∗(l) /∈ Dl (note that c∗ /∈ Dl by the

definition of Aif,1).

Let B =
∑

l∈Aif,1

w
cg(f(l))
f(l) .

Furthermore, at least one link l′ ∈ I′(l) was scheduled on each c ∈ C \ Dl, and for each

such c, l′, it is evident that w
cg(l′)
l′ = wc

l′ ≥ wc
l (since channels in C \ Dl were no longer

feasible for l at the time its first interface got used up). This yields:

∑

c∈C\Dl

∑

l′∈I
′(l)

cg(l′)=c

w
cg(l′)
l′ ≥

∑

c∈C
wc

l −
∑

d∈Dl

wd
l ≥

∑

c∈C
wc

l − (|C| − 1)w
cg(f(l))
f(l) (5.14)

105

Resultantly:

∑

l∈Aif,1



∑

c∈C\Dl

∑

l′∈I
′(l)

cg(l′)=c

w
cg(l′)
l′


 ≥

∑

l∈Aif,1

∑

c∈C
wc

l − (|C| − 1)B (5.15)

Let B2(l) = {l′|l′ ∈ (Sg ∩ I′(l)), cg(l′) ∈ C \ Dl}.

∴
∑

l∈Aif,1


 ∑

l′∈B2(l)

w
cg(l′)
l′


 ≥

∑

l∈Aif,1

∑

c∈C
wc

l − (|C| − 1)B (5.16)

We next consider links l ∈ Aif,2:

From the definition of Aif,2, for each link l ∈ Aif,2, some link f(l) = l′ adjacent to l

was scheduled in Sg ∩ Sopt at a time when l was still schedulable on c∗(l). This implies

that w
cg(l′)
l′ ≥ wc∗(l)

l . Let E =
∑

l∈Aif,2

w
cg(f(l))
f(l) (recall the definition of f(l) for links l ∈ Aif).

Thus we obtain:

B +
∑

l∈Aif,2

w
c∗(l)
l ≤ B + E ≤ γ

∑

l∈Sg∩Sopt

w
cg(l)
l

∴
∑

l∈Aif,2

w
c∗(l)
l ≤ γ

∑

l∈Sg∩Sopt

w
cg(l)
l −B

(5.17)

We now consider links l ∈ Ain:

From the definition of Ain, it follows that for each c ∈ C, there is at least one l′ ∈ I′(l)

scheduled on c such that w
cg(l′)
l′ = wc

l′ ≥ wc
l . Given l ∈ Ain, let B3(l) = Sg ∩ I′(l). Then:

∑

l∈Ain


 ∑

l′∈B3(l)

w
cg(l′)
l′


 ≥

∑

l∈Ain

∑

c∈C
wc

l (5.18)

Also note that for any link l′ ∈ Sg, at most K|C| links in I′l′ can be scheduled in Sopt.

Thus, any link l′ ∈ Sg figures in B1(l) or B2(l) or B3(l) of at most K|C| links l ∈ Sopt.

In light of this observation, the definition of σs, and using (5.13), (5.16) and (5.18):

∑

l∈Sb,s

∑

c∈C
wc

l − (|C| − 1)
∑

l∈Sb,s

w
cg(l)
l +

∑

l∈Aif,1

∑

c∈C
wc

l − (|C| − 1)B +
∑

l∈Ain

∑

c∈C
wc

l ≤ K|C|
∑

l∈Sg

w
cg(l)
l

(5.19)

106

Rearranging and noting that
∑

c∈C
wc

l ≥ σsw
c∗(l)
l :

σs


∑

l∈Sb,s

w
c∗(l)
l +

∑

l∈Aif,1

w
c∗(l)
l +

∑

l∈Ain

w
c∗(l)
l


 ≤ K|C|

∑

l∈Sg

w
cg(l)
l + (|C| − 1)


∑

l∈Sb,s

w
cg(l)
l +B




∴
∑

l∈Sb,s

w
c∗(l)
l +

∑

l∈Aif,1

w
c∗(l)
l +

∑

l∈Ain

w
c∗(l)
l ≤

K|C|
σs

∑

l∈Sg

w
cg(l)
l +

|C| − 1

σs


∑

l∈Sb,s

w
cg(l)
l +B




(5.20)

This yields the following:

∑

l∈Sopt

w
c∗(l)
l

∑

l∈Sg

w
cg(l)
l

=

∑

l∈Sg∩Sopt

w
c∗(l)
l +

∑

l∈Sopt∩Sg

w
c∗(l)
l

∑

l∈Sg

w
cg(l)
l

=

∑

l∈Sb,m

w
c∗(l)
l +

∑

l∈Sb,s

w
c∗(l)
l +

∑

l∈Aif,1

w
c∗(l)
l +

∑

l∈Aif,2

w
c∗(l)
l +

∑

l∈Ain

w
c∗(l)
l

∑

l∈Sg

w
cg(l)
l

=

∑

l∈Sb,m

w
c∗(l)
l +


 ∑

l∈Sb,s

w
c∗(l)
l +

∑

l∈Aif,1

w
c∗(l)
l +

∑

l∈Ain

w
c∗(l)
l


+

∑

l∈Aif,2

w
c∗(l)
l

∑

l∈Sg

w
cg(l)
l

≤ 1∑

l∈Sg

w
cg(l)
l




∑

l∈Sb,m

w
cg(l)
l +

K|C|

∑

l∈Sg

w
cg(l)
l + (|C| − 1)


 ∑

l∈Sb,s

w
cg(l)
l +B




σs

+ γ
∑

l∈Sg∩Sopt

w
cg(l)
l −B




from (5.20), (5.17)

≤ 1∑

l∈Sg

w
cg(l)
l



∑

l∈Sb,m

w
cg(l)
l +

σs(γ
∑

l∈Sg∩Sopt

w
cg(l)
l −B)

σs

+

K|C|

∑

l∈Sg

w
cg(l)
l + (|C| − 1)


∑

l∈Sg

w
cg(l)
l −

∑

l∈Sb,m

w
cg(l)
l −

∑

l∈Sg∩Sopt

w
cg(l)
l +B




σs




107

≤ 1∑

l∈Sg

w
cg(l)
l



|C|
σs

∑

l∈Sb,m

w
cg(l)
l +

|C|γ
∑

l∈Sg∩Sopt

w
cg(l)
l − (|C| − 1)B

σs

+

K|C|

∑

l∈Sg

w
cg(l)
l + (|C| − 1)


∑

l∈Sg

w
cg(l)
l −

∑

l∈Sb,m

w
cg(l)
l −

∑

l∈Sg∩Sopt

w
cg(l)
l +B




σs




noting that γ
∑

l∈Sg∩Sopt

w
cg(l)
l −B ≥ 0

≤ 1∑

l∈Sg

w
cg(l)
l




(|C| − 1)
∑

l∈Sb,m

w
cg(l)
l +

∑

l∈Sb,m

w
cg(l)
l +K|C|

∑

l∈Sg

w
cg(l)
l

σs

+

γ
∑

l∈Sg∩Sopt

w
cg(l)
l

σs

+

(|C| − 1)


∑

l∈Sg

w
cg(l)
l −

∑

l∈Sb,m

w
cg(l)
l −

∑

l∈Sg∩Sopt

w
cg(l)
l +B + γ

∑

l∈Sg∩Sopt

w
cg(l)
l −B




σs




(5.21)

≤




K|C|

∑

l∈Sg

w
cg(l)
l + (|C| − 1)


∑

l∈Sg

w
cg(l)
l + (γ − 1)

∑

l∈Sg∩Sopt

w
cg(l)
l




σs

∑

l∈Sg

w
cg(l)
l

+


 ∑

l∈Sb,m

w
cg(l)
l + γ

∑

l∈Sg∩Sopt

w
cg(l)
l




σs

∑

l∈Sg

w
cg(l)
l




≤ K|C| + (|C| − 1)(1 + max{0, γ − 1}) + max{1, γ}
σs

=
K|C| + max{1, γ}|C|

σs

(5.22)

Thus
∑

l∈Sg

w
cg(l)
l ≥ σs

K|C|+max{1,γ}|C|
∑

l∈Sopt

w
c∗(l)
l . When βs = 1, this reduces to a ratio of

|C|
K|C|+max{1,γ}|C| .

108

We now prove another bound by showing that:

∑

l∈Sg

w
cg(l)
l ≥ 1

max{1,K + γ}
∑

l∈Sopt

w
c∗(l)
l (5.23)

This is obtained via an argument very similar to that used in [74] to prove a bound of
(

1
κ+2

)
for the CGM scheduler, except that we refine the analysis based on a more precise

characterization of the interference topology:

Consider any link l in Sopt. Either l is scheduled on c∗(l) even in Sg, or if l is not

scheduled on c∗(l), then either (1) some link l′ ∈ I′(l) must be scheduled on c∗(l) in Sg (i.e.,

cg(l′) = c∗(l)), such that w
cg(l′)
l′ ≥ wc∗(l)

l , or (2) some link l′ ∈ A(l) \ {l} must be scheduled

on some channel cg(l′) such that w
cg(l′)
l′ ≥ w

c∗(l)
l . However, any link l′ ∈ Sg can only have

pure interference conflict with at most K links that were scheduled in Sopt on that channel,

and interface conflict with at most γ links in A(l) ∩ Sopt. Thus:

∑

l∈Sopt

w
c∗(l)
l

∑

l∈Sg

w
cg(l)
l

≤ max{1,K + γ} (5.24)

Combining (5.21) and (5.24) yields the result.

Theorem 11 leads to the following result:

Theorem 12. The centralized greedy maximal (CGM) scheduler can stabilize the δ-reduced

rate-region, where:

δ = max

{
σs

K|C| + max{1, γ}|C| ,
1

max{1,K + γ}

}

Proof. We earlier discussed a result from [75] that any scheduler, which chooses rate-

allocation −→s such that
∑
qlsl ≥ δ argmax

∑
qlrl, can stabilize the δ-reduced rate-region.

Using Theorem 11 and this result, we obtain the above result.

We remark that the above bound is independent of βc.

109

5.6.1 Extension to Multiple Interfaces per Node

We now describe how the result can be extended to networks where each node may have

more than one interface.

Given the original network node-graph G = (V,E), construct the following transformed

graph G′ = (V ′, E′):

For each node v ∈ V , if v has mv interfaces, create mv nodes v1, v2, ...vmv in V ′.

For each edge (u, v) ∈ E, where u, v have mu,mv interfaces respectively, create edges

(ui, vj), 1 ≤ i ≤ mu, 1 ≤ j ≤ mv, and set q(ui,vj) = q(u,v). Set the achievable channel

rate appropriately for each edge in E′ and each channel. For example, assuming that the

channel-rate is solely a function of u, v and c, then: for each channel c, set rc
(ui,vj)

= rc
(u,v).

The transformed graph G′ comprises only single-interface links, and thus Theorem 11

applies to it. Moreover, it is not hard to see that a schedule that maximizes
∑
qlrl in G′

also maximizes
∑
qlrl in G. Thus, the efficiency-ratio from Theorem 11 for network graph

G′ yields an efficiency-ratio for the performance of the CGM scheduler in the multi-interface

network.

We briefly touch upon how one would expect the ratio to vary as the number of interfaces

at each node increases. Note that the efficiency-ratio depends on βs, |C|,K|C|, γ. Of these

βs and |C| are always the same for both G and G′. γ is also always the same for any G′

derived from a given node-graph G, as it depends only on the number of other node-links

incident on either endpoint of a node-link in G (which is a property of the node topology,

and not the number of interfaces each node has). However, K|C| might potentially increase

in G′ as there are many more non-adjacent interfering links when each interface is viewed

as a distinct node. Thus, for a given number of channels |C|, one would expect the provable

efficiency-ratio to initially decrease as we add more interfaces, and then become static.

While this may initially seem counter-intuitive, this is explained by the observation

that multiple orthogonal channels yielded a better efficiency-ratio in the single-interface

case since there was more spectral resource, but limited hardware (interfaces) to utilize

it. Thus, the additional channels could be effectively used to alleviate the impact of sub-

optimal scheduling. When the hardware is commensurate with the number of channels, the

situation (compared to an optimal scheduler) increasingly starts to resemble a single-channel

single-interface network.

110

5.6.2 The Special Case of |C| Interfaces per Node

Let us consider the special case where each node in the network has |C| interfaces, and

achievable rate on a link between nodes u, v and all channels c ∈ C is solely a function of

u, v and c (and not of the interfaces used). In this case, it is possible to obtain a simpler

transformation. Given the original network node-graph G = (V,E), construct |C| copies

of this graph, viz., G1, G2, ..., G|C|, and view each node in each graph as having a single-

interface, and each network as having access to a single channel. Then each network graph

Gi can be viewed in isolation, and the throughput obtained in the original graph is the sum

of the throughputs in each graph. From Theorem 11, in each graph we can show that the

CGM scheduler is within
(

1
max{1,K+γ}

)
= min{1, 1

K+γ } of the optimal. Thus, even in the

overall network, the CGM scheduler is within min{1, 1
K+γ } of the optimal.

5.7 A Rate-Proportional Maximal Multi-Channel

(RPMMC) Scheduler

In this section, we describe a scheduler where a link does not require any information about

queue-lengths at interfering links.

The set of all links in denoted by L. The arrival process for link l is i.i.d. over all

time-slots t, and is denoted by {λl(t)}, with E[λl(t)] = λl. We make no assumption about

independence of arrival processes for two links l, k. However, we consider only the class of

arrival processes for which E[λl(t)λk(t)] is bounded, i.e., E[λl(t)λk(t)] ≤ η for all l ∈ L, k ∈
L, where η is a suitable constant.

Consider the following scheduler:

Rate-Proportional Maximal Multi-Channel (RPMMC) Scheduler

Each link maintains a queue for each channel. The length of the queue for link l and

channel c at time t is denoted by qc
l (t). In time-slot t: only those link-channel pairs with

qc
l (t) ≥ rc

l participate, and the scheduler computes a maximal schedule from amongst the

participating links. The new arrivals during this slot, i.e., λl(t) are assigned to channel-

queues in proportion to the rates, i.e., λc
l (t) =

λl(t)r
c
l∑

b∈C

rb
l

111

Theorem 13. The RPMMC scheduler stabilizes the queues in the network for any load-

vector within the δ-reduced rate-region, where:

δ =
σs

K|C| + max{1, γ}|C|

Proof. The proof of stability is based on a Lyapunov drift argument. We present a proof-

sketch here. The full proof can be found in Appendix C.

We adopt the following convention: at the beginning of each time-slot, the scheduling

decisions are taken, and transmissions occur. Then new arrivals occur at the end of the slot

(thus new arrivals cannot be transmitted in the same slot).

Let the queue-length of the queue for link l and channel c at the start of time-slot t be

denoted by qc
l (t). Let the rate-allocated to link l in slot t over channel c be denoted by

xc
l (t). Since we are considering single-interface nodes, at most one of the xc

l (t)’s is non-zero

for a link l. Furthermore xc
l (t) = 0 if link l is not scheduled over channel c in slot t, and

xc
l (t) = rc

l else.

Also note that only link-channel pairs with qc
l (t) ≥ rc

l participate in the scheduling

procedure during time-slot t.

Therefore, the queue dynamics are as follows:

qc
l (t+ 1) = qc

l (t) + λc
l (t)− xc

l (t) where λc
l (t) =

λl(t)r
c
l∑

b∈C
rb
l

(5.25)

We define the following Lyapunov function:

Vq(−→q) =
∑

l∈L

∑

c∈C


q

c
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t)

rd
k

+
∑

k∈I′(l)

qc
k(t)

rc
k




 (5.26)

This Lyapunov function is somewhat similar in form to that used in [120]. It can be

shown that this Lyapunov function satisfies the condition stated in Lemma 42 (Lemma 2

from [85]). This proves stability. For the detailed proof, please refer to Appendix C.

Corollary 3. When βs = 1, the RPMMC scheduler’s efficiency ratio is at least:

|C|
K|C| + max{1, γ}|C|

112

Corollary 4. The efficiency-ratio of the RPMMC scheduler is always at least:

(
σs

|C|

)(
1

K + max{1, γ}

)

Proof. The proof follows from Theorem 13 and (5.1).

5.8 On Scheduling with Heterogeneous Interfaces

The results presented in this chapter pertain to scenarios where the channels have heteroge-

neous characteristics, but the interfaces are all identical. Thus, it is of interest to consider

how maximal scheduling algorithms may need to adapt in the face of heterogeneous in-

terfaces, each of which may have constrained switching ability, and may only be able to

operate on some subset of channels. The key distinction lies in the need to treat each

node-link (pair of nodes capable of direct communication) as a set of distinct radio-links

(corresponding to pairs of interfaces that could be used for communication). If a maximal

schedule is computed in a manner oblivious to the interface heterogeneity, this can lead to

performance degradation. We illustrate this via a very simple example:

Consider two mutually-interfering directed links A → B and C → D. There are two

channels 1 and 2 that both support the same data-rate r over both links. Node A has two

radios, while all other nodes have one radio each. Nodes A and C both generate traffic

at a constant rate r − ǫ (where ǫ is a very small positive constant). It is easy to see that

γ = 0,K = 1, σs = 2 for this network. Hence, if all radios were identical and could operate

on both channels 1 and 2, one would expect any maximal scheduler to achieve an efficiency

ratio of 1 in this network.

However, in the considered scenario, the radios are heterogeneous, and many of them

have constrained switching ability. The channel-sets on which these radios can operate are

depicted in Fig. 5.3. The optimal scheduling decision in this scenario is to operate link

A→ B on channel 1 and link C → D on channel 2. A sub-optimal scheduler may schedule

A→ B on channel 2, thereby making it impossible to schedule C → D simultaneously.

Note that this latter schedule is a valid maximal schedule. However, it is computed in a

manner oblivious to interface heterogeneity, and consequently, can lead to a very substantial

performance degradation.

113

C

A B

D

{1}

{2}

{1, 2}

{2}

{2}

Figure 5.3: Example illustrating drawbacks of oblivious interface-selection

This motivates the importance of incorporating awareness of interface switching con-

straints into the scheduling algorithm.

We remark that it is indeed possible to adapt the algorithm of Lin-Rasool [74] to address

heterogeneous radios (see [8]). We expect that it should be possible to similarly adapt the

RPMMC scheduler to heterogeneous radios. This would be an interesting direction for

future work.

5.9 Discussion

The intuition behind the RPMMC scheduler is very simple. By splitting the traffic across

channels in proportion to the channel-rates, each link basically sees the average of all

channel-rates as its effective rate. This helps avoid worst-case scenarios where the link

may end up being repeatedly scheduled on a channel that yields poor rate on that link.

Though exceedingly simple, the algorithm is made attractive by the fact that no information

about queues at interfering links is required. Furthermore we showed that the efficiency-

ratio of the RPMMC scheduler is always at least
(

σs

|C|

)(
1

K+max{1,γ}

)
(Corollary 4). Note

that 1+βs(|C|−1) ≤ σs ≤ |C|. Thus, the efficiency ratio of this algorithm does not degrade

indefinitely as βs becomes smaller.

114

5.10 Future Directions

The RPMMC scheduler provides motivation for further study of schedulers that work with

limited information. The scheduler of Lin-Rasool and the RPMMC scheduler represent two

extremes of a range of possibilities, since the former uses information from all interfering

links, while the latter uses no such information. Evidently, using more information can

potentially allow for a better provable efficiency-ratio. However, the nature of the trade-

off curve between these two extremities is not clear. For instance, an interesting question

to ponder is the following: If interference extends up to M hops, but each link only has

information upto x < M hops, what provable bounds can be obtained? This would help

quantify the extent of performance improvement achievable by increasing the information-

exchange, and provide insights about suitable operating points for protocol design, since

control overhead can be a concern in real-world network scenarios.

Another direction for future work consists in characterizing network topologies in which

the performance of greedy maximal scheduling in a multi-channel network with one or few

interfaces per node is close-to-optimal.

115

Chapter 6

Channel/Interface Management in
a Heterogeneous Multi-Channel
Multi-Radio Network
In this chapter, we describe a proof-of-concept protocol for channel and interface man-

agement in a heterogeneous multi-channel wireless network. Our objective has been to

incorporate awareness of radio and channel heterogeneity as well as traffic-awareness into

the channel and interface management procedure. We have sought to leverage the insights

from our theoretical results discussed in previous chapters of this dissertation, as well as

insights from prior theoretical work in the literature. While we have designed our protocol

in the context of 802.11 networks, with certain assumptions on node configuration, many

aspects of the design, and many of the algorithms used, have broader relevance for a wide

range of networks with heterogeneous radios and/or channels.

We begin by discussing related work in Section 6.1. We then describe the general

architectural principles of our approach in Section 6.2. In Section 6.3, we describe the

network and node model. In Section 6.4, we provide examples of various kinds of network

conflicts that may need to be addressed by a channel and interface management protocol,

and then discuss the protocol design in detail in Section 6.5. We describe simulation results

in Section 6.6. In Section 6.7 we discuss some observations based on the protocol evaluation,

and conclude in Section 6.8 by discussing some directions for future work.

6.1 Related Work

Protocols and architectures for multi-channel networks can be broadly categorized into those

intended for single-radio devices, and those intended for multi-radio devices. In the case of

single-radio devices, the channel coordination problem can be quite complex whereas, with

multi-radio devices, the coordination issues are made somewhat easier to address by the

presence of many radios.

Many protocols have been proposed for channel-coordination amongst devices having a

116

single radio each. A useful taxonomy for these has been described in [84]. Some protocols

assume that all nodes are synchronized and follow a common hopping sequence when not

sending data. A pair of devices wishing to send data stop hopping after negotiating a data-

transfer, and stay on a common channel till it is over. Then they again start hopping as

per the common hopping schedule. Instances include CHMA [111]. The class of split-phase

protocols comprises those that utilize a notion of a negotiation phase during which nodes

converge to a common channel and decide what channels to tune to for a window of time

in the future. Prominent amongst these is MMAC [106], which uses a notion of ATIM

window (similar to IEEE 802.11 PSM) to negotiate channels. Many proposals fall into the

category of multiple-rendezvous protocols, e.g., SSCH [4], McMAC [105], Dominion [88].

In these protocols, nodes follow channel-hopping schedules that allow them to converge

with each other sufficiently often. Of these, Dominion also includes a multi-channel routing

component.

An approach termed component based channel assignment is proposed in [114], wherein

all interfaces lying on the routes of intersecting flows are assigned the same channel. This

keeps channel switching to a minimum.

Recently, there has been much interest in protocols/architectures for multi-channel

multi-radio networks. Examples of multi-channel multi-radio testbeds include the Net-

X project [67, 18, 12], a testbed at UCSB [96], and the Quail Ridge Reserve Mesh Network,

UC Davis. Of these, the Net-X testbed is relevant to our work, as we adopt the node

configuration used in Net-X.

Many protocols have been proposed to incorporate traffic awareness in various queueing

and scheduling decisions, both for single and multi-channel scenarios. Neighborhood RED

[122] proposes a variant of the RED algorithm, whereby queues at nodes within two hops

are also taken into account, and not just the local queue. Warrier et al. have proposed a

cross-layer architecture that is based on recent theoretical work on cross-layer optimization

[117] Traffic-aware channel assignment in LANs has been considered in [97]. For LANs

with uncoordinated access points, it has been proposed in [82], that channel-hopping can

help prevent worst-case scenarios, and provide good average case performance. A traffic-

oblivious joint routing and scheduling scheme for mesh networks has been proposed in [116].

Route/schedule computation is centralized, and worst-case congestion is minimized.

117

The 802.11 standard provides multiple physical layer specifications, and NICs for these

are readily available off-the-shelf. There has been some work addressing the use of these

radios of different types. Draves et al [29] have considered the issue of routing in a multi-

channel mutli-radio mesh network where nodes are equipped with one radio each of type

802.11a and 802.11g. However, they do not consider the problem of channel selection.

The use of heterogeneous interfaces to handle route breakages has been proposed in

[127]. In this work, nodes are equipped with primary 802.11a interfaces and secondary

802.11b interfaces. TCP flows use a primary path comprising the 802.11a interfaces, which

is discovered via a reactive routing protocol. A proactive routing protocol is run over the

secondary interfaces. When a link-breakage is detected, the TCP traffic can be immediately

re-routed over the secondary path while a new primary path is being discovered.

Joint channel assignment and routing in a heterogeneous multi-channel multi-radio wire-

less network has been considered in [118]. This work targets a situation very similar to what

we have considered in this chapter, and is closest in scope to our work. It allows for both

heterogeneity in the operational abilities of interfaces, as well as in supported channel data-

rates. It handles both single-radio, and multi-radio devices. A joint channel-assignment

and routing scheme (JCAR) is proposed. However, this work treats the route for each

flow as a sequence of interfaces, and therefore does not consider the possibility of link-

layer data-striping. Moreover, it seeks a solution where interfaces switch channels only over

substantially long periods of time.

The channel diversity in a multi-channel network provides opportunity for not merely

load-balance but opportunistic selection of the channel with better channel quality. Op-

portunistic channel selection has been considered in MAC protocols such as MOAR [52],

DB-MCMAC [14] and OMC-MAC [130]. However the global routing implications of lo-

cal opportunism in a multi-hop wireless network have not been studied. Optimal channel

probing strategies for a single-user multi-channel system have been studied in [40, 17]. The

considered systems typically comprise one transmitter, capable of operating on N channels,

which must select one channel for transmission. Self-organization based on measurements

is considered in [53], and their approach consists of using a Gibbs sampler. Channel quality

and rate-aware routing was addressed in [23].

118

6.2 General Design/Architectural Principles

We begin by briefly describing the general design and architectural principles on which we

have based our protocol for multi-channel multi-radio wireless networks.

A Route as a Sequence of Nodes A node-link is a pair of neighboring nodes. A radio

link is a pair of radios on neighboring nodes. Thus, a node-link comprises a set of radio-links,

and with suitable link-layer strategies, one can exploit this diversity/multiplicity. We adopt

an approach of single-path routing with link-layer data-striping. Thus, a path from source

to destination is a single sequence of nodes (and hence also a series of node-links). When

packets need to be transmitted over a node-link, the link layer determines which radio(s)

and channel(s) to use. Thus, the link-layer can perform link-level data-striping if many

radios are available at both transmitter and receiver. Moreover, when there are multiple

flows that pose interference or/and interface conflicts for each other, this approach allows

flexibility in adapting on the fly, as the link layer can make packet scheduling decisions at

fine granularity.

Channel Restriction While one would like to exploit the available channel diversity to

improve throughput, doing so effectively would require some mechanism to sample/probe

channels, as well as exchange of information about channel state/quality. This cost can be

significant, especially if the number of available channels is large. Moreover, in a distributed

setting, when multiple entities act independently, opportunism can have an adverse effect

on load-balance, e.g., consider a worst-case scenario where all nodes in a vicinity decide

that channel x has best quality and start using that channel simultaneously.

One would typically expect that much of the benefit of opportunistic exploitation of

channel diversity can be obtained by having the choice of a few channels, and thus a

reasonable solution lies in restricting the operation of a link to a subset of all possible

channels available to it (a channel pool). One can then attempt to opportunistically exploit

diversity amongst channels in this channel pool. We note that some prior work, e.g., [115],

has studied this issue in a single-hop setting and concluded that a few channels indeed

provide a good trade-off between diversity-gain and probing cost. The same conclusion is

likely to hold even in multi-hop settings.

119

Moreover, channel-restriction has the potential to provide a degree of a priori load-

balance (since different links will have different channel pools). This can help reduce the

possibility of worst-case channel-selection scenarios link the one mentioned above, while

still providing enough choices to each link for good load-balance. Some intuition for this

can be derived from our result for random (c, f) assignment described in Chapter 4, as well

as past work on balls and bins with choices [3, 83].

We propose the following simple channel restriction policy: each interface is assigned a

small pool of f channels for substantial periods of time. The channel pools are chosen and

adjusted so that, within the two-hop neighborhood of any interface, each channel occurs in

the pool of approximately the same number of interfaces.

The current channel for each interface is selected more frequently.

It is to be noted that the poolsize f provides a control knob to tune the degree of dy-

namism of the protocol. Setting f = 1 corresponds to a largely static channel assignment

(where interfaces switch channels very infrequently), while setting f = c corresponds to a

fully dynamic assignment, in which the current channel may be chosen from the entire set

of possible channels.

Late Binding of Packets to Channel/Interface Since we intend to perform dynamic

channel selection over intermediate time-scales, it is beneficial to defer the binding of an

outgoing packet to a channel and interface to as late a stage as possible without significantly

affecting efficiency. This allows for greater flexibility and adaptivity.

Channel Cost Formulation Incorporating Awareness of Traffic Levels and Con-

flicts Two kinds of conflicts can limit performance in a multi-channel network:

1. Interference Conflicts: A channel becomes the bottleneck due to traffic overload

2. Interface Conflicts: A radio-interface becomes the bottleneck due to an overload of

traffic it is expected to relay.

Thus, a link cost metric for scheduling should try to capture these two conflicts, so that

channel/interface selection decisions are able to address them effectively.

Use of limited information from vicinity A wireless transmission can create interfer-

ence for other transmissions over a distance corresponding to many hops, depending on the

120

Neighbor Information

C
ha

nn
el

 In
fo

rm
at

io
n

ARP Channel and Interface

Selection Logic Channel Pool Management
(Long Timescale)

Intermediate Timescale
Channel Selection from Pool

Channel Statistics
Maintenance

Neighborhood Maintenance

Radio−Interfaces

Heterogeneous Multi-Channel

Link Layer

Figure 6.1: General Architectural Template

transmission powers, rates, and corresponding SINR requirements. Moreover, the choice

of carrier-sense threshold also affects the degree of spatial reuse achievable. If the carrier-

sense threshold is conservatively set to a large value, a single ongoing transmission can block

other transmissions over a large area extending well beyond its two-hop neighborhood. If

the region over which a link can potentially create conflict extends over K hops, where K is

large, then it may not be feasible to provide a node information about this whole region due

to concerns about high overhead, as well as large delays, because of which the information

may become stale by the time it is received. Thus, it is desirable to operate using limited

exchange of explicit information, and use implicit feedback mechanisms to infer network

and channel conditions. Therefore, in the proposed design approach, nodes only have ex-

plicit information up to two hops, but use contention on a channel as an implicit indicator

of traffic levels.

A high-level schematic of the envisioned framework incorporating the elements described

above is depicted in Fig. 6.1.

6.3 The Model

We assume a node configuration similar to the Net-X Project [64] where interfaces are

classified as belonging to one of the following two categories:

1. R-interface: A R-interface is used for receiving packets, and whenever its channel

is changed, the change is advertised to neighbors. A R-interface is also used for

121

transmitting packets that are to be sent on its current channel.

2. T-interface: A T-interface is used for transmitting packets. When a packet is to be

transmitted to a next-hop node, a T-interface is switched to one of the R-channels of

the next-hop node, and used to transmit the packet.

The interfaces can be of type: single-mode 802.11a, single-mode 802.11g and multi-mode

802.11ag.1

Each node is assumed to either have at least one R-interface and one T-interface of type

x or no interface of type x, where x can be 802.11a or 802.11g. A multi-mode 802.11ag

radio can be present as a T-interface, and can be counted towards each type, e.g., if a node

has one R-interface each of type 802.11a and 802.11g, and a T-interface of type 802.11ag,

then this is a valid configuration. Currently, we do not allow multi-mode R-interfaces.

Note that the above classification into R-interfaces and T-interfaces is purely a link-layer

characteristic, based on how the link layer intends to utilize each interface; each interface of a

particular type is otherwise identical, and has the same physical and MAC layer properties.

Adopting this dual-radio framework helps avoid connectivity issues, and channel co-

ordination problems such as multi-channel deafness [79], and enables us to focus on the

scheduling aspects of the problem.

At each node, we have a single link-layer entity that manages all interfaces (which

perform independent MAC procedures). Since we wish to perform single-path routing

while allowing for the possibility of transparent link-layer striping, we require all interfaces

of a node to have the same IP address. To avoid changing ARP, all interfaces of a node are

also assigned the same MAC address.

Interfaces are assumed to be capable of fairly fast switching. More specifically, we

consider that switching between channels in the same mode takes 250µs (this is consistent

with channel switching times reported in recent work, e.g., [41]). If a mode-switch is also

required while doing the channel switch, then we assume that the time taken is 500µs, since

a mode-switch might typically take more time than a simple channel-switch.

We have designed a channel and interface management protocol for this described model.

For evaluation with multi-hop flows, we use manually specified routes, wherever needed.

1As we mention later, 802.11b is not considered separately, as we currently fix the 802.11b/g rate at 2
Mbps, and thus the two are effectively the same, if 802.11g is operated in backward compatibility mode
(which is what we assume).

122

Currently, we do not consider dynamic rate adaptation. The data-rate for all 802.11a

communication is 6Mbps, while that for all 802.11g communication is 2 Mbps. We do

remark that the link layer algorithms can operate in the presence of a rate-adaptation

algorithm, with suitable link-rate feedback from the MAC. However, our current goal is

to study the channel and interface management aspects without regard to interaction with

rate-adaptation. Incorporating a suitable auto-rate fallback algorithm at the MAC, and

providing appropriate rate feedback to the link layer, would be an interesting direction for

future work.

The RTS/CTS mechanism is effectively disabled in the 802.11 MAC protocol by choosing

a very high value for RTS Threshold. Physical carrier sense is used. 802.11g uses 2

Mbps as the data rate for all packets (including broadcast and ACK packets). The PLCP

datarate is 1 Mbps for 802.11g, while it is 6Mbps for 802.11a. 802.11g operates in backward

compatibility or mixed-mode and uses the same MAC parameters as 802.11b.

Since the link layer may perform data-striping over a link, there is a possibility of out-

of-order packet delivery, and thus reordering of packets may be required. Currently, we do

not address this issue, as reordering can also be done at the receiving transport endpoint.

However, we discuss the issue of implementing a reordering buffer at the link-layer in Section

6.8.

6.4 Interference and Interface Conflicts

As was discussed in Section 6.2, the channel cost metric should be able to capture both

interference and interface conflicts. Before we move on to describe our protocol, and how it

addresses this issue, let us consider a few illustrative examples in the context of the specific

network and node model we are considering. In these examples, each node has one 802.11a

R-interface and one 802.11a T-interface, and for the purpose of simplicity, we assume that

ideal TDMA scheduling is possible. The transmission rate in use is 6 Mbps.

Example 1. Consider the situation in Fig. 6.2. There are only two 802.11a channels

available for use (let us denote them by 1 and 2). All links interfere with each other.

Consider two different traffic patterns:

1. Link l1 has traffic-demand 6 Mbps, while links l2 and l3 have traffic demand 3 Mbps

123

A

E F

B

C D

l3

l2

l1

Figure 6.2: Example 1: Interference Conflicts

each. An ideal scheduler can meet these demands by having l1 operate on channel

1 and l2 and l3 operate on channel 2. A traffic-unaware static distributed channel

assignment strategy’s best solution is to have two of these links on one channel, in

a manner oblivious to actual load. Thus, it could potentially operate l1 and l2 on

channel 1 and l3 on channel 2, resulting in throughput degradation.

2. Each link l1, l2, l3 has a single-flow with traffic-demand 4 Mbps. An ideal scheduler

can have links l1 and l2 operate over channels 1 and 2 respectively, and have l3 time-

share between channels 1 and 2, as follows: in a unit interval [0 : 1] the following

schedule is followed: [0 : 1
3] : l1 transmits over channel 1, l3 transmits over channel 2;

[13 : 2
3] : l1 transmits over channel 1, l2 transmits over channel 2; [23 : 1] : l3 transmits

over channel 1, l2 transmits over channel 2. This allows all traffic demands to be met.

A static and traffic-unaware channel-assignment strategy would not be able to achieve

this.

Now consider an example illustrating a potential interface conflict and how it can be

resolved:

Example 2. Consider the situation in Fig. 6.3. There are 3 802.11a channels available

for use. There are two flows: X → Y and X → Z with traffic demand 6 Mbps each. If the

R-interfaces of all 3 nodes are on different channels, the maximum aggregate throughput

possible is 6 Mbps. However, if the R-interface of either Y or Z is on the same channel as

the R-interface of X, while the R-interface of the remaining node is on another channel,

then both flows can get 6 Mbps, since X can use its R-interface to transmit packets to one,

and its T-interface to transmit packets to the other. A traffic-unaware strategy that only

considers interference conflicts in a combinatorial sense (number of interfering interfaces

124

X

802.11a R−interface

Y

802.11a R−interface

802.11a T−interface

802.11a T−interface 802.11a R−interface

Z

802.11a T−interface

Figure 6.3: Example 2: Interface Conflicts

on a channel) would not be adequate for this; in fact, such a strategy would typically try to

assign different channels to all 3 R-interfaces.

6.5 The Heterogeneous Multi-Channel Link Layer

(HMCLL) Protocol

The proposed link layer protocol, which we term the Heterogeneous Multi-Channel Link

Layer (HMCLL) Protocol, can be said to lie in Layer 2.5, i.e., between layers 2 and 3 in the

protocol stack. The HMCLL is IP-aware. This IP-awareness has two benefits:

• HMCLL control packets have IP headers, and the HMCLL can cache IP-to-MAC

mappings in the ARP table. This provides resilience to issues caused by ARP losses

(see [15] for an exposition on ARP-loss related problems in wireless networks).

• The HMCLL can provide the network layer with a cost associated with a link to a

next-hop node, identified by the network layer via its IP address. While the focus of

the current work is on designing an intelligent link layer protocol, it is of great interest

to consider future work where the link-layer provides an abstracted cost metric to a

routing protocol. We discuss future directions in Section 6.8.

The HMCLL protocol aims to handle scenarios with different number and type of interfaces,

and channels with different rates. Many of the HMCLL algorithms are conceptually formu-

lated in fairly general terms where each channel is characterized by the rates achievable on

125

different links using that channel, each interface is characterized by the set of channels on

which it can operate, and the relationship between channels is characterized by the extent

to which they compete for interface-time at a node 2. Thus, they could be applied to a

wider range of radio-types, provided an appropriate characterization of the above elements

is made available to them.

Note that different channel rates may arise due to various reasons, e.g., (a) as a result of

different modulations providing different transmission rates (e.g. we use 6 Mbps for 802.11a

and 2 Mbps for 802.11g), or (b) as a result of variable channel quality leading to different

packet loss rate (and hence different net rate). While most of the protocol algorithms are

oblivious of the reason for the different rates (and just use information about achievable

rates for making decisions), we do remark that there is an important practical distinction

one must be aware of: rate differences due to different modulations are known accurately

a priori, whereas rate differences due to variable channel quality require good channel

estimation techniques to determine with fair accuracy. While most algorithms used by

the protocol are applicable in either scenario, achieving good performance in environments

with highly dynamic channel conditions will require that good estimates of achievable rates

be available, which in turn would require improved channel-estimation techniques beyond

the rudimentary estimation mechanisms used by the current design. Similarly, the current

simplistic neighborhood management would need much improvement. We discuss this issue

further in Section 6.8.

6.5.1 Neighborhood and Channel/Traffic Statistics Maintenance

We begin by introducing some terminology. The one-hop neighborhood of a node u is

denoted by nbd(u), and its two-hop neighborhood is denoted by nbd2(u). In this chapter,

u is not considered to be included in nbd(u) or nbd2(u).

Each node u has a set of active interfaces M(u) = MR(u) ∪MT (u), where MR(u) and

MT (u) are the R-interfaces and T-interfaces respectively of node u. Let C(x) denote the set

of channels on which interface x is capable of operating. Each interface has a type denoted

by type(x) which uniquely determines the set of channels C(x) on which x can operate3.

2There exist other aspects to the relationship between channels, e.g., adjacent channel interference, and
one could potentially try to extend the characterization to include these. However, that is beyond the scope
of the current work, which assumes orthogonal channels

3For instance, we currently consider three types: 802.11a, 802.11g, and 802.11ag. Of these, only 802.11a

126

Each R-interface x has an associated subset of channels called the channel-pool P(x) ⊆ C(x)

such that |P(x)| = f . The current channel of interface x is denoted by c(x). We use the

notation c(S) where S is a set to denote
⋃

x∈S
{c(x)}. An interface is said to be active if it is

in use (i.e., has not been deactivated by the LL).4

The link layer maintains the following information:

• A List of One Hop Neighbors: This contains an entry for each node in nbd(u) known to

u. Each neighbor entry has a LifeTime field, as well as aLifeTime and bLifeTime fields.

It is also marked as symmetric or asymmetric. If the LL receives a new packet from the

higher layers with a next hop node that is currently marked asymmetric, it drops the

packet. Each entry also has a reachability flag for each of 802.11a and 802.11g based

on the respective lifetime value; these a/g-specific attributes are maintained primarily

to provide a basic binary measure of achievable rate (0 or the raw data-rate) in the

absence of any accumulated rate history.

• A List of all 2-hop Neighbors: This contains an entry for each node in nbd2(u) known

to u.

• Statistics about each local interface: An estimate of interface TX-utilization for inter-

face x, denoted by ρ(x), i.e., the fraction of time the interface was busy doing work

related to transmitting (contending, transmitting, switching) is computed. Utilization

is computed over intervals of duration Trassign, and an average utilization estimate is

maintained as an EWMA updated as ρ(x) = 0.25 ∗ ρ(x) + 0.75 ∗ ρ(x).

• The following statistics are maintained about each channel on which some local inter-

face can operate:

– Effective Transmission Rate for a link, denoted by r(u, v, c): For each packet sent

by u to v over channel c, the MAC provides the LL feedback on the number of

transmission attempts needed (x(u, v, c)), as well as the raw datarate used (R).

The success rate ψ(u, v, c) is maintained as an EWMA, and updated as follows:

ψ(u, v, c) = 0.25 ∗ ψ(u, v, c) + 0.75 ∗ 1.0

x(u, v, c)
(6.1)

and 802.11g are valid types for R-interfaces.
4Some interfaces may be deactivated if the LL is unable to assign all local interfaces distinct channels,

e.g., when the number of channels available for use is smaller than the number of interfaces at the node.

127

The instant effective rate is rnew(u, v, c) = R∗ 1.0
x(u,v,c) . The LL maintains r(u, v, c)

as an EWMA, which is updated as follows:

r(u, v, c) = 0.25 ∗ r(u, v, c) + 0.75 ∗ rnew(u, v, c) (6.2)

If the last update of r(u, v, c) occurred more than 2∗TQINFO time ago, ψ(u, v, c)

is reset to 1 and r(u, v, c) is reset to NO RATE HISTORY.

– Net Data Rate for a link, denoted by µ(u, v, c): this is the net time taken to

transmit a packet, when taking into account the time spent in contention, i.e.,

backoff, etc, as well as any retransmissions. This is maintained as an EWMA.

Whenever the LL gets feedback from the MAC that the total time taken in

transmitting a packet was µnew, it updates the estimate as µ(u, v, c) = 0.9 ∗
µ(u, v, c)old + 0.1 ∗ µnew. If the last update of µ(u, v, c) occurred more than

2 ∗ TQINFO time ago, mu(u, v, c) is reset to NO RATE HISTORY.

– Average Contention Time experienced by u when transmitting a packet on chan-

nel c, denoted by, κ(u, c). This is also maintained as an EWMA. Whenever the

LL gets feedback from the MAC that a packet required contention time k on

channel c, we use the following update equation: κ = 0.9 ∗ κ+ 0.1 ∗ k.

Note that all rate estimates above are in units of bits per second.

Neighborhood management, as well as channel and traffic statistics maintenance are

facilitated by exchange of link layer control packets.

For each v ∈ nbd(u), u maintains a set T (u, v) ⊆MR(v), which is the set of R-interfaces

of v that u would be willing to send packets to. The choice of T (u, v) can be used to

allow/disallow link-layer data-striping (e.g., if |MR(v)| > 1 but |T (u, v)| = 1, then this

corresponds to no data striping). Currently, we use T (u, v) = MR(v). However, in the

rest of the description, we will continue to use the term T (u, v) to highlight that the link

layer algorithms can work for other choices of T (u, v) (of course, in that case, an additional

algorithm will be needed to select T (u, v)).

The link layer also maintains a system of queues (described later in this chapter). These

include a queue of outgoing packets to each next-hop neighbor. The length of the queue

(in bits) for neighbor v at node u is denoted by qnbr(u, v). There is also a queue for each

128

channel. The length of the queue (in packets) for channel c is denoted by qp
ch(u, c).

We also use the following definitions and notation:

The minimum-rate constant θ is a small constant chosen such that θ is much smaller

than the typical values of achievable rates. The primary purpose of θ is to avoid division-

by-zero anomalies when computing various quantities of interest. In the current design, we

use θ = 1 (as the typical rate values are of the order of 106 in bits/sec).

The ratesum for a link (u, v) is denoted by σ(u, v) and defined as:

σ(u, v) =
∑

y∈T (u,v)

r(u, v, c(y))

Intuitively, the significance of the ratesum is that the LL needs to estimate the load on

each channel in the near future. To do so, it pretends that each neighbor v splits traffic

it sends to u across channels in T (u, v) in proportion to the channel-rates, and therefore,

the ratesum plays a role in computing various estimates, as will be evident (v may not

necessarily split traffic in this manner, but it serves as a reasonable hint for LL decisions).

Note that this is reminiscent of the RPMMC scheduler described in Chapter 5, from which

we drew intuition for this approach.

The link-layer at u tracks the number of bits sent to v over intervals of duration Trassign,

denoted by s(u, v). Average sent bits for link (u, v) are denoted by s(u, v), and maintained

as an EWMA. At the end of every period, s(u, v) is updated as:

s(u, v) = 0.25 ∗ s(u, v) + 0.75 ∗ s(u, v)

Interface-conflict cost for channel c over link (u, v) is defined as follows (in the following

text K is a suitably chosen threshold constant):

1. If qnbr(u, v) < K then χ(u, v, c) = 0

2. If qnbr(u, v) >= K :

(a) If c is an R-channel of u, i.e., there is x ∈ MR(u) such that c(x) = c, then it is

129

defined as:

χ(u, v, c)

=
∑

w∈nbd(u)

(
qnbr(u, v)

max{σ(u, v), θ} + Trassign(ρ(x)− 0.8)+

)
I(∃ y∈T (u,w):c(y)=c)

(b) If c is not an R-channel, let S(b) ⊆ MT (u), be the set of T-interfaces of u that

can operate on a channel b. Then:

χ(u, v, c) = h(u, v, c) + U(u, c)Ih(u,v,c)>H

where

h(u, v, c) =
1

|S(c)|
∑

x∈S(c)




∑

w∈nbd(u)

∑

y∈T (u,w)
c(y)/∈c(MR(u))
∧c(y)∈C(x)

qnbr(u, v)

max{σ(u, v), θ}|S(c(y))|




U(u, c) =
Trassign

|S(c)|
∑

x∈S
(ρ(x)− 0.8)+ and H is a suitably chosen threshold

To provide some intuition for the relevance of this quantity, it provides an estimated measure

of the amount of traffic (normalized by rate) that contends for interface time at sending

neighbor v on the interface(s) that are used to send packets on channel c. The utilization-

based component is included primarily because when we have TCP traffic, the queues may

never become large enough to trigger a change in channel assignment; in those scenarios

tracking interface utilization becomes important, as a heavily utilized interface implies a

large conflict cost.

The local interface conflict seen by channel c at node u is denoted by χlocal(u, c) and

defined as:

1. If c is the current channel of a local R-interface, χlocal(u, c) = 0.

2. If c is not an R-channel:

χlocal(u, c) =
1

|S(c)|
∑

x∈S(c)

∑

d∈C(x)
d6=c∧d/∈c(MR(u))

⌈
qp
ch(u, d)

|S(d)|

⌉

(6.3)

where S(b) denotes the set of T-interfaces at the local node u that can operate on

130

Name Description

TLLINFO Used to determine interval between consecutive LLINFOs

JLLINFO Used to determine random jitter between consecutive LLINFOs

TQINFO Used to determine interval between consecutive QINFOs

JQINFO Used to determine random jitter between consecutive QINFOs

Tpool Interval between invocations of Channel Pool Management Algorithm

Trassign Base interval between execution of R-channel selection algorithm
at an interface (a random jitter gets added to it)

NBR TTL Maximum Time-To-Live of a neighbor entry

IFR TTL Maximum Time-To-Live of a 2-hop neighbor entry

K Threshold value used in computing χ (unit is bits)

H Threshold value used in computing χ (unit is seconds)

δinertia Minimum difference in channel cost required for new R-channel selection
Used to provide hysteresis in R-channel selection decision; δinertia > 0

δmin Used to provide hysteresis in R-channel selection decision

δcomb Used to determine whether R-channel selection
should use combinatorial criteria

Table 6.1: Protocol Parameters

channel b.

The intuition behind χlocal(u, c) is that it provides a quantification of the conflict faced by

packets bound to channel c from packets bound to channels that compete with c for local

interfaces.

Total incoming data score for interface x ∈ MR(u) with respect to channel b is defined

as:

Incoming(x, b) =
∑

v∈nbd(u)

(
s(v, u) + qnbr(v, u)

max{[σ(v, u)− r(v, u, c(x)) + r(v, u, b)], θ}

)

Incoming queue score for an R-interface x at node u is defined as:

η(x) =
∑

v∈nbd(u)

qnbr(v, u)

max{σ(v, u), θ}

η(x) provides an estimated measure of the amount of traffic queued at neighbors of u that

is expected be sent to interface x.

For clarity, various parameters used by the LL are tabulated in Table 6.5.1.

Link Layer Control Packets

The link layer sends/receives the following control packets:

131

1. LLINFO: This packet is broadcast by each node u. Thus a copy is sent on each

channel c such that some interface of u can transmit on c. The LLINFO is sent after

intervals of duration MAX(TLLINFO, (0.15∗m))+X, where m is the total number of

channels available to the network (on which copies of the LLINFO may possibly need

to be sent), and X is a random variable uniformly distributed in [0, JLLINFO]. It may

also be triggered by events that require fresh information propagation (e.g., a change

of an R-interface’s channel, or pool membership). The contents of an LLINFO(u)

packet are as follows:

• Sequence number

• Number of active R-interfaces

• For each active R-interface x ∈MR(u):

ID(x), type(x), |P(x)|, c(x), {b|b ∈ P(x)}, η(x)

• For each v ∈ nbd(u):

seqno,∀y ∈MR(v) : {ID(y), type(y), |P(y)|, c(y), {b|b ∈ P(y)}, η(y)}

Though in our current simulator implementation, we use a globally unique ID(x)

for each interface x, we remark that one only requires that each node maintain a

locally-unique ID for each of its interfaces, since the pair (nodeIP, ID) then provides

a globally unique identification for each interface.

2. QINFO: A QINFO(u→ v) packet is unicast by each node u to some or all neighbors

in situations where the number of channels is greater than 1 and the poolsize is also

greater than 1. The QINFO sending routine is invoked after intervals of duration

TQINFO + X, where X is a random variable uniformly distributed in [0, JQINFO].

To reduce overhead, if |nbd(u)| < 5, u sends a QINFO to each v ∈ nbd(u) that is

a symmetric neighbor, else it sends a QINFO to those symmetric neighbors v for

which qnbr(u, v) + s(u, v) > 5000 (note that the unit is bits). This packet contains the

following information:

• Length of outgoing queue to neighbor: qnbr(u, v) and recently sent data s(u, v)

• Number of active R-interfaces at v known to u (this will be |MR(v)| unless u has

wrong information about v)

132

• For each R-interface y ∈MR(v):

|P(y)|, c(y), ∀ c ∈ P(y): r(u, v, c), κ(u, c), χ(u, v, c)

3. CINFO: A CINFO(u → v) is sent by u to v ∈ nbd(u) if u receives a QINFO from

neighbor v containing incorrect information about u’s interfaces. The contents of a

CINFO(u) packet are as follows:

• Sequence number

• Number of R-interfaces of u

• For each R-interface x ∈MR(u): ID(x), type(x), |P(x)|, c(x), {b|b ∈ P(x)}, η(x)

4. PROBE: A probe packet is a broadcast packet which is periodically sent with the

sole purpose of estimating contention on each channel. This packet does not contain

any information.

The sequence numbers for the LLINFO and CINFO packets are drawn from the same 32-bit

sequence number space, and the sequence number is incremented after each packet is sent.

QINFO and PROBE packets have no sequence number.

The link layer at node u updates its local information on receipt of control packets in

the manner described below:

LLINFO: Whenever an LLINFO is received from v, if v is not already in the neighbor-list,

a new entry is created. The LifeTime field of the (new or pre-existing) neighbor entry is set

to NBR TTL. If an LLINFO is received by u from v on an 802.11a channel, it marks v as

reachable using 802.11a, and sets the aLifeTime field as NBR TTL. Similarly, if an LLINFO

is received on an 802.11b/g channel, it marks v as reachable using 802.11b, and sets the

bLifeTime field as NBR TTL. The aLifeTime and bLifeTime fields are refreshed whenever

LLINFO packets are received on the appropriate channels. A periodic timer checks for

expired entries. If an entry expires, the corresponding reachability flag is set to false. In

the absence of any other feedback, this reachability information is used to determine the

achievable rate from u to v on a channel c. We remark that this approach is flawed in that

u receiving a packet from v indicates that u is reachable from v and not that v is reachable

from u. Thus, this approach basically inverts the reachability information. However, it

provides a low-overhead way to ensure that unless both nodes receive packets from each

133

other, the link will be marked as asymmetric, and the LL will not accept any new packets

from higher layers to send to this neighbor.5

If the sequence number on this packet is not smaller than or equal to the last sequence

number received from v, the interface and pool-channel information is overwritten, and the

neighbor information is also processed, else the packet is discarded after refreshing lifetime

and reachability information.

When an LLINFO is received from some neighbor, containing a record for v as 2-hop

neighbor, if v is not already in interferer-list, a new entry is created. The lifetime of the

(new or pre-existing) interferer entry is set to MAX IFR TTL. If v is also an existing 1-hop

neighbor, and the sequence number on this entry is not smaller than or equal to the last

sequence number associated with v’s entry, the interface and pool-channel information is

overwritten. For 2-hop neighbor entries, it is always overwritten (this can be extended to

perform the sequence number check on existing 2-hop neighbors too).

If the received LLINFO leads to a change in important information about the neighbor’s

interfaces (i.e., number of R-interfaces, or current channel of an R-interface), a new LLINFO

is sent out to propagate the changed information to other neighbors. The sending of a fresh

QINFO to this neighbor may also be triggered. Moreover, if the LLINFO indicates that

an R-interface of a neighbor v has changed its channel from cold to cnew, any packets with

next-hop v that are enqueued in Qch(u, cold) are flushed.

QINFO: Whenever a QINFO is received from a neighbor v, if v is not in u’s neighbor-

list, no action is taken. If v is indeed in the neighbor-list, information in QINFO overwrites

all information received from previous QINFO packets. Also, depending on whether it

was received over an 802.11a channel or an 802.11b/g channel, the aLifeTime or bLifeTime

field is reset to NBR TTL, and the corresponding reachability flag is also set. The incoming

queue information stored from a QINFO expires after a certain interval (the LL runs a timer

that periodically checks when the last QINFO was received from a neighbor. If the time

elapsed since the last QINFO is greater than 3 ∗ TQINFO, the information about qnbr(v, u)

and s(u, v) is reset to 0).

5In highly dynamic situations, where the status of a neighbor may fluctuate between symmetric and
asymmetric, this can lead to an incorrect view and resultant loss of performance. It can be improved upon
by including information in the LLINFO packet as to whether packets were received from a neighbor on
802.11a and/or 802.11g in the recent past, and using the information received about oneself from one’s
neighbor to assess directional reachability and determine the default achievable rate.

134

CINFO: If a CINFO is received from v with a fresher sequence number than the last one

received from v, the interface and channel pool information in the CINFO overwrites prior

information. A CINFO receipt can also be used to assess a/b-reachability.

6.5.2 Interface Management

As has been described earlier, interfaces are classified as being either R-interfaces, or T-

interfaces.

Since all interfaces at a node are assigned the same MAC address, but have independent

MAC procedures, it is important to take care that at any time instant, if some R-interface

of node u is tuned to a channel c, then no other R-interface or T-interface of u should be

tuned to c at that time. Otherwise, the following undesirable scenario may possibly occur:

suppose neighbor v is sending data to u on channel c. Since u has two interfaces tuned to

channel c, and both have the same MAC address, they will both receive the packets, and

believe that they are the intended recipients. Thus, they will both send ACKs. As a result,

the ACKs may collide, in which case, v would consider the packet lost, and retransmit.

Repetition of the same could lead to throughput degradation. The HMCLL protocol tries

to avoid the possibility of an R-interface and another interface being tuned to the same

channel simultaneously, except for rare and brief transient periods that may arise when

one or more interfaces are switching. While there may potentially be occasional periods

when more than one T-interfaces are on the same channel, this does not cause the wasteful

transmission problem due to multiple ACKs, as packets intended for a node are sent only on

the channel of an R-interface. If two T-interfaces happen to each be on the same channel,

physical carrier sense addresses the issue that only one of them should transmit at a time.

Thus, while such a scenario may sometimes lead to a waste of interface time (if there are

packets waiting to be sent on another channel that the interface can operate on), this does

not cause any serious issues.

Except for link layer control packets, packets received on a T-interface are discarded by

the LL, to avoid the possibility of receiving duplicate packets (primarily true for broadcast

packets). However link layer control packets are processed in the same way as packets

received on an R-interface. This helps provide resilience to loss of control packets sent

on the R-interface’s channel. It does not affect correctness as the operations performed

135

on receipt of a control packet are idempotent (new information in a packet completely

overwrites previous information). The possibility of a delayed control packet being received

and causing stale information to overwrite newer information is made negligible by using

sequence numbers for the control data sent by any single neighbor. and ignoring packets

with a sequence number smaller than or equal to the last known sequence number (where

smaller is defined as in [31]).

R-Interface Management

Following the channel restriction approach we described in Section 6.2, we associate with

each interface a pool of channels, from which the current channel is dynamically selected.

Thus, the R-interface management has two aspects, viz., channel pool management, and

R-channel selection. We now describe each of these.

Channel Pool Management Recall that C(x) denotes the set of channels on which

interface x is capable of operating, each R-interface x has an associated channel-pool P(x) ⊆
C(x) such that |P(x)| = f , and the current channel of an interface x is denoted by c(x).

Note that one could potentially allow different pool sizes for different interfaces, but for

simplicity, this is currently a global constant for all interfaces of a particular type.

In keeping with the objective of a priori load-balance, it is desirable that the channels

be equitably distributed across pools, such that in any vicinity all channels occur in roughly

the same number of pools.

We use a probabilistic mechanism for pool management.

At the time of starting up, each interface is assigned a set of f channels chosen uniformly

at random from all such possible f -subsets. Progressively, as LLINFO packets are received

from neighboring nodes, the Neighbor Table gets populated with information about the

channel-pools of the R-interfaces of these nodes. The Channel Pool Manager uses a timer

that is scheduled at start-up after an interval uniformly distributed between 0 and Tpool

seconds, and thereafter rescheduled every Tpool seconds. The initial random interval serves

to desynchronize the pool-selection decisions of different nodes. Whenver the timer expires,

the procedure described in Algorithm 1 is executed.

In the current design, the periodic channel pool management algorithms of all R-

interfaces at node u use the same timer (i.e, they are all executed sequentially whenever

136

Algorithm 1 Channel Pool Management Algorithm (Interface x)

I(x)← the set of all R-interfaces within 2 hops of interface x
for all c ∈ C(x) do
n(c)← |{y|y ∈ I(x) ∪ {x}, c ∈ P(y)}|

end for
n← 1

|C(x)|
∑

c∈C(x)

n(c)

cmin ← argmin
c∈C(x)\P(x)

n(c)<n

n(c)

if cmin is not unique, choose one of the candidates uniformly at random as cmin

m← {y|y ∈ I(x) ∪ {x}, cmin ∈ C(y)}|
cmax ← argmax

c∈P(x)
n(c)

changeflag ← 0
if n(cmax) > n and n(cmax) > n(cmin) + 1 then

p← n−n(cmin)
m

if cmax = c(x) then
p← p

2
end if
R← random number uniformly distributed between 0 and 1
if R < p then
P(x)← (P(x) \ {cmax})

⋃{cmin}
changeflag← 1

end if
end if
if changeflag then

cancel x’s running R-channel assignment timer and reschedule to invoke an R-channel
selection

end if

137

the timer expires). However, this behavior can be altered if necessary.

We remark that our algorithm for pool-management bears similarity to the algorithm

for minimum conflict coloring in [32]), and the algorithm for channel assignment in Net-X

[64]. Also related is the probabilistic distributed learning algorithm for channel assignment

described in [72].

Ideally, we would like the pool membership to stabilize after a brief period of churn, with

further changes occurring rarely. However, due to the distributed and probabilistic nature of

the algorithm, the channel pool membership can exhibit quasi-stable behavior, i.e., after a

brief initial period of pool-adjustment, the pool membership may either fully stabilize, or it

may largely stabilize with occasional pool membership changes still happening at relatively

low rate.

It is to be noted that it is important to introduce some probabilistic damping in the

pool-management procedure to achieve good stability properties. One can conceive of

many possible formulations for the damping probability, which can aim at reducing the

possibility of many interfaces including or evicting the same channel at around the same

time. What we use in the current design (see Algorithm 1) is one such formulation, which

intuitively tries to reduce the possibility of the same channel being included in the pools of

many nearby interfaces at around the same time. Other possibilities include the damping

probability formulation used in [64] for channel-assignment, which intuitively tries to reduce

the possibility of nearby interfaces on the same channel switching to different channels at

around the same time (and can be suitably modified and applied to channel pools). Since

the pools are initially chosen uniformly at random, the decisions only involve a two-hop

view, and they occur in a staggered manner (due to the initial desynchronization), the

protocol performance with many such variant formulations is expected to be similar, since

the pool membership would typically adjust and becoming stable or quasi-stable after a

brief post-startup period of churn.

R-Channel Selection The R-channel selection algorithm is designed on the premise that

all selection decisions are sequential and staggered at different nodes.

To reduce the chance of inadvertant synchronization, the protocol incorporate an el-

ement of random jitter in the assignment-interval. Thus, each interface has a R-channel

re-assignment timer that is rescheduled over duration Trassign + X, where X is a random

138

variable uniformly distibuted over [0, Jrassign].

For simplicity, we currently use globally constant values for Trassign and Jrassign.

The channel cost metric for channel b computed for interface x of node u has four

components:

1. Explicitly known interference conflict cost:

Ceinc(x, b) =
1

Trassign

∑

v∈nbd2(u)

∑

y∈MR(v)
c(y)=b

η(y) (6.4)

2. Interface conflict cost

Cifc(x, b) =
1

Trassign

∑

v∈nbd(u)
qnbr(v,u)>0

(χ(v, u, b)−D(v, u, b, x))+ (6.5)

whereD(v, u, b, x) = qnbr(v,u)
max{σ(v,u)−r(v,u,c(x))+r(v,u,b),θ} if c(x) = b or if [(c(x) /∈ c(MR(v)))∧

(b /∈ c(MR(v)))], and is 0 else.

The intuition behind subtracting D(v, u, b, x) from χ(v, u, b) is that the latter may

sometimes include traffic intended for interface x. This should not be counted as a

cost as is, as even after a channel switch, one might typically expect the same amount

of traffic (in bits) to be re-directed to whatever new channel x may switch to (although

rate difference between the channels should be considered). We also remark that the

specific definition of D(v, u, b, x) is driven by the fact that any R-interface x is single-

mode, and thus all channels in C(x) can be operated on by exactly the same set of

T-interfaces at a neighbor v.

3. Contention cost (this component helps capture interference beyond the two hop neigh-

borhood which is not captured by the explicit interference cost, and also captures

interference conflicts not reflected in queue-lengths):

Let wv = qnbr(v, u) + s(v, u)

Ciinc(x, b) =





37.5
Trassign

(
1P

v∈nbd(u)

wv

∑
v∈nbd(u)

wvκ(v, b)

)
if

∑
v∈nbd(u)

wv > 0

0 else

(6.6)

139

4. Expected cost of traffic incoming to itself:

Cself (x, b) =
Incoming(x, b)

Trassign
(6.7)

The cost of a channel b, as computed by R-interface x of node u is given by:

Cost(x, b) = Ceinc(x, b) + Cifc(x, b) + Ciinc(x, b) + Cself (x, b) (6.8)

The R-channel is selected using the procedure in Algorithm 2, which returns the chosen

channel. If the chosen channel is different from the current channel, a switch is initiated.

6.5.3 Packet Scheduling: Channel and Interface Binding

The channel and interface selection decisions are decomposed into two separate decisions,

viz., channel selection, and interface selection, which are coupled through the channel queue

occupancies, and the local interface conflict score χlocal (which is a function of the channel

queue occupancies, and the number/type of interfaces available at the node).

The channel binding decision is performed by a channel scheduler (denoted by CH-

scheduler), and the interface binding decision is performed by an interface scheduler (de-

noted by IF-scheduler).

The structure of the packet scheduling component is depicted in Fig. 6.4.

The link-layer at each node u maintains the following system of queues:

1. Neighbor Queues: Each outgoing unicast packet has a next-hop v ∈ nbd(u), and

is enqueued in the queue corresponding to the appropriate neighbor v. The queue at

node u for neighbor v is denoted by Qnbr(u, v), while the length of this queue in bits

is denoted by qnbr(u, v), and the length in packets is denoted by qp
nbr(u, v).

2. Channel Queues: There is a pair of queues for each channel c such that some

interface of u can tune to c. These contain packets that have already been bound to

channel c (i.e., these packets will be sent on channel c). The first of these is meant to

temporarily hold high-priority packets (LL control packets, ARP packets and routing

packets). We shall refer to this as the high priority holding buffer for the channel. All

other packets are enqueued in the second queue. We shall refer to this as the channel

140

Algorithm 2 R-Channel Selection Algorithm (Interface x at Node u)

S ← P(x)
if last packet on c(x) received more than M seconds ago then
S ← S \ {c(x)}

end if
for all b ∈ S do

if b ∈ c(MR(u) \ {x}) then
S ← S \ {b}

end if
end for
if S = φ then

evict first channel in pool; replace with any channel d that is not current channel
of another R-interface
return d
if no such channel found, deactivate interface x

end if
for all b ∈ S do

compute Cost(b)
end for
b← argmin

c∈S
Cost(c)

if c(x) ∈ S then
if Incoming(x, c(x)) < δcomb and ρ(x) < δcomb and ρ(x) < δcomb then
{ try to do a combinatorial channel selection instead of a cost-based one}
B ← P(x)
I(x)← the set of all R-interfaces of nodes in nbd2(u).
for all d ∈ B do
n(d)← |{y|y ∈ I(x), c(y) = d}|

end for
for all d ∈ B do

if (d /∈ c(MR(u)) ∧ (n(d) < n(c(x))) then
p← 1

n(c(x))
R← random number uniformly distributed between 0 and 1
if R < p then

return d
end if

end if
end for

end if
if (Ceinc(x, b) + Cifc(x, b) + Ciinc(x, b)) > 1.0 then

return c(x)
end if
if Incoming(x, c(x)) < δmin or Cost(c(x)) = 0 or Cost(b) >= (Cost(c(x)) − δinertia)
then

return c(x)
end if

end if
return b

141

(Channel Binding)

(Interface Binding)

Coupled though Channel Queue Occupancies

& Local Interface Conflict Score

CH-Scheduler

Interface Queues

Neighbor Queues

Channel Queues

IF-Scheduler

Figure 6.4: Structure of Scheduling Module

queue, and denote this queue for channel c at node u by Qch(u, c), with the length in

bits denoted by qch(u, c). The length in packets is denoted by qp
ch(u, c).

3. Interface Queues: There is a queue for each interface x, containing packets that have

already been bound to the interface x, and are awaiting their turn for transmission by

interface x. The queue for an interface x is denoted by Qif (x) and the queue-length

is denoted by qif (x).

Handling Multi-Channel Broadcast

Currently, we adopt a very simple approach to broadcast. The node v sends a copy of each

broadcast packet on all channels that can be operated on by at least one of its interfaces.

High Priority Packets

Broadcast packets have higher priority than unicast packets since typically most of these

are expected to be link layer or network layer control packets. Whenever the link layer

142

receives a broadcast packet for sending, it creates a copy of this packet for each channel

and enqueues it in the high-priority holding buffer of that channel.

High-priority unicast packets are handled as follows: if the next-hop node (MAC des-

tination) for the packet is v, the packet is enqueued in the high priority holding buffer of

the channel with highest effective rate that can be used to reach that neighbor (i.e., c(z),

where z = argmax
y∈T (u,v)

r(u, v, c(y))).

Link layer control packets also have high priority (note that while LLINFO is broadcast,

QINFO and CINFO are unicast). Whenever the link layer generates a control packet to

send, it does the following: LLINFO is processed in the same way as other broadcast packets,

QINFO/CINFO from u to v are processed like any other high priority unicast packet.

When a routing protocol is in use, it is desirable that any unicast routing control packets

should also be given priority.

The CH-scheduler determines how packets will be transferred from the Neighbor Queues

to the Channel Queues, while the IF-scheduler determines how packets will be transferred

from the Channel Queues to the Interface Queues.

Channel Binding

The CH-scheduler’s state at any instant is either blocked or unblocked.

1. Initially, the state is unblocked.

2. Whenever the link layer receives a new packet of regular priority to send from upper

layers then, after enqueuing the packet in the appropriate neighbor-queue, it invokes

the CH-scheduler.

3. If an invocation of the IF-scheduler results in a non-empty channel-queue becoming

empty, the CH-scheduler is invoked after ensuring that its state is unblocked (i.e., if

the state is blocked, it is set to unblocked). This is also described later in Section

6.5.3.

4. Whenever the CH-scheduler is invoked:

(a) If the state is blocked, nothing is done.

(b) If the state is unblocked, the channel-binding routine (Algorithm 3) is executed.

After the exceution of the channel-binding routine:

143

i. If any channel-queue is still empty, the state remains unblocked, else it is set

to blocked.

ii. The IF scheduler is invoked.

We now explain the intuition behind the channel binding routine.

A channel-queue is said to be eligible for scheduling an invocation of the CH-scheduler

if the occupancy of that queue at the time the scheduler was invoked is below a certain

threshold CQ THRESH=PKT QUANTUM. Deeming queues with more than CQ THRESH

packets ineligible helps facilitate the objective of late-binding. Queues can also be deemed

ineligible if their local conflict score is more than CQ THRESH.

Consider the set of all eligible neighbor-queues at node u. Each has a certain next-hop

node (MAC destination) v for which there is a set of valid interfaces T (u, v) ⊆MR(v), and

correspondingly a set of possible channels Tc(u, v) = {c(y)|y ∈ T (u, v)}.
Since the channel-assignment has already attempted to factor in the traffic-awareness,

it is now reasonable to treat the link-layer packet scheduling problem as an independent

local decision. From the perspective of the link-layer at node u, each packet enqueued in

the set of neighbor-queues has a next-hop node from amongst u’s neighbors to which it has

to send the packet. Thus, the link-layer treats the local packet scheduling problem as if it

were a problem involving single-hop flows.

We draw intuition from the Dynamic Backpressure Scheduler of Tassiulas and Ephremides

[110]. In a scenario where all flows traverse only a single-hop, a scheduler which activates

links in a manner than maximizes
∑
qlrl is throughput-optimal (assuming the traffic load

falls within the network’s stability region). In our scheduling scenario, we can treat each

valid (neighbor, channel) pair as a link, and define a conflict between two pairs if they

have the same channel. Trying to map the algorithm of [110] directly, one might consider

trying to assign packets from various eligible queues to channels, such that the assignment

maximizes
∑
qpµp, where qp is the length of the neighbor-queue from which the packet p is

taken, and µp is the net datarate of the link-channel pair over which p is scheduled.

However, in practice, this can lead to long delays and possible starvation for some flows

(especially if some flows are aggressive and inelastic). Additionally, from considerations

of amortization, it may be desirable to transfer packets from the neighbor-queues to the

channel-queues in certain quanta. An alternative approach might consist of selecting a set

144

Ω of (neighbor, channel) pairs that maximize
∑
v∈Ω

Age(v)µ(u, v, c), where Age(v) is the age

of the HOL (and hence oldest, as the neighbor queues are FIFO) packet of the queue for

neighbor v. This gives priority to packets that have been waiting longer, and thus improves

fairness characteristics. At the same time, it does not completely deviate from the intuition

behind the throughput-optimal dynamic backpressure scheduler described in [110], since a

FIFO queue that has been consistently large in the recent past is also likely to have an

HOL packet of large age. We adopt a similar approach.

The channel-binding procedure is described in Algorithm 3. Note that comparison

between ordered pairs z1 = (w1, r1) and z2 = (w2, r2) is defined as z1 > z2 if either w1 > w2

or w1 = w2 and r1 > r2; z1 = z2 if z1 6> z1 and z2 6> z1.

Interface Binding

The interface binding (IF) scheduler’s state at any instant is either blocked or unblocked.

1. Initially, the state is unblocked.

2. Whenever the link layer receives a new broadcast packet, or a high priority unicast

packet to send (either a LL control packet, or from upper layers) then, after enqueuing

the packet in the appropriate channel-queue (as described in Section 6.5.3), it invokes

the IF-scheduler.

3. Whenever an interface-queue becomes empty, a link-layer callback is invoked, which

sets the state of the IF-scheduler to unblocked, and invokes it.

4. The IF-scheduler is also invoked after any invocation of the CH-scheduler (as described

in Section 6.5.3).

5. Whenever the IF-scheduler is invoked:

(a) If the state is blocked, nothing is done.

(b) If state is unblocked, the interface-binding routine (Algorithm 4) is executed.

After the execution of the interface-binding algorithm:

i. If there is no available interface y such that qif (y) = 0, the IF-scheduler’s

state is set to blocked.

145

Algorithm 3 Channel Binding Algorithm (Node u)

CQ THRESH ← PKT QUANTUM
for all v ∈ nbd(u) do
Tc(u, v)← ⋃

y∈T (u,v)

c(y)

end for
S ← ⋃

v∈nbd(u)

({v} × Tc(u, v))

for all (v, c) ∈ S do
if qp

ch(u, c) > CQ THRESH or χlocal(u, c) > CQ THRESH or µ(u, v, c) = 0 then
S ← S \ {(v, c)}

end if
end for
for all (v, c) ∈ S do

if qnbr(u, v) = 0 then
w(v, c) = 0

else
Age(v)← time in queue spent by HOL packet of Qnbr(u, v)
w(v, c)← Age(v)µ(u, v, c)
r′(v, c)← µ(u, v, c)

end if
end for
while S 6= φ do

(z, d)← argmax
S

(w(v, c), r′(v, c))

if qnbr(u, z) = 0 then
continue

end if
Transfer min{qp(u, z),PKT QUANTUM} packets from Qnbr(u, z) to Qch(u, d)
for all (w, b) ∈ S such that b = d do
S ← S \ {(w, b)}

end for
for all (w, b) ∈ S do

if χlocal(w, b) > CQ THRESH then
S ← S \ {(w, b)}

end if
end for

end while

146

ii. If some initially non-empty channel queue became empty as a result of

packet-transfer during interface binding:

• If the CH-scheduler’s state is blocked, it is changed to unblocked.

• The CH-scheduler is invoked.

Note that an interface is deemed to be available for scheduling by the IF-scheduler if

it is neither off nor in the process of switching. Also note that the interface-queue lengths

may change in the course of execution of the procedure, as packets get transferred.

Interface Queues

Once a packet has been transferred to an interface queue, the link layer relinquishes control

over it (except for possibly triggering a flushing of packets from the interface-queue in case

of a channel-switch). Whenever an interface-queue becomes empty, a link-layer callback is

invoked, which sets the state of the IF-scheduler to unblocked, and invokes it.

6.6 Evaluation

The ns-2 simulator (version 2.31) [46] has been used as the codebase, with substantial

modifications to the physical layer and node models. A SINR threshold based model is

used, whereby a packet is received successfully if it is received at a power-level equal to or

greater than the receiver sensitivity, and the SINR is equal to or greater than the SINR

threshold. While this leads to a 0/1 model of packet reception, and does not capture the

relationship between SINR and BER, it provides a reasonable approximation for evaluation

of a link layer channel and interface management scheme. Cumulative interference has been

modeled, and the total received power at an interface used in SINR determination is the

sum of the received powers from all packets on the air in that channel at that instant, as

well as a small thermal noise component (which is constant for any given channel).

Various rate-specific parameter values used in the evaluation are listed in Table 6.6.

The RX-sensitivity values are obtained from the specifications of the Cisco Aironet NIC,

while the SINR threshold values are from [126]. A fixed transmission power of 65 mW is

used. A data payload size of 1450 bytes is used for all data packets sent. No MAC-layer

fragmentation is performed. The carrier-sense threshold is set to -108 dBm (the physical

147

Algorithm 4 Interface Binding Algorithm (Node u)

{First we handle high priority packets}
for all x ∈MR(u) do

if qif (x) = 0 and x is available then
transfer packets from high priority holding buffer of c(x) to Qif (x)
till either former is empty, or latter is full

end if
end for
C ← set of all available channels
for all c ∈ C \ c(MR(u)) do

for all x ∈MT (u) do
if x can operate on c and qif (x) = 0 and x is available then

transfer packets from high priority holding buffer of c to Qif (x)
till either former is empty, or latter is full

end if
end for

end for
{Next we handle regular priority packets}
for all x ∈MR(u) do

if qif (x) = 0 and x is available then
if qch(u, c(x)) > 0 then

Transfer min{qp
ch(u, c(x)),PKT QUANTUM} packets from Qch(u, c(x)) to Qif (x)

end if
end if

end for
S(c) is the set of T-interfaces of u that can operate on channel c
S ← {(c, x)|c ∈ C \ c(MR(u)), x ∈ S(c)}
for all (b, x) ∈ S do
w(b, x)← time in queue spent by HOL packet of Qch(u, b)
s′(b, x)← −1∗(time to switch from c(x) to b)
if (qif (x) > 0) or (∃ y ∈MT (u) such that c(y) = b and qif (y) > 0) then
S ← S \ {(b, x)}

end if
end for
while S 6= φ do

(d, y)← argmax
S

(w(b, x), s′(b, x))

if qch(u, d) = 0 then
continue

end if
Transfer min{qp

ch(u, d),PKT QUANTUM} packets from Qch(u, d) to Qif (y)
for all (b, x) ∈ S such that x = y do
S ← S \ {(b, x)}

end for
for all (b, x) ∈ S such that b = d do
S ← S \ {(b, x)}

end for
end while

148

Rate RX Sensitivity SINR Threshold

1 Mbps -94 dBm -2.92 dB

2Mbps -93 dBm 1.59 dB

6 Mbps -87 dBm 6.02 dB

Table 6.2: Simulation Parameters

carrier-sense function deems the channel idle if the received power (not considering the

thermal noise component) is less than the carrier-sense threshold; thus, the stated carrier-

sense threshold should be interpreted as the power that must be received over and above

the thermal noise to deem the channel busy). The threshold is deliberately chosen to be

much smaller than the receiver sensitivity values, as the resultant carrier-sense range is well

beyond 2 hops in our test topologies, and this allows us to evaluate the effectiveness of the

protocol in performing channel management with explicit information from 2 hops, when

channel conflicts extend beyond this range.6

For TCP simulations, the TCP Sack1 agent in ns-2 is used. The initial timeout value

has been changed from the ns-2 default, and set to 1.0s.

The protocol has been evaluated using a set of test topologies, which involve various

different kinds of interface configurations and traffic patterns, and facilitate understanding

of the strengths and weaknesses of the protocol. Each plotted point on the graphs is an

average of 30 independent runs, and the 95% confidence intervals are also plotted.

In all the simulations, we have an initial quiescent period of 40s duration to allow the

pool-membership to stabilize, before any data transmissions begin. The maximum length

of any data session in the simulations is 10s. We have intentionally chosen a short data

session length, as this poses a more difficult case for the protocol, which must be able to

adapt to the traffic at a sufficiently fast pace to provide improved performance with short

session lengths.

6.6.1 Test Topologies

We use the TwoRayGround propagation model for these topologies, as the primary goal

is to study the link layer’s ability for dynamic adaptation to traffic in the presence of

6Note that in this work we are not concerned with choosing a carrier-sense threshold value that is optimal
for performance. Our goal is only to evaluate the performance of our protocol given some value for this
parameter, and a large carrier-sense threshold poses a more difficult case for our protocol.

149

Parameter Name Value

TLLINFO 0.5s

JLLINFO 1.0s

TQINFO 0.75s

JQINFO 0.25s

Tpool 4.0s

Trassign 0.75s

Jrassign 1.0s

NBR TTL 10.0s

IFR TTL 10.0s

K 1000 (bits)

H 0.01s

δinertia
0.1

Trassign

δmin
0.1

Trassign

δcomb 0.01

Table 6.3: Protocol Parameter Values Used in Simulations

heterogeneous radios/channels. Results using the probabilistic Shadowing model over some

random topologies are discussed in Section 6.6.2. For the choice of simulation parameters

used, the TwoRayGround model yields an 802.11a transmission range of approximately

630-640m, and an 802.11g transmission range of approx. 900m. The carrier-sense range

is approximately 2130-2140m, which is greater than 3 hops for 802.11a transmissions, and

marginally greater than 2 hops for 802.11g transmissions. Note that the ranges obtained

with the TwoRayGround model for the chosen parameter settings is larger than what one

typically sees in practice; however the absolute value of the transmission range is not very

significant for our evaluation.7

While discussing the simulation results, we will sometimes refer to the number of chan-

nels as c and the poolsize as f . Whenever we show per-flow throughput and the session-

durations of different flows are different, the throughput of each flow is computed as to-

tal amount of useful data received at the flow destination divided by that flow’s session-

duration. Whenever we show aggregate throughput, if the session-durations are different

for different flows, the aggregate throughout is computed as total amount of useful data

7However, it is to be noted that the larger propagation delays do have a small effect on the possibility that
two nodes within carrier-sense range sense the channel to be idle at around the same time. This sometimes
causes a few packet losses due to collisions. However, given the low data rates (and hence less stringent
SINR requirements), for certain relative locations of nodes, this can sometimes even improve throughput
marginally.

150

4

0

1

3

5 8

7

6

2

Figure 6.5: Topology 1

received at all flow destinations divided by the maximum session-duration.

Multiple independent runs for each data point were obtained by seeding the defaultRNG

object in ns2 with a single selected seed, and then calling the next-substream command i

times for the i-th run.

Topology 1 The topology is depicted in Fig. 6.5. 9 nodes are arranged in a 3 by 3 grid

(the side of each grid square is 500m). Each node has one R-Interface and one T-interface of

type 802.11a. There are 3 CBR flows: 0→ 1 at rate approx. 5.8 Mbps starts at t = 40.0s,

0→ 3 at rate approx. 5.8 Mbps starts at t = 40.5s, 2→ 5 at rate approx. 2.9 Mbps starts

at t = 40.6s, 8 → 7 at rate approx. 2.9Mbps starts at t = 40.9s. All flows run till end

of simulation at t = 50.0s. The topology is of interest as it involves both interface and

interference conflicts. Note that an ideal scheduler can meet almost all the traffic demand

with just 3 channels, by assigning one channel to the R-interface of 0 and either of 1 or

3, assigning the second channel to the remaining node from amongst 1, 3, and assigning

the third channel to 5 and 7. We evaluate the following (number of channels, poolsize)

combinations: (1, 1), (3, 1), (12, 1), (3, 3), (12, 3), (12, 12).

The throughput results are depicted in Fig. 6.6. Note that a poolsize of 3 typically

yields better performance than a poolsize of 1 for the same number of channels. It is also

interesting to note that with 12 channels and poolsize 3, the throughput is lower than the

throughput with 3 channels and poolsize 3. The reason for this is that there is an interface-

conflict that arises at node 0, as it has only one T-interface but is generating data for both 1

and 3 at≈ 5.8 Mbps each. Hence it is desirable to have the R-interface of 0 and one of 1 and 3

on the same channel (so that 0 can use its R-interface for transmission), while the T-interface

is used to transmit packets to the remaining node on another channel. The interface-conflict

151

 0

 1

 2

 3

 4

 5

 6

(1, 1) (3, 1) (12, 1) (3, 3) (12, 3) (12, 12)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of channels, poolsize)

Topology 1: CBR Traffic

dst 1
dst 3
dst 5
dst 7
dst 1
dst 3
dst 5
dst 7
dst 1
dst 3
dst 5
dst 7

Figure 6.6: Topology 1: CBR Traffic

component of the channel cost metric does try to capture this; however, sometimes the

receiver’s R-interface cannot change its assignment to address interface conflicts as the

transmitter’s R-channel may not be in the pool of the receiver’s R-channel. This leads to

the observed inversion scenario. It can potentially be addressed by additional signaling

leading to pool-adjustment, but the extra complexity may not be justified if such scenarios

are not very common. Our justification that the inversion phenomenon is being caused by

channel-restriction is borne out by the fact that with (12, 12), the throughput is almost the

same (actually slightly better) that with (3, 3). The inability to address interface-conflicts

is also the cause of the inferior performance with (3, 1) and (12, 1).

The key observation is that (3, 3) and (12, 12) provide close-to-best-possible perfor-

mance.

Topology 2 8 nodes: 0, 1, ..., 7, are arranged in a linear chain. The separation between

adjacent nodes is 500m. Each node is equipped with an 802.11a R-interface and an 802.11a

T-interface.

For K = 1, 2, ..., 7: We start a single K-hop flow from node 0 to node K at time

152

0 1 2 3 4 5 6 7

Figure 6.7: Topology 2 (Chain)

t = 40.0s, which is active till the end of simulation at t = 50.s0.

Fig. 6.8 shows the throughput when the flow comprises CBR (UDP) traffic (generated

at approx. 5.8 Mbps). For a given number of channels, setting poolsize (f) to 3 yields

better performance that f = 1. This is because when f = 1, the channel-assignment

criterion is solely the number of interfaces on that channel within 2 hops. With a carrier-

sense range larger than 2, this may not always achieve good load-balance. Even when

the number of channels is large, e.g., c = 12, despite the high probability of interfering

interfaces having different channels due to sheer randomization, there tend to be a few

cases where the channel-assignment is bad, and this degrades the average throughput. This

also explains the greater variability (the confidence intervals are larger) with f = 1. When

f = 3, the previously described channel cost metric is used, which includes a contention-cost

component that is able to capture high channel load. Thus, even if the channel-assignment

is sub-optimal at the time the flow starts, dynamic adaptation to the load occurs, and we

get better performance.

Fig. 6.9 shows the throughput when the flow comprises FTP (TCP) traffic.

As can be seen, the throughput with TCP shows a steady decrease as the number of

hops increase, even with multiple channels.

While it is true that the LL is better able to adapt to CBR traffic as compared to TCP

(since CBR traffic is inelastic, there is a steady queue build-up that eventually triggers chan-

nel re-assignment), another major reason for the lower throughput with TCP in the chain

topology is the increased delay faced by TCP over multiple hops. As the number of hops

to traverse increases, the round-trip delay increases, which has a detrimental effect on TCP

throughput.Also note that the performance of almost all the multi-channel combinations is

very similar, although one can discern a semblance of relative trends similar to the CBR

case. The lack of differentiation can be attributed to the fact that the decline in throughput

as the number of hops increase tends to mask the differences due to channel-adaptation.

We remark that the round-trip delay is substantially inflated by the fact that TCP

flows have bi-directional traffic (DATA and ACK), and thus at each hop the DATA and

153

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Hops

Topology 6 (Chain): Throughput with CBR Traffic

c=12, f=3
c=12, f=1

c=8, f=3
c=8, f=1
c=4, f=3
c=4, f=1
c=1, f=1

Figure 6.8: Topology 2: CBR Traffic

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Hops

Topology 2 (Chain): Throughput with TCP Traffic

c=12, f=3
c=12, f=1

c=8, f=3
c=8, f=1
c=4, f=3
c=4, f=1
c=1, f=1

Figure 6.9: Topology 2: TCP Traffic

154

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Hops

Topology 2 (Chain) with Extra T-interface: TCP Traffic

c=1, f=1
c=4, f=1
c=4, f=3
c=8, f=1
c=8, f=3

c=12, f=1
c=12, f=3

Figure 6.10: Topology 2: (Extra T-Interface): TCP Traffic

ACK packets must share the same T-interface. As evidence of the dominant effect of delay

due to DATA/ACK contention, consider a variant scenario where we have the same chain

topology, but each node is equipped with an extra 802.11a T-interface. The thoughput

results with TCP traffic are shown in Fig. 6.10. It is evident from the figure that the

decrease in throughput with increase in hops now occurs at a much slower rate. A similar

experimental observation about the improvement in TCP when using additional interfaces

for sending was made in the context of the Net-X testbed in [104].

Topology 3 25 nodes are arranged in a 5 by 5 grid spatial layout (the side of each grid

square is 460m). Thus, the logical network topology is also a 5 by 5 grid. Each node is

equipped with one pair of 802.11a interfaces (one R-interface and one T-interface). We

pre-designate 12 (disjoint) one-hop SD pairs, as depicted in Fig. 6.11. We vary the number

of channels c. If c channels are in use, the first c sources start sending data at t = 40.0s and

continue till the end of simulation at t = 50.0s. Thus, the number of flows in any scenario

is the same as the number of channels. Therefore, an ideal omniscient scheduler can assign

each flow to a separate channel, and get the full benefit of each channel, providing maximum

155

Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Flow 6

Flow 7

Flow 8

Flow 11

Flow 9

Flow 10

Flow 12

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 6.11: Topology 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 6.12: Topology 4

 0

 10

 20

 30

 40

 50

 60

 70

1 channel/1 Flow 4 channels/4 Flows 8 channels/8 Flows 12 channels/12 Flows

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Channels and Flows

Topology 3: Aggregate Throughput with CBR Traffic

poolsize 1
poolsize 3

Number of Channels*Throughput with 1 Channel/1 Flow

Figure 6.13: Topology 3: CBR Traffic

 0

 10

 20

 30

 40

 50

 60

 70

1 channel/1 Flow 4 channels/4 Flows 8 channels/8 Flows 12 channels/12 Flows

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Channels and Flows

Topology 3: Aggregate Throughput with TCP Traffic

poolsize 1
poolsize 3

Number of Channels*Throughput with 1 Channel/1 Flow

Figure 6.14: Topology 3: TCP Traffic

throughout to each flow. However, we have a distributed protocol where each node only

has explicit information up to a two-hop neighborhood, and has reduced flexibility due

to channel-restriction. Thus, this topology provides a means of evaluating the efficacy of

the protocol in adapting the channel of an interface to traffic that may extend beyond its

two-hop neighborhood.

At time t = 40.0s, all c active sources start sending to their respective destinations, and

continue to do so till the simulation ends at t = 50.0s.

Fig. 6.13 depicts aggregate throughput for CBR traffic. Given c channels, a useful

benchmark is to compare the achieved throughput with c times the single-channel through-

put. While the difference between this and what the LL is able to achieve increases as c

increases, one can see that even with c = 12, the LL is able to get quite good performance.

Also f = 3 shows a small but consistent performance gain over f = 1.

Fig. 6.14 depicts aggregate throughput for TCP traffic. The relative trends are similar,

although the throughput obtained is lower than in the case of CBR traffic.

156

 0

 10

 20

 30

 40

 50

1 channel 4 channels 8 channels

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Channels

Topology 4: Aggregate Throughput with CBR Traffic

poolsize 1
poolsize 3

Figure 6.15: Topology 4: CBR Traffic

 0

 10

 20

 30

 40

 50

1 channel 4 channels 8 channels

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Channels

Topology 4: Aggregate Throughput with TCP Traffic

poolsize 1
poolsize 3

Figure 6.16: Topology 4: TCP Traffic

 0

 10

 20

 30

 40

 50

1 channel 4 channels 8 channels

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Channels

Topology 4 (Extra T-Interface): Aggregate Throughput with TCP Traffic

poolsize 1
poolsize 3

Figure 6.17: Topology 4 with Extra T-interface: TCP Traffic

Topology 4 25 nodes are arranged in a 5 by 5 grid layout (the side of each grid square

is 600m). Thus, the logical network topology is also a 5 by 5 grid. Each node is equipped

with one pair of 802.11a interfaces (one R-interface and one T-interface). We pre-designate

8 (disjoint) one-hop SD pairs, as depicted in Fig. 6.12, in the two extreme columns of the

grid. All sources start transmitting at t = 40.0s and continue till the end of simulation at

t = 50.0s. Given the grid-size, it can be seen the all sources within the same grid column

are within each others’ carrier-sense range, but the sources in different columns are not.

This yields a spatial reuse factor of 2 for up to 4 channels. Thus, an ideal scheduler needs

just 4 channels to be able to concurrently schedule the flows. We evaluate the efficacy of

the protocol in handling this situation.

Fig. 6.15 depicts the aggregate throughput when all flows comprise CBR traffic at rate

approx 5.8 Mbps each. As can be seen, even with just 4 channels, the performance with

poolsize 3 is very close to what we would expect from an ideal scheduler. A poolsize of 1

with 4 channels yields a performance that is moderately but not drastically inferior to using

157

1

8

7

2

0 6

4

5

3

Figure 6.18: Topology 5

(a) (b)

0 1

2

0 1

2

Figure 6.19: Topology 6

a poolsize of 3. With 8 channels, the performance is almost the same for poolsize 3 (as

the performance of poolsize 3 with 4 channels is already close to the best possible, there is

little margin for improvement). However, with 8 channels, poolsize 1 also performs almost

as well, since the number of channels is sufficiently larger than the number of mutually

conflicting flows.

Fig. 6.16 depicts the aggregate throughput when all flows comprise FTP traffic. In this

case, we see that with 4 channels, the throughput is little better than twice the through-

put with 1 channel. Increasing the number of channels to 8 yields only marginal gain.

Once again, we remark that the LL is less effective in dynamically adapting the channel

assignment to TCP traffic, and this can explain the lower throughput with TCP to some

extent. However, the rather poor performance with TCP is also due to the fact that the

flow-endpoints are not disjoint. As can be seen, the destination of flow 1 is the source of

flow 2, and so on. Resultantly, these nodes have to share their T-interface between DATA

for one flow, and ACK for another. Thus, the phenomenon is similar to what we discussed

in the context of the chain topology. To verify this, we equipped each node with an extra

T-interface, and performed the simulation for FTP traffic. The aggregate throughput is

depicted in Fig. 6.17, and shows substantial improvement over the previous case.

Topology 5 This topology (Fig. 6.18) helps evaluate how the link layer schedules pack-

ets over different channels and interfaces, given multi-hop flows with routes specified as

sequences of nodes. 9 nodes are arranged in a 3 by 3 grid layout (the side of each grid

square is 500m). Thus, the 802.11a induced topology is a 3 by 3 grid, but the 802.11g links

span diagonals. Each node has one R-Interface and one T-interface of each type 802.11a

158

 0

 1

 2

 3

 4

 5

 6

 7

(1, 1, 1) (6, 3, 1) (6, 3, 3) (12, 3, 1) (12, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, poolsize)

Topology 5: CBR Traffic

dst 5
dst 7
dst 8
dst 5
dst 7
dst 8

Figure 6.20: Topology 5: CBR Traffic

and 802.11g.

There are 3 flows: 0 → 7 with manually specified route 0 → 3 → 6 → 7, 3 → 5 with

manually specified route 3→ 4→ 5, and 2→ 8 with manually specified route 2→ 5→ 8.

In the CBR traffic case, the traffic generation rates are : 0 → 7 at rate approx. 5.8

Mbps , 3→ 5 at rate approx. 2 Mbps, and 2→ 8 at rate approx. 5.8 Mbps. Note than an

ideal scheduler can meet almost all the traffic demand with just 5 802.11a channels, and 2

802.11g channels.

We evaluate performance with the following combinations of (number of 802.11a chan-

nels, number of 802.11g channels, poolsize): (1, 1, 1), (6, 3, 1), (6, 3, 3), (12, 3, 1), (12, 3, 3).

Fig. 6.20 depicts the per-flow throughput with CBR flows. It can be seen that (6, 3, 3)

and (12, 3, 3) perform very well, and yield throughput fairly close to what we would expect in

the best case. This indicates that the LL is able to adjust the channel assignment as per the

traffic, and is also able to distribute packets across the different types of interfaces/channels

in a reasonable manner. For the same number of channels, the performance with f = 1 is

inferior to that with f = 3, due to lack of dynamic R-channel adaptation.

Fig. 6.21 depicts the throughput when all the 3 flows comprise FTP traffic. It can

be seen that the throughput is lower than the CBR case, which is to be expected as we

have multi-hop TCP flows. All multi-channel combinations have similar performance, as

159

 0

 1

 2

 3

 4

 5

 6

 7

(1, 1, 1) (6, 3, 1) (6, 3, 3) (12, 3, 1) (12, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, poolsize)

Topology 5: TCP Traffic

dst 5
dst 7
dst 8
dst 5
dst 7
dst 8

Figure 6.21: Topology 5: TCP Traffic

any differences are likely masked by the degradation in TCP throughput due to traversing

multiple hops.

Topology 6 This simple topology (Fig. 6.19) illustrates in detail how the link layer

handles packet scheduling, when there are neighbors with different interface types, including

multimode T-interfaces. The topology comprises a single-hop network of 3 nodes 0, 1, 2.

We consider the following variant scenarios:

1. Topology 6.1: 0 and 1 have one R-interface and one T-interface each of type 802.11a

and 802.11g. 2 has one 802.11g R-interface and 1 802.11g T-interface. One flow:

0→ 1. Two traffic scenarios are considered: (i) approx. 7.73 Mbps CBR (ii) FTP

2. Topology 6.2: 0 and 1 have one R-interface and one T-interface each of type 802.11a

and 802.11g. 2 has one 802.11g R-interface and 1 802.11g T-interface. Two flows: (i)

0→ 1 at approx. 5.8 Mbps CBR , 0→ 2 at approx. 1.93 Mbps CBR (ii) 0→ 1 FTP

and 0→ 2 FTP

3. Topology 6.3: 0 and 1 have one 802.11a R-interface, one 802.11g R-interface, and 1

802.11ag T-interface. 2 has one 802.11g R-interface and 1 802.11g T-interface. One

flow: 0 → 1. Two traffic scenarios are considered: (i) approx. 7.73 Mbps CBR (ii)

FTP

160

 0

 1

 2

 3

 4

 5

 6

 7

 8

(1, 1, 1) (3, 3, 1) (3, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, Poolsize)

Topology 6.1: Throughput with CBR Traffic

poolsize 1
poolsize 3

Figure 6.22: Topology 6.1: CBR Traffic

 0

 1

 2

 3

 4

 5

 6

 7

 8

(1, 1, 1) (3, 3, 1) (3, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, Poolsize)

Topology 6.1: Throughput with TCP Traffic

poolsize 1
poolsize 3

Figure 6.23: Topology 6.1: TCP Traffic

4. Topology 6.4: 0 and 1 have one 802.11a R-interface, one 802.11g R-interface, and 1

802.11ag T-interface. 2 has one 802.11g R-interface and 1 802.11g T-interface. Two

flows: (i) 0 → 1 at approx. 5.8 Mbps CBR , 0 → 2 at approx. 1.93 Mbps CBR. (ii)

0→ 1 FTP and 0→ 2 FTP

In all the above scenarios, the 0 → 1 flow starts at t = 40.0s, the 0 → 2 flow starts at

t = 42.0s (whenever applicable), and continue(s) till the end of simulation at t = 50.0s.

We evaluate performance with the following combinations of (number of 802.11a channels,

number of 802.11g channels, poolsize): (1, 1, 1), (3, 3, 1), (3, 3, 3).

In all the above topologies, the performance with (1, 1, 1) is very good. When there is

only one channel of each type, the LL of each node deactivates the T-interfaces. Resultantly,

nodes 0 and 1 effectively have 1 802.11a interface on the single 802.11a channel and 1

802.11g interface on the single 802.11g channel, while node 2 has one 802.11g interface on

the one 802.11g channel. Thus, node 0 can simultaneously transmit on both channels to its

destination(s).

In Topologies 6.1 and 6.2, node 0 has one T-interface of each type, and thus both the

multi-channel combinations also have performance similar to (1, 1, 1).

When node 0 has a single multi-mode T-interface, and there is a single flow (Topology

6.3), (3, 3, 1) exhibits lower performance than the other two combinations. The difference

is more marked with CBR traffic (Fig. 6.26), as compared to TCP traffic (Fig. 6.27).

This is because with (3, 3, 1), the R-interfaces are more likely to be on different channels,

and thus node 0 can only use its multi-mode T-interface to send data. Note that the local

interface conflict score helps ensure that the data is primarily sent using the 802.11a channel

161

 0

 1

 2

 3

 4

 5

 6

(1, 1, 1) (3, 3, 1) (3, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, Poolsize)

Topology 6.2: Throughput with CBR Traffic

dst 1
dst 2
dst 1
dst 2

Figure 6.24: Topology 6.2: CBR Traffic

 0

 1

 2

 3

 4

 5

 6

(1, 1, 1) (3, 3, 1) (3, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, Poolsize)

Topology 6.2: Throughput with TCP Traffic

dst 1
dst 2
dst 1
dst 2

Figure 6.25: Topology 6.2: TCP Traffic

 0

 1

 2

 3

 4

 5

 6

 7

 8

(1, 1, 1) (3, 3, 1) (3, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, Poolsize)

Topology 6.3: Throughput with CBR Traffic

poolsize 1
poolsize 3

Figure 6.26: Topology 6.3: CBR Traffic

 0

 1

 2

 3

 4

 5

 6

 7

 8

(1, 1, 1) (3, 3, 1) (3, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, Poolsize)

Topology 6.3: Throughput with CBR Traffic

poolsize 1
poolsize 3

Figure 6.27: Topology 6.3: TCP Traffic

on the multi-mode interface. In case of (1, 1, 1), by default the R-interfaces get used, as

explained earlier, and we get the benefit of data-striping across 2 channels. With (3, 3, 3),

the network is likely to initially have the R-interfaces on different channels, but is able to

quickly adapt based on the interface conflict cost, and get the benefit of data-striping across

two interfaces/channels. TCP throughput is typically moderately lower than CBR traffic,

and the difference between (3, 3, 1) and (3, 3, 3) is not very marked. This can be explained

by the fact that TCP probably gets lesser benefit from data-striping due to out-of-order

delivery issues.

When node 0 has a single multi-mode T-interface, and there are two flows (Topology

6.4), (3, 3, 1) again exhibits much lower performance (this time for both CBR and TCP),

as there is a smaller chance of R-channel overlap, and thus, node 0 must typically time-

share its T-interface to send to node 1 and node 2. The other multi-channel combinations

benefit from the R-interfaces, as already explained above. Also note that despite having to

contend for the same interface, the two flows each get reasonable throughput. Of course, the

162

 0

 1

 2

 3

 4

 5

 6

(1, 1, 1) (3, 3, 1) (3, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, Poolsize)

Topology 6.4: Throughput with CBR Traffic

dst 1
dst 2
dst 1
dst 2

Figure 6.28: Topology 6.4: CBR Traffic

 0

 1

 2

 3

 4

 5

 6

(1, 1, 1) (3, 3, 1) (3, 3, 3)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of 802.11a channels, No. of 802.11b channels, Poolsize)

Topology 6.4: Throughput with CBR Traffic

dst 1
dst 2
dst 1
dst 2

Figure 6.29: Topology 6.4: TCP Traffic

throughput for destination 2 is lower, since the packet-scheduler tries to achieve a balance

between providing some fairness and getting the best rate (though the two flows do get

a reasonably fair share of interface time). If greater throughput fairness is needed, the

scheduling rules can be suitably modified to achieve that.

Topology 7 9 nodes are arranged in a 3 by 3 grid (the side of each grid square is 500m).

Node 4 has 4 R-interfaces of type 802.11a, and one T-interface of type 802.11a. All other

nodes have one R-interface and one T-interface of type 802.11a. There are 4 one-hop flows

1 → 4, 3 → 4, 5 → 4, 7 → 4 which start at times t = 40.0s, 40.5s, 41.0s, 41.5s respectively,

and continue till end of simulation at t = 50.0s. In the CBR traffic case, each flow has

traffic rate approx. 5.8 Mbps.

The following combinations of (number of channels, poolsize) were simulated: (1, 1),

(4, 1), (4, 3), (12, 1), (12, 3), (12, 12).

This topologies are of interest as it involves nodes with a different number of radio-

interfaces. Moreover, it is representative of scenarios where node 4 may be a gateway or

server node which is likely to be more capable than others, and to which much of the traffic

might be directed. It is also of interest as an illustration of how various LL mechanisms

complement and supplement each other.

The first observation we make is that an ideal scheduler needs just 4 channels to get

best-possible performance (as the receiver has 4 R-interfaces), and it can do so by simply

partitioning the 4 senders across channels. However, when each sender independently de-

cides which channel(s) to use, there is the possibility that two or more senders may try to

access the same channel at the same time. This would create contention on this channel,

163

0

1

3

5 8

7

6

2

4

Figure 6.30: Topology 7

while some other channel might be unutilized.

Fig. 6.31 shows the aggregate throughput when all the flows are CBR. Note that

all multi-channel combinations give throughput that is fairly close to the best-possible

throughput; (4, 1), (4, 3) and (12, 12) provide best performance, but even (12, 3) and (12, 1)

are only marginally inferior. However, each combination has some distinct characteristics,

as we now explain.

Suppose we did not have an interface conflict cost or an local interface conflict score.

Note that when we have just 4 channels, we would always get very good throughput (for

both (4, 1) and (4, 3)). The reason is as follows: each of the 4 R-interfaces at node 4 will

be on one each of these channels. The R-interfaces at the senders must also be on some of

these channels (as there are no other channels). Thus, there is bound to be overlap in the

R-channels of senders and receivers. This would allow some/all of the senders to use both

their interfaces for sending (since the LL performs data-striping). Moreover, there is likely

to be at least one active sending interface on each channel, and we can get good channel

utilization and throughput.

Suppose we have an interface conflict cost, but do not have a local interface conflict

score.

With (12, 12), all the R-interfaces are initially likely to be on different channels, but after

the data sessions start, if the senders are not able to send data fast enough, the queues will

build up, and the interface-conflict cost will tend to lead the R-interfaces of node 4 to switch

to the R-channels of each of the senders. With (12, 3) such an adaptation is less likely to

happen (due to the channel restriction), and throughput would be lower.

164

 0

 5

 10

 15

 20

(1, 1) (4, 1) (4, 3) (12, 1) (12, 3) (12, 12)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of Channels, Poolsize)

Topology 7: Aggregate Throughput with CBR Traffic

poolsize 1
poolsize 3

poolsize 12

Figure 6.31: Topology 7: CBR Traffic

With (12, 1), there is a very small chance of substantial R-channel overlap a priori, and

there is no traffic-dependent R-channel re-assignment to aid this. Moreover, in the absence

of a local interface conflict score, the channel-binding algorithm at each sender will tend

to bind packets to many different channels (from amongst the 4 choices), if the neighbor-

queue is sufficiently large when the CH-scheduler is invoked. This would lead to reduced

throughput.

The use of the local interface conflict score helps address this.

Note that each sender has 4 channel choices for sending data, but only one T-interface

(assuming there is no overlap in R-channels). Thus, all these 4 channels have a local interface

conflict with each other. When the channel binding procedure is executed, packets will be

preferentially bound to the channel with highest net datarate, and hence lowest recent

contention. Once some packets have been bound to this channel, the local interface conflict

would make the other channels ineligible. Therefore, if each sender were to have a different

best channel, this would lead to a near-partition of senders across channels. Note that by the

very nature of the net datarate statistic, a node that recently won quick access to a channel

will consider it a good channel, while other senders are likely to find it less attractive. This

is likely to lead to the desired scenario. This explains the good performance even with

(12, 1) and (12, 3).

Fig. 6.32 shows the aggregate throughput with TCP flows. The trends are similar to

the CBR case, although the achieved throughput is generally lower.

165

 0

 5

 10

 15

 20

(1, 1) (4, 1) (4, 3) (12, 1) (12, 3) (12, 12)

T
hr

ou
gh

pu
t (

M
bp

s)

(No. of Channels, Poolsize)

Topology 7: Aggregate Throughput with TCP Traffic

poolsize 1
poolsize 3

poolsize 12

Figure 6.32: Topology 7: TCP Traffic

6.6.2 Random Topologies

To get some insight into performance in a lossy environment, we have performed some

simulations on random topologies with the shadowing model.

We considered 10 static random topologies of 30 nodes over a 600mx600m area. The

shadowing model in the ns-2 simulator was used with a path-loss exponent of 2.5 and a

shadowing deviation of 2dB.

Each node is equipped with an 802.11a R-interface, an 802.11a T-interface, an 802.11g

R-interface and an 802.11g T-interface. We pre-designate 12 nodes as potential sources:

s1 = 0, s2 = 2,, s12 = 22. We consider 2 channel/traffic configurations:

• 1 802.11a channel, 1 802.11g channel, poolsize 1, referred to as (1, 1, 1). At t =

40.0s, s1 chooses a random next-hop node as destination and starts transmitting. It

continues to do so till the simulation ends at t = 50.0s.

• 12 802.11a channels, 3 802.11a channels, poolsizes 1 and 3, referred to as (12, 3, 1)

and (12, 3, 3) respectively. At t = 40.0s, all 12 sources s1, ..., s12 choose a random

next-hop node as destination and start transmitting. They continue to do so till the

simulation ends at t = 50.0s.

Thus, in each configuration, the number of flows is the same as the number of 802.11a

channels in use.

166

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Topology No.

Random Topologies: CBR Traffic

(12, 3, 3)
(12, 3, 1)
(1, 1, 1)

Figure 6.33: Random Topologies: CBR
Traffic

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Topology No.

Random Topologies: TCP Traffic

(12, 3, 3)
(12, 3, 1)
(1, 1, 1)

Figure 6.34: Random Topologies: TCP
Traffic

To get a random sampling of links from the designated source(s), the random choice

of neighboring destination is made at runtime for each run, by inspecting the link layer

neighbor-list of the source node, and making a random selection from amongst all symmetric

neighbors (without regard to 802.11a reachability). Thus, the link may only be operational

on 802.11g. Also, the destinations are likely to be different for each of the 30 runs for

each plotted point. Furthermore, as the choice is made dynamically at runtime, there

is a small possibility that it may not always be the same for the same run number of

different configurations, even though the seed is the same (this can happen if the neighbor-

list membership is different at the time of selection, which is not very likely except in very

lossy scenarios, i.e., very large shadowing deviation values).

Multiple independent runs for each data point were obtained as follows: for independent

run i, the defaultRNG object in ns2 was seeded with a single selected seed (the same for

all runs), and then the next-substream command was invoked i times. Each channel has

a separate associated Shadowing propagation object in our simulation code; each of these

objects also has an associated RNG. These are not explicitly seeded (we have changed the

default ns2 behavior), as the ns2 random number generator automatically assigns a seed

to each new RNG coresponding to an independent stream, once the defaultRNG has been

seeded. However, the next-substream command is invoked i times on each Shadowing RNG

for run i. In addition, each node’s LL has an RNG which is used for the random destination

choice. These are also assigned automatic independent seeds by ns2. The next-substream

command is invoked i times on each of these RNGs for run i.

Fig. 6.33 shows the aggregate throughput when all flows are CBR with rate approx. 5.8

167

Mbps. The throughput for (1, 1, 1) is much lower than what we would ideally expect, due

to the losses induced by the shadowing model. Similarly, the throughput for (12, 3, 1) and

(12, 3, 3) is also much lower than the ideal. However, we do consistently get approximately a

6-7 times improvement over the single-channel case by using multiple channels. While this is

certainly far from ideal, given that there are 12 802.11a and 3 802.11g channels, it is actually

quite satisfactory, given the nature of the topology and the traffic pattern. Recall that we

choose a random neighbor from the neighbor-list of the designated source(s). Thus, often

the neighbor may be reachable only using 802.11g (which has higher range). Since, there

are only 3 802.11g channels, this can limit the possible improvement. Another observation

is that the average aggregate throughput with (12, 3, 1) is marginally but fairly consistently

higher than (12, 3, 3), but in most cases, the confidence-intervals overlap substantially, and

so the difference is not very relevent statistically. The slightly better performance of (12, 3, 1)

can be explained by the fact that (12, 3, 3) does not get much opportunity to gain from

dynamic adaptation (if many active links are 802.11g only, then there is not much scope

for adaptation; moreover the channel estimation procedure is not very sophisticated, and

may thus occasionally initiate unwarranted R-channel changes on perceiving a low effective

rate on the current channel), but it does incur some additional overhead since more control

data is sent when the poolsize is greater than 1.

Fig. 6.34 shows the aggregate throughput when all flows are FTP, i.e., TCP traffic. The

relative trends are similar, though the throughput is lower, and the comparative improve-

ment on using multiple channels is also smaller. This is due to the greater impact of losses

on TCP, even leading to flow-starvation sometimes. The difference between (12, 3, 1) and

(12, 3, 3) is much more marked, though the confidence intervals still exhibit overlap.

6.7 Discussion

The proposed HMCLL protocol is able to address a wide range of scenarios in a satisfactory

manner. It is to be noted that much of the benefit of using dynamic channel adaptation

seems to arise in scenarios where there are interface conflicts, or in scenarios with inter-

ference conflicts with the number of active links comparable to the number of channels.

When there are only interference conflicts and the number of flows is much smaller than

the number of channels, even having poolsize 1 (which corresponds to a quasi-static combi-

168

natorially load-balanced assignment) usually works fairly well. However, having a poolsize

greater than 1 does generally help improve consistency even in such situations, and helps

avoid the occasional worst-case scenarios that can arise with poolsize 1. The two-level

scheduling component provides fairly satisfactory performance. In particular, the coupling

introduced by the local interface conflict score helps the LL effectively address scenarios

with multi-mode T-interfaces and scenarios where the receiver has many R-interfaces, but

the sender may have only one or few T-interfaces.

The LL is able to adapt the channel assignment to CBR traffic much more easily than to

TCP traffic. The primary reason for this is that if the network is crrently in a sub-optimal

channel assignment configuration, the queues will build up in the CBR case, and when

the information propagates within 2 hops, it will likely trigger a R-channel switch at some

interface(s) to a less loaded channel. However, with TCP traffic (especially flows that just

traverse one-hop), the queues may never become very large, as the source may adjust its

rate quickly to the available bandwidth. Thus, the queue may not always build up to the

extent needed to trigger a switch (recall that we have an element of hysteresis). To alleviate

this, we have included an excess utilisation component in the interface conflict cost. We also

have an implicit interference-cost element which is based on experienced contention-time,

which helps address both the issue of load due to TCP flows, and also load due to any type

of traffic which lies byond two hops (as the interface will not have explicit information of

this). However, there is still potential for further improvement.

The results for the random topologies with the shadowing model indicate that poolsize

1 is actually marginally better. As mentioned earlier, this can be explained by the fact

that there is limited potential for improvement through dynamic adaptation, and having a

poolsize greater than 1 implies slightly more overhead, and can also cause some unwarranted

channel switches (since the channel estimation procedure is quite rudimentary, and involves

little active probing). Thus, there is much potential for improvement along these lines.

6.8 Future Directions

In the course of our work on the described protocol, we have identified certain interesting

directions for future work, involving both theoretical and protocol design aspects.

169

Neighborhood Management Currently, our protocol makes the implicit assumption

that reachability characteristics are the same for all channels in the same band. Thus, if

a neighbor is deemed reachable using an 802.11a channel, then the effective-rate for all

802.11a channels on that link is set to be the raw datarate, till some rate-history has been

accumulated (as a result of packet transmissions). However, reachability characteristics can

be different even for channels in the same band. One reason for this is the possibility of

varying levels of external noise. Another reason is that the difference in frequency can lead

to different propagation characteristics. While one would expect that within a single band,

this difference would not have a significant effect, however, if two nodes are at the fringes of

each others’ transmission range, a change of R-channel by one neighbor can potentially even

make them unreachable. Thus, more sophisticated neighborhood management is desirable,

especially since this can have important implications for the topology visible to a routing

protocol, and can substantially affect performance.

Channel Quality Estimation Design of efficient probing strategies for channel estima-

tion is an important direction for future work, with need for theoretical solutions, as well as

practical strategies based on theoretical insight. Some results on optimal probing strategies

for single user/link case are available in the literature, e.g., [17]. But there is dearth of

approaches that take the multi-link, multi-hop setting into account. A related issue is that

of reacting to a jammed or highly noisy channel.

Suitable Decision Policies The LL maintains a wide range of statistics pertaining to

traffic and channels. There is typically a different degree of confidence for different statistics

(depending on the frequency of observation or reports). Thus, it would be desirable to

adopt an approach in which the response to an observation is dependent on the degree of

confidence, i.e., one could vary the degree of hysteresis based on degree of confidence (if

more confident, the protocol can react more promptly; if less confident, the response can

have more damping). Formulating such policies is an interesting direction for future work.

Implementing a Link Layer Reordering Buffer Since the LL performs data-striping,

there is a likelihood of out-of-order packet delivery, when nodes have multiple R-interfaces.

This could be rectified by having a reordering buffer at the receiving transport endpoint.

170

However, it may be desirable to keep the LL’s functions completely transparent to the higher

layers, so that no changes to the higher layers are required for using the link layer protocol.

Thus, it may be useful to implement a reordering buffer at the link-layer. Since the data-

striping would performed by each local link-layer over each link, this can be done by using

link layer sequence numbers for all transmitted packets over a link, and holding received

out-of-order packets in a buffer till prior sequence numbers have been received. This can

also enable TCP traffic to derive benefit from LL data-striping (our current simulations

indicate that TCP does not benefit much).

Routing In this chapter, we described a link layer protocol that performs dynamic adap-

tation. Given that this protocol address issues arising from heterogeneity of interfaces and

channels at the link layer, it is of interest to devise a routing protocol that does not have

any knowledge of specific low-level details of channels/radios, etc. This protocol would take

an abstracted link/node cost metric from the LL, and use it for route-selection (with the

route being a sequence of nodes). With such an approach, the same routing protocol can

work in a diverse set of scenarios with different hardware specifications, since the knowledge

of low-level details is encapulated by the LL.

Distance-vector routing is typically not very suitable for the envisioned scenarios, as it

does not provide enough flexibility in quantifying the cost of a route. If proactive rout-

ing is desired, link-state routing appears to be the best fit. If reactive routing is desired,

source-routing seems to be most appropriate. The key challenge lies in designing a suitable

metric that is capable of capturing traffic-levels (which lead to interface bottlenecks), avail-

able channel/interface diversity along path, and long-term link conditions along the path.

However, any traffic-based cost exposed to the routing layer should typically be computed

over a longer timescale than costs used by the LL decisions, else instability may result [54].

Moreover, since the LL may locally adapt and cause channel-switching anytime during the

lifetime of a route, the metric should typically not be based on current channel of operation

of interfaces; rather it should take into account the channel-diversity available in the form

of the channel-pool.

Extension to wider range of heterogeneous hardware capabilities Another di-

rection involves extending the envisioned stack architecture to address a wider range of

171

heterogeneous hardware capabilities, e.g., consider a scenario involving multiple hetero-

geneous radios/channels, as well as heterogeneous antennas. Such an effort can be quite

useful, and can provide a generic design template for a wide range of scenarios.

Similarly, one could try to extend the scope to include making decisions about rate/power

at the link layer, as well as address scenarios where two interfaces of the same type may have

different number/type of antennas, yielding different reachability characteristics (whether

and at what rate one can directly communicate with a nearby node). To an extent, the cur-

rent design is capable of serving as a template for this wider range of scenarios. The current

design assumes that reachability characteristics are solely a function of the channels that a

node can be reached on; thus we have a set of channel queues. One could extend this to a

set of queues for various combinations of choices (instead of a separate level of interfaces

queues with a separate IF-scheduling, it would be reasonable to include the interface-choice

as part of the combination); the CH-scheduler can still be used by defining appropriate

conflict relations between these queues.

However, a major issue in addressing such multi-parameter adaptation is the resultant

increase in unpredictability. In the currently addressed scenario, the reachability character-

istics are a function of the channel, and of the availability of interfaces capable of switching

on the particular channel at each node under consideration; they are largely, though not ex-

clusively, determined by the R-channel selection which operates over much longer timescales

than packet scheduling; furthermore packet scheduling decisions are done over a quantum

of packets, while the net datarate estimate (used in the channel-selection decision) is up-

dated after every packet). The greater the number of adaptable parameters, the greater is

the dependence of the achievable rates on the decisions being made by other nearby nodes

per packet, which increases complexity. To handle this, it may be beneficial in incorporate

more structure in terms of potential multi-timescale parameter tuning (akin to the current

channel restriction), as well as possibly increasing the scheduling quantum size (the goal

being not amortization of overhead, but achieving predictability in what will happen over

the timescale of next few packets).

Thus, there are many interesting directions worthy of exploration.

172

Chapter 7

Reliable Broadcast in
Failure-prone Wireless Networks

The increasing use of wireless networks in critical application scenarios provides motivation

for designing reliable communication algorithms that can leverage the distinct characteris-

tics of the wireless channel. In this chapter, we introduce the reliable broadcast problem in

the wireless context, and describe the underlying model and assumptions for the results in

subsequent chapters. We also discuss related work.

7.1 Assumptions

We consider an idealized wireless network. There is a single common channel of operation,

and all nodes are equipped with a single half-duplex transceiver. The wireless channel is

assumed to be perfectly reliable, i.e., if a node transmits a message, and no other node in

the vicinity is transmitting simultaneously (i.e., if no collisions occur), then the message is

guaranteed to be received by all nodes within its range (termed its neighbors). Note that

this idealized shared wireless channel intrinsically preserves ordering of messages sent by

a node, i.e., if a node transmits messages m1 and m2 respectively in order, they will be

received in that same order by all neighbors. We call this idealized behavior the reliable

local broadcast assumption. While this assumption does not hold per se in real wireless

networks, it may be possible to implement a local broadcast primitive that can provide

probabilistic guarantees (given the probabilistic nature of wireless channel losses, a fully

deterministic approach is not feasible in reality). Such a primitive could then be used as a

subroutine by a global broadcast algorithm.

We assume synchronous communication. More specifically, for the results in Chapter 8

and Chapter 9, we assume that there is an underlying collision-free TDMA schedule, where

time is divided into rounds, and each node has a designated transmission slot, which it can

use to transmit without interfering or being interfered with, if it needs to. If a message is

173

transmitted by a node, then it is received by all its neighbors within a bounded amount of

time (i.e., by the end of the slot).

Another assumption is that all nodes adhere to the collision-free schedule; even the

faulty nodes do not deliberately cause collisions by transmitting out-of-turn. Similarly,

they do not spoof the MAC addresses of other nodes. One way to view this situation is

that the physical (PHY) and medium access control (MAC) layers of all nodes are fault-free,

and the MAC layer does not allow higher layers to cause a change of MAC addresses. Thus,

if all nodes have a priori unique MAC addresses, then each transmitted message (packet)

will carry the true and unique identity of the node that transmitted the packet in its MAC

header. Note that this means that each node knows the correct identity of the previous hop

node from which it received the packet.1 However, if the packet traversed multiple hops,

the identity of the original sender or the previous hop relays (if included in the message

contents), may be subject to tampering by a faulty relay.

For our results in subsequent chapters, we consider two distance metrics: L∞ and L2.

The L∞ metric is the metric induced by the L∞ norm, such that the distance between

points (x1, y1) and (x2, y2) is given by max{|x1 − x2|, |y1 − y2|} in the this metric.

The L2 metric is induced by the L2 norm, and is the Euclidean distance metric. The

L2 distance between points (x1, y1) and (x2, y2) is given by
√

(x1 − x2)2 + (y1 − y2)2.

7.2 Problem Definition

The reliable broadcast problem for a designated source is defined as follows:

There is a designated source node in the network, which can originate a message for

broadcast to the rest of the nodes in the network. The goal is to ensure that if the source is

non-faulty, every non-faulty node in the network should correctly receive and determine the

value originated by the source; if the source is faulty, all non-faulty node should agree on

some common value. When a node decides upon some value as being the broadcast value,

we say that it commits to it.

1The assumption that MAC addresses cannot be spoofed is also relevant to scenarios where link-layer
authentication mechanisms are available, but end-to-end authentication is not. This is quite pertinent to
sensor network deployments, where end-to-end authentication may involve too much overhead to be justifi-
able, but link-layer authentication may be feasible as it is much more lightweight. Link-layer authentication
would assure that a node receiving a message is certain of the identity of the neighbor that transmitted that
message.

174

7.2.1 Implications of Reliable Local Broadcast Assumption

As per the reliable local broadcast assumption, if a node transmits a message, all its neigh-

bors are able to receive it, and are able to do so within a bounded amount of time. This

greatly simplifies the task of achieving reliable broadcast in the presence of a faulty source

node. Suppose the source is faulty. There are two ways in which it could manifest faulty

behavior: (1) not send a message when other nodes expect it to do so, or (2) send two

conflicting versions of the same message containing different values. If case (1) occurs, then

neighbors of the source can use a simple timeout mechanism, whereby, if no message is

received from the source within a certain interval of the expected time, they commit to a

default value, and take the appropriate steps stipulated by the algorithm being followed to

propagate it further. If case (2) occurs, all neighbors receive both values, and the duplicity

of the source is detected. Thus the non-faulty neighbors of the source can again follow some

default procedure (either commit to a default value, or to the first value received from the

source), and take appropriate subsequent steps. Therefore, the source has no incentive to

be duplicitous.

7.3 Related Work

We now review some existing work on reliable communication in the presence of faults.

Reliable communication under Byzantine failures has been studied for point-to-point

communication networks under various assumptions [2]. The seminal result of Pease,

Shostak and Lamport [89], [70] states that in case of full connectivity, Byzantine agreement

with f faulty nodes is possible if and only if n ≥ 3f+1. Under more general communication

graphs, the requirements for Byzantine agreement are that n ≥ 3f + 1, and the network

be at least (2f + 1)-connected [26]. Byzantine agreement in k-cast channels has been con-

sidered in [21]. However this does not capture the spatially dependent connectivity that

characterizes radio networks. Reliable broadcast in radio networks has also been studied

in [60] and [57]. In [57], an infinite grid network was considered. A locally-bounded fault

model was proposed, wherein an adversary was allowed to place faults subject to the con-

straint that no neighborhood have more than t faults. It was shown that under a Byzantine

failure model, reliable broadcast is not achievable for t ≥ ⌈12r(2r + 1)⌉ (in both L∞ and

L2 metrics). Besides a protocol was described that was able to achieve reliable broadcast

175

under the following conditions:

• If t < 1
2(r(r +

√
r
2 + 1)), then reliable broadcast is achievable in the L∞ metric.

• If t < 1
4(r(r +

√
r
2 + 1))− 2, then reliable broadcast is achievable in the L2 metric.

This protocol stipulates that nodes wait till they hear the same value from t+ 1 neighbors

before they commit to it, and re-broadcast it exactly once for the benefit of other neighbors.

Under this protocol, no non-faulty node will ever accept the wrong value. However, there

is a possibility of some nodes never being able to decide, and the achievability bounds do

not match the impossibility bound, leaving a region of uncertainty.In [112], a tight bound

for tolerable t using the simple broadcast protocol of [57] was established.

Further study of the locally bounded fault model is undertaken in [90], where arbitrary

graphs are considered instead of a specific network model. While the discussion mentions

both radio and message-passing networks, there is an assumption that duplicity by the

source (sending different messages to different neighbors) is impossible. Upper and lower

bounds for achievability of reliable broadcast are presented, based on graph-theoretic param-

eters, for arbitrary graphs. However, no exact thresholds are established. Two broadcast

algorithms are considered. One is the simple algorithm of [57] that is referred to as the

Certified Propagation Algorithm (CPA). Another algorithm, termed as the Relaxed Prop-

agation Algorithm (RPA), is described, which is t-locally safe (i.e., no non-faulty node will

commit to an incorrect value by following it). It is shown that RPA is a more powerful

algorithm, as there exist graphs for which RPA succeeds but CPA does not. It is also shown

that there exist certain graphs in which algorithms that work with knowledge of topology

succeed in achieving reliable broadcast, while those that lack this knowledge fail to do so.

The RPA algorithm and our algorithms for reliable broadcast described in Chapter 8 are

quite similar, as there is a reliance on receiving indirect reports about values committed to

by nodes through a sufficient number of node-disjoint paths.

Scenarios involving a collision-causing adversary are addressed in [58, 38, 27]. The

issue of achieving broadcast when a (locally bounded) adversary can cause bounded a

bounded number of collisions or address spoofing is handled in [58]. It presents protocol

transformations that can lead to resilience to a bounded number of collisions or address

spoofing attempts. It uses the protocol described in Section 8.4 of Chapter 8 as a building

block. However the result is based on the assumption that non-faulty nodes are not hindered

176

by energy-limitations, and can retransmit messages as many times as needed. The impact

of an energy-budget on consensus has been studied for a single-hop setting in [38], and it

has been proved that non-faulty nodes would require at least incrementally larger budget

than faulty nodes to arrive at a consensus. In [91], conditions for broadcast have been

established under a probabilistic transient failure model, where faulty behavior also includes

the possibility of nodes causing collision.

Probabilistic failure are considered in [91] which examines the case of message-passing

and radio networks with random transient failures. The transient failure behavior includes

the possibility of causing collision.

Communication of information in a single-hop multi-channel wireless network with a

malicious adversary that can cause collisions concurrently in a limited number of channels

has been considered in [27].

Also related is work in [109] on unknown fixed identity networks; this work assumes

that nodes cannot fake their identity to their neighbors. Our model also has a similar

assumption.

7.3.1 Crash-stop Failures

For crash-stop faults, the reliable broadcast problem reduces to the connectivity problem.

Crash-stop failures are considered in [60] for finite networks comprising nodes located

in a regular grid pattern. The focus is on obtaining algorithms for efficient broadcast to the

part of the network that is reachable from the source, and not on quantifying the number

of faults that render some nodes unreachable.

A grid network model was considered in [100] where nodes are located at integer lattice

sites on a square grid, and fail independently. Nodes have a common transmission range r.

The probability of not failing is specified as p, and it is shown that a sufficient condition

for connectivity and coverage is that transmission range r must be set to ensure that node

degree is c1(log n
p) (for some constant c1). It is also shown that a necessary condition

for coverage (and hence for joint coverage and connectivity) is that node degree be at

least c2(log n
p) (for another constant c2. A fallacy in the above necessary condition was

pointed out by [62], and a subsequent correction [102] by the authors of [100] presents

examples illustrating that the necessary condition may fail to hold for certain sub-ranges of

177

p. The issue of coverage has been examined in detail in [62] for random, grid, and Poisson

deployments. However, the necessary and sufficient conditions formulated by them take a

more complex form, and do not point to a single f(n, p) such that a degree of Θ(f(n, p)) is

both necessary and sufficient for asymptotic coverage. Besides, the necessary condition is

formulated for the specific case when lim
n→∞

p→ 0.

We have also derived results for crash-stop failures in a grid network that yield a different

expression than [100], and while our results are within a constant factor of their results for

most values of p, our results are more accurate when p→ 0.

In [42], it was proved that in a unit area network with uniformly distributed node place-

ment, where nodes have a common transmission radius r, such that πr2 = (log n+c(n))
n , the

network is asymptotically connected with probability one iff c(n)→∞. This constitutes the

case p = 0 for random networks. Recently, necessary and sufficient conditions for asymp-

totic connectivity in a random network with low duty cycle sensors have been formulated

in [55]. This is equivalent to the problem of crash-stop failures in a random network.

On a related note, fault-tolerant consensus (in the presence of channel unreliability and

crash-stop failures) has been studied in [20]. The focus is primarily on a single-hop network,

though some simulation results for a multi-hop setting are also reported.

7.3.2 Reliable Local Broadcast

Much of the theoretical work mentioned earlier assumes that the wireless channel itself is

perfectly reliable. The lossy nature of the channel is not accounted for, and thus many of

these results are not directly applicable to a real-world scenario. A proposal to reconcile

the theory and practice of wireless broadcast has been made in [19]. They identify certain

properties that a reliable local broadcast should have. They introduce some models to

capture the nature of losses and collisions, viz., the No-Collisions(NC) model, the Eventual

No-Collisions (ENC) model, the Total Collision (TC) model, and the Partial Collision (PC)

Model. In a single-hop network conforming to the TC-model, it is shown that consensus is

achievable with any number of Byzantine/crash-stop failures. However, practical realization

of the TC model is not delved into in detail (though some possibilities are hinted at).

Another relevant body of work pertains to reliable multicast with probabilistic guaran-

tees [13], [78] which seeks to achieve a scalable solution with probabilistic guarantees.

178

7.3.3 Fault Detection

A related area pertains to failure detection. Algorithms that detect failure can be very

useful, as messages received from nodes detected as faulty can then be excluded from

future communication. This can help improve efficiency. A seminal work in the area of

failure detection is the PMC Model [94] proposed by Preparata, Metze and Chien. [16]

also pertains to this theme. Results for failure-detection in a scenario with locally bounded

faults are described in [68]. This work is quite relevant as the locally bounded model is also

addressed by us in Chapter 8, in the context of reliable broadcast. Self-adjusting Byzantine

Agreement is considered in [129]. This work describes how the Byzantine nodes can be

progressively detected in a network; at most a certain number of broadcast instances can

fail before all faults get detected.

179

Chapter 8

Reliable Broadcast with Locally
Bounded Failures

In this chapter, we study the reliable broadcast problem with a locally bounded fault oc-

curence model, which was briefly introduced in Chapter 7. We begin by describing the

model and notation in Section 8.1, and then summarize the chapter results in Section 8.2.

We formulate a sufficient condition for achieving reliable broadcast in a general graph with

such a fault model in Section 8.3. In Section 8.4, we establish a bound for achievability of

reliable broadcast in a grid network model for the L∞ metric. This bound matches an im-

possibility bound proved in [57], and thus establishes the exact threshold for this model. In

Section 8.6, we describe an approximate result for the L2 (Euclidean) metric. We describe

an alternative broadcast algorithm in Section 8.7 which is also optimal in the grid network

for the L∞ metric, in the sense that it can tolerate the maximum number of tolerable faults.

We discuss interesting issues and future directions in Sections 8.8 and 8.9 respectively.

8.1 Preliminaries

We consider an infinite wireless network, with nodes situated on a grid (where each grid

square has side 1), under Byzantine and crash-stop failures. Note that the grid defines the

spatial layout of nodes, and not the network topology. All nodes use a common transmission

range r, which is assumed to be an integer. As described in Chapter 7, two distance metrics,

L∞ and L2, are considered. In the L∞ metric, each node has exactly 4r2 + 4r neighbors.

The results also hold for a finite toroidal network in which r is smaller than the network

radius. In scenarios where the entire network region is within distance r of the designated

source, reliable broadcast is trivially always achievable due to the reliable local broadcast

assumption.

In the grid network, nodes are identified by their grid location i.e. (x, y) denotes the

node at (x, y). The neighborhood of (x, y) comprises all nodes within distance r of (x, y)

180

(according to the distance metric in consideration) and is denoted as nbd(x, y). For succint

description, we define a term pnbd(x, y) where pnbd(x, y) = nbd(x− 1, y) ∪ nbd(x+ 1, y) ∪
nbd(x, y − 1) ∪ nbd(x, y + 1). Intuitively pnbd(x, y) denotes the perturbed neighborhood of

(x, y), obtained by perturbing the center of the neighborhood to one of the nodes at unit

distance from (x, y) on the grid.

A non-faulty node shall be variously alluded to as an non-faulty or correct node, while

a node exhibiting Byzantine failure shall occasionally be referred to as a malicious node.

We shall occasionally refer to nbd(S) where S is a set. In such cases, nbd(S) =
⋃

x∈S

nbd(x).

The locally-bounded fault occurrence model is considered, wherein an adversary is al-

lowed to place faults as it chooses, so long as no single neighborhood contains more than t

faults. When we refer to the neighborhood of a node v, it includes v itself. Thus a correct

node may have up to t faulty neighbors, while a faulty node may have up to (t−1) neighbors

that are also faulty.

As was discussed in Chapter 7, we assume that the a node may not spoof another

node’s MAC address, and resultantly, any node knows the correct identity of the previous

hop node from which it received a message. No collisions are possible, i.e., there exists a

pre-determined collision-free TDMA schedule that all nodes follow.

A designated source (that is assumed to be located at the origin of the grid coordinate

system, w.l.o.g.) broadcasts a message with a binary value. The objective is to ensure

reliable broadcast of this value (see the definition of the reliable broadcast problem in

Section 7.2).

8.2 Summary of Results

We prove the following results:

1. We describe a general sufficient condition for reliable broadcast in a general network

graph under the reliable local broadcast assumption, which provides intuition for the

subsequent grid network results.

2. We present a lower bound in L∞ metric on the maximum number of Byzantine failures

t that may occur in any given neighborhood without rendering reliable broadcast

impossible in the grid network model. We provide a constructive proof by describing

181

two algorithms that both achieve reliable broadcast in the L∞ metric whenever t <

1
2r(2r + 1). This exactly matches an impossibility bound proved in [57], and thus

establishes an exact threshold for Byzantine agreement under this network model.

For completeness, we also study crash-stop failures, and prove that reliable broadcast

is achievable with locally bounded crash-stop failures iff the number of faulty nodes

in any neighborhood is t < r(2r + 1) (in the L∞ metric).

3. We present approximate bounds for L2, i.e., Euclidean metric, and show that when r

is sufficiently large, the thresholds must lie in a similar range as L∞. In particular, we

argue that for sufficiently large r, Byzantine agreement is indeed possible in Euclidean

metric if slightly less than one-fourth of the nodes in any given neighborhood may be

faulty, while it is possible to tolerate crash-stop failures if they are slightly less than

half the neighborhood population.

A preliminary version of some of the chapter results was reported in [5].

8.3 A General Sufficient Condition

Consider a general undirected graph G = (V,E), whose topology is known to all network

nodes. Designate a source s ∈ V as the source of the broadcast. A s-cut is a partition

C = (S, V \ S) such that s ∈ S. In the course of a broadcast operation, S can potentially

denote the set of nodes that have already had the opportunity to correctly determine the

broadcast value, and commit to it (note that all non-faulty nodes in S will thus indeed have

committed to the correct value, while the behavior of faulty nodes is indeterminate). V \S
can potentially denote the set of nodes that are yet to do so.

Let us consider the case where G is a finite graph. In this case, any cut C may be

considered as an envelope for the advancing frontier of the broadcast at some instant, with

further expansion of the frontier depending on the existence of sufficient connectivity across

the cut. If the cut C were indeed encountered during algorithm operation, this is evidently

true. However, even if the cut C = (S, V \S) were not actually encountered during algorithm

operation, the following argument can be made:

At any point of time t during algorithm execution, let the actual frontier be denoted by

the cut Cactual(t) = (Sactual(t), V \ Sactual(t)). Consider an algorithm step at time t′ such

182

u

V \ S

S

C

Cactual(t
′)

Cactual(t)(t < t′)

Figure 8.1: Equivalence of Cut Conditions

that for all t < t′, Sactual(t) ⊆ S, but Sactual(t
′) 6⊆ S. Thus, at time t′, at least one node

u ∈ V \ S crossed over from V \ S to S (i.e., received sufficient information to be able to

commit to the correct value, and, if it is non-faulty, indeed committed to it) from V \Sactual

to Sactual. At time t < t′, the frontier of the broadcast (i.e., Cactual) lay strictly behind

the frontier defined by C = (S, V \ S). Thus, if a node has access to sufficient information

flowing to it from Sactual to be able to cross-over, then it must necessarily have access to at

least as much information flowing to it from S (since the network topology, and hence paths

in the network, are the same in both cases, and the set of nodes that already definitively

know the correct value in the latter case is a superset of that in the former case), and be

able to cross the cut C = (S, V \ S), if it had been encountered. This is depicted in Fig.

8.1. Hence, the following two statements are equivalent:

• Statement 1: For every s-cut (S, V \ S) of the graph that is actually encountered

during algorithm execution, some node u ∈ V \ S possesses sufficient connectivity to

be able to cross over to S from V \ S.

• Statement 2: For every possible s-cut (S, V \ S) of the graph, assuming all nodes in

S have had the opportunity to make a correct determination (and non-faulty nodes

have actually made it), some node u ∈ V \ S possesses sufficient connectivity to be

able to cross-over to S.

Hence, for a finite graph, Statement 2 does not impose a more stringent requirement

183

than Statement 1. We remark that the use of the notation t for time in the prior discussion

should not be confused with the subsequent use of t to denote the maximum number of

faults in any single neighborhood.

Lemma 43. Given a finite undirected graph G = (V,E), Statement 1 is a sufficient condi-

tion for feasibility of broadcast, and Statement 2 is an equivalent sufficient condition.

Proof. This may be seen as follows: since Statement 1 holds for every encountered cut,

the set V \ S will continue to decrease, and being finite will eventually become empty. At

that stage S = V , and the broadcast will have successfully reached every node (and all

the non-faulty nodes will have made a determination of the correct value). Statement 2 is

equivalent to Statement 1, and is hence also a sufficient condition.

It now remains to characterize what constitutes sufficient connectivity to be able to

cross over to the source side of the cut. The goal of any reliable broadcast algorithm is

that each non-faulty node should be able to eventually decide on the correct broadcast

value. If at any instant, the frontier is represented by cut C = (S, V \ S), then by the

assumption of Statement 2, all nodes in S have correctly determined the broadcast value.

Any communication of information across the cut must happen through the nodes in CS =

{v ∈ S|∃ (v, u) ∈ E such that u ∈ V \ S}. Therefore, for the purpose of analysis, it suffices

to transform the source side of the cut S to S′ = ssup ∪CS ∪ (nbd(CS)∩S), with ssup being

a new super-source node that acts as an abstract sender of the correct broadcast value, and

is connected directly to each node in CS (via pseudo-edges).1 Other edges between included

vertices are preserved. The neighbors of vertices in CS on the source side are included to

enforce the per-neighborhood fault constraint amongst the vertices in CS . We refer to the

corresponding graph induced by V ′ = S′ ∪ (V \ S), with the pseudo-edges added, as the

reduced graph G′ = (V ′, E′).

We state and prove the following sufficient condition:

Theorem 14. Given a finite undirected graph G = (V,E) and designated source s, with

upto t byzantine faults in any neighborhood, reliable broadcast is achievable in G if every

s-cut C = (S, V \S) (with CS denoting the set of vertices that have at least one incident edge

1This captures the fact that all non-faulty nodes in CS have determined the correct value.

184

u

Some single neighborhood

Ssup

Figure 8.2: Connectivity to super-source

crossing the cut) satisfies the following: ∃ u ∈ V \S such that either (s, u) ∈ E or there exist

(2t+1) node-disjoint ssup u paths in the transformed graph G′, such that all intermediate

nodes on these paths lie within the neighborhood of some single node v 6= ssup ∈ V ′.

Proof. Since all nodes in S, and hence CS ⊆ S, have had the opportunity to correctly

determine the broadcast value (by assumption), the addition of pseudo-edges with ssup

ensures this same property (since neighbors of the source can trivially determine the value

correctly due to the reliable local broadcast assumption), while removing from consideration

nodes that are no longer relevant to the result we seek to prove. If a node is connected

to ssup via at least 2t+ 1 node-disjoint paths that all lie within some single neighborhood,

then at most t of these paths may have a faulty node (as no more than t faults may exist in

any single neighborhood).2 Thus, the node u will eventually receive the correct value over

at least t+ 1 node-disjoint paths, and will be in a position to commit to it. The situation

is illustrated in Fig. 8.2.

By Lemma 43, this is a sufficient condition for finite graphs.

Corollary 5. Given a finite undirected graph G = (V,E) and designated source s, with

upto t crash-stop faults in any neighborhood, reliable broadcast is achievable in G if every

2Also note that each node is aware of the correct identity of the previous hop node from which it received
a message, and thus the identity of the last faulty node on a path is always revealed; hence u will not
consider any other path through this faulty node when counting the number of disjoint paths through which
a value was received. This ensures that u will count at most t faulty paths for a value, and prevents faulty
nodes from confusing u even if they tamper with previous hop path information.

185

s-cut C = (S, V \ S) (with CS denoting the vertices for which at least one incident edge

crosses the cut) satisfies the following: ∃u ∈ V \S such that either (s, u) ∈ E or there exist

(t+1) node-disjoint (ssup, u) paths in the reduced graph G′, such that all intermediate nodes

on these paths lie within the neighborhood of some node v 6= ssup.

Proof. When crash-stop failures are considered, reachability is synonymous with achiev-

ability of reliable broadcast. If a non-faulty node is a neighbor of s, it will trivially receive

the broadcast. If a node is connected to t + 1 nodes in S via one path each such that all

t+ 1 paths are node-disjoint, and lie in a single neighborhood, then at most t of these can

be faulty. Thus, there will be at least one fault-free path through which the node may be

reached, and the broadcast can propagate further.

Infinite Graphs For any finite fault-threshold t, one can argue that Theorem 14 also

holds for infinite graphs as follows: Suppose the condition stated in Theorem 14 holds, but

it is impossible for some nodes to determine the correct broadcast value. Consider the set

D comprising all such nodes that are not able to eventually determine the correct value.

Evidently, none of the nodes in D can be a neighbor of the source s, else such a node

would trivially have the opportunity to determine the correct value. Therefore, they are

all non-neighbors of s. By assumption, all nodes in V \D eventually have the opportunity

to determine the correct value. Consider the corresponding cut (V \ D,D). Then, using

the proof argument of Theorem 14, there exists some node u ∈ D such that there are at

least 2t + 1 node-disjoint ssup u paths in the transformed graph G′ for cut (V \D,D).

Consider exactly 2t+1 of these paths. Note that the nodes neighboring ssup on these paths

are 2t + 1 in number and belong to V \ D. By assumption, in the actual network, these

2t + 1 nodes will eventually have the opportunity to determine the correct value. Once

these 2t + 1 nodes have had the opportunity to determine the correct value, u would also

eventually receive information from enough node-disjoint paths, and have the opportunity

to determine the correct value. This yields a contradiction.

The same argument can be used for Corollary 5.

8.4 Byzantine Failures in a Grid Network

We prove the following result for locally bounded Byzantine failures in the grid network:

186

Theorem 15. If t < 1
2r(2r+ 1), reliable broadcast is achievable in the grid network for the

L∞ metric.

We present an algorithm to achieve reliable broadcast, based on the same intuition as

the general sufficient condition of Theorem 14. Without loss of generality, we assume that

the message comprises a binary value (say 0 or 1). A non-faulty node that is not the source

is said to commit to a value when it decides that it is indeed the value originated by the

source. The algorithm requires maintenance of state by each node pertaining to messages

received from nodes within its two-hop neighborhood. The algorithm operates as follows:

• Initially, the source does a local broadcast of the message.

• Each neighbor i of the source commits to the first value v it heard from the source

and does a one-time local broadcast of a COMMITTED(i, v) message.

• Hereafter, the following algorithm is followed by each node j (including those involved

in the previous two steps):

On receipt of a COMMITTED(i, v) message from neighbor i, record the message,

and broadcast a HEARD(j, i, v) message.

On receipt of a HEARD(k, i, v) message from neighbor k, record the message, but do

not re-propagate.

On committing to a value v, do a one-time local broadcast of a COMMITTED(j, v)

message.

A node j commits to a value v, if it has not already committed to a value, and

it becomes certain about value v. A node is said to be certain about a value v if it

receives v through COMMITTED or HEARD messages over at least t+1 node-disjoint

paths that lie within a single neighborhood. More precisely, a node j is certain of a

value v if there is a node Q such that j received some t+ 1 messages m1,m2, ...,mt+1

where mi = COMMITTED(Ai, v) or mi = HEARD(Ai, Ai′ , v), and all the Ai, A
′
i are

distinct nodes lying in the neighborhood of Q.3

3A faulty intermediate node can alter the affixed identity of the previous node listed in the HEARD

message (this is part of the message content, which can be altered). This does not cause a problem as the
identity of such a faulty intermediate node (let us call it x) on the forwarding path will always be revealed

187

Theorem 16. No non-faulty node shall commit to a wrong value by following the previously

described algorithm.

Proof. The proof is by contradiction. Consider the first non-faulty node, say j, that makes a

wrong decision to commit to value v. Evidently, j cannot be a neighbor of the source. This

implies it received the value v from at least t+1 nodes through a single path (direct or two-

hop) each, such that all t+ 1 paths are node-disjoint, and lie in some single neighborhood.

Since the number of faults in any single neighborhood may be at most t, it implies that at

most t of these paths could have a faulty source (of a COMMITTED message) or a faulty

intermediate node (that sends a HEARD message). Thus, all paths cannot have relayed

the wrong value, and so v must indeed be the correct value.

Theorem 17. Each non-faulty node is eventually able to commit to the correct value.

Proof. We prove that each non-faulty node will be able to meet the conditions stipulated

by the algorithm for committing to the correct value. The proof also clarifies the operation

of the algorithm. Intuitively, the essence of the proof lies in showing that each node P

(other than the direct neighbors of (0, 0) which can trivially determine the correct value)

can receive information from a part of the network that has already committed to the

correct value, along (2t+ 1) node-disjoint paths lying in some single neighborhood. This is

akin to the general sufficient condition of Section 8.3.

The proof is by induction.

Base Case: All non-faulty nodes in nbd(0, 0) are able to commit to the correct value.

This follows trivially from our assumed model since they all hear the source directly.

Inductive Hypothesis: If all non-faulty neighbors of a node located at (a, b) i.e. all

non-faulty nodes in nbd(a, b) are able to commit to the correct value, then all non-faulty

nodes in pnbd(a, b) are able to commit to the correct value.

to j (x must j’s neighbor, as the forwarding paths involve only two hops, and hence j knows its identity as
MAC addresses cannot be spoofed). Resultantly, even if x has altered the identity of the node before it on
a forwarding path, this is acceptable, as j will not include any other message with a path through x in the
set of t + 1 messages, and resultantly given only t faulty nodes in the neighborhood, at most t out of the
t + 1 paths can involve faulty information.

188

Proof of Inductive Hypothesis: We show that for each node P in pnbd(a, b)\nbd(a, b)

there exists a set of 2t+1 paths {π1, π2, ..., π2t+1} of the form πi = (Ai, P) or πi = (Ai, A
′
i, P),

such that all Ai, A
′
i are distinct, lie in some single neighborhood, and all Ai ∈ nbd(a, b).

Since no more than t of the Ai, A
′
i can be faulty, this guarantees that the node will receive

the correct value through at least (t+ 1) paths, and will also commit to it.

Consider a node P belonging to nbd(a, b + 1). The argument for nodes in nbd(a, b −
1), nbd(a− 1, b) and nbd(a+ 1, b) is similar.

Node P in nbd(a, b+1)\nbd(a, b) may be considered to be located at (a−r+p, b+r+1)

where {0 ≤ p ≤ 2r} (Fig. 8.3). We present an explicit argument for locations of P

corresponding to {0 ≤ p ≤ r}. A similar argument holds for the remaining locations, by

virtue of symmetry.

We show the existence of r(2r + 1) node-disjoint paths π1, π2, ..., πr(2r+1), that all lie

within the same single neighborhood (centered at (a, b + r + 1), and indicated by the

dark-edged square in Fig. 8.3). The region marked A comprises {(x, y)|(a − r) ≤ x ≤
(a + p); (b + 1) ≤ y ≤ (b + r)}, and nodes in this region lie in nbd(a, b), and are also

neighbors of P . Thus, there are r(r + p + 1) paths of the form A → P . The region B

comprises {(x, y)|(a+p+1) ≤ x ≤ (a+ r); (b+1) ≤ y ≤ (b+ r)}, and falls in nbd(a, b). The

region B′ is obtained by a translation of B to the left by r units, and then up by r units.

Thus, region B′ comprises {(x, y)|(a+ p+ 1− r) ≤ x ≤ a; (b+ r + 1) ≤ y ≤ (b+ 2r)}, and

falls in nbd(P). Consequently, there is a one-to-one correpondence between a point (x, y)

in B and a point (x− r, y + r) in B′, such that the points in each pair are neighbors. This

yields r(r − p) paths of the form B → B′ → P .

Thus, r(2r + 1) node-disjoint paths are obtained.

Observe that the inductive hypothesis along with the base case suffice to show that

every non-faulty node will eventually commit to the correct value, since starting at (0, 0),

one can cover the entire infinite grid by moving up, down, left and right. Therefore, non-

faulty nodes in the neighborhood of every grid point can be shown to be eventually able to

determine the broadcast value.

189

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

(a, b)

P

y = b

y = b + r + 1

y = b− r − 1

y = b + 2r

BA

B′

(a− r + p,b + r + 1)

x
=

a
+

p
+

1

x
=

a
−

r
−

1

x
=

a
+

r
+

1

x
=

a

x
=

a
−

r
+

p
+

1

Figure 8.3: Existence of Sufficient Connectivity

8.5 Crash-Stop Failures in a Grid Network

When only crash-stop failures occur, the sole criterion for achievability is reachability, and

no special algorithm is required. Each node that receives a value commits to it, re-broadcasts

it once for the benefit of others, and then may terminate local execution of the algorithm.

In this failure mode, we establish an exact threshold for tolerable faults in L∞ metric.

The impossibility bound is trivial to derive but we state and prove it here for the sake of

completeness.

Theorem 18. Under a crash-stop failure model, if t ≥ r(2r+1) , it is impossible to achieve

reliable broadcast in the grid network, with the L∞ metric.

Proof. We present a construction with t = r(2r+ 1) that renders reliable broadcast impos-

sible. Consider the network in Fig. 8.4. The nodes in the designated region {(x, y)|a ≤

190

(0, 0)

x = a x = a + r − 1

Figure 8.4: Network Partition due to Crash Stop Failures

x < a+ r} (for some a ≥ 1) are all faulty while all other nodes are non-faulty. As may be

seen, the maximum number of faulty nodes in any given neighborhood is at most r(2r+ 1).

However this configuration partitions all nodes in the half-plane x ≥ a+ r from the source

and they are unable to receive the broadcast.

The achievability bound can be obtained from the result for the Byzantine model.

Theorem 19. Under a crash-stop failure model, if t < r(2r + 1), it is possible to achieve

reliable broadcast in the grid network, with the L∞ metric.

Proof. Consider the proof for the byzantine fault-tolerant algorithm in Section 8.4. Given

that nbd(a, b) has decided, there exist r(2r+1) node-disjoint paths of the form described in

Theorem 17 that lie in one single neighborhood. Since t < r(2r + 1), at least one path will

be fault-free, thereby enabling the broadcast to propagate to pnbd(a, b). Thus, by inductive

reasoning, all fault-free nodes on the grid will receive the broadcast.

8.6 Euclidean Metric

In this section, we consider the issue of reliable broadcast in the L2, i.e., Euclidean metric.

We refrain from establishing exact thresholds as it is difficult to precisely determine lattice

points falling in areas bounded by circular arcs. We present an approximate argument

showing that reliable broadcast in L2 is achievable if slightly less that one-fourth fraction of

nodes in any neighborhood exhibit Byzantine faults. We work with the value t < 0.24πr2.

191

Q

d

N

(a, b)

Figure 8.5: Illustrating an Approximate Argument for Euclidean Metric

The basis for the approximate argument is that, given a closed simple region of area

A, and perimeter p, bounded by upto k straight line segments and circular arcs of radius

r, where k is a small constant, the number of lattice point lying within it, Nl, is given by

Nl = A ± O(p), and the constant hidden in the O(p) term is small. The justification for

this claim is based on Pick’s Theorem [113], and is presented in Appendix D.

Therefore, for sufficiently large r, the number of nodes that lie in various considered

subregions of a circle of radius r (elaborated later) are approximately A±O(r) each (where

A is the area of that subregion). Thus, we expect the argument to hold well for large values

of r.

The argument uses induction, as in the previous section.

Base Case: All non-faulty nodes in nbd(0, 0) are able to commit to the correct value.

This follows trivially since they hear the origin directly.

Inductive Hypothesis: If all non-faulty neighbors of a node located at (a, b) are able to

commit to the correct value, then all non-faulty nodes in pnbd(a, b) are able to commit to

the correct value.

192

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

C

1

2

2

2

A

1
2(r + 1)

QMN

B1 B2

O′R′

r + 1

R O

r

Figure 8.6: Approximate Construction depicting Node-Disjoint Paths (NQ from Fig. 8.5
rotated to x-axis)

Justification of Inductive Hypothesis: We show that each node in pnbd(a, b)\nbd(a, b)

is connected to 2t+1 nodes in nbd(a, b) via one path each, such that all these 2t+1 paths are

node-disjoint and they all (the endpoints, as well as any intermediate nodes) lie entirely in

one single neighborhood. Since no more than t of these can be faulty, this would guarantee

that the node will receive the correct value through at least t+ 1 such paths, and commit

to it.

Consider the node at (a, b), as in Fig. 8.5. Let d be the distance between the node at

(a, b) (we call it node N) and any node in (pnbd(a, b) \nbd(a, b)) (we call it node Q). Then

d ≤ r + 1 (from the triangle inequality). It suffices to consider the possibility d = r + 1, as

that yields the least overlap between the neighborhoods of N and Q.

We consider the situation in Fig. 8.6 with NQ from Fig. 8.5 rotated to the horizontal

axis for clarity of presentation. We attempt to construct node-disjoint paths that all lie

within the neighborhood centred at M (the midpoint of NQ) or the grid location nearest

to it. If M is itself not a grid point, the resultant perturbation of the neighborhood centre

to the nearest grid location can only affect the presented calculations by O(r). The set of

193

nodes marked A are common neighbors of P and Q and constitute one-hop paths (A→ Q).

A set of two-hop paths B1 → B2 → Q is also formed where each point (x, y) in region

B1 has a corresponding point in B2 (its image under reflection by axis OO′). Thus, in an

approximate sense, for almost each grid-points in B1, we can find a unique grid-point in B2

with which it can be paired (with upto O(r) unpaired grid points remaining).

The number of paths is thus approximately equal to the sum of the areas A and B1,

which turns out to be approximately 1.538r2 = 0.49πr2 ≥ (2(0.24πr2) + 1) for sufficiently

large r. The details of the calculation are presented in Appendix D. Thus approximately

0.24πr2 Byzantine faults may be tolerated.

We also argue that reliable broadcast is not possible if t ≥ 0.3πr2 (approximately). The

argument is based on a construction identical to that presented in [57] for L∞, which is

depicted in Fig. 8.7. As proved in [57], this arrangement of faults renders reliable broadcast

impossible (see [57] for details). Note that the maximum number of faults lying in any single

neighborhood is given by the number of faulty nodes in the circled region (Fig. 8.7). The

relevant area is approximately 0.6πr2, and we expect approximately 0.6πr2±O(r) nodes to

lie in it. Half of these, i.e., around 0.3πr2±O(r) are to be faulty. This yields the argument

that if t ≥ 0.3πr2 (approximately), reliable broadcast would be unachievable. Thus the

critical threshold for L2 metric would lie between a 0.24 and a 0.3 fraction, i.e., in the

vicinity of a one-fourth fraction of faults.

Observe that the above argument also implies that around 2t = 0.48πr2 crash-stop

failures may be tolerated, while around 0.6πr2 failures per neighborhood would render

reliable broadcast impossible.

8.7 An Alternative Broadcast Algorithm

In this section, we describe an alternative algorithm. Though this algorithm requires greater

message overhead than the algorithm described in Section 8.4, it is of some interest, as it

demonstrates the existence of a stronger localized connectivity property in the grid, which

may possibly have relevance in contexts other than reliable broadcast.

As in Section 8.4, we assume w.l.o.g. that the message to comprise a binary value (say

0 or 1). A node that is not the source is said to commit to a value when it decides that it

is indeed the value originated by the source.

194

X X

x = a x = a + r − 1

(0, 0) (0, 0)

x = a x = a + r − 1

r evenr odd

Figure 8.7: Impossibility Construction for Byzantine Failures in Euclidean metric

The algorithm requires maintenance of state by each node pertaining to direct/indirect

report messages for nodes within its four-hop neighborhood.

The algorithm operates as follows:

• Initially, the source does a local broadcast of the message.

• Each neighbor i of the source immediately commits to the the first value v it heard

from the source, and then locally broadcasts it once in a COMMITTED(i, v) message.

• Hereafter, the following algorithm is followed by each node j (including those involved

in the previous two steps):

On receipt of a COMMITTED(i, v) message from neighbor i, record the message, and

locally broadcast a HEARD(j, i, v) message.

On receipt of a HEARD(k, i, v) message from a neighbor k, record the message, and

locally broadcast a HEARD(j, k, i, v) message.

On receipt of a HEARD(l, k, i, v) message, record the message, and locally broadcast

a HEARD(j, l, k, i, v) message.

On receipt of a HEARD(g, l, k, i, v) message, record the message, but do not re-

propagate.

On committing to a value v, do a one-time local broadcast of COMMITTED(j, v).

195

A node j commits to a value v if it has not already comitted to a value, and it reliably

determines that at least t+1 nodes lying in some single neighborhood have committed

to v. j is said to have reliably determined the value committed to by node i if one of

the following conditions holds:

– i is its neighbor, and j heard COMMITTED(i, v) directly. In this case, there is

no cause for doubt as to the value announced by node i, since no other node is

capable of spoofing i’s address, and collisions are ruled out.

– j heard indirect reports of i having committed to a particular value v through

t + 1 node-disjoint paths that all lie within some single neighborhood. The in-

direct reports are obtained through the HEARD messages that propagate via

upto three intermediate nodes (i.e., upto four hops from the node that sent the

COMMITTED message), and the path information is obtained from these mes-

sages (as each forwarding node affixes its identifier to the message).4

Theorem 20. No non-faulty node shall commit to a wrong value by following the above

algorithm.

Proof. The proof is by contradiction. Consider the first non-faulty node, say j, that makes

a wrong decision to commit to a value v. Evidently, j cannot be a neighbor of the source.

This implies it reliably determined that t+ 1 already committed nodes lying in some single

neighborhood N1 had committed to v. Since reliable determination of a node i having com-

mitted to a value v involves hearing i directly or hearing indirect reports (that i committed

to v) via at least t+ 1 node-disjoint paths lying in some single neighborhood N2, and since

the number of faults in N2 may be at most t, all these paths cannot have relayed the wrong

value, and v must indeed be the committed-to value announced by i. Thus, no non-faulty

4Note that a faulty intermediate node can affix a false identity for itself, or alter the affixed identities
of previous nodes listed in the message it is forwarding (these are part of the message content, which can
be altered). This does not cause a problem as the identity of the last faulty node (let us call it x) on the
forwarding path will always be revealed to j (either x is j’s neighbor, in which case j knows its identity as
MAC addresses cannot be spoofed, or there is some other non-faulty node on the forwarding path after x

which knows the message was relayed through x since it knows the correct MAC adddress of the previous
hop node). Thus, even if x has affixed a wrong identity for itself in the message path information, the next
non-faulty node can detect this and rectify the situation, and subsequent relays are all non-faulty. Therefore,
j will know that x lies on the path. Hence, even if x has altered the identities of nodes before it on the
forwarding path, this is acceptable, as j will not consider any other message with a path through x, and
resultantly given only t faulty nodes in the neighborhood, at most t out of the t+1 paths can involve faulty
information.

196

node can make a wrong determination of what value each of the t+1 nodes in N1 committed

to (or claimed to commit to). Since j is the first non-faulty node to make a wrong decision,

the non-faulty nodes amongst the t + 1 nodes could not have made a wrong decision, and

a value committed to and announced by such nodes must be correct. Also, all of the t+ 1

nodes cannot be faulty, as no more than t nodes in any neighborhood may exhibit Byzantine

failure. Therefore, at least one other non-faulty node previously committed to v. So, it

must indeed be the correct value, else we would obtain a contradiction.

Theorem 21. Each non-faulty node is eventually able to commit to the correct value.

Proof. We prove that each non-faulty node will be able to meet the conditions stipulated by

the algorithm for committing to the correct value. The essence of the proof lies in showing

that each node j other than the direct neighbors of (0, 0) is connected to at least 2t + 1

nodes that lie in some single neighborhood N1, such that the connectivity to each such node

is through 2t + 1 node-disjoint paths that all lie in some neighborhood N2, and the nodes

in N1 are able to commit to the correct value before node j has done so.

The proof is by induction.

Base Case: All non-faulty nodes in nbd(0, 0) are able to commit to the correct value.

This follows trivially from the assumed model, since they hear the origin directly.

Inductive Hypothesis: If all non-faulty neighbors of a node located at (a, b) i.e. all

non-faulty nodes in nbd(a, b) are able to commit to the correct value, then all non-faulty

nodes in pnbd(a, b) are able to commit to the correct value.

Proof of Inductive Hypothesis: We show that each node in pnbd(a, b) \ nbd(a, b) is

able to reliably determine the value committed to by 2t + 1 nodes in nbd(a, b). Since no

more than t of these can be faulty, this guarantees that the node will become aware of t+ 1

nodes in nbd(a, b) having committed to a (the correct) value, and will also commit to it. In

order to show this, we prove that each node is connected to at least 2t+1 nodes in nbd(a, b)

either directly, or through 2t+ 1 node disjoint paths that all lie entirely within some single

neighborhood. Thus at least t + 1 of these paths are guaranteed to be fault-free and shall

allow communication of the correct value.

197

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

y = b + r + 1

y = b− r + 1

x = a + r + 1

(a, b)

x = a + r − 1

M

P

y = b

y = b− r − 1

x = a− r − 1 x = a

x = a− r + 1

Figure 8.8: Nodes in nbd(a, b) whose commit-
ted values P can reliably determine

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

y = b + r + 1

y = b

y = b− r − 1

x = a− r − 1 x = a x = a + r + 1

(a, b)

y = b + 1

P

R

Figure 8.9: Nodes in nbd(a, b) that are im-
mediate neighbors of P

We show this for a corner node in pnbd(a, b) \ nbd(a, b), i.e., the node marked P (which

is located at (a−r, b+r+1)) in Fig. 8.8. This represents the worst case. For all other nodes

in pnbd(a, b) \ nbd(a, b), the condition can be seen to be achieved via a similar argument.

We briefly discuss this later.

We show that node P is able to reliably determine the values committed to by the nodes

in the shaded region M in Fig. 8.8. Region M comprises {(a−r+p, b−r+q)|2r ≥ q > p ≥ 0}
and hence has r(2r + 1) nodes.

The first observation is that P can directly hear the nodes in the shaded sub-region R in

Fig. 8.9, comprising {(x, y)|(a− r) ≤ x ≤ a; (b+ 1) ≤ y ≤ (b+ r)} (this constitutes r(r+ 1)

nodes), and so can trivially reliably determine the value they committed to. The remaining

sub-regions are depicted in Fig. 8.10 as U (comprising 1
2r(r − 1) nodes), S1 (comprising r

nodes), and S2 (comprising 1
2r(r − 1) nodes).

We now explicitly prove existence of suitable node-disjoint paths for nodes that lie in

the upper triangular region U in Fig. 8.10. Any node N in this region may be considered

located at (a + p, b + q) (Fig. 8.11), such that r ≥ q > p ≥ 1 in this region. We show the

existence of r(2r + 1) node-disjoint paths between N and P , that all lie within the same

single neighborhood (centered at (a, b+r+1), and indicated by the square with dark outline

in Fig. 8.12). For greater clarity, the spatial extents of various demarcated regions used in

the following argument are tabulated in Table 8.1.

Consider Fig. 8.12. The region marked A comprises {(x, y)|(a+p−r) ≤ x ≤ a; (b+1) ≤

198

����
����
����
����

����
����
����
����

����
����
����

����
����
����

�
�
�
�
�

�
�
�
�
�

(a, b)

G

U

S1
2S

O

O’

y = b + r + 1

y = b

y = b− r + 1

y = b− r − 1

x = a− r − 1
x = a

x = a− 1

x = a + r + 1

x = a + 1

x = a + r − 1x = a− r + 1

P

y = b + 2

y = b− r + 2

Figure 8.10: Nodes in nbd(a, b) to which P
has sufficient connectivity

G

N

x = a x = a + r + 1
x = a− r − 1

(a, b)

(a + p, b + q)

P

y = b− r − 1

y = b + r + 1

y = b

Figure 8.11: A node N in Region U

Region x-extent y-extent

A (a+ p− r) ≤ x ≤ a (b+ 1) ≤ y ≤ (b+ q + r)

B1 (a+ 1) ≤ x ≤ (a+ p− 1) (b+ 1) ≤ y ≤ (b+ q + r)

B2 (a+ 1− r) ≤ x ≤ (a+ p− 1− r) (b+ 1) ≤ y ≤ (b+ q + r)

C1 (a+ p+ 1) ≤ x ≤ (a+ r) (b+ q + 1) ≤ y ≤ (b+ r + 1)

C2 (a+ p+ 1− r) ≤ x ≤ a (b+ q + 1 + r) ≤ y ≤ (b+ 1 + 2r)

D1 (a+ p) ≤ x ≤ (a+ p+ r − q) (b+ r + q − p+ 1) ≤ y ≤ (b+ r + q)

D2 (a+ 1) ≤ x ≤ (a+ p) (b+ 1 + r + q) ≤ y ≤ (b+ 1 + 2r)

D3 (a+ 1− r) ≤ x ≤ (a+ p− r) (b+ 1 + r + q) ≤ y ≤ (b+ 1 + 2r)

J (a− 2r) ≤ x ≤ a (b+ 1) ≤ y ≤ (b− p+ r)

K1 (a− 2r) ≤ x ≤ a (b− p+ 1) ≤ y ≤ b
K2 (a− 2r) ≤ x ≤ a (b− p+ r + 1) ≤ y ≤ (b+ r)

Table 8.1: Spatial Extents of Various Regions

199

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
�

����
����
����
����
����
����
����

����
����
����
����
����
����
����

(a, b)

G

(a+p, b+q)

1

1

2

23

1

2

P

A B C

C

D

DD

N

B

y = b

q

r − q

r − pp

x
=

a
−

r
+

p

x
=

a
+

r
+

p
−

q

y = b + r + 1

y = b + q + 1
x

=
a
−

r
−

1

x
=

a
+

p
+

1

x
=

a
+

r
+

1

x
=

a

y = b− r − 1

Figure 8.12: Construction depicting node-disjoint paths between N and P

y ≤ (b + q + r)}, and nodes in this region are neighbors of both N and P. Thus, there are

(r−p+ 1)(r+ q) paths of the form N → A→ P that comprise one intermediate node each.

The region B1 comprises {(x, y)|(a + 1) ≤ x ≤ (a + p − 1); (b + 1) ≤ y ≤ (b + q + r)},
and falls in nbd(N) (recall that N is located at (a + p, b + q)). The region B2 comprises

{(x, y)|(a + 1 − r) ≤ x ≤ (a + p − 1 − r); (b + 1) ≤ y ≤ (b + q + r)}, and falls in nbd(P).

As may be seen, B2 is obtained by a translation of B1 to the left by r units. Thus, there is

a one-to-one correpondence between a node at (x, y) in B1 and a node at (x− r, y) in B2,

such that the nodes in each pair are neighbors. This yields (p− 1)(r+ q) paths of the form

200

���������
���������
���������

���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

(a, b)

(a−r, b−p)
N

J

P

K1

K2

y = b + r + 1

y = b + 1
y = b

y = b− p + 1

y = b− r − 1

y = b− p + r

x
=

a
−

2r

x
=

a
−

r

x
=

a
Figure 8.13: Connectivity between P and nodes in S1

N → B1 → B2 → P .

Region C1 comprises {(x, y)|(a+p+1) ≤ x ≤ (a+r); (b+q+1) ≤ y ≤ (b+r+1)} and thus

falls within nbd(N). Region C2 comprises {(x, y)|(a+ p+ 1− r) ≤ x ≤ a; (b+ q + 1 + r) ≤
y ≤ (b + 1 + 2r)} and falls within nbd(P). It may be seen that there is a one-to-one

correspondence between any node at (x, y) in C1 and the node at (x− r, y+ r) in C2, with

the paired nodes being neighbors. Hence there exist (r − p)(r − q + 1) paths of the form

N → C1 → C2 → P that comprise two intermediate nodes each.

RegionD1 comprises {(x, y)|(a+p) ≤ x ≤ (a+p+r−q), (b+r+q−p+1) ≤ y ≤ (b+r+q)},
and falls in nbd(N). Region D2 comprises {(x, y)|(a+1) ≤ x ≤ (a+p); (b+1+r+q) ≤ y ≤
(b+ 1 + 2r)} . Region D3 comprises {(x, y)|(a+ 1− r) ≤ x ≤ (a+ p− r); (b+ 1 + r + q) ≤
y ≤ (b + 1 + 2r)}, and falls in nbd(P). We note that regions D1, D2 and D3 have exactly

the same number of nodes each. Besides, the regions D1 and D2 are mutually located in a

manner that each node in D2 is a neighbor of each node in D1 (maximum distance between

any two nodes ≤ r). Hence, any one-to-one pairing of nodes in D1 with nodes in D2 is

valid. Further, a node located at (x, y) in D2 has a one-to-one correpondence with a node

(x− r, y) in D3. Hence, there are p(r− q+ 1) paths of the form N → D1 → D2 → D3 → P

that comprise three intermediate nodes each (Fig. 8.12). Thus the r(2r + 1) node-disjoint

201

paths are obtained.

We now consider nodes in regions S1 and S2 depicted in Fig. 8.10.

S1 = {(a − r, b − p)|0 ≤ p ≤ (r − 1)}. It can be shown that P has r(2r + 1) disjoint

paths to each node in S1, as depicted in Fig. 8.13. Any node N in S1 is located at

(a − r, b − p) where 0 ≤ p ≤ (r − 1). Consider region J comprising {(x, y)|(a − 2r) ≤
x ≤ a; (b + 1) ≤ y ≤ (b − p + r)}. All nodes in J are common neighbors of N and

P , and provide (r − p)(2r + 1) paths of the form N → J → P . Region K1 comprises

{(x, y)|(a− 2r) ≤ x ≤ a; (b− p+ 1) ≤ y ≤ b}, and falls enirely within nbd(N). Region K2

is {(x, y)|(a − 2r) ≤ x ≤ a; (b − p + r + 1) ≤ y ≤ (b + r)}, and falls in nbd(P). For each

node (x, y) falling in K1, there is a one-to-one correspondence with a node (x, y+ r) in K2,

and thus we obtain p(2r+ 1) paths of the form N → K1 → K2 → P . This yields a total of

r(2r + 1) paths (all lying entirely within nbd(a− r, b+ 1)), as depicted in Fig. 8.13.

Region S2 comprises {(a− q, b− p)|(r − 1) ≥ q > p ≥ 0}. For the nodes in S2, observe

that each node (a−q+1, b−p+1) in S2 possesses the same relative position w.r.t. P as the

node (a+ p, b+ q) in region U of Fig. 8.10 (note the axial symmetry about axis OO′), and

due to the symmetric structure of the network, shall enjoy exactly the same connectivity

properties to P as the node (a+p, b+q) in region U . Since we have already shown existence

of sufficient connectivity for those nodes, the same holds for nodes in S2.

The inductive hypothesis, along with the base case, suffices to show that every non-

faulty node will eventually commit to the correct message value, since starting at (0, 0), one

can cover the entire infinite grid by moving up, down, left and right. Thus, non-faulty nodes

in the neighborhood of every grid point can be shown to be able to eventually determine

the broadcast value.

Non-worst Case Location of P We briefly discuss how the connectivity argument

holds for all P ∈ pnbd(a, b) \ nbd(a, b). We consider non-worst case locations of P ∈
{(a− r+ l, b+ r+ 1)|1 ≤ l ≤ r}. For all other locations, the argument holds by symmetry.

The situation is depicted in Fig. 8.14. One may consider P to be translated to the right by

l units from its worst case location at (a− r, b+ r + 1). Then, region R that lies in direct

range of P (recall from Fig. 8.9) now comprises r(r + l + 1) nodes. If we also translate

regions U , S1, and S2 by l units each to the right, they preserve their relative positions and

202

�
�
�
�

�
�
�
�

����
����
����

����
����
����

���
���
���
���

���
���
���
���

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

(a, b)

1S

P

S2

R
U

O

O’

x = a− r − 1
x = a

y = b− r − 1

y = b− r + 1

y = b

y = b + r + 1

x = a + r + 1

y = b + 2

y = b− r + 2

x = a + l
x = a− r + l

(a− r + l, b + r + 1)

Figure 8.14: Non-worst Case Location of P

hence connectivity to P . However, now 1
2 l(l − 1) nodes from U fall out of nbd(a, b), but

this is more than compensated by the increase of rl nodes in region R. Thus, if we count

the number of nodes in nbd(a, b) ∩ U , nbd(a, b) ∩ S1, and nbd(a, b) ∩ S2, it can be shown

that they are at least r(r− l) in number. Together with the r(r+ l+ 1) nodes in region R,

they provide at least r(2r + 1) nodes to which P is connected either directly or via 2t + 1

node-disjoint paths all lying within some single neighborhood.

8.7.1 Comparison of the Two Algorithms

The algorithm described in this section is based on the stronger condition that every node in

pnd(a, b)\nbd(a, b) has 2t+1 node-disjoint paths, all lying within some single neighborhood,

to each of 2t+1 nodes in nbd(a, b). The algorithm described in Section 8.4 relies on a simpler

condition, and yet suffices to ensure reliable broadcast. It is also more efficient in terms of

greater localization of propagated messages. The alternative algorithm is still of interest, as

the particular localized connectivity property may possibly find use in distributed operations

other than reliable broadcast.

203

8.8 Discussion

In this chapter, we stated and proved results regarding the number of Byzantine and crash-

stop failures that may be tolerated in an idealized wireless network without rendering

reliable broadcast impossible. We considered a locally-bounded adversarial model where

the adversary is free to choose faulty nodes, so long as the placement satisfies the constraint

that no neighborhood has more than t faults. However, in the presence of channel errors

etc., the reliable local broadcast assumption that underlies these results is not trivial to

realize. Thus, implementation of a reliable broadcast service based on this model would

require efficient implementation of a reliable local broadcast primitive that operates under

realistic network conditions. In Chapter 10, we consider this issue in some detail.

8.9 Future Directions

In this chapter, we described results for achievability of reliable broadcast with locally

bounded failures. However, we did not study the efficiency of the algorithms. Thus, it

would be of interest to determine the optimal communication complexity for achieving

reliable broadcast for the grid network, as well as a wider class of network models. More-

over, our focus was on a single broadcast instance; in typical application scenarios, the

broadcast operation will occur many times. In such scenarios, incorporating fault-detection

mechanims can allow one to achieve weaker properties similar to the self-adjusting Byzan-

tine agreement of [129], which are often sufficient to meet reliability requirements. This is

a particularly promising approach in the wireless context, since the broadcast nature of the

wireless medium may make it easier to detect faulty behavior. Therefore, it is very relevant

to consider designing such algorithms for wireless network scenarios.

204

Chapter 9

Reliable Broadcast with
Probabilistic Failures

In this chapter, we consider the problem of reliable broadcast in wireless networks with

probabilistic failures. Our primary focus is on Byzantine failures, but we have also briefly

addressed the case of crash-stop failures. We begin by introducing the model and notation

in Section 9.1, and then summarize the chapter results in Section 9.2. We describe a

general necessary condition in Section 9.3. We present necessary and sufficient conditions

for reliable broadcast in a toroidal grid network in Section 9.4 and Section 9.5 respectively,

assuming the L∞ distance metric. A sufficient condition for random networks is presented

in Section 9.6. Results for grid networks with crash-stop failures are discussed in Section

9.7. In Section 9.8 we discuss how the L∞ metric results can be used to obtained results

for the L2 metric, and in Section 9.9, we argue for the validity of the results even in non-

toroidal networks. We also identify an interesting but intuitive similarity in the structure of

the results (previously known results, as well as the results presented in this chapter) for a

set of related problems pertaining to connectivity and reliable broadcast. This is discussed

in Section 9.10.

9.1 Preliminaries

We consider two spatial layout models for the network:

1. A regular grid layout, where nodes are located on a two-dimensional square grid (each

grid unit is a 1× 1 square). We shall refer to this as a grid network.

2. A network in which the node locations are independently and identically (i.i.d.) dis-

tributed over the deployment region. We shall refer to this as a random network.

In both models, the network is assumed to be deployed over a
√
n×√n square region.

Each node is assumed to be aware of the locations of all nodes within its transmission range.

205

Recall the definition of the reliable broadcast problem with a designated source in Chap-

ter 7. For the results in this chapter, we assume that any node in the entire network can

be the designated source and can originate a broadcast message. Given such a broadcast

instance, if even one non-faulty node (in either model) fails to make a valid value deter-

mination, the broadcast is deemed to have failed. Thus, reliable broadcast is said to fail

in a given fault configuration if it fails for at least one possible choice of the designated

broadcast source.

For a given broadcast instance, once an origin/source is designated, it is identified as

(0, 0). All nodes can then be uniquely identified by their coordinate location (x, y) w.r.t.

this origin. In the grid network model, the node coordinates are always integers, while for

random networks they are real numbers. All nodes have a common transmission radius

r(n, p) (often abbreviated as r). For grid networks, we assume that r(n, p) is an integer,

and for random networks it is allowed to be any real number.

In the toroidal grid network, each node has the same number of neighbors (i.e., the

same degree). We use d(n, p) (often abbreviated as d) to denote the common node degree

for this model. The neighbor-set of a node u, including itself, is denoted by nbd(u). The

set of neighbors excluding itself is denoted by nbd′(u) = nbd(u) \ {u}.
For the grid network, in the L∞ metric, the degree of a node is 4r2 + 4r, while the

population of a neighborhood (including the neighborhood center) is d+ 1 = 4r2 + 4r + 1.

Thus, the minimum node degree is dmin = 8, corresponding to r = 1.

For succint description, we also define a term pnbd(x, y) where pnbd(x, y) = nbd(x −
1, y) ∪ nbd(x + 1, y) ∪ nbd(x, y − 1) ∪ nbd(x, y + 1). Intuitively pnbd(x, y) denotes the

perturbed neighborhood of (x, y), obtained by perturbing the center of the neighborhood by

±1 along the x and y axes. We use Bernoulli(p) to denote a Bernoulli random variable

with parameter p.

A random failure mode is assumed wherein each node can fail with probability p in-

dependently of other nodes. Failures are permanent. We primarily focus on Byzantine

failures. In the Byzantine failure mode, a faulty node can behave arbitrarily, in contrast

to crash-stop failures, where a faulty node simply stops functioning. As stated in Chapter

7, we assume that the Byzantine nodes cannot spoof addresses or cause collisions, i.e., the

MAC layer is assumed fault-free, and the Byzantine faults reside only in higher layers of the

206

protocol stack.1 Note that while the occurrence of the permanent failures is probabilistic,

the failed Byzantine nodes can thereafter choose to behave in a worst-case manner (i.e.,

collude and modulate the messages they send to cause most confusion to non-faulty nodes).

The non-faulty nodes do not know which nodes have failed. The wireless channel conforms

to the reliable local broadcast assumption described in Chapter 7.

When we use the term critical transmission range for reliable broadcast, we imply

the smallest transmission range that can ensure reliable broadcast with high probability

(w.h.p.).

Thus:

• When we say that the critical transmission range is Ω(f(n, p)), we imply that:

∃ c1 > 0, such that when r(n, p) ≤ c1f(n, p) : lim
n→∞

Pr[reliable broadcast achievable] < 1

Thus, the transmission range must necessarily be greater than c1f(n, p) for reliable

broadcast to be achievable w.h.p.

• When we say the critical transmission range is O(f(n, p)), we imply that:

∃ c2 > 0, such that when r(n, p) ≥ c2f(n, p) : lim
n→∞

Pr[reliable broadcast achievable] = 1

Thus, the smallest transmission range needed to achieve reliable broadcast is no more

than c2f(n, p).

• When we say that the critical range is Θ(f(n, p)), we imply that it is Ω(f(n, p)) and

O(f(n, p)).

In a grid network, with the L∞ metric (discussed in Section 9.1), the node degree is

exactly determined by specifying the transmission range. Hence, we can define the notion

of critical degree correponding to the critical transmission range. Thus:

• When we say that the critical degree is Ω(g(n, p)), we imply that:

∃ a1 > 0, such that when d(n, p) ≤ a1g(n, p) : lim
n→∞

Pr[reliable broadcast achievable] < 1

1A methodology to handle a bounded number of collisions and address-spoofing was proposed in [58] for
a locally bounded fault model. It might be possible to adapt it to handle the random failure model. This
requires further investigation.

207

This yields a necessary condition.

• When we say that the critical degree is O(g(n, p)), we imply that:

∃ a2 > 0, such that when d ≥ a2g(n, p) : lim
n→∞

Pr[reliable broadcast achievable] = 1

This yields a sufficient condition.

• When we say that the critical degree is Θ(g(n, p)), we imply that it is Ω(g(n, p)) and

O(g(n, p))

In a random network, the degrees of individual nodes can vary; however, it is possible

to define a notion of critical average degree, which is the average degree corresponding to

the critical transmission range.

9.2 Summary of Results

In this chapter, we show that:

1. In a network of n nodes deployed in a regular grid pattern, when nodes exhibit Byzan-

tine failure with failure probability p < 1
2 (see later sections for precise range of va-

lidity), the critical node degree (defined in Section 9.1) for asymptotic achievability

of reliable broadcast is Θ

(
dmin + ln n

ln 1
2p

+ln 1
2(1−p)

)
. This may alternatively be stated

as Θ

(
dmin + ln n

D(Q 1
2
||P)

)
where Q 1

2
denotes the Bernoulli(1

2) distribution, P denotes

the Bernoulli(p) distribution, and D(Q||P) denotes the relative entropy (or Kullback-

Leibler distance) between distributions Q and P .

2. In a network of n nodes located uniformly at random over the network region, when

nodes exhibit Byzantine failure with failure probability p < 1
2 , the critical aver-

age node degree for reliable broadcast is O(lnn + ln n
ln 1

2p
+ln 1

2(1−p)

)(also expressible as

O

(
ln n

1
2
−p+ 1

2
ln 1

2(1−p)

)
for this regime).

3. For crash-stop failures in a grid deployment, the problem of reliable broadcast is

equivalent to connectivity in the presence of faults. For this case, we have derived

208

Figure 9.1: Division of network into disjoint neighborhoods

results showing that the critical node degree is Θ

(
dmin + ln n

ln 1
p

)
with failure probabil-

ity p < 1 (see later sections for precise range of validity). Our results improve upon

previous results for crash-stop failures in a grid proved in [100] in the regime p→ 0.

A preliminary version of the chapter results was reported in [9].

9.3 General Necessary Condition for Byzantine Failures

In this section, we show that if at least half the neighbors of a non-faulty node not in

nbd(s) are faulty in the Byzantine sense, then the faulty nodes can make it commit to the

wrong broadcast value with probability at least 1
2 . We remark that it is possible for a node

to refrain from committing to any value (in which case it would not commit to the wrong

value). However, if a non-faulty node does not commit to any value, then this implies failure

of the reliable broadcast operation, and from the perspective of achievability of broadcast

this is no better than committing to a wrong value. Thus, we focus on the case where a

node does indeed commit to some value.

Theorem 22. Under the assumption that all message values are equally likely, if a non-

faulty node u /∈ nbd(s) has at least half faulty neighbors, then it can be made to commit to

an erroneous value with probability at least 1
2 .

Proof. Assume that the message is drawn from {0, 1}. A non-faulty node u which is not an

immediate neighbor of the source must rely on messages received from its neighbors. Recall

that nbd′(u) = nbd(u) \ {u} and d = |nbd′(u)|.

209

First consider any deterministic function that takes as argument messages received from

all neighbors and outputs one of 0 or 1. Corresponding to each fault configuration C1 with

t ≥ d
2 faults in nbd′(u) (this also implies t faults in nbd(u) as u is non-faulty), there is

another configuration C2 with t faults in nbd′(u), such that all non-faulty nodes in C1 are

faulty in C2, while the non-faulty nodes in C2 were all faulty in C1. Then the faulty nodes

can modulate their message-sending behavior so that u is unable to distinguish between the

case where the correct broadcast value was 0 and fault configuration was C1 and the case

when the correct value was 1 and the fault configuration was C2 (recall that once failure

has happened, the faulty nodes can exhibit worst-case behavior).

Stated formally: suppose S1 ⊆ nbd′(u) is the set of faulty neighbors in C1, and Sc
1 =

nbd′(u) \ S1 is its complement, i.e., the set of non-faulty neighbors. Then we know that

|S1| ≥ ⌈ |nbd′(u)|
2 ⌉ ≥ |Sc

1|.
Consider a fault configuration C2 in which the set of faulty neighbors is S2 = Sc

1 ∪ V
where V ⊆ S1 is some subset of S1 that satisfies |V| = |S1| − |Sc

1|. Let Sc
2 denote the

complement of S2. It is easy to see that |S1| = |S2|. Consider the case where the correct

value is 0, and fault configuration is C1. Then all nodes in S1 can behave as though the

value were 1, while the nodes in Sc
1 will always act according to value 0. Now suppose

the correct value is 1, and the fault configuration is C2. Then the faulty nodes in Sc
1 ⊆ S2

behave as though the value were 0, while nodes in V = S2 \ Sc
1 act as per the correct value

1. The non-faulty nodes in Sc
2 always act as per value 1. From the viewpoint of node u,

the two situations are indistinguishable.

Next consider the possibility of using a probabilistic decision rule. Given a set of mes-

sages received from neighbors, we need to consider the conditional probability that the value

is 0 or 1. From the above discussion it is clear that for a given set of received messages from

neighbors, there exists a pair of fault configurations, and associated faulty-node behavior,

with the same number of faulty neighbors, where the correct message values are different.

Since failures are i.i.d. with probability p, and each value 0 or 1 is equiprobable, u cannot

hope to choose the correct one with a probability greater than half.

It is not hard to see that if the message can have more than two possible (equiprobable)

values, it cannot increase the probability of correct choice.

210

If the failure probability p is at least 1
2 , it can be seen that the probability that at least

half the neighbors of a given node are faulty is at least 1
2 (for even node degree, this follows

from Lemma 50; for odd degree, we can first argue for p = 1
2 and then use a monotonicity

argument). Therefore, it is only relevant to study the achievability of broadcast for p < 1
2 .

9.4 Byzantine Failures in a Grid Network: Necessary

Condition

Note that when p = 0, it is still necessary to ensure that each node has non-zero de-

gree for broadcast to be possible, and this requires that r be set to 1 (and hence d =

dmin = 8). Thus, when p = 0, it trivially follows that the node degree must be at least

max{dmin,
ln n

ln 1
2p

+ln 1
2(1−p)

}(we adopt the standard convention that x log x
0 =∞ for any x > 0;

we also adopt the convention that y
∞ = 0 for any finite y > 0).

Hence, the case of interest is when p > 0. It is easy to see that r ≥ 1 (correspondingly

d ≥ dmin = 8) is necessary for any p.

Theorem 23. Assuming the L∞ distance metric, in a grid network where nodes can fail

(in a Byzantine sense) independently with probability p such that 0 < p ≤ 1
2 − 1

ln n , if the

node degree is d ≤ ln n
ln 1

2p
+ln 1

2(1−p)

:

Pr[reliable broadcast fails] = 1

Proof. It is evident that r(n, p) must be at least 1 for reliable broadcast, else all nodes in

the grid are isolated. Thus d(n, p) must be at least dmin = 8. Therefore, in the rest of the

proof, we only need to consider the case where ln n
ln 1

2p
+ln 1

2(1−p)

≥ dmin, and r(n, p) is set to at

least 1.

Any failure probability p ≤ 1
2− 1

ln n can be expressed as p = 1
2−y for suitable 1

ln n ≤ y < 1
2 .

It can be seen that:

ln
1

2p
+ ln

1

2(1− p) = ln
1

1− 2y
+ ln

1

1 + 2y

= ln
1

1− 4y2
≥ 4y2 (noting that 4y2 < 1 and applying Fact 1)

≥ 4

(lnn)2

(9.1)

211

Resultantly:

d ≤ lnn

ln 1
2p + ln 1

2(1−p)

≤ lnn
4

(ln n)2

=
(lnn)3

4
< (lnn)3 (9.2)

Furthermore, it is evident that:

lnn

2
+ 6 ln lnn ≤ lnn− 4 ln lnn for sufficiently large n (9.3)

Consider a particular node j in the network. From Theorem 22, it follows that if j is

non-faulty, but more than half of its neighbors are faulty, reliable broadcast will fail with

probability at least 1
2 .

We know that there are d neighbors of j, and each may fail independently with prob-

ability p. Let Ijk(1 ≤ k ≤ d) denote an indicator variable corresponding to neighbor k

of j (enumerated in some order), such that Ijk = 1 if k is faulty, and 0 otherwise. Then

Yj =
∑

k∈nbd′(j)
Ijk denotes the number of failed neighbors of j. Y takes values from 0, 1, ..., d,

and E[Y] = pd. Note that in the L∞ metric, d is always even, and d ≥ 8 for all r(n, p) ≥ 1.

Also:

Pr[Yj ≥
d

2
] =

d∑

i= d
2

(
d

i

)
pi(1− p)(d−i)

Let us simply consider the event Yj = d
2 . Then we can apply the lower bound from Lemma

56 as follows: the variables Ijk(1 ≤ k ≤ d) are drawn from χ = {0, 1} as per distribution

P = Bernoulli(p), and the distribution corresponding to Yj = d
2 is Bernoulli(1

2) (we shall

refer to this as Q 1
2
). |χ| = 2, and 1

(d+1)|χ| = 1
(d+1)2

> 1
3
2
d2 = 2

3e
−2 ln d. Thus, we obtain:

Pr[Yj ≥
d

2
] ≥ Pr[Yj =

d

2
] ≥ 1

(d+ 1)|χ|
e
−d(D(Q 1

2
||P))

=
1

(d+ 1)2
e
−d(D(Q 1

2
||P))

=
1

d2(1 + 1
d)2

e
−d(D(Q 1

2
||P))

>
2

3
e
−d(D(Q 1

2
||P))−2 ln d

>
2

3
e
−(ln n

ln 1
2p

+ln 1
2(1−p)

)(1
2

ln 1
2p

+ 1
2

ln 1
2(1−p)

)−6 ln ln n

using (9.2)

=
2

3
e−

1
2

ln n−6 ln ln n ≥ 2(lnn)4

3n
using (9.3)

(9.4)

212

Let us denote the L.H.S. of the above equation, i.e., Pr[Yj ≥ d
2], by q.

Pr[j non-faulty; at least half nbd(j) faulty] ≥ (1− p)q > 1

2

(
2(lnn)4

3n

)
=

(lnn)4

3n
(9.5)

We mark out a subset of nodes j such that the neighborhoods of these nodes are all

disjoint, as in Fig. 9.1. From Fact 3, the number of such nodes that we may obtain is

k ≥ n
2d for large n (from (9.2), d = o(n)). In fact, it is not hard to see from the argument

used in the statement of Fact 3 that the number of such nodes would exceed n
2d + 1 for

large enough n. We can designate one such node as the broadcast source, and examine the

probability that any of the remaining nodes (k ≥ n
2d in number) can be made to commit to

the wrong broadcast value.

Let Ij be an indicator variable that takes value 1 if a node j is non-faulty and has at

least half faulty neighbors. From (9.5), we know that Pr[Ij = 1] ≥ (ln n)4

3n . Furthermore, all

the Ij ’s are independent.

Let I ′j be an indicator variable that takes value 1 if j is non-faulty but commits to a

wrong value. From Theorem 22, we know that if a non-faulty node has half or more faulty

neighbors, it can be made to commit to the wrong value with probability at least 1
2 . Thus

Pr[I ′j = 1] ≥ 1
2 Pr[Ij = 1] ≥ (ln n)4

6n .

Let X be a random variable indicating the number of non-faulty nodes with half or

more faulty neighbors that commit to the wrong value. Then X =
∑
I ′j , and E[X] =

∑
Pr[I ′j = 1] ≥ (ln n)4

6n

(
n
2d

)
= (ln n)4

12d > ln n
12 (∵ d < (lnn)3 from (9.2)). Therefore, we can

choose a suitable constant 0 < β < 1 (e.g., β = 1
2) and apply the Chernoff bound in Lemma

53 to obtain:

Pr[X > (1− β)E[X]] ≥ 1− e−
β2E[X]

2

∴ lim
n→∞

Pr[X > (1− β)E[X]] = 1 ∵ lim
n→∞

E[X] =∞
(9.6)

This yields:

lim
n→∞

Pr[reliable broadcast fails] = 1

In light of the prior observation about the necessity of r(n, p) being at least 1 (i.e.,

d(n, p) being at least dmin), and the result of Theorem 23, it follows that for all p ≤ 1
2− 1

ln n ,

if the node degree is less than max{dmin,
ln n

ln 1
2p

+ln 1
2(1−p)

}, reliable broadcast fails w.h.p.

213

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

���
���
���
���
���

���
���
���
���
���y = b

y = b− r

y = b + r

y = b + 1

y = b− 1

x
=

a
−

1

x
=

a
+

1

x
=

a
−

r

x
=

a

x
=

a
+

r

(a,b)

qnbdD(a,b)

qnbdA(a,b)qnbdB(a,b)

qnbdC(a,b)

Figure 9.2: Depiction of qnbdA, qnbdB,
qnbdC , qnbdD

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

y = b

y = b− r

y = b + r

y = b + 1

y = b− 1

x
=

a
−

1

x
=

a
+

1

x
=

a
+

r

(a,b)

qnbdC′(a,b)

qnbdB′(a,b)

qnbdD′(a,b)

qnbdA′(a,b)

x
=

a
−

r
x

=
a
−

r
−

1

x
=

a

Figure 9.3: Depiction of qnbdA′ , qnbdB′ ,
qnbdC′ , qnbdD′

9.5 Byzantine Failures in a Grid Network: Sufficient

Condition

We now state and prove a sufficient condition for the achievability of reliable broadcast in

a grid network. Intuitively, the approach involves showing that if the degree of a node is

sufficiently large, then the node can look at messages received from a constant fraction of

its neighbors, and act upon the majority opinion in this subset; doing so will enable it to

correctly determine the broadcast value, since a majority of the nodes in that subset will

be non-faulty w.h.p.

Theorem 24. Assuming L∞ distance metric, in a grid network with Byzantine failure prob-

ability p < 1
2 , when r(n, p) is chosen such that d(n, p) = 4r2+4r ≥ max{dmin, 16 ln n

ln 1
p
+ln 1

2(1−p)

}
= max{dmin, 8

ln n
D(Q 1

2
||P))}:

lim
n→∞

Pr[reliable broadcast is achievable] = 1

Note that when ln 1
2p +ln 1

2(1−p) ≤ 16 ln n
n , the degree expression exceeds the total network

size n, the sufficient condition ceases to be relevant (as node degree d(n, p) cannot exceed

n). Note that such a value of d(n, p) corresponds to a transmission range r(n, p) of a node

spans the entire network, effectively implying that the network is single-hop; due to the local

214

Region x-extent y-extent

qnbdA(a, b) a ≤ x ≤ (a+ r) (b− r) ≤ y ≤ (b− 1)

qnbdB(a, b) (a− r) ≤ x ≤ (a− 1) (b− r) ≤ y ≤ b
qnbdC(a, b) (a− r) ≤ x ≤ a (b+ 1) ≤ y ≤ (b+ r)

qnbdD(a, b) (a+ 1) ≤ x ≤ (a+ r) b ≤ y ≤ (b+ r)

qnbdA′(a, b) (a+ 1) ≤ x ≤ (a+ r) (b− r) ≤ y ≤ b
qnbdB′(a, b) (a− r) ≤ x ≤ a (b− r) ≤ y ≤ (b− 1)

qnbdC′(a, b) (a− r) ≤ x ≤ (a− 1) b ≤ y ≤ (b+ r)

qnbdD′(a, b) a ≤ x ≤ (a+ r) (b+ 1) ≤ y ≤ (b+ r)

Table 9.1: Spatial Extents of Quarter Neighborhoods

broadcast assumption, reliable broadcast is trivially achievable in a single-hop network.

Therefore, the sufficient condition is relevant only so long as ln 1
2p + ln 1

2(1−p) >
16 ln n

n ,

and this is the case that we consider.

Case 1: p = o(1
n) By application of the union bound, the probability that at least one

node fails is at most np. Since p = o(1
n), therefore lim

n→∞
np = 0. Therefore, the probability

that no node fails approaches 1 asymptotically, and reliable broadcast is trivially ensured

w.h.p. even with the minimum transmission range of 1.

Case 2: p = Ω(1
n) We define a term called quarter-neighborhood of a node (x, y), and

denote it by qnbd(x, y). We associate eight quarter-neighborhoods with each node: qnbdA,

qnbdB, qnbdC , qnbdD, qnbdA′ , qnbdB′ , qnbdC′ , qnbdD′ . The quarter-neighborhoods for a

node (a, b) are the regions depicted in Figs. 9.2 and 9.3, and their spatial extents are

tabulated in Table 9.1. Observe that qnbdB(a, b) = qnbd′A(a − r − 1, b), qnbdC(a, b) =

qnbdA(a−r, b+r+1), and qnbdD(a, b) = qnbd′A(a, b+r). Similarly, qnbdB′(a, b) = qnbdA(a−
r, b), qnbdC′(a, b) = qnbdA′(a − r − 1, b + r), and qnbdD′(a, b) = qnbdA(a, b + r + 1) Thus,

if we simply consider qnbdA(u) and qnbdA′(u) for all nodes u, we will have considered all

quarter-neighborhoods, i.e., the number of distinct (but not disjoint) quarter-neighborhoods

is 2n. Henceforth, we shall sometimes use Q(x, y) to refer to qnbdA(x, y), and Q′(x, y) to

refer to qnbdA′(x, y). The population of each quarter-neighborhood is r(r + 1). Since

d = 4r2 + 4r = 4r(r + 1) in the L∞ metric, the population of each quarter-neighborhood

is d
4 . We now state and prove the following result which is crucial to proving our sufficient

condition for reliable broadcast:

215

Lemma 44. If p < 1
2 and d ≥ max{dmin, 16 ln n

ln 1
2p

+ln 1
2(1−p)

} = max{dmin, 8
ln n

D(Q 1
2
||P))}, then:

lim
n→∞

Pr[∀(x, y) less than
d

8
faults in Q(x, y) and Q′(x, y)] = 1

Proof. As shown above, the population of any quarter-neighborhood is d
4 . Each node may

fail independently with probability p. Let Y(x,y) be a random variable denoting the number

of faulty nodes in Q(x, y). Then Y(x,y) =
∑

j∈Q(x,y)

Ij were Ij is an indicator variable which is

1 if neighbor i of the node at (x, y) is faulty, and is 0 otherwise. E[Y(x,y)] = pd
4 .

Noting that p < 1
2 , we can apply the relative entropy form of the Chernoff-Hoeffding

bound (Lemma 54) to Y(x,y). Observe that d ≥ max{dmin, 16 ln n
ln 1

2p
+ln 1

2(1−p)

} ≥ 16 ln n
ln 1

2p
+ln 1

2(1−p)

.

Thus, we obtain:

Pr[Y(x,y) ≥
d

8
] ≤ e−

d
4
(1
2

ln 1
2p

+ 1
2

ln 1
2(1−p)

) ≤ e
−(16 ln n

4(ln 1
2p

+ln 1
2(1−p)

))(1
2

ln 1
2p

+ 1
2

ln 1
2(1−p)

)

= e−2 ln n =
1

n2

(9.7)

Similarly, setting Y ′
(x,y) be a random variable denoting the number of faulty nodes in

Q′(x, y), and following the same argument as above, we obtain that:

Pr[Y ′
(x,y) ≥

d

8
] ≤ 1

n2
(9.8)

By application of union bound over all 2n distinct quarter-neighborhoods:

∴Pr[∀(x, y), Y (x, y) <
d

8
and Y ′(x, y) <

d

8
] ≥ 1− 2n

(
1

n2

)
= 1− 2

n

∴ lim
n→∞

Pr[∀(x, y), Y (x, y) <
d

8
and Y ′(x, y) <

d

8
] = 1

(9.9)

We now consider a simple broadcast protocol that is similar to the protocol that was

described in [57] for the locally bounded model:

• Initially, the source does a local broadcast of the message.

• Each neighbor i of the source immediately commits to the the first value v it heard

from the source, and then locally broadcasts it once in a COMMITTED(i, v) message.

• Hereafter, the following protocol is followed by each node j /∈ nbd(s):

216

If 1
2r(r + 1) + 1 = d

8 + 1 COMMITTED(i, v) message are received for a certain value

v, from neighbors i all lying within a single quarter-neighborhood, and not already

committed to some value, commit to v, and locally broadcast a COMMITTED(j, v)

message.2

Theorem 25. The probability that a non-faulty node shall commit to a wrong value by

following the above protocol tends to 0 as n→∞.

Proof. If all Q(x, y) and Q′(x, y) have strictly less than d
8 faults, the correctness of the

protocol proceeds as follows:

By the assumptions of reliable local broadcast, if s sends exactly one message, fault-free

nodes in nbd(s) are guaranteed to receive it correctly. If s is faulty and sends more than

one version of the message, fault-free nodes in nbd(s) receive both messages, and select the

first one. Thus fault-free nodes in nbd(s) are guaranteed to commit to the correct value.

The rest of the proof is by contradiction. Consider the first fault-free node, say j, that

makes a wrong decision to commit to a value v. From our previous assertion, j cannot

be in nbd(s), and hence followed protocol rules for nodes that are not s’s neighbors. This

implies that d
8 +1 of its neighbors within some quarter-neighborhood must have broadcast a

COMMITTED message for v (the COMMITTED messages were directly heard, leaving no

place for doubt). All of these nodes cannot be faulty, as less than d
8 nodes in any quarter-

neighborhood are faulty. Thus, there was at least one fault-free node that committed to v.

Since j is the first fault-free node to make a wrong decision, none of the fault-free nodes

amongst the d
8 + 1 nodes could have made a wrong decision. Therefore, v must indeed be

the correct value.

From Lemma 44, all the quarter-neighborhoods have less than d
8 faults with a probability

that tends to 1 as n→∞, and hence the protocol also functions correctly with a probability

that tends to 1 as n→∞.

Theorem 26. Each non-faulty node is eventually able to commit to the correct value w.h.p.

Proof. The proof is by induction.

2Note that d
8

= r(r+1)
2

is always an integer, since r is assumed to take only integer values in the grid
network case.

217

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

(a, b)

u

x
=

a
+

r
+

1

x
=

a

x
=

a
−

r
−

1

y = b− r − 1

y = b

y = b + r + 1

y = b + 1

x
=

a
−

r
+

l

x
=

a
+

l

(a− r + l,b + r + 1)

Figure 9.4: Node u has a quarter-neighborhood contained in nbd(a, b)

Base Case: All non-faulty nodes in nbd(0, 0) are able to commit to the correct value. This

follows trivially since they hear the source directly, and by assumption address-spoofing is

impossible.

Inductive Hypothesis: If all non-faulty neighbors of a node located at (a, b) i.e. all

non-faulty nodes in nbd(a, b) are able to commit to the correct value, then all non-faulty

nodes in pnbd(a, b) are able to commit to the correct value.

Proof of Inductive Hypothesis: We show that each node u in pnbd(a, b)\nbd(a, b) has

at least one of qnbdA(u), qnbdB(u), qnbdC(u), qnbdD(u), qnbdA′(u), qnbdB′(u), qnbdC′(u),

qnbdD′(u) fully contained in nbd(a, b). Since the population of each quarter-neighborhood is

d
4 , and strictly less than d

8 of the nodes in a quarter-neighborhood are faulty with probability

that tends to 1 asymptotically, the number of non-faulty nodes in each quarter-neighborhood

is at least d
8 +1 (since d

8 is always an integer). This ensures that the node will become aware

of d
8 +1 nodes in nbd(a, b) having committed to a (the correct) value, and will also commit to

it (if it is non-faulty). The situation is depicted in Fig. 9.4 for u ∈ {(a−r+l, b+r+1)|1 ≤ l ≤
r}, for which qnbdA(u) lies in nbd(a, b). For other locations, a similar argument holds.

218

9.6 Byzantine Failures in a Random Network: Sufficient

Condition

We obtain a sufficient condition for a network of n nodes deployed uniformly at random,

based on the sufficient condition for the grid network model. To maintain consistency

with the grid network formulation, we again assume a toroidal region of area
√
n x
√
n,

with n nodes located uniformly at random. The average degree of a node is the average

number of the remaining n − 1 nodes that fall within its neighborhood. Recall that we

are using L∞ distance metric), and thus the average degree is davg(n, p) = (n−1)(2r(n,p))2

n =

4r2(n, p)(1− 1
n) ≈ 4r2(n, p) for large n.

Theorem 27. Assuming the L∞ metric, in a random network with Byzantine failure prob-

ability p < 1
2 , and r(n, p) ≥

√
100 ln n

1
2
−p+ 1

2
ln 1

2(1−p)

:

lim
n→∞

Pr[reliable broadcast succeeds] = 1

Proof. We begin with the observation that if r(n, p) becomes so large that a node’s range

spans the entire network, all nodes are neighbors, and trivially broadcast is achievable.

Thus, this result is of interest only so long as r(n, p) is not so large.

In light of Fact 1:

D(Q 1
2
||p) =

1

2
ln

1

2p
+

1

2
ln

1

2(1− p)
≥ 1

2
(1− 2p) +

1

2
ln

1

2(1− p)
=

1

2
− p+

1

2
ln

1

2(1− p)

(9.10)

Also, since p < 1
2 :

0 <
1

2
− p+

1

2
ln

1

2(1− p) ≤
1

2
(1− ln 2) < 1 (9.11)

Similar to grid networks, we use a notion of quarter-neighborhoods. For a given broad-

cast instance, we again use relative coordinates by treating the source’s coordinates as (0, 0).

With some abuse of the grid network notation introduced in Section 9.1, we can extend

the notion of nbd(x, y), to include all nodes within distance r of point (x, y) (regardless of

219

whether or not there is a node at (x, y)), where x and y are real numbers. The notion of

pnd(x, y) is also similarly extended to all points (x, y).

Note that in this model, a node’s (or point’s) coordinates are real numbers. We thus

associate eight quarter-neighborhoods with each node, with spatial extents as in Table 9.1,

except that now x and y must be treated as real numbers. Also, now it is not possible

to assert that there are only 2n distinct quarter-neighborhoods. Thus, all eight quarter-

neighborhoods of a node must be treated as distinct3, yielding 8n quarter-neighborhoods

in all.

The quarter-neigborhoods are axis-parallel rectangles of area r(n, p)(r(n, p)−1) ≥ r2(n,p)
2

(for r(n, p) ≥ 2). Then, if r2(n, p) ≥ 100 ln n
1
2
−p+ 1

2
ln 1

2(1−p)

, then we can apply Lemma 58 for all

axis-parallel rectangles of area r(n, p)(r(n, p) − 1) ≥ 50 ln n
1
2
−p+ 1

2
ln 1

2(1−p)

≥ 100 ln n
1−ln 2 , to obtain

that they all have at least 50 ln n
1
2
−p+ 1

2
ln 1

2(1−p)

− 50 lnn > 25 ln n
1
2
−p+ 1

2
ln 1

2(1−p)

> 50 ln n
1−ln 2 nodes, with

probability at least 1− 50 ln n
n → 1.

Thus all such rectangles are non-empty. Also:

25 lnn
1
2 − p+ 1

2 ln 1
2(1−p)

≥ 25 lnn

D(Q 1
2
||p) >

8 lnn

D(Q 1
2
||p) (9.12)

Hence, all the quarter-neighborhoods have at least 8 ln n
D(Q 1

2
||p) nodes (which is the quarter-

neighborhood population in the grid network case). Then using a proof argument similar

to Lemma 44, one can prove the following result:

Lemma 45. If p < 1
2 , and r(n, p) ≥

√
100 ln n

1
2
−p+ 1

2
ln 1

2(1−p)

, then

lim
n→∞

Pr[all 8n qnbds have non-faulty majority] = 1

In light of this, one can use a broadcast protocol similar to that for grid networks (a

node commits to a value if it is received from a majority of the nodes in some quarter-

neighborhood), and, for all broadcast sources, and instances, the reliable broadcast prop-

erties continue to hold, as follows:

Relying on Lemma 45, we can apply a proof argument similar to Theorem 25 to argue

that with high probability no non-faulty node will commit to a wrong value.

We can also show that each non-faulty node will eventually be able to commit to the

3Note that distinct does not mean disjoint.

220

correct value w.h.p. The proof is by induction, similar to the proof of Theorem 26, except

that the terms nbd(x, y), pnd(x, y) must be interpreted as per their re-definition in this

section (i.e., the region within distance r of a point (x, y), regardless of whether there is a

node at that point).

In the base case, all neighbors of the source (which is at (0, 0)) commit to the correct

value trivially. In the inductive step, one can show that if all nodes in nbd(x, y) (as per the

re-defined notation) have comitted to the correct value, all nodes in the region pnd(x, y) \
nbd(x, y) have some quarter-neighborhood contained in nbd(x, y), and can commit to the

value received from a majority of nodes in this quarter-neighborhood.

Since the area within range of a node is at most 4r2 (for the valid domain of r values)

in the L∞ metric, the result indicates that an average node degree davg of 400 ln n
1
2
−p+ 1

2
ln 1

2(1−p)

suf-

fices for reliable broadcast. Hence the critical average node degree davg
critical isO(ln n

1
2
−p+ 1

2
ln 1

2(1−p)

).

A more intuitive way of viewing the result is that critical average degree in a random net-

work is O(max{lnn, ln n
D(Q 1

2
||P)}) or O(lnn+ ln n

D(Q 1
2
||P)).

9.7 Crash-Stop Failures in a Grid Network

We now consider the achievability of reliable broadcast in a grid network when nodes may

cease to function with probability p. This is equivalent to the network being connected

despite failures. Our results for this scenario improve upon prior results by Shakkottai et

al., in [101].

Theorem 28. In a grid network where nodes can exhibit crash-stop failure with probability

p ≤ 1− 1
ln n , if r(n, p) < max{1, 1

4

√
ln n
ln 1

p

}:

lim
n→∞

Pr[disconnection] = 1

Proof. Evidently the minimum transmission range required for connectivity is at least 1,

corresponding to d = dmin = 8 (in L∞ metric), else the degree of all nodes is 0 (except

in the case when all nodes are faulty, and connectivity becomes irrelevant). Thus, we only

focus on the case where 1
4

√
ln n
ln 1

p

> 1. In this scenario r(n, p) < max{1, 1
4

√
ln n
ln 1

p

} implies that

r(n, p) < 1
4

√
ln n
ln 1

p

.

221

We show that when p ≤ 1 − 1
ln n , the network is asymptotically disconnected with

probability approaching 1 if r < 1
4

√
ln n
ln 1

p

.

In the L∞ metric, having r(n, p) < 1
4

√
ln n
ln 1

p

yields a node degree d(n, p) = 4r2 + 4r ≤

8r2 < ln n
2 ln 1

p

.

Consider a particular node j in the network. If j is non-faulty, but all its neighbors are

faulty, we have a potential disconnection event. Given that there are d neighbors, and each

may fail independently with probability p, the probability that j does not fail, but all nodes

in nbd(j) fail, is (1− p)pd.

Since p ≤ 1− 1
ln n , we obtain that:

1− p ≥ 1

lnn
(9.13)

Pr[A given node j is non-faulty, but isolated]

= Pr[j is non-faulty and all neighbors of j are faulty]

= (1− p)pd ≥
(

1

lnn

)
p

ln n

2 ln 1
p =

(
1

lnn

)(
1√
n

)
=

1√
n lnn

≥ (lnn)3

n
for large n

(9.14)

Note the following:

d <
lnn

2 ln 1
p

≤ lnn

2(1− p) ≤
(lnn)2

2
(Fact 1, (9.13)) (9.15)

Let us mark out a subset of nodes j such that the neighborhoods of these nodes are all

disjoint, as in Fig. 9.1. Then, from Fact 3, the number of such nodes that we may obtain

is at least n
2d for large n.

Let Ij be an indicator variable that takes value 1 if j is non-faulty but isolated. Then

Pr[Ij = 1] ≥ (ln n)3

n , and all Ij ’s are i.i.d.

Let X be a random variable denoting the number of nodes from the chosen set that are

non-faulty and isolated. Then X =
∑
Ij , and E[X] ≥ (ln n)3

n (n
2d) ≥ (ln n)3

(ln n)2
= lnn. We can

thus set β = 1
2 in the Chernoff bound of Lemma 53, and obtain that:

Pr[X >
lnn

2
] ≥ 1− e− ln n

8 = 1− 1

n
1
8

(9.16)

222

Thus, for p < 1− 1
ln n and large n:

lim
n→∞

Pr[At least two non-faulty nodes are isolated] = 1 (9.17)

Hence a broadcast from one such node will not be received by the other node.

We also briefly touch upon the range of p values satisfying 1− p = o
(

1
n

)
. By applying

the union bound, the probability that at least one node is non-faulty is at most n(1 − p).
Since 1− p = o

(
1
n

)
, we know that lim

n→∞
n(1− p) = 0. Therefore:

lim
n→∞

Pr[all nodes are faulty] = 1 (9.18)

Thus the issue of connectivity is irrelevant.

We now present a sufficient condition for the asymptotic connectivity.

Theorem 29. In a grid network with crash-stop failure probability p < 1, when r(n, p) ≥
max{1,

√
8 ln n
ln 1

p

}:

lim
n→∞

Pr[the network is connected] = 1

Proof. p = o(1
n)

When the failure probability is so small as to fall in this range, by applying the the

union bound, we obtain that the probability of even a single node failing is at most np.

Since, lim
n→∞

np = 0, asymptotic connectivity is trivially ensured even with the minimum

transmission range of 1.

p = Ω(1
n)

Note that when p is Ω(1
n), then r(n, p) > 1 for large enough n. Consider the subdivision

of the grid as depicted in Fig. 9.5, so that the resulting cells have x-extents (and also

y-extents) 0 to a, a + 1 to a + b, a + b + 1 to 2a + b + 1, 2a + b + 2 to 2a + 2b + 1, and

so on, where a = ⌊ r
2⌋ and b = r − a = r − ⌊ r

2⌋. It is easy to see that each node is within

range of all other nodes in the cells adjoining its own (as depicted in Fig. 9.5). If each cell

has at least one non-faulty node, there exists a connected backbone that covers all points,

and hence all nodes. Therefore, all non-faulty nodes are connected to each other via this

backbone. The populations of the cells thus obtained can be (a+ 1)2, (a+ 1)b or b2. Since

a+ 1 = ⌊ r
2⌋+ 1 ≥ r

2 , and b = r−⌊ r
2⌋ ≥ r

2 , the population k of any cell satisfies k ≥ r2

4 , and

223

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
�������

����
����
����

����
����
����
�������

���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
������
����
����
����

����
����
����
����

Pop. Pop.

Pop. Pop.

0 a a + b

(a + 1)b

b2(a + 1)b

(a + 1)2

2a + b + 1

a + b

a

0

2a + b + 1

Figure 9.5: Subdivision of network into cells (all adjacent cells are within range)

the maximum possible number of cells m ≤ 4n
r2 . Then:

Pr[no non-faulty node in a given cell] = pk ≤ p r2

4 (9.19)

Since r ≥
√

8 ln n
ln 1

p

:

Pr[no non-faulty node in a given cell] ≤ p r2

4 ≤ p
2 ln n

ln 1
p = e−2 ln n =

1

n2
(9.20)

The total number of cells is at most 4n
r2 ≤ 4n since r ≥ 1 (however note that 4n

r2 is actually

less than n for large enough n, whenever p = Ω(1
n)). Applying a union bound over all cells:

Pr[at least 1 non-faulty node in each cell] ≥ 1− 4

n
(9.21)

Since this condition ensures connectivity, we obtain that:

lim
n→∞

Pr[network is connected] = 1 (9.22)

224

r
√

2

r

r r

r

Figure 9.6: Relationship between L∞ and L2 neighborhoods

9.8 Conditions in Euclidean Metric

We show that our results derived for L∞ metric continue to hold for L2 metric, with only

the constants in the theta notation changing.

Lemma 46. If reliable broadcast is achievable asymptotically in L∞ for all r ≥ rmin, then

it is achievable asymptotically in L2 for all r ≥
√

2rmin.

Proof. The proof is by contradiction. Suppose that, for a given failure configuration, broad-

cast is asymptotically achievable in L∞ for all r ≥ rmin but is not asymptotically achievable

for all r ≥
√

2rmin in L2. Observe that it is possible to circumscribe a L∞ neighborhood

of range r by a L2 neighborhood of range
√

2r (Fig. 9.6). Hence the non-faulty nodes in

an L2 network of transmission range
√

2r can be made to simulate the operation of nodes

in a L∞ network with range r (as the L∞ neighborhood is fully contained within the L2

neighborhood). Also, given that all nodes in the L2 network know the locations of their

neighbors, and no address spoofing is allowed, the faulty nodes (in the Byzantine failure

case) cannot gain any unfair advantage by not simulating the the L∞ network. If there is

some r ≥ rmin for which we can achieve broadcast in the L∞ network asymptotically, but

not in the the L2 network of range
√

2r, we obtain a contradiction, as achievability in the

L∞ network would imply achievability in the L2 network. This implies that if broadcast is

achievable in the L∞ network of range r , so must it be in the L2 network of range
√

2r.

Lemma 47. If reliable broadcast fails asymptotically in L∞ for all r ≤ rmin, then it fails

asymptotically in L2 for all r ≤ rmin.

Proof. The proof is by contradiction. Suppose that broadcast fails asymptotically in L∞

for range r, but does not fail in L2 for range r. Observe that an L∞ neighborhood of

transmission range r circumscribes an L2 neighborhood of range r (Fig. 9.6). Thus, for any

225

given failure configuration, if broadcast succeeds in the the L2 network of range r, so can

it in the L∞ network of radius r, as we could simply make the fault-free nodes in the L∞

network simulate the behavior of nodes in the L2 network. Hence, if broadcast does not fail

in the L2 network of range r ≤ rmin, it will not fail in the L∞ network of range r ≤ rmin.

This yields a contradiction.

9.9 Non-Toroidal Networks

We used the assumption that the network is toroidal to avoid edge effects. However, it can

be seen that the results (in terms of transmission range r(n, p)) would continue to hold even

if the network were spread over a non-toroidal rectilinear domain.4

The necessary condition would continue to hold, since the area within transmission

range at the edges can be no more more than the area within transmission range (and

hence degree) of nodes towards the center, and if reliable broadcast is not achievable for a

certain value of r(n, p) even with the assumption that all nodes have equal network area

within their transmission range, then it must certainly be impossible when some nodes

(those near the edges of the network region) have a smaller area within range.

The sufficient conditions for Byzantine failures continue to hold since the described

algorithms rely on information from quarter-neighborhoods, and it can be seen that even

the nodes at the edges have at least one quarter-neighborhood within the network region.

Hence, if some value of r(n, p) suffices in a toroidal network, the same would suffice in the

corresponding non-toroidal network as well. For the crash-stop failure case, the sufficient

condition continues to hold as even nodes at the edges have at least one full cell within

their range.

9.10 Discussion

An interesting observation is that the form of the results for Byzantine failures is very

similar to the results for crash-stop failures/connectivity. For Byzantine failures, we have

obtained that the critical node degree for grid networks is Θ(dmin + ln n
ln 1

2p
+ln 1

2(1−p)

), which

may be re-stated as Θ(dmin + ln n
D(Q 1

2
||P)) where Q 1

2
denotes the Bernoulli(1

2) distribution,

4Note that the degree in a non-toroidal network is a function of node location; hence it is more relevant
to state results in terms of transmission range r(n, p) instead of degree.

226

P denotes the Bernoulli(p) distribution, and D(Q||P) denotes the relative entropy (or

Kullback-Leibler distance) between distributions Q and P . Similarly, the node degree

for crash-stop failures/connectivity is Θ(dmin + ln n
ln 1

p

), and may be viewed as as Θ(dmin +

ln n
D(Q1||P)), where Q1 is the Bernoulli(1) distribution, and P is the Bernoulli(p) distribution

(using the standard convention that 0 ln 0
1−p = 0 where 1 − p > 0 is a valid probability

value). These results have a similar structural form, involving a minimum term required

for connectivity without faulty behavior, and a second term required to ensure broadcast

even in presence of failure.

Recall that we derive the necessary condition from isolated failure events, and this is

found to match the sufficient condition within a constant factor. Thus, it is possible that

failure events involving isolated nodes not determining the correct broadcast value may be

the dominant failure events 5.

Focusing on these isolated failure events, the obtained expressions for node degree can

be explained in the light of Sanov’s Theorem [24]. As per Sanov’s Theorem, the prob-

ability of occurrence of the event-set E = { half or more neighbors faulty} is dominated

by the probability of the event in E closest in relative entropy to the governing fault

distribution P . Since we are considering the regime p < 1
2 , the closest event is that of

exactly half the neighbors being faulty, corresponding to Q 1
2
. In light of this, the critical

degree expression for Byzantine failures is quite intuitive. One can similarly explain the

crash-stop results.

The necessary and sufficient condition for connectivity in a sensor network where nodes

sleep with probability p was shown in [55] to be Θ(ln (n(1−p))
1−p) (when expressed in our

notation) for the case of a randomly deployed network. This problem is equivalent to that

of crash-stop failures in random networks. Our sufficient condition for random networks

with Byzantine failure probability p < 1
2 is O(ln n

1
2
−p+ 1

2
ln 1

2(1−p)

).

There is a similarity of form in the two results, and one may interpret the critical node

degree as being O(lnn(1− p) + ln n(1−p)
D(Q||P)) where Q is the Bernoulli(q) distrbution, and P

is the Bernoulli(p) distribution; q = 1 (and p < 1) for the sleeping/crash-stop case in [55],

and q = 1
2 (with p < 1

2) for the Byzantine failure case.

Additionally, it is evident that our expressions for the grid network and random network

5Note that in [42], it was found that the primary disconnection events in non-faulty random networks
are those involving single isolated nodes.

227

diverge when p→ 0, but are otherwise within a constant factor of each other (for p bounded

away from 0). This difference is quite intuitive. In a grid network, as failure probability

p→ 0, the network tends towards a deterministic topology, whereas in a random network,

if failure or sleep probability p → 0, the network can only tend towards a denser but still

random network. Thus, at small values of p, a very small degree will suffice for a grid

network, but may not for a random network. At larger p values, the grid network exhibits

increasing randomness and begins to resemble a network with random deployment. Thus,

one may see that the two expressions are within constant factor of each other when p is

large (given sufficiently large n), but diverge as p→ 0.

228

Chapter 10

Reliable Local Broadcast with
Byzantine Failures

In Chapter 7, we briefly reviewed results in the literature on achieving reliable broadcast

in wireless networks. In Chapter 8 and Chapter 9, we described results for achievability of

reliable broadcast under different assumptions regarding the network and fault model. Our

results in these previous chapters, as well as a substantial amount of the prior work reviewed

in Chapter 7, assumes that if a node transmits a message it is received by each and every

node within a designated neighborhood in its spatial vicinity. This eliminates the potential

for duplicity by a Byzantine source node, and ensures local agreement. While this model

reflects the shared nature of the wireless medium, it fails to capture its unreliability. The

wireless medium can be extremely unreliable, and can show highly variable channel quality

over time, due to multipath effects. This can lead to significant fluctuation in the received

signal. Resultantly, there is often a non-negligible probability of unsuccessful reception,

even in the absence of malicious collision-causing behavior. Thus, any attempt at designing

reliable broadcast protocols based on these theoretical results must begin with an effort to

implement a reliable local broadcast primitive in a scalable manner.

One might envision implementing local broadcast by running a point-to-point Byzantine

agreement protocol, with retransmissions over every lossy (point-to-point) link to handle

channel errors. However, such a solution may not be scalable, as the underlying medium is

shared and thus the operation of nearby (point-to-point) links cannot occur concurrently,

and must be serialized.

While the issues of reliable broadcast and consensus in the presence of a bounded number

of collisions/spoofing have been addressed in recent years, such as [58] and [38], probabilistic

channel losses have typically not been considered. Random transient Byzantine failures that

include collision-causing is examined in [91]. Though also of a probabilistic nature, their

model is different in that nodes either fail to transmit, transmit a wrong value or transmit

229

out of turn, with a certain probability, in each round.

In this chapter, we investigate the possibility of designing Byzantine fault-tolerant com-

munication primitives that can work in the presence of channel unreliability. We continue

to assume that the physical(PHY) and medium-access control (MAC) layers are fault-free

(i.e., nodes do not deliberately cause collision or spoof MAC addresses). Our primary intent

is to highlight the potential for lightweight scalable solutions that exploit knowledge of phys-

ical layer characteristics, in conjunction with other information provided by lower layers,

to achieve message-ordering conditions useful for reliable communication. We sketch out

a simple proof-of-concept algorithm that can facilitate the implementation reliable local

broadcast with probabilistic guarantees in a local broadcast domain. We also briefly discuss

how the proposed reliable local broadcast solution can be optimized further, and also be

used as a sub-protocol in a global broadcast algorithm for multi-hop networks.

A preliminary version of the work described in this chapter was reported in [10].

10.1 How a Lossy Wireless Channel Inhibits Reliable Local

Broadcast

In this section we briefly discuss how an unreliable wireless channel can affect the achiev-

ability of reliable local broadcast.

Consider a source s that originates a message, which needs to be locally broadcast to its

neighbors. However, as the channel is lossy, each neighbor successfully receives the message

only with a certain probability. Resultantly, it is possible that a transmission may only be

heard by some subset of s’s neighbors. If s is non-faulty, this issue can be readily resolved by

having s retransmit the message a sufficient number of times to ensure that each neighbor

receives at least one copy with high probability (w.h.p.). However consider what might

transpire if s is faulty, and seeks to leverage the channel’s unreliability to create confusion

amongst its neighbors:

Suppose that s initially sends a message m with value 0. Some of its neighbors do not

receive it, i.e., it is received by some subset N1 of s’s neighbors. It then sends another

version of the same message, containing a value 1. This message is received by some subset

N2. If N1 \ N2 is non-empty, there are certain nodes that will assume that s sent only

one value, i.e., 0. If N2 \ N1 is non-empty, there are certain nodes that will assume that s

230

sent only one value, i.e., 1. Nodes in N1 ∩ N2 receive both values, and are in a position to

detect s’s duplicity. These nodes can choose a default value, e.g., the first value sent by s.

However, there still remains the issue of ensuring that the other nodes do the same. One

approach might consist in the raising of an alarm by nodes in N1 ∩N2 , but would require

a means for the other nodes to resolve whether the alarm(s) are to be trusted. Another

possible approach involves using a point-to-point Byzantine agreement algorithm in the

neighborhood of s. However, these approaches have high message-overhead. In particular,

given the shared nature of the wireless medium, the messages must be sent in turn on the

same medium, thereby exacerbating the cost.

Thus, one may prefer to have a more lightweight approach to ensure agreement of all

nodes on a common value (and potentially rely on the fact that after a number of duplicitous

transmissions by s, all nodes would at some time detect its duplicity themselves, and s would

be universally identified as untrustworthy).

10.2 Causal Ordering and Physical Clocks

In this section, we briefly review notions of clocks and ordering that are relevant to the

discussion in this chapter.

We assume the existence of some frame of reference external to the system. The physical

time in this frame of reference is considered to be an absolute measure of physical time for

the purpose of our discussion. Thus, at time instant t, the external clock value is t.

Each node u in the system has its own physical clock. The clock value of a node u at

time instant t is denoted by Cu(t). When we refer to external synchronization within bound

D, we imply synchronization to this ideal external clock within bound D, i.e., at each time

instant t: |Cu(t)− t| ≤ D.

Clock drift is modeled as being linear, i.e., if the true elapsed time is T , the observed

elapsed time lies in the range [(1 − δ)T, (1 + δ)T], where δ is the drift per unit time (also

referred to as drift-rate).

When we refer to internal synchronization within bound D, we imply that at any time

instant t, the clocks of two internally synchronized nodes u, w satisfy: |Cu(t)−Cw(t)| ≤ D.

When we refer to a node adjusting its clock, we imply that the node applies a correction to

its clock value.

231

In his seminal paper [69], Lamport proposed that a key goal in a distributed system

should be to ensure that causal relationships are respected. This causality could be captured

in a happened-before relation, which imposes a partial order on system events. Thus, a→ b

implies that a happened-before b, and b may be causally affected by a. Let C(a) denote the

time observed for an event a as per a clock C. A satisfactory clock C must then satisfy the

following:

Definition 4. (Clock Condition [69]) For any events a, b: a→ b =⇒ C(a) < C(b).

To this effect, Lamport logical clocks were proposed in [69]. An anomalous scenario

was also considered whereby out-of-system message exchanges could lead to violation of the

Clock Condition. This leads to the consideration of a Strong Clock Condition whereby causal

ordering is preserved even taking into account out-of-system messages. It was observed in

[69] that if the clock drift rate δ, the maximum clock skew (or synchronization bound) D

and the minimum message transmission time Tl satisfy the relation: Tl ≥ D
1−δ , then the

system of physical clocks satisfies the Strong Clock Condition. It was also shown that a

simple synchronization algorithm suffices to ensure that clock skew is bounded by a suitable

D.

The notion of leveraging physical clocks rather than logical clocks has wider significance.

Consider a system where some processes may exhibit Byzantine behavior. Then their logical

clock values cannot be trusted, as they may affix incorrect logical clock values to messages

they send, in order to taint the logical clocks of other processes. If one could ensure that the

physical clocks of non-faulty nodes satisfy certain ordering conditions, this could be quite

beneficial. A similar intuition underlies our approach towards reliable local broadcast.

10.3 Loose Synchronization and Local Broadcast

In this section we describe the basic assumptions and approach behind leveraging the ex-

istence of loose synchronization to facilitate a certain ordering condition between locally

broadcast messages. In Section 10.4, we discuss how the ordering condition can be realized

in a wireless network, and subsequently describe in Section 10.5 how it might be leveraged

to achieve reliable local broadcast with probabilistic guarantees.

Consider a system comprising a node v that is interested in sending messages, and a set of

232

other nodes (neighbors of v) capable of receiving messages from v over a shared broadcast

medium. Each node is equipped with a single half-duplex transceiver. Thus, no node

can send and receive messages simultaneously, and only one message can be successfully

transmitted or received at a time by a node. Note that this is a reasonable model for wireless

nodes equipped with a single half-duplex transceiver and an omnidirectional antenna, which

operate on a single common channel.

Receive-Timestamp A node is assumed capable of noting its local physical clock value

just after its physical layer finishes receiving a message (this is also a reasonable assumption;

such a timestamping operation could be implemented in hardware). This is termed as the

receive-timestamp observed by the node for the message.

The messages sent in this system have the following property:

The minimum (absolute) time the packet transmission occupies the channel is Tl, and

the actual total (absolute) time taken by a message in transit (between the time the sending

node’s physical layer starts sending the message, and the time the receiving node finishes

receiving and notes its receive-timestamp) is upper-bounded by Tu. Hence Tu−Tl subsumes

the maximum propagation delay and upper bounds on any processing delays incurred up

to the time of taking the timestamp.

Therefore, the (absolute) time T taken by a message in transit from sender to receiver

(between timestampings) satisfies Tl ≤ T ≤ Tu. Note that this condition is satisfied by all

messages including those sent by faulty nodes. We explain in Section 10.4 why this is a

reasonable assumption.

We define the following condition:

Definition 5. (Receipt-Order Condition) If a node v sends a message m1, followed by

a message m2, then for all non-faulty nodes u,w which are neighbors of v: the receive-

timestamp observed by u for m2 is greater than the receive-timestamp observed by w for

m1.

We identify two situations in which the Receipt-Order Condition holds. The first one

relies on assumptions about external clock synchronization, and the second one relies on

assumptions about internal clock synchronization.

233

Observation 1. (Externally Synchronized Nodes) If the physical clocks of all non-faulty

nodes in the system are externally synchronized within bound D, and if 2Tl−Tu > 2D, then

the local physical timestamps observed by the non-faulty neighbors of v for messages sent

by v satisfy the Receipt-Order Condition.

Proof. Suppose the sender starts sending the two messages m1,m2 at times t1 and t2 re-

spectively (according to the ideal external clock). Then those non-faulty neighbors of v that

received m1 would have received it within the interval [t1 + Tl, t1 + Tu] (as per the external

clock), and their observed receive-timestamp would lie in the range [t1 +Tl−D, t1 +Tu +D].

Similarly, the observed receive-timestamp for the second message m2 falls within [t2 + Tl −
D, t2 + Tu + D]. Since the two messages are sent by v, using its half-duplex transceiver,

on the same medium, they are temporally ordered and separated in time i.e. t2 ≥ t1 + Tl.

Thus, (t2 +Tl−D)− (t1 +Tu +D) = t2− t1−Tu +Tl− 2D ≥ 2Tl− 2D−Tu > 0. Therfore,

any non-faulty node that receives the first message observes a receive-timestamp that is

less than the receive-timestamp for the second message observed by those non-faulty nodes

that see the second message. Hence, the Receipt-Order Condition holds.

Observation 2. (Internally Synchronized Nodes) Consider an interval of time in the sys-

tem in which no non-faulty node adjusts its physical clock, the physical clocks of all non-

faulty nodes stay internally synchronized within bound D, and drift-rate is upper-bounded

by δ. We are interested in messages sent and received entirely during this interval. If

2Tl − Tu − δ(2Tl + Tu) > D, then the local physical timestamps observed by the non-faulty

neighbors of v for messages sent by v satisfy the Receipt-Order Condition.

Proof. The argument is almost the same as that used in [69] to argue that a system of

physical clocks can be made to satisfy the Strong Clock Condition, except that we now

apply it in the context of a broadcast medium with multiple recipients of the same message.

Denote by Es
v(m), the event of node v sending message m, and by Cu(Es

v(m)) the local

physical clock time at some non-faulty node u, at the time v started the transmission. Note

that this does not imply that node u is aware of the instant at which transmission started. u

may only detect the transmission after some minimum propagation delay. Denote by Er
u(m),

the event of node u receiving messagem, and by Cu(Er
u(m)), the receive-timestamp observed

by node u for a message m received by it (recall that receive timestamps are recorded when

the reception has finished).

234

Suppose a node v starts sending a message m1 at a time when local time at some non-

faulty neighbor u is Cu(Es
v(m1)). Thus, from the assumption that clocks are internally

synchronized within bound D, the local time at any other non-faulty neighbor w must be

Cw(Es
v(m1)) ≤ Cu(Es

v(m1)) + D, and w will observe a receive-timestamp Cw(Er
w(m1)) ≤

Cw(Es
v(m1)) + Tu(1 + δ) ≤ (Cu(Es

v(m1)) +D) + Tu(1 + δ).

If v later starts sending a message m2 when local-time at u is Cu(Es
v(m2)), then

Cu(Es
v(m2)) − Cu(Es

v(m1)) ≥ Tl(1 − δ). Thus the receive-timestamp u observes for m2

is at least Cu(Er
u(m2)) ≥ Cu(Es

v(m2)) + Tl(1− δ) ≥ Cu(Es
v(m1)) + 2Tl(1− δ). Thus, for u

and any other non-faulty node w: Cu(Er
u(m2)) ≥ Cu(Es

v(m1))+2Tl(1−δ) = (Cu(Es
v(m1))+

D+Tu(1 + δ))−Tu(1 + δ)−D+ 2Tl(1− δ) ≥ Cw(Er
w(m1)) + (2Tl(1− δ)−Tu(1 + δ)−D) =

Cw(Er
w(m1)) + (2Tl − Tu − δ(2Tl + Tu)−D) > Cw(Er

w(m1)).

Thus the Receipt-Order Condition is satisfied.

10.4 Network Model

Consider a wireless multi-hop network. The set of nodes within transmission range of a

node v is termed nbd(v). v is a member of nbd(v). Let nbd′(v) = nbd(v) \ {v}.
For the purpose of our discussion, we focus on a local broadcast domain within the

wireless network, comprising a sender node s and nodes within its transmission-range,

denoted by nbd′(s), to which we wish to ensure reliable local broadcast delivery. We denote

|nbd′(s)| by d, and define do = min
x∈nbd′(s)

nbd′(x) ∩ nbd′(s). Thus do is the minimum number

of common neighbors of s and any of its neighbors.

10.4.1 Fault Model

We assume the locally bounded fault model of Chapter 8, wherein an adversary may place

faults so long as the number of faults in any single neighborhood does not exceed a specified

number b. Faulty nodes can exhibit Byzantine behavior at higher layers, i.e., they may

change the values/semantics of messages. However all PHY/MAC layers are non-faulty

and faulty nodes do not deliberately cause collisions or spoof MAC addresses.

235

10.4.2 Communication Model

We allow for an unreliable wireless channel where fading and other effects may lead to non-

ideal transmission characteristics. Accidental collisions and interference are possible, due

to an imperfect medium access mechanism. If a node transmits a message, the probability

that a neighbor successfully receives it is ps. Packet errors due to fading, or accidental

interference etc. are subsumed in the error probability (1−ps). The probability of successful

reception ps is assumed independent and identical for each transmission and each receiving

node. A desired access probability 0 < pa < 1, and an accordingly large enough timeout Ta

are chosen, such that if a packet was put into a node’s outgoing queue at time t, then by time

t+ Ta, the packet gets a chance to be transmitted by this node and received by neighbors

with probability at least pa (assumed to be independent of other nodes for simplicity).

Both ps and pa are assumed independent of d, do. Note that Ta is a function of the target

access probability pa, as well as the lengths of packet-queues (and hence traffic-levels in the

network).

All nodes possess a single half-duplex transceiver with an omnidirectional antenna, and

operate on a single channel. They also use a single transmission rate 1, and all valid messages

are of a predetermined (and equal) size (as discussed later, this can be chosen to facilitate

reliable local broadcast). Note that the use of a common transmission rate r bits/sec and a

common message size l bits ensures that all messages occupy a certain minimum time Tl ≥ l
r

on the channel. This extends to messages sent by faulty nodes, because non-faulty nodes can

choose to ignore messages that do not conform to the rate/size specification (information

about the transmission-rate of the message can be obtained from the recipient’s physical

layer), giving faulty nodes no incentive to deviate from this established behavior.

The maximum and minimum propagation delays are dprop
max and dprop

min respectively

(note that dprop
min > 0). Any additional delays in physical layer timestamping are upper-

bounded by tdelay, yielding a maximum delay bound of Td = dprop
max + tdelay. Thus

Tu = Tl + Td.

For the rest of our discussion, we assume that nodes are externally synchronized within

bound D. Under this assumption, we may leverage Observation 1.

1Even in a multi-rate wireless network, it is possible to stipulate as part of the protocol specification that
all nodes use a specific transmission rate (say the lowest available) for critical message types that require
reliable dissemination.

236

We seek to ensure that the conditions of Observation 1 from Section 10.3 are satisfied.

Thus, we want 2Tl − Tu = Tl − Td > D, or Tl > D+ Td. Since Td is independent of Tl, this

is always achievable2 (albeit at the expense of inefficient bandwidth usage) by padding all

messages with extra bits to achieve the desired packetsize l (and hence Tl) for the specified

transmission rate r. Thus the Receipt-Order Condition can be made to hold.

We now provide a brief description of the message representation.

In order to distinguish between different messages, distinct messages sent by a particular

source (originator) are distinguished via identifiers, that we shall denote as id. The id is a

number in some range [0,MAX], where MAX is a suitably large number. Individual nodes

choose the sequence of ids for their messages in some privately determined pseudo-random

manner (such that ids are re-used only after large intervals of time; thus identifiers may be

considered unique for all practical purposes). This ensures that other nodes have no easy

way of anticipating what the sequence of id’s for a given source node will be.

If a node sends two conflicting versions of the same message, it implies that they both

have the same id, but different values. Original messages are represented asm(src, (id, value)).

Of these, the src field is obtained from the MAC header, and thus contains the true MAC

address of the node that put the packet on air, since by assumption MAC addresses are

not subject to spoofing. The (id, value) part is message-content. If a message m is relayed

(repeated) by a neighbor, it is represented as REPEAT(relay src, (m, timestamp)). Once

again, relay src is the MAC address of the relay node, obtained from the MAC header.

The (m, timestamp) part is message-content (m denotes the (src, (id, value)) information

for the message; however as this is now part of message content, a faulty relay node can

modify the src information if it so chooses, though it cannot affect the correctness of the

relay src field in the MAC header).

10.5 The Algorithm

The goal of the algorithm is to achieve the following agreement condition with probabilistic

guarantees:

Definition 6. (Agreement Condition) If a local broadcast source s sends a message, then all

2Even if there is some dependence between Tl and Td, it may still be possible to do so, e.g., if Td ≤ αTl+β

where 0 ≤ α < 1 and β ≥ 0 are constants, then one can make the message long enough so that Tl ≥ D+β

(1−α)
,

and satisy the condition.

237

its non-faulty neighbors should agree on a single value for this message. If s is non-faulty,

this agreed-upon value should be the one actually sent by s. If s is faulty and sends multiple

conflicting versions of the message, nodes should choose the first value that s sent.

For the sake of simplicity and w.l.o.g., we assume that the message m may take one

of two values 0 or 1. The algorithm can be easily generalized to more than two message

values.

Suppose we have sender s. Each other node u follows the following algorithm:

• On receipt of a message m(s, (i, p)) from s directly with (local) receive-timestamp t:

If no other earlier version of this message (i.e., of the form m(s, (i, q))) was received

directly from s, make note of p as a candidate message value, and re-broadcast a copy

of m as REPEAT(u, (m(s, i, p), t)). If an earlier version of the same message was

received directly from s, discard this message.

• On receipt of a message REPEAT(v, (m(s, i, p), tv)):

If no previous REPEAT(v,m(s, i, ∗), ∗) 3 has been received, make note of p as a

candidate for message-id i from s, reported by v with timestamp tv. Keep track of all

such copies of m received via REPEAT messages from different repeaters along with

their reported timestamps.

If this was the first message having the form REPEAT(∗,m(s, i, ∗), ∗) received by

the node, start a timer (tagged by (s, i)) to expire after a duration T + Tu (where

T = Ta + Tr, Ta being the pre-defined access timeout, and Tr being an estimated

upper bound on processing time from receiving a message m to time of generating a

REPEAT and enqueueing it in the outgoing packet queue).

• On expiration of the timer for (s, i):

Perform the following filtration and majority-determination procedure on the received

REPEAT messages containing repeated messages of the form m(s, (i, ∗)):

Timestamp-based filtration and majority determination: Let us refer to the value with

highest repeated copy count as c1, and the other one as c2. If the number of copies of

c2 is less than or equal to b, choose c1 as the correct value. If the number of copies of

c2 is greater than b: discard any messages with value c1 whose timestamp t is greater

3∗ is a placeholder for any value.

238

than the timestamps of more than b copies of c2. Commit to the majority value from

amongst the remaining copies of c1 and c2.

Theorem 30. Consider a local broadcast domain in the wireless network comprising nbd(s)

for some node s. Assume that the physical clocks of all non-faulty nodes satisfy the Receipt-

Order Condition. Let α be a constant satisfying α ≤ pap
2
s − ǫ, where ǫ > 0 is a con-

stant. If at most b nodes in any single neighborhood are faulty (where b ≤
(

α
1+α

)
do),

then the above algorithm ensures that all non-faulty neighbors of s shall be able to achieve

the previously described agreement condition for s’s message with error probability at most

d exp(−
(1− α

pap2
s
)2pap2

sdo

2(1+α)), which is small if do is large, and do >> ln d.

Proof. There are two cases: s is non-faulty or s is faulty:

1. s is non-faulty: s transmits exactly one version of the message (call itm1 = m(s, (i, qm1))).

Since any u ∈ nbd′(s) has at most b faulty nodes in nbd(u), it may receive up to a

maximum of b spurious repeats of s’s message. If the number of REPEAT copies of

the message received from non-faulty nodes (and thus containing the correct value)

is greater than b, this suffices to distinguish the legitimate value from a spurious one.

2. s is faulty: If s is faulty, it may leverage the unreliability of the channel, and attempt

to create confusion by sending more than one version of the message, each containing

different values. We show that despite this, under the assumed conditions, reliable

broadcast will still be achieved.

By assumption, the physical clocks of all non-faulty nodes satisfy the Receipt-Order

Condition. Then, in the algorithm described earlier, copies of the second message received

from non-faulty neighbors get filtered out as follows:

Suppose the sender s sends the two message-versions m1 = m(s, (i, qm1)) and m2 =

m(s, (i, qm2)) at absolute times t1 and t2 respectively.

Hence, any non-faulty node that receives the first message observes a receive-timestamp

that is less than the receive-timestamp for the second message observed by those non-

faulty nodes that receive the second message. All non-faulty nodes attach the correct

observed timestamp to any REPEAT messages they send, and non-faulty nodes that receive

the REPEAT messages record the timestamp along with the message encapsulated in the

REPEAT.

239

Recall that the first message-version sent out by s is m1 and the second is m2. Also,

the message-version with highest pre-filtration count is referred to as c1 and the other one

is referred to as c2.

We show that if more than b REPEAT copies of m1 were received from non-faulty nodes,

the agreement condition is achieved.

Suppose more than b copies of m1 were received from non-faulty nodes, i.e., more than

b correct copies of m1 were received.

Then the following cases may arise:

• If c1 = m1, and at most b copies of m2 were received:

m1 will win the majority vote, and get chosen immediately.

• If c1 = m1, i.e., m1 has the highest pre-filtration count, and greater than b copies of

m2 were received:

A non-faulty node will only send a REPEAT of m2 if it receives the message m2

directly from s, and it will affix a correct receive-timestamp to its REPEAT. Since the

Receipt-Order Condition holds, the timestamp reported in any such REPEAT copy of

m2 will be greater than the timestamp reported in any of the correct REPEAT copies

of m1. Thus, no more than b copies of c2 = m2 can bear a false earlier timestamp.

Resultantly, no copy of m1 sent by a non-faulty node will get filtered out erroneously,

and m1 will win the majority vote.

• If c1 = m2 i.e. m2 has the highest pre-filtration count:

Since greater than b copies of m1 were received from non-faulty nodes, then from the

Receipt-Order Condition, any copy (REPEAT) of m2 sent by a non-faulty node has

a reported timestamp greater than the reported timestamps on the greater-than-b

correct copies of m1, and the timestamp filtration rule ensures that all copies of m2

sent by non-faulty nodes get filtered out. This leaves only up to b copies of m2 sent

by faulty nodes. Thus, when the correct REPEAT copies of m1 are greater than b,

m1 will win the majority vote.

Hence, the algorithm definitely makes the correct decision if more than b copies of m1

were received from non-faulty nodes. This is the same as the sufficient condition we earlier

stated for correct decision with a non-faulty source.

240

When b or fewer copies of m1 are received from non-faulty nodes, the decision may be

correct or wrong, depending on how many copies of m2 were received.

To bound the error probability, we assume the worst, i.e., it is always wrong if b or fewer

copies of m1 are received from non-faulty nodes.

We represent the copies of m1 repeated by non-faulty nodes that were received by a node

u as a random variable Z. Then, the requirement is that Z > b for both the cases (recall

that in the first case, the source is non-faulty, and so it sends only one message-version m1,

but up to b spurious REPEAT messages containing wrong values may still be received from

faulty nodes).

Let the number of non-faulty mutual neighbors of s and u be g. Then g ≥ do − b. Z is

the sum of g i.i.d. Bernoulli(pap
2
s) random variables, since a repeated copy of m1 is received

from a non-faulty neighbor if that neighbor received m1 directly from s (probability ps), it

was able to transmit the REPEAT packet before timeout (probability pa), and the REPEAT

was successfully received by u (probability ps). This allows us to apply the following special

form of the Chernoff bound [83]:

Pr[Z ≤ (1− β)E[Z]] ≤ exp(
−β2E[Z]

2
), 0 < β < 1 (10.1)

Knowing that b ≤ α
1+αdo ≤ αg, we can set β = 1 − α

pap2
s

to obtain b ≤ (1 − β)E[Z]. Thus

application of the Chernoff bound4 yields:

Pr[Z ≤ b] ≤ Pr[Z ≤ (1− β)E[Z]]

≤ exp(−
(1− α

pap2
s
)2pap

2
sg

2
)

≤ exp(−
(1− α

pap2
s
)2pap

2
sdo

2(1 + α)
)

(10.2)

Applying the union bound over all d neighbors of sender s, probability that any node makes

an error is at most d exp(−
(1− α

pap2
s
)2pap2

sdo

2(1+α)), which is small for large do, and do >> ln d.

Note that, as d increases, the timeout component Ta would typically also need to increase

to maintain a sufficiently high value of pa (due to increased contention for the shared

4Since we need β > 0 for application of the Chernoff Bound, this yields the constraint that α ≤ pap2
s − ǫ

with ǫ > 0. Thus α (which gives a measure of the proportion of tolerable faults) can be large when the
probability of successful receipt (pap2

s) is large, and can only be small when pap2
s is small. Also note that

these constants determine how much larger do should be compared to d to achieve small error probability.

241

channel). However, in most cases of practical interest, d will not be unduly large, and a

moderate value for T can suffice. Besides, the protocol is still fairly scalable, as it only

requires one message to be sent by each node.

In our analysis, we have assumed that whenever the number of copies of m1 received

from non-faulty nodes is less than b, a wrong decision is made. In actuality, if the number of

copies of m1 received from non-faulty nodes is less than b, there may still be situations where

a correct decision may be made (it is possible that the total number of received copies of

m2 (from faulty or non-faulty nodes) may be much less than b, since these transmissions are

also subject to errors in reception). Thus, the presented analysis establishes a conservative

upper bound on the error probability.

10.6 Possible Optimizations

From a practical perspective, one can consider many possible enhancements/optimizations

to the basic algorithm.

1. Each node can be made to retransmit its REPEAT messages k times. This can help

improve loss-resilience, without causing duplication problems, since, in the absence of

address spoofing (which is one of our assumptions), two receipts of the same message

are easily identified by the repeater’s address, and extra copies discarded.

2. One could consider triggering the reliable local broadcast algorithm only if at least

one warning message is heard from a node claiming to have heard two inconsistent

messages sent by s (this would work only if it is very likely that a fair number of

nodes will receive both variants of s’s message). Also, while faulty nodes can raise

false alarms, that is no worse that proactively using the algorithm each time.

10.7 Discussion on Synchronization Requirements

The synchronization assumptions required to ensure the Receipt-Order Condition holds

may actually be practically feasible in many settings.

One can envision future scenarios where wireless nodes may be equipped with on-chip

atomic clocks [56] with very low drift. Thus, if the clocks are synchronized with an external

time source at time of deployment, then one might bound the total skew over the entire

242

operational lifetime of the network, and this would not be overly large. Alternatively, nodes

might be GPS-equipped, thus providing an out-of-band means of external synchronization.

In such scenarios, the conditions for Observation 1 can be made to hold.

In the absence of on-chip atomic clocks or GPS-equipped devices, it may not be possible

to ensure that all nodes in the network be synchronized to an external clock within some

constant bound D. However, it may still be quite feasible to ensure that each node is

internally synchronized within constant bound D with its two-hop neighbors. One could

envisage a situation where nodes are initially synchronized at time of deployment, and

thereafter periodically run a re-synchronization protocol, to ensure that any any two nodes

within two-hops of each other always stay internally synchronized within the bound D.

A lightweight Byzantine time synchronization protocol might possibly suffice for this.

In the period between two consecutive re-synchronizations, the conditions of Observation 2

can thus be made to hold for every local broadcast domain in the network.

10.8 Using the Primitive for Multi-Hop Broadcast

We briefly discuss how the proposed primitive could potentially be used as a building block

in a protocol to achieve broadcast in a multi-hop setting. As was mentioned earlier, the

algorithm we described in Section 8.4 was used as a subroutine in the bounded-collision-

resilient algorithm of [58]. It was observed in [58] that this algorithm requires neighbors of

the original sender to agree on the value it sent, even if the original sender is faulty; for

other nodes in the network, correctness of the algorithm only requires that neighbors of non-

faulty nodes agree on the messages they (the non-faulty nodes) send, and this property was

exploited. It follows that, if one is using a global broadcast protocol with similar properties,

one could consider using the reliable local broadcast primitive in the neighborhood of the

original sender, and merely stipulate that other nodes retransmit their messages a sufficient

number of times.

Otherwise, if the protocol requires that neighbors of all nodes agree on what they

sent, one could potentially proceed as follows: Let us consider a multi-hop network of

n nodes, where the minimum node degree is dmin, maximum node degree is dmax, and

do = min
x

min
y∈nbd′(x)

|nbd′(x)∩nbd′(y)|. Thus do is the minimum number of common neighbors

shared by any two neighbors. The number of faulty nodes in any single neighborhood is at

243

most b ≤ α
1+αdo where α ≤ pap

2
s − ǫ(ǫ > 0). Through exchange of periodic hello messages,

nodes maintain a list of neighbors. Neighbors are added/removed only if more than a certain

number of HELLO messages have been consecutively received/lost. This helps maintain a

degree of stability in the neighborhood information, in the face of short-term signal fluctu-

ations. Suppose we have a global multi-hop broadcast protocol that assumes reliable local

broadcast, and requires a total of O(nm) messages to be sent (m is a constant), i.e. has

message complexity polynomial in n. Then, for each step of the protocol that requires a

node to perform a local broadcast, the reliable local broadcast primitive protocol is run in

the local broadcast domain comprising the node and its neighbors. Following the proof argu-

ment of Theorem 30, we can obtain that the probability local broadcast is achieved reliably

is at least 1− dmax exp(−
(1− α

pap2
s
)2pap2

sdo

2(1+α)) = 1− exp(−
(1− α

pap2
s
)2pap2

sdo

2(1+α) + ln dmax). Since nm

such successful local broadcasts are needed, if do = c1m log n for a suitably chosen constant

c1 >
2(1+α)

(1− α

pap2
s
)2pap2

s
, and dmax ≤ c2 log n for another suitably chosen constant c2 (note that

c2 ≥ c1m by definition), then by applying the union bound, one may see that the global

broadcast will also succeed with probability at least 1−nm exp(−
(1− α

pap2
s
)2pap2

sdo

2(1+α) + ln dmax),

which approaches 1 for large n.

The tolerable number of per-neighborhood faults would be given by the minimum of

the tolerance threshold for the global protocol, and the local broadcast primitive.

10.9 Discussion

The algorithm we have outlined in this chapter is primarily an exploratory proof-of-concept

approach, whereby we have sought to highlight the potential for leveraging the shared nature

of the medium in conjunction with knowledge of physical layer characteristics (in this case,

the transmission rate), and other information from lower-layers (in this case, timestamps),

to achieve useful message-ordering conditions, which can facilitate the design of scalable

probabilistic solutions to the reliable local broadcast problem, and possibly other reliable

communication primitives. However, there are still numerous outstanding issues that need

to be addressed.

One issue is that of using a suitable Byzantine time synchronization protocol to ensure

internal synchronization between neighboring nodes (see Section 10.7). It might be possi-

ble to leverage existing work in this area, e.g., [107]. Another issue is that one might wish

244

to eliminate the requirement in Observation 2 that during the interval in which the local

broadcast is occurring, nodes do not adjust their clocks. This would require a synchro-

nization algorithm that can run simultaneously with the local broadcast algorithm without

affecting the Receipt-Order Condition. Additionally, the described algorithm assumes i.i.d.

loss probabilities. If channel losses exhibit spatial correlation, the algorithm may need to

be modified to handle such situations.

A major shortcoming of the algorithm is the need to estimate the timeout T based

on access probability pa, average length of outgoing packet-queues, and processing time

to generate a REPEAT. It would be preferable to have an algorithm where nodes decide

to invoke the filtration and majority determination procedure based on some event, e.g.,

receipt of certain messages.

Many of the assumptions in this chapter are justified by assuming a network with a

single channel and omnidirectional antennas. Also relevant are alternative scenarios where

multiple channels or beam-forming antennas are available. We remark that usage of multiple

channels or directional antennas tends to alter the broadcast nature of the wireless medium,

and makes the network look increasingly like a point-to-point network. Thus, algorithms

based on the point-to-point abstraction may increasingly seem suitable in such scenarios.

Furthermore, as mentioned in Section 7.3, the issue of handling a bounded number of

collisions in a grid network when the channel is reliable was addressed in [58]. It is relevant

to consider the possibility of combining ideas from [58] with some of the ideas discussed

in this chapter, to handle both an unreliable channel and a bounded number of collisions.

Other possibilities include trying to exploit the availability of multiple channels (as in [27]),

or other forms of physical layer diversity.

245

Chapter 11

Conclusion

In this dissertation we have investigated the performance of wireless networks that are

subject to miscellaneous forms of functional constraints or malfunction. As wireless net-

works proliferate and find use in diverse scenarios, they will increasingly need to operate in

the presence of heterogeneous (and often constrained) hardware capabilities. Furthermore,

fault-tolerant communication algorithms will be required to provide the building blocks for

reliable operation in the face of failure and/or disruption. The research performed as part

of this dissertation has contributed to developing an understanding of some of the issues

that would arise in such scenarios.

We have examined the routing and scheduling implications of having heterogeneous ra-

dios with constrained switching ability, and channels with heterogeneous characteristics,

through theoretical investigation. The asymptotic capacity results in Chapter 3 and Chap-

ter 4 quantify the impact of channel switching constraints, and also provide intuition about

the implications of such switching constraints for load-balanced routing and scheduling.

The results in Chapter 5 provide insight regarding suitable packet scheduling strategies for

networks where channels can have diverse rate characteristics.

The channel and interface management protocol described in Chapter 6 provides a proof-

of-concept of the possibility of evolving a generalized conceptual design approach toward

handling various kinds of physical layer heterogeneity.

The broadcast results in Chapter 8 and Chapter 9 establish fundamental limits on fault-

tolerance and also provide insight into the potential for exploiting the broadcast nature of

the wireless medium for reliable communication.

Some of the theoretical results that are part of this dissertation have also served as

building blocks for other work. The asymptotic capacity results for random (c, f) assign-

ment that were described in Chapter 4 have been used to obtain asymptotic capacity results

246

with random key pre-distribution in [11]. The algorithm for broadcast with locally-bounded

faults is used in [58] as a subroutine in a broadcast algorithm that is resilient to an adversary

that can cause a bounded number of collisions.

We have also identified and discussed many interesting directions for future work build-

ing upon this research, both in terms of theory and protocol design.

247

Appendix A

Notation and Terminology

Throughout the text of this dissertation, we have used the following standard asymptotic

notation:

• f(n) = O(g(n)) means that ∃ c > 0, No > 0, such that f(n) ≤ cg(n) for all n ≥ No

• f(n) = o(g(n)) means that lim
n→∞

f(n)
g(n) = 0

• f(n) = ω(g(n)) means that g(n) = o(f(n))

• f(n) = Ω(g(n)) means that g(n) = O(f(n))

• f(n) = Θ(g(n)) means that ∃ c1 > 0, c2 > 0, No > 0, such that c1g(n) ≤ f(n) ≤
c2g(n) for all n ≥ No

When f(n) = O(g(n)), any function h(n) = O(f(n)) is also O(g(n)). We often refer to

such a situation as h(n) = O(f(n)) =⇒ O(g(n)).

Whenever we use the notation “log” without explicitly specifying the base, we imply

the natural logarithm. We also use the notation “ln” for the natural logarithm in many

proofs. We explicitly specify the base whenever it is other than e (the base of the natural

logarithm).

When we use the term w.h.p. (with high probability), we imply with probability that

tends to 1 as n tends to ∞ (where n is as defined in the specific context).

248

Appendix B

Proofs of Connectivity Results

The necessary conditions for connectivity with adjacent (c, f) assignment and random (c, f)

assignment are both obtained by an adaptation of the proof techniques used in [42] to obtain

the necessary condition for connectivity. The major difference stems from the fact that in

the presence of switching constraints, two nodes may be within range and yet be unable to

communicate with each other (if they cannot switch(operate) on any common channel).

The following lemma which was stated and proved in [42] will be used in our proofs.

Lemma 48. (i) For any p ∈ [0, 1]

(1− p) ≤ e−p

(ii) For any given θ ≥ 1, there exists p0 ∈ [0, 1], such that

e−θp ≤ (1− p), ∀0 ≤ p ≤ p0

If θ > 1, then p0 > 0.

Proof. See Lemma 2.1 in [42].

Lemma 49. If πr2(n) = (log n+b)
pn , then, for any fixed θ < 1:

n(1− pπr2(n))(n−1) ≥ θe−b (B.1)

for sufficiently large n.

Proof. This is basically the proof of Lemma 2.2 from [42], as presented in [42], with the

minor change that πr2(n) is replaced with pπr2(n). Taking the log of the L.H.S. and using

249

the Taylor Series expansion, we have:

logL.H.S. = log n+ (n− 1) log (1− pπr2(n))

= log n− (n− 1)
∞∑

i=1

(pπr2(n))i

i

= log n− (n− 1)

(
2∑

i=1

(log n+ b)i

ini
+ ǫ(n)

)

where ǫ(n) =
∞∑

i=3

pπr2(n))i

i
=

∞∑

i=3

(log n+ b)i

ini

≤ 1

3

∞∫

i=2

(
log n+ b

n

)x

dx

≤ 1

3

(
log n+ b

n

)2

for large n

From the above, we obtain:

logL.H.S. ≥ log n− (n− 1)

(
log n+ b

n
+

5(log n+ b)2

6n2

)

≥ −b− (log n+ b)2 − (log n+ b)

n
≥ −b− δ

Setting δ = ln 1
θ , and taking exponents on both sides yields that the L.H.S. ≥ θe−b for large

n.

B.1 Adjacent (c, f) Assignment: Proof of Theorem 1

Given that a node has block location i, the probability that it can operate on a common

channel with another node (we shall often refer to this as sharing a channel) within its

range is given in (3.3), and denoted by padj(i).

Note that padj(i) is different for different block locations i primarily because nodes with

channel-blocks at the fringes of the band are less likely to share channels with other nodes.

Since we are deriving a necessary condition for connectivity, it is possible to make the

following assumption for the purpose of this proof:

Channel pairs (i, c − f + i + 1), 1 ≤ i ≤ f − 1 possess magical capabilities, such that

250

communication on channel i ends up being visible on channel c− f + i+ 1,and vice-versa.

Thus, if a node has channel i, then it can also communicate with a node that does not

share any channel with it, but has channel c−f + i+ 1. Another way to view this situation

is that although nodes are assigned channels as per the adjacent (c, f) model, at time of

network operation, a node having channel c− f + i+ 1, 1 ≤ i ≤ f − 1 uses channel i instead

(i.e., c− f + i+ 1 serves as an alias for i).

Under this assumption, padj(i) = min{ 2f−1
c−f+1 , 1}, for all i. If the network is disconnected

under this assumption, then it must necessarily be so otherwise. This can be seen thus:

suppose we are given a network instance with nodes assigned adjacent channels as per the

adjacent (c, f) model, and we then impose the assumption stated above. Suppose this

network is disconnected. Now the imposed assumption is removed, but the channel block

assigned to each node remains unchanged. Then, in the new scenario, some nodes that

were earlier able to communicate, will not be able to do so anymore; however those nodes

that were incapable of communicating will preserve their status quo. Thus, a necessary

condition for the hypothetical network is also valid for the actual network.

Therefore, to establish a necessary condition for connectivity with adjacent (c, f) as-

signment, we estabslish a necessary condition for connectivity in a scenario where we have

the additional assumption described above. This proof is an adaptation of a similar proof

in [42] (Theorem 2.1 in [42].

We focus on the disconnection event where singleton sets are partitioned from the rest

of network. Recall that p = min{ 2f−1
c−f+1 , 1}. When f ≥ c+2

3 , then p = 1, i.e., any pair of

nodes that are within range can communicate with each other, and the necessary condition

result from [42] applies directly. Hence, we consider only the scenario f < c+2
3 for which

p = 2f−1
c−f+1 . Also note that:

πr2(n) ≤ 2 log n

pn
≤ 2α log2(n)

n
where α is a constant

(∵ p ≥ 1

c− f + 1
>

1

c
and c ≤ α log n for some constant α

and b(n) < log n for large n ∵ lim sup
n→∞

b(n) < +∞)

(B.2)

The probability that a node x is isolated, i.e., cannot communicate with any other node,

is given by p1 = (1−pπr2(n))(n−1). Consider the event that nodes x and y are both isolated.

251

(2)(1) (3)

i j i j i j

Figure B.1: Three Cases: Necessary Condition for Connectivity

There are three different cases for this (also see Fig. B.1):

1. x and y lie within distance r(n) of each other, but do not share a common channel

2. x and y do not lie within distance r(n) of each other, but have overlapping neighbor-

hood regions, i.e., they lie within a distance 2r(n) of each other

3. The neighborhood regions of x and y are disjoint, i.e., the distance between x and y

is greater than 2r(n).

The probability that both x and y are isolated is given by the probability that they can-

not communicate with each other, and none of the remaining n−2 nodes can communicate

with either of them.

From the geometry of the situation (Fig. B.2), it follows that if x and y are separated

by a distance d(n) then the overlap area between the neighborhoods of x and y = 2 [(area

of quadrant subtending angle 2θ) − (area of △ABC)] = 2r2(n)θ − r2(n)sin(2θ), where

θ = cos−1
(

d(n)
2r(n)

)
.

Let us first consider case 1, i.e., the distance between x and y is d(n) ≤ r(n). We view

it as two sub-cases (noting that 16 log log n
log n < 1 for large n):

• (i) y is at distance d(n) ≤ r′(n) =
(

16 log log n
log n

)
r(n) of x

• (ii) y is at distance d(n) > r′(n) =
(

16 log log n
log n

)
r(n) of x

The probability that a node z 6= x, y within range of both x and y is capable of communi-

cating with at least one of x and y, given that x, y cannot communicate with each other is

q ≥ min{3f−1,c−f+1}
c−f+1 . Also, when f ≤ c+2

4 , then 3f − 1 ≤ c− f + 1, and q ≥ 3f−1
c−f+1 ≥

3p
2 .

For sub-case (i) of case (1), the overlap area between the neighborhoods of x and y

is at least (1 − δ)πr2(n) for any δ > 0 and large enough n, since the separation d(n) ≤
(

16 log log n
log n

)
r(n). For our purpose, it suffices to take δ = 1

5 , yielding an overlap area of at

252

x y
B

r(n)r(n)

d(n)

θ

Figure B.2: Overlap Area of Neighborhoods

least 4πr2(n)
5 . Then the probability that a node can communicate with either x or y or both

is at least q times the probability of lying in the overlap area.

Thus, the contribution of subcase (i) of case (1) to the probability that both x and y

are isolated can be upper-bounded as follows:

When f ≤ c+2
4 (implying q ≥ 3p

2):

p21(i) ≤ πr′2(n)(1− p)
(

1− q4πr2(n)

5

)n−2

< πr2(n)

(
1− 4qπr2(n)

5

)n−2

≤ πr2(n)

(
1− 6pπr2(n)

5

)n−2

≤ πr2(n)e−(n−2) 6
5
pπr2(n) from Lemma 48

≤ 2α log2 n

n
e−(n−2)

6(logn+b(n))
5n from (B.2)

= e−
6(logn+b(n))

5
+

12(log n+b(n))
5n

+log 2α+2 log log n−log n

= e−
11 log n

5
− 6b(n)

5
+

12(log n+b(n))
5n

+log 2α+2 log log n

≤ e− 21 log n

10
−b(n) for large n

≤ e−2 log n−b(n)− 1
2

log log n for large n

(B.3)

When f > c+2
4 , p = min{ 2f−1

c−f+1 , 1} ≥ 1
2 ,∀c ≥ 2. For this situation, we merely consider the

probability that one of the remaining n − 2 nodes can communicate with one of x and y

253

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

B

i j

r(n) r(n)

D ≤ r(n)
2

θ ≥ π
3

θ ≥ π
3

d(n) > r′(n)

d(n) > r′(n)

Figure B.3: First Case: Necessary Condition for Connectivity

(say x) to obtain the upper bound on both x and y being isolated:

p21(i) ≤ πr′2(n)(1− p)(1− pπr2(n))n−2

≤
(

256(log logn)2

log2 n

)
πr2(n)(1− pπr2(n))n−2

≤
(

256(log logn)2

log2 n

)
πr2(n)e−(n−2)pπr2(n) from Lemma 48

≤
(

256(log logn)2

log2 n

)(
logn+ b(n)

pn

)
e−(n−2)

(logn+b(n))
n

≤
(

256(log logn)2(2(2 log n))

n log2(n)

)
e−(n−2)

(logn+b(n))
n ∵ p ≥ 1

2

≤ e− log n−b(n)+
2(logn+b(n))

n
+log 256+log 4−log n−log log n+2 log log log n

≤ e−2 log n−b(n)− 1
2

log log n for large n

(B.4)

From B.3 and B.4, for all valid f :

p21(i) ≤ e−2 log n−b(n)− 1
2

log log n for large n (B.5)

For sub-case (ii), the situation is depicted in Fig. B.3. The probability that some node can

communicate with at least one of x or y is lower bounded by the probability that it lies in

range of x (this probability is πr2(n)) and shares a channel with it (this probability is p),

or it lies out of range of x but within range of y (this probability is at least
√

3r(n)r′(n)
2 for

254

large enough n)1, and shares a channel with y (this probability is p). The contribution to

the probability that both x and y are isolated is thus at most:

p21(ii) ≤
(
πr2(n)− πr′2(n)

)
(1− p)

(
1− p

(
πr2(n) +

√
3r(n)r′(n)

2

))n−2

≤ πr2(n)

(
1− p

(
πr2(n) +

√
3r(n)r′(n)

2

))n−2

≤ πr2(n)

(
1− pπr2(n)

(
1 +

√
3r′(n)

2πr(n)

))n−2

≤ πr2(n)

(
1− pπr2(n)

(
1 +

8
√

3 log log n

π logn

))n−2

≤ πr2(n)e
−(n−2)pπr2(n)(1+ 4 log log n

log n
)

from Lemma 48 (∵ π < 2
√

3))

≤
(

2α log2 n

n

)
e
−(n−2)pπr2(n)(1+ 4 log log n

log n
)

from (B.2)

≤ e−(n−2)pπr2(n)(1+ 4 log log n

log n
)+log 2α+2 log log n−log n

≤ e− log n−b(n)−4 log log n+
2(log n+b(n))(1+

4 log log n
log n

)

n
+log 2α+2 log log n−log n

≤ e−2 log n−b(n)−log log n for large n

(B.6)

For case 2, the probability that some node can communicate with either x or y can be

lower bounded by the probability that it lies in range of x (this probability is πr2(n)) and

shares a channel with it (this probability is p), or it lies out of range of x but within range

of y (the disjunction of the two circles in Fig. B.2 is at least 1
2πr

2(n) for this case), and

shares a channel with it. Thus the contribution of this case to the probability that both x

and y are isolated is upper bounded by:

p22 = (4πr2(n)− πr2(n))(1− 3

2
pπr2(n))n−2

≤ 3πr2(n)e−
3(n−2)pπr2(n)

2 from Lemma 48

≤
(

6α log2 n

n

)
e−(n−2)

3(log n+b(n))
2n from (B.2)

≤ e− 3
2

log n− 3
2
b(n)+

3(log n+b(n))
n

+log 6α+2 log log n−log n

1The area within range of y but out of range of x is given by πr2(n)− overlap area ; where overlap area =
2 (area of quadrant subtending angle 2θ− area of △ABC) ≤ πr2(n)− r2(n) sin(2θ). Note that π

3
≤ θ ≤ π

2
.

Thus the non-overlap area ≥ r2(n) sin(2θ) = r2(n)(2 sin θ cos θ) = r2(n)2 sin θ
d(n)
2r(n)

≥ 2r2(n)
`

sin π
3

´

r′(n)
2r(n)

≥
√

3r(n)r′(n)
2

255

≤ e− 9
4

log n− 3
2
b(n) for large n (B.7)

For case 3, the probability that both x and y are isolated is upper bounded by:

p23 = (1− 4πr2)(1− p(2πr2(n)))n−2

≤ (1− 2pπr2(n))n−2

≤ e−2(n−2)pπr2(n) from Lemma 48

≤ e−2 log(n)−2b(n)+
4(log n+b(n))

n

(B.8)

Then, the probability p2 that nodes x and y are both isolated is given by:

p2 ≤ p21(i) + p21(ii) + p22 + p23 (B.9)

Let us first consider the case where b(n) = b is a constant.

Pr[disconnection] ≥
∑

x

Pr[x is only isolated node]

≥
∑

x

Pr[x isolated]−
∑

x,y 6=x

Pr[x and y both isolated]

= np1 − n(n− 1)p2

≥ n(1− pπr2(n))(n−1) − n(n− 1)
(
p21(i) + p21(ii) + p22 + p23

)

≥ θe−b − n(n− 1)
(
e−2 log n−b− 1

2
log log n

+e−2 log n−b−log log n + e−
9
4

log n−b + e−2 log n−2b+
4(log n+b)

n

)

≥ θe−b − (1 + ǫ)e−2b

for any θ < 1, ǫ > 0, and large n (Lemma 48, Lemma 49)

(B.10)

Now consider the case where b(n) is not constant, and lim sup
n→∞

b(n) = b. Then, for

any ǫ > 0, b(n) − b ≤ ǫ for large n. Since the probability of disconnection monotonically

decreases in b(n), we can take the following bound:

Pr[disconnection] ≥ θe−(b+ǫ) − (1 + ǫ)e−2(b+ǫ)

(for large enough n)
(B.11)

256

Since (B.10) and (B.11) hold for all any θ < 1, ǫ > 0 and large enough n, it follows that

when lim sup
n→∞

b(n) < +∞, the network is asymptotically disconnected with some positive

probability.

B.2 Random (c, f) Assignment: Proof of Theorem 4

From the model definition, the probability that two nodes in range of each other can operate

on a common channel (we will often refer to this as sharing a channel) is p = prnd where

1 − prnd = (1 − f
c)(1 − f

c−1)...(1 − f
c−f+1). Note that for f > c

2 , p = prnd = 1, as any two

nodes are guaranteed to have at least one common channel. Then the necessary condition

for connectivity proved in [42] is applicable. Therefore, we will only consider the case f ≤ c
2 .

The probability that a node x is isolated, i.e., cannot communicate with any other node

is give by p1 = (1− pπr2(n))(n−1).

We begin by making the following observations:

p = prnd ≥
f

c
(B.12)

πr2(n) ≤ 2c log n

f
≤ 2α log2(n)

n
for some constant α

∵ c = O(log n) =⇒ c ≤ α log n for some constant α and large enough n

and b(n) < log n for large n ∵ lim sup
n→∞

b(n) = b < +∞

(B.13)

Consider the event that two nodes x and y are both isolated. There are three different

cases for this (Fig. B.1):

1. x and y lie within distance r(n) of each other, but do not share a common channel

2. x and y do not lie within distance r(n) of each other, but have overlapping neighbor-

hood regions, i.e. lie within distance 2r(n) of each other

3. The neighborhood regions of x and y are disjoint, i.e., the distance between them is

greater than 2r(n).

From the geometry of the situation (Fig. B.2), it follows that if x and y are separated

by a distance d(n) then the overlap area between the neighborhoods of x and y = 2 (area

257

of quadrant subtending angle 2θ − area of △ABC) = 2r2(n)θ − r2(n)sin(2θ) ≤ πr2(n) −
r2(n) sin(2θ), where θ = cos−1 d(n)

2r(n) .

Of these, for case (1), consider two sub-cases:

• (i) y is at distance d(n) ≤ r′(n) =
(

16 log log n
log n

)
r(n) from x

• (ii) y is at distance d(n) > r′(n) =
(

16 log log n
log n

)
r(n) from x

The probability that a node z 6= x, y within range of both x and y is capable of commu-

nicating with at least one of x and y, given that they do not have a common channel of

operation, is given by q = 1− (1− 2f
c)(1− 2f

c−1)...(1− 2f
c−f+1) ≥ p (recall that we are only

considering f ≤ c
2).

When f ≥ c−f+1
2 , it is evident that q = 1 ≥ p. When f < c−f+1

2 :

1− p
1− q =

(1− f
c)(1− f

c−1)...(1− f
c−f+1)

(1− 2f
c)(1− 2f

c−1)...(1− 2f
c−f+1)

=

(
1 +

f
c

1− 2f
c

)(
1 +

f
c−1

1− 2f
c−1

)
...

(
1 +

f
c−f+1

1− 2f
c−f+1

)

≥ 1 +
f
c

1− 2f
c

+

f
c−1

1− 2f
c−1

+ ...+

f
c−f+1

1− 2f
c−f+1

≥ 1 +
f

c
+

f

c− 1
+ ...+

f

c− f + 1

≥ 1 +
f2

c

(B.14)

Hence:

q ≥ 1− 1− p
1 + f2

c

= p+ (1− p)− 1− p
1 + f2

c

= p+ (1− p)
(

1− 1

1 + f2

c

)
= p


1 +

(1
p − 1)f2

c

1 + f2

c




= p

(
1 +

1
p − 1
c

f2 + 1

)
≥ p

(
1 +

c
2f2 − 1
c

f2 + 1

)
from Lemma 14 and the fact that p = prnd

≥ p


1 +

c
2f2 (1− 2f2

c)

c
f2 (1 + f2

c)




(B.15)

For sub-case (i) of case (1), the overlap area between the neighborhoods of x and y is at

258

least (1 − δ)πr2(n) for any δ > 0 and large enough n, since the separation d(n) ≤ r′(n) =
(

16 log log n
log n

)
r(n). For our purpose, it suffices to take δ = 1

16 , yielding an overlap area of

at least 15πr2(n)
16 . Then the probability that a node can communicate with either x or y or

both is at least q times the probability of lying in the overlap area.

When f
c ≤

(log log n)3

log n , then from (B.15):

q ≥ p


1 +

c
2f2 (1− 2f2

c)

c
f2 (1 + f2

c)




≥ p
(

1 +
1

3

)
=

4p

3
for

f

c
≤ (log logn)3

log n
and large n

(B.16)

Resultantly, the contribution of subcase (i) of case (1) to the probability that both x and

y are isolated can be upper-bounded as:

p21(i) ≤ πr′2(n)(1− p)(1− q15πr2(n)

16
)n−2

< πr2(n)(1− 15qπr2

16
(n))n−2

≤ πr2(n)(1− 5

4
pπr2(n))n−2 (∵

f

c
≤ (log logn)3

log n
)

≤ πr2(n)e−
5
4
(n−2)pπr2(n) from Lemma 48

≤
(

2α log2(n)

n

)
e−

5
4
(n−2)pπr2(n) from (B.13)

≤ e− 5
4

log n− 5
4
b+

5(log n+b)
2n

−log n+log 2α+2 log log n

≤ e− 17
8

log n− 5
4
b for large n

≤ e−2 log n−b(n)− 1
2

log log log n

(B.17)

For sub-case (i) of case (1), when f
c >

(log log n)3

log n , we lower bound the probability of a

node being able to communicate with either of x and y by the probability that it is able to

communicate with one of them (say x). Thus the probability that both x and y are isolated

is at most:

259

p21(i) ≤ πr′2(n)(1− p)(1− pπr2(n))n−2

≤
(

256(log logn)2

log2 n

)
πr2(n)(1− pπr2(n))n−2

≤
(

256(log logn)2(log n+ b(n))

pn log2 n

)
(1− pπr2(n))n−2

≤
(

256(log logn)2 log n(log n+ b(n))

n(log logn)3 log2 n

)
(1− pπr2(n))n−2

(∵ p ≥
f

c
>

(log log n)3

log n
)

≤
(

256(log logn)2(2 log2 n)

n(log logn)3 log2 n

)
(1− pπr2(n))n−2

≤
(

512

n log log n

)
e−(n−2)pπr2(n) from Lemma 48

≤ e− log n−b(n)+
2(log n+b)

n
−log n+log 512−log log log n

≤ e−2 log n−b(n)− 1
2

log log log n for large n

(B.18)

From (B.17) and (B.18), in sub-case (i), for all f , and large enough n:

p21(i) ≤ e−2 log n−b(n)− 1
2

log log log n (B.19)

For sub-case (ii), the situation is depicted in Fig. B.3. The probability that some node

can talk to either x or y is lower bounded by the probability that it lies in range of x (this

probability is πr2(n)) and shares a channel with it (the probability of sharing a channel is

p), or it lies out of range of x but within range of y (at least
√

3r(n)r′(n)
2 for large enough

n)2, and shares a channel with y (once again this probability is p). The probability that

2The area within range of y but out of range of x is given by πr2(n)− overlap area ; where overlap area =
2 (area of quadrant subtending angle 2θ − area of △ABC) ≤ πr2(n) − r2(n) sin(2θ). Note that π

3
≤ θ ≤ π

2

for sub-case (ii). Thus, the non-overlap area ≥ r2(n) sin(2θ) = r2(n)(2 sin θ cos θ) = r2(n)(2 sin θ)(d(n)
2r(n)

) ≥
2r2(n)(sin π

3
)(r′(n)

2r(n)
) ≥

√
3r(n)r′(n)

2
.

260

both x and y are isolated can thus be upper bounded as:

p21(ii) ≤ (πr2(n)− πr′2(n))(1− p)
(

1− p
(
πr2(n) +

√
3r(n)r′(n)

2

))n−2

≤ πr2(n)

(
1− p

(
πr2(n) +

√
3r(n)r′(n)

2

))n−2

≤ πr2(n)

(
1− pπr2(n)

(
1 +

√
3r′(n)

2πr(n)

))n−2

≤ πr2(n)

(
1− pπr2(n)

(
1 +

8
√

3 log log n

π logn

))n−2

≤ πr2(n)e
−(n−2)pπr2(n)(1+ 4 log log n

log n
)

from Lemma 48 (∵ π < 2
√

3))

≤
(

2α log2 n

n

)
e
−(n−2)pπr2(n)(1+ 4 log log n

log n
)

from (B.2)

≤ e−(n−2)pπr2(n)(1+ 4 log log n

log n
)+log 2α+2 log log n−log n

≤ e− log n−b(n)−4 log log n+
2(log n+b(n))(1+

4 log log n
log n

)

n
+log 2α+2 log log n−log n

≤ e−2 log n−b(n)−log log n for large n

(B.20)

For case 2, the probability that some node can communicate with either x or y is lower

bounded by the probability that it lies in range of x (which is πr2(n)) and shares a channel

with it (which is p), or it lies out of range of x but within range of y (the disjunction of

the two circles in Fig. B.1 (2) has area at least 1
2πr

2(n)), and shares a channel with it.

Thus the contribution of this case to the probability that both x and y are isolated is upper

bounded by:

p22 ≤
(
4πr2(n)− πr2(n)

)(
1− pπr2(n)− 1

2
pπr2(n)

)n−2

≤
(
4πr2(n)− πr2(n)

)(
1− 3

2
pπr2(n)

)n−2

≤ 3πr2(n)e−
3
2
(n−2)pπr2(n) from Lemma 48

≤
(

6α log2 n

n

)
e−(n−2)

3(log n+b(n))
2n from (B.13)

≤ e− 3
2

log n− 3
2
b(n)+

3(log n+b(n))
n

−log n+log 6α+2 log log n

≤ e− 9
4

log n− 3
2
b(n) for large n

(B.21)

261

The contribution of case 3 to the probability that both x and y are isolated is given by:

p23 ≤ (1− 4πr2)(1− 2pπr2(n))n−2

≤ (1− 2pπr2(n))n−2

≤ e−2(n−2)pπr2(n) from Lemma 48

≤ e−2 log n−2b+
2(log n+b)

n

(B.22)

Then, the probability p2 that nodes i and j are both isolated is given by:

p2 = p21(i) + p21(ii) + p22 + p23 (B.23)

Let us first consider the case where b(n) = b is a constant.

Pr[disconnection] ≥
∑

x

Pr[x is only isolated node]

≥
∑

x

Pr[x isolated]−
∑

x,y

Pr[x and y both isolated]

= np1 − n(n− 1)p2

≥ n(1− pπr2(n))(n−1) − n(n− 1)(p21(i) + p21(ii) + p22 + p23)

≥ θe−b − n(n− 1)
(
e−2 log n−b− 1

2
log log log n

+e−2 log n−b−log log n + e−
9
4

log n− 3
2
b + e−2 log n−2b+

2(log n+b)
n

)

≥ θe−b − (1 + ǫ)e−2b

for any θ < 1, ǫ > 0, and large n (Lemma 48, Lemma 49)

(B.24)

Now consider the case where b(n) is not constant, and lim sup
n→∞

b(n) = b. Then, for

any ǫ > 0, b(n) − b ≤ ǫ for large n. Since the probability of disconnection monotonically

decreases in b(n), we can take the following bound:

Pr[disconnection] ≥ θe−(b+ǫ) − (1 + ǫ)e−2(b+ǫ)

(for large enough n)
(B.25)

Thus, if lim sup
n→∞

b(n) < +∞, the network is asymptotically disconnected with some

positive probability.

262

Appendix C

Complete Proof of Scheduling
Result (Theorem 13)

Recall the notation introduced in Chapter 5. Also recall that the arrival process at any link

is i.i.d. over all time-slots, and that E[λl(t)λk(t)] is bounded, i.e., E[λl(t)λk(t)] ≤ η for all

l ∈ L, k ∈ L, where η is a suitable constant (hence E[(λl(t))
2] is also upper-bounded by η).

As mentioned in Chapter 5, we adopt the following convention: at the beginning of each

time-slot, the scheduling decisions are taken, and transmissions occur. Then new arrivals

occur at the end of the slot.

Let the queue-length of the queue for link l and channel c at the start of time-slot t be

denoted by qc
l (t). Let the rate-allocated to link l in slot t over channel c be denoted by

xc
l (t). Since we are considering single-interface nodes, at most one of the xc

l (t)’s is non-zero

for a link l. Furthermore xc
l (t) = 0 if link l is not scheduled over channel c in slot t, and

xc
l (t) = rc

l else.

Recall that rl = max
c∈C

rc
l . From the assumptions stated in Chapter 5, rc

l > 0 for all

l ∈ L, c ∈ C. Resultantly, rl > 0 for all l ∈ L.1

The queue dynamics are as follows:

qc
l (t+ 1) = qc

l (t) + λc
l (t)− xc

l (t) where λc
l (t) =

λl(t)r
c
l∑

b∈C
rb
l

(C.1)

We define the following Lyapunov function:

Vq(−→q (t)) =
∑

l∈L

∑

c∈C


q

c
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t)

rd
k

+
∑

k∈I′(l)

qc
k(t)

rc
k




 (C.2)

This Lyapunov function is somewhat similar in form to that used in [120].

1As also stated in Chapter 5, the results can be easily generalized to the case when rc
l = 0 for some l, c.

However, even in those scenarios, it is reasonable to assume that rl > 0 for all l ∈ L, since any feasible
load-vector must have λl = 0 for any link l with rl = 0, and such links can be ignored/eliminated from
consideration beforehand.

263

It can be seen that:

Vq(−→q (t+ 1))− Vq(−→q (t)) =
∑

l∈L

∑

c∈C


q

c
l (t+ 1)

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t+ 1)

rd
k

+
∑

k∈I′(l)

qc
k(t+ 1)

rc
k






−
∑

l∈L

∑

c∈C


q

c
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t)

rd
k

+
∑

k∈I′(l)

qc
k(t)

rc
k






=
∑

l∈L

∑

c∈C


 (qc

l (t) + qc
l (t+ 1)− qc

l (t))

rc
l


 ∑

k∈A(l)

∑

d∈C

(qd
k(t) + qd

k(t+ 1)− qd
k(t))

rd
k

+
∑

k∈I′(l)

(qc
k(t) + qc

k(t+ 1)− qc
k(t))

rc
k




−

∑

l∈L

∑

c∈C


q

c
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t)

rd
k

+
∑

k∈I′(l)

qc
k(t)

rc
k






=
∑

l∈L

∑

c∈C

qc
l (t)

rc
l




 ∑

k∈A(l)

∑

d∈C

qd
k(t)

rd
k

+
∑

k∈I′(l)

qc
k(t)

rc
k




+
∑

l∈L

∑

c∈C

qc
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

(qd
k(t+ 1)− qd

k(t))

rd
k

+
∑

k∈I′(l)

(qc
k(t+ 1)− qc

k(t))

rc
k






+
∑

l∈L

∑

c∈C


 (qc

l (t+ 1)− qc
l (t))

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t)

rd
k

+
∑

k∈I′(l)

qc
k(t)

rc
k






+
∑

l∈L

∑

c∈C


 (qc

l (t+ 1)− qc
l (t))

rc
l


 ∑

k∈A(l)

∑

d∈C

(qd
k(t+ 1)− qd

k(t))

rd
k

+
∑

k∈I′(l)

(qc
k(t+ 1)− qc

k(t))

rc
k






−
∑

l∈L

∑

c∈C

qc
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t)

rd
k

+
∑

k∈I′(l)

qc
k(t)

rc
k




=
∑

l∈L

∑

c∈C


q

c
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

(qd
k(t+ 1)− qd

k(t))

rd
k

+
∑

k∈I′(l)

(qc
k(t+ 1)− qc

k(t))

rc
k






+
∑

l∈L

∑

c∈C


 (qc

l (t+ 1)− qc
l (t))

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t)

rd
k

+
∑

k∈I′(l)

qc
k(t)

rc
k






+
∑

l∈L

∑

c∈C


 (qc

l (t+ 1)− qc
l (t))

rc
l


 ∑

k∈A(l)

∑

d∈C

(qd
k(t+ 1)− qd

k(t))

rd
k

+
∑

k∈I′(l)

(qc
k(t+ 1)− qc

k(t))

rc
k






= 2
∑

l∈L

∑

c∈C


q

c
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

(qd
k(t+ 1)− qd

k(t))

rd
k

+
∑

k∈I′(l)

(qc
k(t+ 1)− qc

k(t))

rc
k






+
∑

l∈L

∑

c∈C


 (qc

l (t+ 1)− qc
l (t))

rc
l


 ∑

k∈A(l)

∑

d∈C

(qd
k(t+ 1)− qd

k(t))

rd
k

+
∑

k∈I′(l)

(qc
k(t+ 1)− qc

k(t))

rc
k






since k ∈ A(l) =⇒ l ∈ A(k) and k ∈ I′(l) =⇒ l ∈ I′(k) from the symmetric conflicts assumption

(C.3)

264

Denote by L′(t) the set of link-channel pairs (l, c) for which qc
l (t) ≥ rc

l . This set of

link-channel pairs participates in the scheduling process for slot t. By design, the scheduler

computes a maximal schedule over all participating links. Therefore, for all (l, c) ∈ L′(t):

∑

k∈A(l)

∑

d∈C

xd
k(t)

rd
k

+
∑

k∈I′(l)

xc
k(t)

rc
k

≥ 1 (C.4)

If
−→
λ lies within the

(
σs

K|C|+max{1,γ}|C|

)
-reduced rate-region, then, by assumption, there

exists some scheduling algorithm that achieves stability with load vector (
K|C|+max{1,γ}|C|

σs
)
−→
λ .

Similar to [74], we can argue that this implies existence of an average service-rate vector x̃c
l

for all l, c satisfying the following for some ǫ > 0:

(1 + ǫ)2
(
K|C| + max{1, γ}|C|

σs

)
λl ≤

∑

c∈C
x̃c

l for all links l (C.5)

∑

k∈I′(l)

∑

c∈C

x̃c
k

rc
k

≤ K|C| for all links l (C.6)

∑

k∈A(l)

∑

d∈C

x̃d
k

rd
k

≤ max{1, γ} for all links l (C.7)

Set xc
l =

fxc
l
σs

(1+ǫ)(K|C|+max{1,γ}|C|) . Then from (C.5), (C.6) and (C.7), we obtain that:

(1 + ǫ)λl ≤
∑

c∈C
xc

l for all links l (C.8)

∑

k∈I′(l)

∑

c∈C

xc
k

rc
k

≤
K|C|σs

(1 + ǫ)(K|C| + max{1, γ}|C|) for all links l (C.9)

∑

k∈A(l)

∑

d∈C

xd
k

rd
k

≤ max{1, γ}σs

(1 + ǫ)(K|C| + max{1, γ}|C|) for all links l (C.10)

265

This yields that for all links l:

∑

b∈C


 ∑

k∈A(l)

∑

d∈C

xd
k

rd
k

+
∑

k∈I′(l)

xb
k

rb
k


 =


|C|

∑

k∈A(l)

∑

d∈C

xd
k

rd
k

+
∑

k∈I′(l)

∑

b∈C

xb
k

rb
k




≤ max{1, γ}σs|C|
(1 + ǫ)(K|C| + max{1, γ}|C|) +

K|C|σs

(1 + ǫ)(K|C| + max{1, γ}|C|) =
σs

1 + ǫ
< σs

(C.11)

Since rc
k ≤ rk for all channels c, therefore

∑

b∈C
rb
k ≥ σsrk ≥ σsr

c
k for all c ∈ C. Therefore,

for all links l:



∑

k∈A(l)

∑

d∈C

∑

b∈C
xb

k

∑

b∈C
rb
k

+
∑

k∈I′(l)

∑

b∈C
xb

k

∑

b∈C
rb
k


 ≤


 ∑

k∈A(l)

∑

d∈C

∑

b∈C

xb
k

σsrk
+
∑

k∈I′(l)

∑

b∈C

xb
k

σsrk




≤ 1

σs

∑

b∈C


 ∑

k∈A(l)

∑

d∈C

xd
k

rd
k

+
∑

k∈I′(l)

xb
k

rb
k


 < 1

using (C.11))

(C.12)

When λl = 0 for all l, the queues are trivially stable. Hence, let us only consider the case

where λl > 0 for at least one link l ∈ L. Let ymin = min
l∈L, λl>0

λl∑

b∈C

rb
l

. Let Qinit = max
l∈L

qc
l
(0)
rc
l

,

i.e., Qinit is the maximum of the initial queue-lengths. Note that if λl = 0 for some link l,

then
qc
l
(t)

rc
l
≤ qc

l
(0)
rc
l
≤ Qinit.

Using (C.3):

E[Vq(−→q (t+ 1))− Vq(−→q (t))|−→q (t)]

= 2
∑

l∈L

∑

c∈C

qc
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

E[
qd
k(t+ 1)− qd

k(t)

rd
k

] +
∑

k∈I′(l)

E[
qc
k(t+ 1)− qc

k(t)

rc
k

]




+
∑

l∈L

∑

c∈C

E


 (qc

l (t+ 1)− qc
l (t))

rc
l


 ∑

k∈A(l)

∑

d∈C

qd
k(t+ 1)− qd

k(t)

rd
k

+
∑

k∈I′(l)

(qc
k(t+ 1)− qc

k(t))

rc
k






≤ 2
∑

l∈L

∑

c∈C

qc
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

E

[
λd

k(t)− xd
k(t)

rd
k

]
+
∑

k∈I′(l)

E

[
λc

k(t)− xc
k(t)

rc
k

]


+
∑

l∈L

∑

c∈C

E


λ

c
l (t)

rc
l


 ∑

k∈A(l)

∑

d∈C

λd
k(t)

rd
k

+
∑

k∈I′(l)

λc
k(t)

rc
k






266

= 2
∑

l∈L

∑

c∈C

qc
l (t)

rc
l


E



∑

k∈A(l)

∑

d∈C

λk(t)∑

b∈C

rb
k

+
∑

k∈I′(l)

λk(t)∑

b∈C

rb
k


− E


 ∑

k∈A(l)

∑

d∈C

xd
k(t)

rd
k

+
∑

k∈I′(l)

xc
k(t)

rc
k







+
∑

l∈L

∑

c∈C

E



λl(t)∑

b∈C

rb
l



∑

k∈A(l)

∑

d∈C

λk(t)∑

b∈C

rb
k

+
∑

k∈I′(l)

λk(t)∑

b∈C

rb
k







≤ 2
∑

l∈L

∑

c∈C

qc
l (t)

rc
l


E



∑

k∈A(l)

∑

d∈C

λk(t)∑

b∈C

rb
k

+
∑

k∈I′(l)

λk(t)∑

b∈C

rb
k


− E


 ∑

k∈A(l)

∑

d∈C

xd
k(t)

rd
k

+
∑

k∈I′(l)

xc
k(t)

rc
k





+ C1

= 2
∑

l∈L

∑

c∈C

qc
l (t)

rc
l



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k

− E


 ∑

k∈A(l)

∑

d∈C

xd
k(t)

rd
k

+
∑

k∈I′(l)

xc
k(t)

rc
k





+ C1

= 2
∑

(l,c)∈L′(t)

qc
l (t)

rc
l



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k

−E




 ∑

k∈A(l)

∑

d∈C

xd
k(t)

rd
k

+
∑

k∈I′(l)

xc
k(t)

rc
k









+ 2
∑

(l,c)∈(L×C)−L′(t)

qc
l (t)

rc
l



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k

− E




 ∑

k∈A(l)

∑

d∈C

xd
k(t)

rd
k

+
∑

k∈I′(l)

xc
k(t)

rc
k







+ C1

≤ 2
∑

(l,c)∈L′(t)

qc
l (t)

rc
l






∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k


−



∑

k∈A(l)

∑

d∈C

∑

b∈C

xb
k

∑

b∈C

rb
k

+
∑

k∈I′(l)

∑

b∈C

xb
k

∑

b∈C

rb
k




+



∑

k∈A(l)

∑

d∈C

∑

b∈C

xb
k

∑

b∈C

rb
k

+
∑

k∈I′(l)

∑

b∈C

xb
k

∑

b∈C

rb
k


− E




 ∑

k∈A(l)

∑

d∈C

xd
k(t)

rd
k

+
∑

k∈I′(l)

xc
k(t)

rc
k






+2
∑

l∈(L×C)−L′(t)

qc
l (t)

rc
l



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k





+ C1

≤ 2
∑

(l,c)∈L′(t)

qc
l (t)

rc
l


−ǫ



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k







+ 2
∑

l∈(L×C)−L′(t)

qc
l (t)

rc
l



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k


+ C1

using (C.8), (C.4) and (C.12)

267

≤ 2
∑

(l,c)∈L′(t)

qc
l (t)

rc
l


−ǫ



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k





− 2

∑

l∈(L×C)−L′(t)

qc
l (t)

rc
l

ǫymin

+ 2
∑

(l,c)∈(L×C)−L′(t)

qc
l (t)

rc
l

ǫymin + 2
∑

l∈(L×C)−L′(t)

qc
l (t)

rc
l



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k


+ C1

(subtracting and adding back 2
∑

l∈(L×C)−L′(t)

qc
l (t)

rc
l

ǫymin)

≤ 2
∑

l∈L

∑

c∈C

qc
l (t)

rc
l

(−ǫymin) + 2ǫymin

∑

l∈L
λl=0

∑

c∈C

Qinit + 2ǫymin

∑

(l,c)∈(L×C)−L′(t)

qc
l (t)

rc
l

+ 2
∑

(l,c)∈(L×C)−L′(t)

qc
l (t)

rc
l



∑

k∈A(l)

∑

d∈C

λk∑

b∈C

rb
k

+
∑

k∈I′(l)

λk∑

b∈C

rb
k


+ C1

≤ −2ǫ
ymin

rmax

∑

l∈L

∑

c∈C

qc
l (t) + C3

where rmax = max
l∈L,c∈C

rc
l , C1 = |L||C|η(Amax|C|+Imax)

(min
l∈L

rl)2
, and C3 = C1 + 2ǫymin|L||C|Qinit +

2ǫymin|L||C|+ 2|L||C|(Amax|C|+ Imax).

Invoking Lemma 2 from [85], this proves stability.

268

Appendix D

Auxiliary Results Used in
Broadcast Proofs

D.1 Justification for Approximate Argument used in

Section 8.6

We claimed in Section 8.6 of Chapter 8 that, given a simple closed region S of area A,

and perimeter p, bounded by up to k straight line segments and circular arcs of radius r,

where k is a small constant, the number of lattice points in S is A ± O(p). We justify

this by bounding S, within and without, by lattice polygons, and applying Pick’s Theorem

[113]. For any such region S, consider the lattice polygon comprising grid squares that lie

completely within S (Fig. D.1). In certain cases, instead of a single lattice polygon, we

obtain a number of simple polygons that may share a common vertex, or are disconnected

(if S has narrow constrictions or necks (Fig. D.2)). In rare instances, no such polygon

may be obtained, if S is extremely narrow, and has no grid square lying completely within

it (A = O(p) for such regions, and these can be ignored). We call the polygon(s) thus

obtained Pin (in case of multiple polygons, Pin refers to their union). Note that S − Pin

comprises the grid squares that are partially in S, i.e., those traversed by the boundary

of S. Since the boundary of S comprises up to k line segments and arcs of radius r, the

number of grid squares traversed by the boundary is at most 2p+ ck, where c is a constant.

The area of Pin must thus be at least A − (2p + ck). Let n1 denote the number of lattice

points falling in Pin. Similarly, consider the lattice polygon Pout obtained by taking the

union of all grid squares that lie fully or partially in S. Pout is simple, fully contains S,

and its area can be no more than A + (2p + ck) (it can at most have an additional area

comprising the grid squares traversed by the boundary of S). Let the number of lattice

points falling in Pout be n2. Then n1 ≤ Nl ≤ n2. By invoking Pick’s Theorem 1, it can be

1Pick’s Theorem: Let A be the area of a simple closed lattice polygon. Let B denote the number of lattice
points on the polygon boundary, and I the number of points in the polygon interior. Then: A = I + 1

2
B−1.

269

shown that n1 ≥ A−O(p), and n2 ≤ A+O(p). Thus Nl = A±O(p).

Figure D.1: Bounding a Simple Closed
Region via Lattice Polygons

Figure D.2: Region with Neck: Multiple
Simple Polygons in Interior

D.2 Calculation of Collective Area of Regions A and B1

from Section 8.6.

Consider Fig. D.3. Denote the regions within distance r of nodes N and M by nbd(N)

and nbd(M) respectively. Then the collective area of regions A and B1 = Area of nbd(N)∩
nbd(M) - Area of Sector HMJ + Area of △HMJ . We show the calculations below. All

angles are in radians. Sector KMR (HMJ) or △ KMR (HMJ) refers to the sector/triangle

subtending obtuse (and not reflex) angle KMR (HMJ) at M.

1. Area of nbd(N) ∩ nbd(M) = 2 (Area of Sector KMR - Area of △ KMR).

Area of Sector KMR = πr2 ∠KMR
2π = πr2

(2 cos−1(r+1
4r

)))

2π ≈ (r2(cos−1(1
4))) ≈ 1.318r2 for

sufficiently large r.

Area of △ KMR = 1
2r

2 sin(∠KMR) ≈ 0.242r2.

Thus, Area of nbd(N) ∩ nbd(M) = 2(1.318− 0.242)r2 = 2(1.076)r2 = 2.152r2.

2. Area of △HMJ = 1
2r

2sin(∠HMJ) = 1
2r

2 sin(2 cos−1(r+1
2r)) ≈ 0.433r2.

3. Area of Sector HMJ = πr2· ∠HMJ
2π = 1.047r2.

Thus collective area of A and B1 is give by:

2.152r2 − 1.047r2 + 0.433r2 = 1.538r2 ≈ 0.49πr2.

270

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

C

1

2

2

2

M

R

R’

N Q

A

O

O’

1 B 2
BH

K

R

J

r+1

r

1
2(r + 1)

Figure D.3: Calculation of Collective Area of Regions A and B1 (from Fig. 8.6)

271

Appendix E

Useful Mathematical Results

In this appendix, we state some results that have been used in many of our proofs. Many

of these are well-known results.

Fact 1. For all 0 ≤ x < 1:

ln
1

1− x ≥ x

Fact 2. For all 0 ≤ x ≤ 1:

(1− x) ≤ e−x

Lemma 50. (Jogdeo & Samuels [47]) Given X = Y1 + Y2 + ...,+Yn where ∀i, Yi =

Bernoulli(pi), and
∑
pi = np, the median m of the distribution is either ⌊np⌋or⌈np⌉,

i.e., Pr[X ≤ m] ≥ 1
2 and Pr[X ≥ m] ≥ 1

2 .

Lemma 51. (Chernoff Bound [83]) Let X1, ..., Xn be independent Poisson trials, where

Pr[Xi = 1] = pi. Let X =
n∑

i=1
Xi. Then, for any β > 0:

Pr[X ≥ (1 + β)E[X]] ≤
(

eβ

(1 + β)(1+β)

)E[X]

(E.1)

Lemma 52. (Chernoff Upper Tail Bound [83]) Let X1, ..., Xn be independent Poisson trials,

where Pr[Xi = 1] = pi. Let X =
n∑

i=1
Xi. Then, for 0 < β ≤ 1:

Pr[X ≥ (1 + β)E[X]] ≤ exp(−β
2

3
E[X]) (E.2)

Lemma 53. (Chernoff Lower Tail Bound [83]) If X =
n∑

i=1
Xi, where each Xi is independent

and Bernoulli(pi), then for 0 < β < 1:

Pr[X ≤ (1− β)E[X]] ≤ exp(−β
2

2
E[X]) (E.3)

272

Lemma 54. (Relative Entropy Form of Chernoff-Hoeffding Bound[45]) If X =
n∑

i=1
Xi,

where each Xi is Bernoulli(p), then for p ≤ β ≤ 1:

Pr[X ≥ βn] ≤ e−n(β ln β

p
+(1−β) ln 1−β

1−p
)

(E.4)

Lemma 55. The chernoff bounds continue to apply if the Poisson trials are not indepen-

dent, but are negatively correlated.

This is a well-known, and often-used result. See [87, 30]. Also see the proof for the

Chernoff bound in [83], from which it can be seen that this holds.

Lemma 56. [24] If X1, X2,..., Xn are drawn i.i.d. from alphabet χ according to Q(x),

then probability of sequence x is given by:

Q(n)(x) = e−n(H(Px)+D(Px||Q)) (E.5)

where H and P denote the entropy and relative entropy functions (here considered w.r.t

base e).

Also, for any distributions P and Q, the size of type class T (P) satisfies:

1

(n+ 1)|χ|
enH(P) ≤ |T (p)| ≤ enH(P) (E.6)

and, the probability of the type class T (P) under Q is governed by:

1

(n+ 1)|χ|
e−n(D(P ||Q)) ≤ Q(n)(T (p)) ≤ e−n(D(P ||Q)) (E.7)

Lemma 57. (Vapnik-Chervonenkis Theorem) Let S be a set with finite VC dimension

V Cdim(S). Let {Xi} be i.i.d. random variables with distribution P . Then for ǫ, δ > 0:

Pr

(
sup
D∈S

∣∣∣∣∣
1

N

N∑

i=1

IXi∈D − P (D)

∣∣∣∣∣ ≤ ǫ
)
> 1− δ

whenever N > max

(
8V Cdim(S)

ǫ
log2

16e

ǫ
,

4

ǫ
log2

2

δ

)

273

Lemma 58. Suppose we are given a region of area n, with n nodes located uniformly at

random. Consider all axis-parallel rectangles of area a(n). If a(n) = 100α log n, 1 ≤ α ≤
n

100 log n , then each such rectangle has at least 100α lnn− 50 log n nodes, with probability at

least 1− 50 ln n
n .

Proof. It is known that the set of axis-parallel rectangles in R
2 has VC-dimension 4. We

consider the set of all axis-parallel rectangles S of area 100α lnn. Then considering the n

random variables Xi denoting node positions, Pr[Xi ∈ D(D ∈ S)] = 100α ln n
n . Then, from

the VC-theorem (Lemma 57):

Pr

(
sup
D∈S

∣∣∣∣
No. of nodes in D

n
− 100α lnn

n

∣∣∣∣ ≤ ǫ(n)

)
> 1− δ(n)

whenever n > max

(
32

ǫ
log2

16e

ǫ
,
4

ǫ
log2

2

δ

)

This is satisfied when ǫ(n) = δ(n) = 50 ln n
n . Thus, with probability at least 1 − 50 ln n

n , the

population Pop(D) of cell D satisfies:

100α lnn− 50 lnn ≤ Pop(D) ≤ 100α lnn+ 50 lnn (E.8)

This completes the proof.

Fact 3. If we attempt to divide a
√
n × √n grid into disjoint neighborhoods in the L∞

metric (as in Fig. 9.1), then the number of such disjoint neighborhoods that can be obtained

is at least (⌊√n⌋)2
(2r+1)2

≥ (
√

n−1)2

4r2+4r+1
for large n. Observing that d = 4r2 + 4r and d ≥ dmin =

8, the number of such disjoint neighborhoods obtainable is at least (⌊√n⌋)2
(2r+1)2

≥ (
√

n−1)2

4r2+4r+1
≥

n−2
√

n+1

d(1+ 1
d
)
≥ n

2d for large n, whenever r is such that d = o(n).

Lemma 59. Suppose we are given a unit torus with n nodes located uniformly at random,

and the region is sub-divided into axis-parallel square cells of area a(n) each. If a(n) =

100α(n) log n
n , 1 ≤ α(n) ≤ n

100 log n , then each cell has at least (100α(n)−50) log n, and at most

(100α(n) + 50) logn nodes, with probability at least 1− 50 log n
n .

Proof. It is known that the set of axis-parallel squares in R
2 has VC-dimension 3. In our

construction, we have a set of axis-parallel square cells S such that the cells all have area

a(n) = 100α log n
n . Then considering the n random variables Xi denoting node positions,

274

Pr[Xi ∈ D(D ∈ S)] = 100α log n
n . Then, from the VC-theorem (Lemma 57):

Pr

(
sup
D∈S

∣∣∣∣
No. of nodes in D

n
− 100α(n) log n

n

∣∣∣∣ ≤ ǫ(n)

)
> 1− δ(n)

whenever n > max

(
24

ǫ
log2

16e

ǫ
,
4

ǫ
log2

2

δ

)

This is satisfied when ǫ(n) = δ(n) = 50 log n
n . Thus, with probability at least 1− 50 log n

n , the

population Pop(D) of cell D satisfies:

(100α(n)− 50) log n ≤ Pop(D) ≤ (100α(n) + 50) log n (E.9)

Lemma 60. Suppose we are given a unit torus with n points(or nodes) located uniformly

at random, let us consider the set of all circles of radius R and area A(n) = πR2 on

the unit torus. If A(n) = 100α(n) log n
n , 1 ≤ α(n) ≤ n

100 log n , then each circle has at least

(100α(n)− 50) log n, and at most (100α(n) + 50) log n of these points (or nodes), w.h.p.

Proof. The set of all circles of radius R in R
2 has VC-dimension 3 (e.g., see [43]). Thereafter

by the same argument as in the proof of Lemma 59, the result proceeds.

Lemma 61. If n pairs of points (Pi, Qi) are chosen uniformly at random in a unit area

torus divided into square cells of area a(n) = Ω(log n
n), the resultant set of straight-line

formed by each pair Li = PiQi satisfies the condition that each cell has O(n
√
a(n)) lines

passing through it w.h.p.

Proof. Given the lines Li are i.i.d., the proof argument of Lemma 3 in [36] can be applied

to prove this result.

Lemma 62. The number of subsets of size k chosen from a set of m elements is given by
(
m
k

)
≤
(

me
k

)k
.

Theorem 31. (Hall’s Marriage Theorem [44], [92]) Given a set S, let T = {T1, T2, . . . Tn}
be a finite system of subsets of S. Then T possesses a system of distinct representatives

if and only if for each k in 1, 2, .., n, any selection of k of the sets Ti will contain between

them at least k elements of S. Alternatively stated: for all A ⊆ T , the following is true:

|∪A| ≥ |A|

275

Theorem 32. (Integrality Theorem [22]) If the capacity function of a network flow graph

takes on only integral values (i.e., each edge has integer capacity), then the maximum flow x

produced by the Ford-Fulkerson method has the property that |x| is integer-valued. Moreover,

for all vertices u and v, the value of x(u, v) is an integer.

276

References

[1] Ashish Agarwal and P. R. Kumar. Improved capacity bounds for wireless networks.
Wirel. Commun. Mob. Comput., 4(3):251–261, 2004.

[2] Hagit Attiya and Jennifer Welch. Distributed Computing. McGraw-Hill, 1998.

[3] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced Allocations.
SIAM J. Comput., 29(1):180–200, 2000.

[4] Paramvir Bahl, Ranveer Chandra, and John Dunagan. Ssch: slotted seeded chan-
nel hopping for capacity improvement in ieee 802.11 ad-hoc wireless networks. In
MobiCom ’04: Proceedings of the 10th annual international conference on Mobile
computing and networking, pages 216–230. ACM Press, 2004.

[5] Vartika Bhandari and Nitin H. Vaidya. On reliable broadcast in a radio network. In
PODC ’05: Proceedings of the twenty-fourth annual ACM SIGACT-SIGOPS sympo-
sium on Principles of distributed computing, pages 138–147. ACM Press, 2005.

[6] Vartika Bhandari and Nitin H. Vaidya. Capacity of multi-channel wireless networks
with random (c, f) assignment. In MobiHoc ’07: Proceedings of the 8th ACM interna-
tional symposium on Mobile ad hoc networking and computing, pages 229–238. ACM
Press, 2007.

[7] Vartika Bhandari and Nitin H. Vaidya. Connectivity and Capacity of Multichan-
nel Wireless Networks with Channel Switching Constraints. In Proceedings of IEEE
INFOCOM, pages 785–793, Anchorage, Alaska, May 2007.

[8] Vartika Bhandari and Nitin H. Vaidya. Heterogeneous multi-channel wireless net-
works: Scheduling and routing issues. Technical Report, UIUC, October 2007.

[9] Vartika Bhandari and Nitin H. Vaidya. Reliable Broadcast in Wireless Networks with
Probabilistic Failures. In Proceedings of IEEE INFOCOM, pages 715–723, Anchorage,
Alaska, May 2007.

[10] Vartika Bhandari and Nitin H. Vaidya. Reliable local broadcast in a wireless network
prone to byzantine failures. In Proc. of DIALM-POMC ’07, 2007.

[11] Vartika Bhandari and Nitin H. Vaidya. Secure capacity of multi-hop wireless networks
with random key pre-distribution. In Proceedings of IEEE Workshop on Mission
Critical Networks, 2008.

[12] Rishi Bhardwaj. Lessons from a multichannel wireless mesh network. M.S. Thesis,
UIUC, 2007.

277

[13] Kenneth P. Birman, Mark Hayden, Oznur Oskasap, Zhen Xiao, Mihai Budiu, and
Yaron Minsky. Bimodal multicast. Transactions on Computer Systems (TOCS),
17(2):41–88, May 1999.

[14] Min Cao, Vivek Raghunathan, and P.R. Kumar. Cross layer exploitation of MAC
layer diversity in wireless networks. In Proc. of ICNP, 2006.

[15] C. Carter, S. Yi, and R. Kravets. Arp considered harmful: Manycast transactions
in ad hoc networks. In Proc. of the IEEE Wireless Communications and Networking
Conference (WCNC), 2003.

[16] Antonio Caruso, Stefano Chessa, and Piero Maestrini. Worst-case diagnosis complete-
ness in regular graphs under the pmc model. IEEE Trans. Comput., 56(7):917–9249,
2007.

[17] Nicholas B. Chang and Mingyan Liu. Optimal channel probing and transmission
scheduling for opportunistic spectrum access. In MobiCom ’07: Proceedings of the
13th annual ACM international conference on Mobile computing and networking,
pages 27–38. ACM, 2007.

[18] Chandrakanth Chereddi, Pradeep Kyasanur, and Nitin H. Vaidya. Design and imple-
mentation of a multi-channel multi-interface network. In REALMAN ’06: Proceedings
of the second international workshop on Multi-hop ad hoc networks: from theory to
reality, pages 23–30. ACM Press, 2006.

[19] Gregory Chockler, Murat Demirbas, Seth Gilbert, Nancy Lynch, Calvin Newport, and
Tina Nolte. Reconciling the theory and practice of (un)reliable wireless broadcast.
In ICDCSW ’05: Proceedings of the Fourth International Workshop on Assurance
in Distributed Systems and Networks (ADSN) (ICDCSW’05), pages 42–48. IEEE
Computer Society, 2005.

[20] Gregory Chockler, Murat Demirbas, Seth Gilbert, Calvin Newport, and Tina Nolte.
Consensus and collision detectors in wireless ad hoc networks. In PODC ’05: Pro-
ceedings of the twenty-fourth annual ACM symposium on Principles of distributed
computing, pages 197–206. ACM, 2005.

[21] Jeffrey Considine, Leonid A. Levin, and David Metcalf. Byzantine agreement with
faulty majority using bounded broadcast. CoRR, cs.DC/0012024, 2000.

[22] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 1990.

[23] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A high-
throughput path metric for multi-hop wireless routing. In MobiCom ’03: Proceedings
of the 9th annual international conference on Mobile computing and networking, pages
134–146. ACM, 2003.

[24] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley
& Sons, Inc., 1991.

278

[25] A. Dimakis and Jean Walrand. Sufficient conditions for stability of longest-queue-first
scheduling: Second-order properties using fluid limits. Advances in Applied Probabil-
ity, 38(2):505–521, 2006.

[26] Danny Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982.

[27] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin Newport. Gossiping in a
multi-channel radio network (an oblivious approach to coping with malicious inter-
ference). In Proc. of DISC, 2007.

[28] Olivier Dousse and Patrick Thiran. Connectivity vs capacity in dense ad hoc networks.
In Proceedings of IEEE INFOCOM, 2004.

[29] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-radio, multi-hop
wireless mesh networks. In MobiCom ’04: Proceedings of the 10th annual international
conference on Mobile computing and networking, pages 114–128. ACM Press, 2004.

[30] Devdatt Dubhashi and Desh Ranjan. Balls and bins: a study in negative dependence.
Random Struct. Algorithms, 13(2):99–124, 1998.

[31] R. Elz and R. Bush. Serial number arithmetic. RFC 1982.

[32] Stephen Fitzpatrick and Lambert Meertens. Experiments on dense graphs with a
stochastic, peer-to-peer colorer. In Workshop on Probabilistic Approaches in Search
at AAAI’02, 2002.

[33] C. Fragouli, J. Widmer, and J-Y Le Boudec. On the Benefits of Network Coding for
Wireless Applications. In 4th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks, 2006.

[34] M. Franceschetti, L. Booth, M. Cook, R. Meester, and J. Bruck. Percolation in
wireless multi-hop networks. Journal of Statistical Physics, 2004.

[35] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran. On the throughput capacity of
random wireless networks. IEEE Transactions on Information Theory.

[36] Abbas El Gamal, James P. Mammen, Balaji Prabhakar, and Devavrat Shah.
Throughput-Delay Trade-off in Wireless Networks. In Proceedings of IEEE INFO-
COM, 2004.

[37] Leonidas Georgiadis, Michael J. Neely, and Leandros Tassiulas. Resource allocation
and cross-layer control in wireless networks. Found. Trends Netw., 1(1):1–144, 2006.

[38] Seth Gilbert, Rachid Guerraoui, and Calvin Newport. Of malicious motes and suspi-
cious sensors. In Proc. of OPODIS, 2006.

[39] Matthias Grossglauser and David N. C. Tse. Mobility increases the capacity of ad-hoc
wireless networks. In Proceedings of IEEE INFOCOM, pages 1360–1369, 2001.

[40] S. Guha, K. Munagala, and S. Sarkar. Jointly optimal transmission and probing
strategies for multichannel wireless systems. In Proceedings of the 40th Annual Con-
ference on Information Sciences and Systems, pages 955–960, March 2006.

279

[41] Ramakrishna Gummadi, David Wetherall, Ben Greenstein, and Srinivasan Seshan.
Understanding and mitigating the impact of rf interference on 802.11 networks. In
Proc. of ACM SIGCOMM ’07, 2007.

[42] Piyush Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wireless
networks. In W. M. McEneany, G. Yin, and Q. Zhang, editors, Stochastic Analysis,
Control, Optimization and Applications: A Volume in Honor of W.H. Fleming, pages
547–566. Birkhauser, Boston, 1998.

[43] Piyush Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE Trans-
actions on Information Theory, IT-46(2):388–404, March 2000.

[44] P. Hall. On Representatives of Subsets. J. London Math. Soc., s1-10(37):26–30, 1935.

[45] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, March 1963.

[46] Information Sciences Institute. NS-2 network simulator. Version 2.31.

[47] Kumar Jogdeo and S. M. Samuels. Monotone convergence of binomial probabilities
and a generalization of ramanujan’s equation. The Annals of Mathematical Statistics,
39(4):1191–1195, August 1968.

[48] Changhee Joo. A local greedy scheduling scheme with provable performance guaran-
tee. In MobiHoc, 2008.

[49] Changhee Joo, Xiaojun Lin, and Ness B. Shroff. Performance limits of greedy maximal
matching in multi-hop wireless networks. In CDC, 2007.

[50] Changhee Joo, Xiaojun Lin, and Ness B. Shroff. Understanding the capacity re-
gion of the greedy maximal scheduling algorithm in multi-hop wireless networks. In
Proceedings of IEEE INFOCOM, 2008.

[51] Changhee Joo and Ness B. Shroff. Performance of random access scheduling schemes
in multi-hop wireless networks. In Proceedings of IEEE INFOCOM, pages 19–27,
2007.

[52] Vikram Kanodia, Ashutosh Sabharwal, and Edward W. Knightly. MOAR: A Multi-
Channel Opportunistic Auto-Rate Media Access Protocol for Ad Hoc Networks. In
BROADNETS, pages 600–610, 2004.

[53] Bruno Kauffmann, François Baccelli, Augustin Chaintreau, Vivek Mhatre, Kon-
stantina Papagiannaki, and Christophe Diot. Measurement-based self organization
of interfering 802.11 wireless access networks. In INFOCOM, pages 1451–1459, 2007.

[54] V. Kawadia and P. R. Kumar. A cautionary perspective on cross-layer design. IEEE
Wireless Communications, 12(1):3–11, 2005.

[55] D. Kim, C. Hsin, and M. Liu. Asymptotic connectivity of low duty-cycled wireless
sensor networks. In Proc. MILCOM, 2005.

[56] S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching.
A microfabricated atomic clock. Appl. Phys. Lett., 85, 2004.

280

[57] Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine adversarial be-
havior. In PODC ’04: Proceedings of the twenty-third annual ACM symposium on
Principles of distributed computing, pages 275–282. ACM Press, 2004.

[58] Chiu-Yuen Koo, Vartika Bhandari, Jonathan Katz, and Nitin H. Vaidya. Reliable
broadcast in radio networks: The bounded collision case. In Proceedings of ACM
PODC 2006, 2006.

[59] Ulas C. Kozat and Leandros Tassiulas. Throughput capacity of random ad hoc net-
works with infrastructure support. In MobiCom ’03: Proceedings of the 9th annual
international conference on Mobile computing and networking, pages 55–65. ACM
Press, 2003.

[60] Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc. Fault-tolerant broadcasting
in radio networks. J. Algorithms, 39(1):47–67, 2001.

[61] S. Krishnamurthy, R. Chandrasekaran, N. Mittal, and S. Venkatesan. Brief announce-
ment: Algorithms for node discovery and configuration in cognitive radio networks.
In Proc. of DISC ’06 (LNCS 4167), pages 572–574. Springer-Verlag, 2006.

[62] Santosh Kumar, Ten H. Lai, and József Balogh. On k-coverage in a mostly
sleeping sensor network. In MobiCom ’04: Proceedings of the 10th annual interna-
tional conference on Mobile computing and networking, pages 144–158, New York,
NY, USA, 2004. ACM Press.

[63] Pradeep Kyasanur. Multi-channel wireless networks: Capacity and protocols. Ph.D.
Thesis, UIUC, 2006.

[64] Pradeep Kyasanur, Chandrakanth Chereddi, and Nitin H. Vaidya. Net-x: System
extensions for supporting multiple channels, multiple interfaces, and other interface
capabilities. Technical Report, CSL, UIUC, August 2006.

[65] Pradeep Kyasanur and Nitin H. Vaidya. Capacity of Multi-channel Wireless Networks:
Impact of Number of Channels and Interfaces. In MobiCom ’05: Proceedings of the
11th annual international conference on Mobile computing and networking, pages 43–
57. ACM Press, 2005.

[66] Pradeep Kyasanur and Nitin H. Vaidya. Capacity of multi-channel wireless networks:
impact of number of channels and interfaces. Technical Report, CSL, UIUC, October
2006.

[67] Pradeep Kyasanur and Nitin H. Vaidya. Routing and link-layer protocols for multi-
channel multi-interface ad hoc wireless networks. SIGMOBILE Mob. Comput. Com-
mun. Rev., 10(1):31–43, 2006.

[68] C. C. Lamb, L.S. DeBrunner, A. Das, and K. Thulasiraman. Distributed diagnosis
for multiprocessor systems using extended local neighborhoods. In Proceedings of the
43rd IEEE Midwest Symposium on Circuits and Systems, 2000, pages 384–387, 2000.

[69] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

281

[70] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[71] Kuo-Chun Lee and Victor O. K. Li. A wavelength-convertible optical network. Journal
of Lightwave Technology, 11, 1993.

[72] D.J. Leith and P. Clifford. Convergence of distributed learning algorithms for optimal
wireless channel allocation. In Proc. of 45th IEEE Conference on Decision and Control
(CDC), pages 2980–2985, Dec. 2006.

[73] Soung Chang Liew. Capacity assigment in non-switching multi-channel networks.
Ph.D. thesis, EECS, MIT, 1988.

[74] X. Lin and S. Rasool. A Distributed Joint Channel-Assignment, Scheduling and
Routing Algorithm for Multi-Channel Ad-hoc Wireless Networks. In Proceedings of
IEEE INFOCOM, pages 1118–1126, May 2007.

[75] Xiaojun Lin and Ness B. Shroff. The impact of imperfect scheduling on cross-layer rate
control in wireless networks. In Proceedings of IEEE INFOCOM, pages 1804–1814,
2005.

[76] Benyuan Liu, Zhen Liu, and Donald F. Towsley. On the capacity of hybrid wireless
networks. In Proceedings of IEEE INFOCOM, 2003.

[77] Junning Liu, Dennis Goeckel, and Don Towsley. Bounds on the gain of network
coding and broadcasting in wireless networks. In Proceedings of IEEE INFOCOM,
Anchorage, Alaska, May 2007.

[78] J. Luo, P.Th. Eugster, and J.-P. Hubaux. Route driven gossip: Probabilistic reliable
multicast in ad hoc networks. In Proc. of IEEE INFOCOM, 2003.

[79] Ritesh Maheshwari, Himanshu Gupta, and Samir R. Das. Mutichannel mac protocols
for wireless networks. In Proceedings of IEEE SECON, 2006.

[80] Paolo Minero Massimo Franceschetti, Marco D Migliore. The capacity of wireless
networks: Information-theoretic and physical limits. In Proceedings of the Forty-Fifth
Annual Allerton Conference, pages 729–735, September 2007.

[81] Simone Merlin, Nitin H. Vaidya, and Michele Zorzi. Resource allocation in multi-
channel multi-radio wireless networks. In Proceedings of IEEE INFOCOM, 2008.

[82] Arunesh Mishra, Vivek Shrivastava, Dheeraj Agrawal, Suman Banerjee, and Samrat
Ganguly. Distributed channel management in uncoordinated wireless environments.
In MobiCom ’06: Proceedings of the 12th annual international conference on Mobile
computing and networking, pages 170–181. ACM, 2006.

[83] Michael Mitzenmacher and Eli Upfal. Probability and computing. Cambridge Univer-
sity Press, 2005.

[84] Jeonghoon Mo, Hoi-Sheung Wilson So, and Jean Walrand. Comparison of multichan-
nel mac protocols. IEEE Transactions on Mobile Computing, 7(1):50–65, 2008.

282

[85] Michael J. Neely, Eytan Modiano, and Charles E. Rohrs. Dynamic power allocation
and routing for time varying wireless networks. In Proceedings of IEEE INFOCOM,
2003.

[86] Clark T.-C. Nguyen. Rf mems in wireless architectures. In DAC ’05: Proceedings of
the 42nd annual conference on Design automation, pages 416–420, 2005.

[87] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring
via an extension of the chernoff-hoeffding bounds. SIAM J. Comput., 26(2):350–368,
1997.

[88] Jay A. Patel, Haiyun Luo, and Indranil Gupta. A cross-layer architecture to exploit
multi-channel diversity with a single transceiver. In Proceedings of IEEE INFOCOM
Minisymposium, Anchorage, AK, USA, May 2007.

[89] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
J. ACM, 27(2):228–234, 1980.

[90] Andrzej Pelc and David Peleg. Broadcasting with locally bounded byzantine faults.
Information Processing Letters, 93(3):109–115, Feb 2005.

[91] Andrzej Pelc and David Peleg. Feasibility and complexity of broadcasting with ran-
dom transmission failures. In PODC ’05: Proceedings of the twenty-fourth annual
ACM SIGACT-SIGOPS symposium on Principles of distributed computing, pages
334–341, 2005.

[92] Hazel Perfect. The Mathematics of AGMs. The Mathematical Gazette, 53(383):13–19,
February 1969.

[93] Dragan Petrovic, Kannan Ramchandran, and Jan Rabaey. Overcoming untuned ra-
dios in wireless networks with network coding. IEEE Transactions on Information
Theory, 52(6):2649–2657, June 2006.

[94] F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem
of diagnosable systems. IEEE Transactions on Electronic Computers, EC-16(6):848–
854, 1967.

[95] Arjunan Rajeswaran and Rohit Negi. Capacity of power constrained ad-hoc networks.
In Proceedings of IEEE INFOCOM, 2004.

[96] Krishna N. Ramachandran, Elizabeth M. Belding-Royer, Kevin C. Almeroth, and
Milind M. Buddhikot. Interference-aware channel assignment in multi-radio wireless
mesh networks. In Proceedings of IEEE INFOCOM, 2006.

[97] Eric Rozner, Yogita Mehta, Aditya Akella, and Lili Qiu. Traffic-aware channel as-
signment in wireless lans. SIGMOBILE Mob. Comput. Commun. Rev., 11(2):43–44,
2007.

[98] A. Sahai, R. Tandra, S. M. Mishra, and N. Hoven. Fundamental design tradeoffs in
cognitive radio systems. In Proc. of ACM TAPAS, 2006.

283

[99] Nachum Shacham and Peter J. B. King. Architectures and performance of multichan-
nel multihop packet radio networks. IEEE Journal on Selected Areas in Communica-
tions, 5(6):1013 – 1025, July 1987.

[100] Sanjay Shakkottai, R. Srikant, and Ness Shroff. Unreliable sensor grids: Coverage,
connectivity, and diameter. In Proc. of Infocom 2003, 2003.

[101] Sanjay Shakkottai, R. Srikant, and Ness Shroff. Unreliable sensor grids: Coverage,
connectivity, and diameter. In Proc. of Infocom 2003, 2003.

[102] Sanjay Shakkottai, R. Srikant, and Ness Shroff. Correction to unreliable sensor grids:
Coverage, connectivity, and diameter. Personal Communication, 2005.

[103] Gaurav Sharma, Ravi R. Mazumdar, and Ness B. Shroff. On the complexity of
scheduling in wireless networks. In MobiCom ’06: Proceedings of the 12th annual
international conference on Mobile computing and networking, pages 227–238. ACM,
2006.

[104] Thomas Shen and Nitin H. Vaidya. Experiments on a multichannel multi-interface
wireless mesh network. Technical Report, CSL, UIUC, 2008.

[105] Hoi-Sheung Wilson So, Giang Nguyen, and Jean Walrand. Practical synchronization
techniques for multi-channel mac. In MobiCom ’06: Proceedings of the 12th annual
international conference on Mobile computing and networking, pages 134–145, New
York, NY, USA, 2006. ACM Press.

[106] Jungmin So and Nitin H. Vaidya. Multi-channel mac for ad hoc networks: handling
multi-channel hidden terminals using a single transceiver. In MobiHoc ’04: Pro-
ceedings of the 5th ACM international symposium on Mobile ad hoc networking and
computing, pages 222–233. ACM Press, 2004.

[107] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. J. ACM, 34(3):626–
645, 1987.

[108] Suresh Subramaniam, Murat Azizolu, and Arun K. Somani. All-optical networks with
sparse wavelength conversion. IEEE/ACM Trans. Netw., 4(4):544–557, 1996.

[109] Lakshminarayanan Subramanian, Randy H. Katz, Volker Roth, Scott Shenker, and
Ion Stoica. Reliable broadcast in unknown fixed-identity networks. In PODC ’05:
Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed
computing, pages 342–351. ACM, 2005.

[110] Leandros Tassiulas and Anthony Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control, 37(12):1936–1948, December
1992.

[111] Asimakis Tzamaloukas and J. J. Garcia-Luna-Aceves. Channel-hopping multiple ac-
cess. In ICC (1), pages 415–419, 2000.

284

[112] Vinod Vaikuntanathan. Brief announcement: broadcast in radio networks in the
presence of byzantine adversaries. In PODC ’05: Proceedings of the twenty-fourth
annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing,
pages 167–167, 2005.

[113] Dale E. Varberg. Pick’s theorem revisited. The American Mathematical Monthly,
92(8):584–587, October 1985.

[114] Ramanuja Vedantham, Sandeep Kakumanu, Sriram Lakshmanan, and Raghupathy
Sivakumar. Component based channel assignment in single radio, multi-channel ad
hoc networks. In MobiCom ’06: Proceedings of the 12th annual international confer-
ence on Mobile computing and networking, pages 378–389. ACM, 2006.

[115] Evangelos Vergetis, Roch Guérin, and Saswati Sarkar. Realizing the benefits of user-
level channel diversity. SIGCOMM Comput. Commun. Rev., 35(5):15–28, 2005.

[116] Wei Wang, Xin Liu, and Dilip Krishnaswamy. Robust routing and scheduling in
wireless mesh networks. In Proc. of IEEE SECON, June 2007.

[117] Ajit Warrier, Long Le, and Injong Rhee. Cross-layer optimization made practical. In
Proc. of Broadnets ’07, 2007.

[118] Haitao Wu, Fan Yang, Kun Tan, Jie Chen, Qian Zhang, and Zhensheng Zhang.
Distributed Channel Assignment and Routing in Multi-radio Multi-channel Multi-hop
Wireless Networks. Journal on Selected Areas in Communications(JSAC), 24:1972–
1983, November 2006.

[119] Xinzhou Wu and R. Srikant. Scheduling efficiency of distributed greedy scheduling
algorithms in wireless networks. In Proceedings of IEEE INFOCOM, 2006.

[120] Xinzhou Wu, R. Srikant, and James R. Perkins. Queue-length stability of maxi-
mal greedy schedules in wireless networks. In Workshop on Information Theory and
Applications, 2006.

[121] Xinzhou Wu, R. Srikant, and James R. Perkins. Scheduling efficiency of distributed
greedy scheduling algorithms in wireless networks. IEEE Trans. Mob. Comput.,
6(6):595–605, 2007.

[122] Kaixin Xu, Mario Gerla, Lantao Qi, and Yantai Shu. Tcp unfairness in ad hoc wireless
networks and a neighborhood red solution. Wirel. Netw., 11(4):383–399, 2005.

[123] Feng Xue and P. R. Kumar. The number of neighbors needed for connectivity of
wireless networks. Wirel. Netw., 10(2):169–181, 2004.

[124] Feng Xue and P. R. Kumar. On the theta-coverage and connectivity of large random
networks. Joint special issue of the IEEE Trans. on Information Theory and the
IEEE/ACM Trans. on Networking on ”Networking and Information Theory”, May
2006.

[125] Feng Xue and P. R. Kumar. Scaling laws for ad hoc wireless networks. Found. Trends
Netw., 1(2):145–270, 2006.

285

[126] Jung Yee and Hossain Pezeshki-Esfahani. Understanding wireless lan performance
trade-offs. Communication Systems Design, 2002.

[127] Wonyong Yoon, Jungmin So, and Nitin H. Vaidya. Routing exploiting multiple het-
erogeneous wireless interfaces: A tcp performance study. In Proceedings of Military
Communications Conference (MILCOM), 2006.

[128] Honghai Zhang and Jennifer C. Hou. Capacity of wireless ad-hoc networks under
ultra wide band with power constraints. In Proceedings of IEEE INFOCOM, Miami,
Florida, March 2005.

[129] Yi Zhao and Farokh B. Bastani. A self-adjusting algorithm for byzantine agreement.
Distrib. Comput., 5(4):219–226, 1992.

[130] Dong Zheng and Junshan Zhang. Protocol design and throughput analysis of op-
portunistic multi-channel medium access control. In Proc. of CIIT’03, November
2003.

286

Author’s Biography

Vartika Bhandari was born in Allahabad, India in 1980. She received the B.Tech degree in

Computer Science and Engineering from the Indian Institute of Technology Kanpur in 2002.

In 2003, Vartika joined the Ph.D. program in Computer Science at the University of Illinois

at Urbana-Champaign. She has been a member of the Wireless Networking Group in the

Coordinated Science Laboratory since then, where she has worked on theoretical analysis

and protocol design issues pertaining to wireless networks. One of the publications resulting

from her Ph.D. research received the Best Student Paper Award at the the 8th ACM

International Symposium on Mobile Ad Hoc Networking and Computing (ACM MobiHoc)

in 2007. She is also a recipient of a Vodafone Graduate Fellowship for the years 2005-06,

2006-07 and 2007-08.

287

