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Abstract— We consider the problem of reliable broadcast in an
infinite grid (or finite toroidal) radio network under Byzantine
and crash-stop failures. We present bounds on the maximum
number of failures that may occur in any given neighborhood
without rendering reliable broadcast impossible. We improve on
previously proved bounds for the number of tolerable Byzantine
faults [1]. Our results indicate that it is possible to achieve reliable
broadcast if slightly less than one-fourth fraction of nodes in any
neighborhood are faulty, and impossible otherwise. We also show
that reliable broadcast is achievable with crash-stop failures if
slightly less than half the nodes in any given neighborhood may
be faulty. In particular, we establish exact thresholds under a
specific distance metric.

Index Terms— Byzantine faults, Crash-stop faults, Broadcast,
Fault Tolerance, Radio Network, Broadcast Channel, Possibil-
ity/Impossibility

I. INTRODUCTION

Reliable broadcast in the presence of crash-stop and
Byzantine failures is a well-studied problem with numerous
practical implications. With the proliferation of wireless
networks, there has been interest in the achievability of
reliable broadcast in radio networks, which are characterized
by a shared wireless medium where every node can talk to all
nodes within its transmission radius r (these are deemed as
neighbors) and a sent message is heard by all the neighbors.
We consider the problem of reliable broadcast in an infinite
radio network, with nodes situated on a unit square grid,
under Byzantine and crash-stop failures. Two distance metrics,
L∞ and L2 (further discussed in Section II), are considered.
The considered fault model (first introduced in [1]) allows
an adversary to place faults as long as the number of faults
in any single neighborhood (to be formally defined later) do
not exceed some value t. The results also hold for a finite
toroidal network, as boundary anomalies are eliminated. We
present bounds on the maximum number of failures t that
may occur in any given neighborhood without rendering
reliable broadcast impossible. For the case of Byzantine
failures, we improve on bounds presented in [1]. We present
a protocol (utilizing a notion of indirect reports) that allows
reliable broadcast to be achieved under this network model in
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the L∞ metric whenever t <
1
2 r(2r +1). This exactly matches

the impossibility bound proved in [1], and thus establishes an
exact threshold for Byzantine agreement under this model.
We also prove that reliable broadcast is achievable under
the crash-stop model iff the number of faulty nodes t in
any neighborhood is governed by t < r(2r + 1) (in the L∞
metric). We present informal arguments suggesting that in
L2, i.e., Euclidean distance metric, similar thresholds must
hold. We argue that Byzantine agreement is possible in
Euclidean metric if slightly less than one-fourth of the nodes
in any given neighborhood may be faulty, while it is possible
to tolerate crash-stop failures that are slightly less than
half the neighborhood population. Finally, we consider the
issue of tolerable faults when using a simple protocol that
does not use indirect reports (i.e. the protocol of [1]). We
present an asymptotically tighter bound (than that in [1]) for
achievability with Byzantine failures by proving that reliable
broadcast is achievable for t ≤ 2

3 r2 using the simple protocol.

II. NETWORK MODEL

We consider the network model described in [2] and [1].
Nodes are located on an infinite grid (each grid unit is a
1×1 square). Nodes can be uniquely identified by their grid
location (x,y). All nodes have a transmission radius r. A
message broadcast by a node (x,y) is heard by all nodes
within distance r from it (where distance is defined in terms
of the particular metric under consideration, and r is assumed
to be an integer). The set of these nodes is termed the
neighborhood of (x,y). Thus there is an assumption that the
channel is perfectly reliable, and a local broadcast is correctly
received by all neighbors. Note that this idealized shared
radio channel intrinsically preserves ordering of messages
sent by a node, i.e., if a node transmits messages m1 and
m2 respectively in order, they will be received in that same
order by all neighbors. We call this idealized behavior the
reliable local broadcast assumption. While this assumption
does not hold per se in real wireless networks, it may be
possible to implement a local broadcast primitive that can
provide probabilistic guarantees (given that transmissions are
successfully received with a certain probability).



In this paper, we consider two distance metrics: L∞ and
L2. The L∞ metric is essentially the metric induced by the L∞
norm [3], such that the distance between points (x1,y1) and
(x2,y2) is given by max{|x1 −x2|, |y1 −y2|} in the this metric.
Thus nbd(a,b) comprises a square of side 2r with its centroid
at (a,b). The L2 metric is induced by the L2 norm [3], and is
the Euclidean distance metric. The L2 distance between points
(x1,y1) and (x2,y2) is given by

√

(x1 − x2)2 +(y1 − y2)2, and
nbd(a,b) comprises nodes within a circle of radius r centered
at (a,b). The L∞ metric enables more tractable analysis, and
allows us to establish exact fault tolerance thresholds. It also
provides valuable intuition, on which we base an approximate
argument for the L2 metric (which is the metric of practical
significance).

The adversary is allowed to place faults as long as no
single neighborhood contains more than t faults. Thus a
correct node may have upto t faulty neighbors, while a faulty
node may have upto (t −1) neighbors that are also faulty.

As in [1], we assume that a node may not spoof another
node’s identity, and that no collisions are possible, i.e., there
exists a pre-determined TDMA schedule that all nodes follow.
Such schedules are easily determined for the grid network
under consideration [1] (so long as time-optimality is not
a concern). We shall further discuss the impact of relaxing
these assumptions in Section X. However, note that accidental
collisions (not deliberately caused by the adversary) may be
handled to some extent by a probabilistic primitive (as they can
be treated akin to transmission errors). A designated source
(that is assumed located at the origin of the grid coordinate
system, without loss of generality) broadcasts a message with
a binary value. The aim is to propagate the correct value to
all nodes in the network. We seek to determine the maximum
number of faulty nodes t that may be present in any single
neighborhood without rendering reliable broadcast impossible.

III. RELATED WORK

Reliable broadcast has been extensively studied for networks
with point-to-point communication under various connectivity
conditions [4]. The classic result of Pease, Shostak and Lam-
port [5], [6] states that in case of full connectivity, Byzantine
agreement with f faulty nodes is possible if and only if
n ≥ 3 f + 1. Under more general communication graphs, the
requirements for Byzantine agreement are that n ≥ 3 f + 1,
and the network be at least (2 f +1)-connected [7]. Byzantine
agreement in k-cast channels has been considered in [8].
However this does not capture the spatially dependent con-
nectivity that characterizes radio networks. Reliable broadcast
in radio networks has been studied in [2] and [1]. Crash-stop
failures are considered in [2] for finite networks comprising
nodes located in a regular grid pattern and algorithms are
described for efficient broadcast to the part of the network
that is reachable from the source. However this work does

not attempt to quantify the number of faults that render some
nodes unreachable. In [1], it is shown that for a network of
nodes located on an infinite grid of unit squares and having
transmission radius r, reliable broadcast is not achievable for
t ≥ d 1

2 r(2r + 1)e (in both L∞ and L2 metrics). Besides a
protocol is described and it is proved that it allows reliable
broadcast to be achieved under the following conditions:

• If t <
1
2 (r(r +

√ r
2 + 1)), then reliable broadcast is

achieved in the L∞ metric.
• If t <

1
4 (r(r +

√ r
2 + 1))− 2, then reliable broadcast is

achievable in the L2 metric.
The considered protocol stipulates that nodes wait till they
hear the same value from t +1 neighbors before they commit
to it, and re-broadcast it exactly once for the benefit of other
neighbors. Under this protocol, no non-faulty node will ever
accept the wrong value. However, there is a possibility of
some nodes never being able to decide, and the achievability
bounds do not match the impossibility bound, leaving a
region of uncertainty.

In a very recent work [9], further study of the locally
bounded fault model has been undertaken. The paper
focuses on arbitrary graphs instead of using a specific
network model. It also claims to hold generally for both
radio and message-passing networks. However there is an
assumption that duplicity (sending different messages to
different neighbors) is impossible, which seems to stem
from the radio network model. Upper and lower bounds for
achievability of reliable broadcast are presented based on
graph-theoretic parameters, for arbitrary graphs. However,
no exact thresholds are established. The paper considers two
algorithms for broadcast. One is the simple algorithm of
[1] that they refer to as the Certified Propagation Algorithm
(CPA). Another algorithm, termed as the Relaxed Propagation
Algorithm (RPA), is informally described and involves a
notion of indirect reports similar to the protocol we describe
in Section VI. It is shown that RPA is a more powerful
algorithm, as there exist graphs for which RPA succeeds
but CPA does not. It is also shown that there exist certain
graphs in which algorithms that work with knowledge of
topology succeed in achieving reliable broadcast, while those
that lack this knowledge fail to do so. Our work differs
substantially from theirs, in that we focus on a specific
network model and obtain an exact threshold for byzantine as
well as crash-stop fault-tolerance. We also present a specific
algorithm for byzantine agreement in the considered model,
which localizes the circulation of indirect reports, and thus
reduces communication overhead.

IV. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that shall
be used in this paper. Nodes are identified by their grid location
i.e. (x,y) denotes the node at (x,y). The neighborhood of (x,y)
comprises all nodes within distance r of (x,y) and is denoted as
nbd(x,y). For succint description, we define a term pnbd(x,y)
where pnbd(x,y) = nbd(x − 1,y)∪ nbd(x + 1,y)∪ nbd(x,y−



1)∪nbd(x,y+1). Intuitively pnbd(x,y) denotes the perturbed
neighborhood of (x,y) obtained by perturbing the center of
the neighborhood to one of the nodes immediately adjacent to
(x,y) on the grid. Besides, throughout this paper, a non-faulty
node shall be variously alluded to as an honest or correct node,
while a node exhibiting byzantine failure shall occasionally be
referred to as a malicious node.

V. BYZANTINE AGREEMENT IN A RADIO NETWORK

Radio networks present a special case for the Byzantine
agreement problem due to the broadcast nature of the channel.
In the absence of address-spoofing and deliberate collisions
(discussed further in Section X), this significantly simplifies
the problem, and relaxes the requirements for agreement.
Under our assumptions (also in [1]), if a node transmits
a value, all its neighbors hear the transmission, and are
certain of the identity of the sender. The transmitting node
is thus incapable of duplicity, beause if it were to attempt
sending contradicting messages, they would be heard by all
its neighbors, and its duplicity would stand detected. Thus any
protocol could stipulate that if the neighbors of a node hear
it transmitting multiple contradictory versions of a message,
they should accept only the first message, and ignore the rest.
Thus, in a fully connected network, it is possible to tolerate
an arbitrary number of Byzantine faults. In a more general
network, the absence of duplicity implies a relaxation of the
requirements proved in [7] in that it is no longer required
that n ≥ 3 f + 1 for tolerating f faults. If only f Byzantine
faults were allowed in the whole network, the necessary and
sufficient condition for reliable broadcast would be exactly the
same as the connectivity condition of [7] viz. that the graph
be (2 f +1)-connected. Since we consider a model in which an
adversary may place upto t faults in any single neighborhood,
a general sufficient condition that may be stated for an arbitrary
network graph G = (V,E) is that for each pair of nodes (v1,v2)
s.t. v1,v2 ∈ V , either (v1,v2) ∈ E, else ∃S ⊆ V such that the
adversary may place at most f faults in S without violating
the constraint, and v1 be connected to v2 via 2 f + 1 node-
disjoint paths that lie entirely within S. Note that this requires
knowledge of network topology. The protocol we present in
this paper is based on a localized variant of this sufficient
condition.

VI. RELIABLE BROADCAST WITH BYZANTINE FAILURES

As discussed in Section III, it was proved in [1] that reliable
broadcast is impossible in L∞ as well as L2 metrics if t ≥
d 1

2 r(2r +1)e. We prove the following:

THEOREM 1: If t <
1
2 r(2r + 1), reliable broadcast is

achievable in the L∞ metric.

This is an exact match to the impossibility bound for L∞, and
thus establishes the threshold for achieving reliable broadcast
in the square grid network under consideration. We present

a protocol that achieves this objective 1. Without loss of
generality we assume the message to comprise a binary value
(say 0 or 1). A node that is not the source is said to commit
to a value when it becomes certain that it is indeed the value
originated by the source. The protocol requires maintenance
of state by each node pertaining to nodes within its four-
hop neighborhood. This state may be reduced further by
earmarking exact messages that a node should lookout for,
and this shall become clear from our constructive proof for the
viability of reliable broadcast with t <

1
2 r(2r + 1). However,

at a basic level, the protocol operates as follows:
• Initially, the source does a local broadcast of the message.
• Each neighbor i of the source can immediately commit

to the the first value v it heard from the source, and
then locally broadcasts it once in a COMMIT T ED(i,v)
message.

• Hereafter, the following protocol is followed by each
node j (including those involved in the previous two
steps):

On receipt of a COMMIT T ED(i,v) message from
neighbor i, record the message, and locally broadcast a
HEARD( j, i,v) message.

On receipt of a HEARD(k, i,v) message from a
neighbor k, record the message, and locally broadcast a
HEARD( j,k, i,v) message.

On receipt of a HEARD(l,k, i,v) message, record
the message, and locally broadcast a HEARD( j, l,k, i,v)
message.

On receipt of a HEARD(g, l,k, i,v) message, record
the message, but do not re-propagate.

On committing to a value v, do a one-time local
broadcast of COMMIT T ED( j,v).

A node j commits to a value v if it reliably determines
that at least t +1 nodes lying in some single neighborhood
have committed to v. A node is said to have reliably
determined the value committed to by node i if one of
the following conditions holds:

– i is its neighbor, and so j heard COMMIT T ED(i,v)
directly. In this case, there is no cause for doubt as
to what value was committed to by node i, since no
other node is capable of spoofing i’s address, and
collisions are ruled out.

– j heard indirect reports of i having committed to a
particular value v through t + 1 node-disjoint paths
that all lie within some single neighborhood. The in-

1We have since obtained results that allow the same fault threshold to be
tolerated using a simpler protocol, with a corresponding simpler proof. Section
VI-B provides a brief discussion.
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Fig. 1. Nodes in nbd(a,b) whose committed values P can reliably
determine
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Fig. 2. Nodes in nbd(a,b) P can hear directly

direct reports are obtained via the HEARD messages
that propagate via upto three intermediate nodes
(i.e. upto four hops from the node that sent the
COMMIT T ED message), and the path information
is obtained from these messages (as each forwarding
node affixes its identifier to the message). Observe
that as the t + 1 node-disjoint paths all lie within a
single neighborhood, and as no more than t nodes
in the neighborhood may be faulty, all the (t + 1)
paths cannot have a faulty node each, and it is
therefore impossible for the node to arrive at a wrong
conclusion by following this rule.

THEOREM 2: (Correctness) No node shall commit to a
wrong value by following the above rule.

Proof: The proof is by contradiction. Consider the first
node, say j, that makes a wrong decision to commit to value v.
This implies it reliably determined that t +1 already committed
nodes lying in some single neighborhood N1 had committed to
v. Since reliable determination of a node i having committed to
a value v involves hearing i directly or hearing indirect reports
(that i committed to v) via at least t + 1 node-disjoint paths
lying in some single neighborhood N2, and since the number
of faults in N2 may be at most t, it implies that all these paths
cannot have relayed the wrong value, and so v must indeed
be the value committed to by i. Thus no node can make a
wrong determination of what value each of the t + 1 nodes
in N1 committed to; they must all indeed have committed to
v. Since j is the first node to make a wrong decision, the
t + 1 nodes could not have made a wrong decision. Also, all
of these nodes cannot be faulty, as no more than t nodes in
any neighborhood may exhibit Byzantine failure. Thus v must
indeed be the correct value.

THEOREM 3: (Completeness) Each node is eventually able
to commit to the correct value.

Proof: We prove that each node will be able to meet
the conditions stipulated by the protocol for committing to

the correct value. The proof also clarifies the operation of
the protocol, and in fact would allow one to stipulate exactly
which messages each node should act upon (given that
the topology of the network is completely known), thereby
reducing the state maintained at each node. The essence of
the proof lies in showing that each node j (except the direct
neighbors of (0,0)) is connected to at least 2t +1 nodes that
lie in some single neighborhood N1, such that the connectivity
to each such node is through 2t + 1 node-disjoint paths that
all lie in some neighborhood N2, and the nodes in N1 are
able to commit to the correct value before node j has done so.

The proof proceeds by induction.

Base Case:

All honest nodes in nbd(0,0) are able to commit to the
correct value. This follows trivially since they hear the origin
directly, and we assume that address-spoofing is impossible.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b) i.e.
all honest nodes in nbd(a,b) are able to commit to the correct
value, then all honest nodes in pnbd(a,b) are able to commit
to the correct value.

Proof of Inductive Hypothesis:

We show that each node in pnbd(a,b) is able to reliably
determine the value committed to by 2t +1 nodes in nbd(a,b).
Since no more than t of these can be faulty, this guarantees
that the node will become aware of t + 1 nodes in nbd(a,b)
having committed to a (the correct) value, and will also
commit to it. In order to show this, we show that each
node is connected to at least 2t + 1 nodes in nbd(a,b) either
directly, or through 2t + 1 node disjoint paths that all lie
entirely within some single neighborhood. Thus at least t +1
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Region x-extent y-extent
A (a+ p− r) ≤ x ≤ a (b+1) ≤ y ≤ (b+q+ r)
B1 (a+1) ≤ x ≤ (a+ p−1) (b+1) ≤ y ≤ (b+q+ r)
B2 (a+1− r) ≤ x ≤ (a+ p−1− r) (b+1) ≤ y ≤ (b+q+ r)
C1 (a+ p+1) ≤ x ≤ (a+ r) (b+q+1) ≤ y ≤ (b+ r +1)
C2 (a+ p+1− r) ≤ x ≤ a (b+q+1+ r) ≤ y ≤ (b+1+2r)
D1 (a+ p) ≤ x ≤ (a+ p+ r−q) (b+ r +q− p+1) ≤ y ≤ (b+ r +q)
D2 (a+1) ≤ x ≤ (a+ p) (b+1+ r +q) ≤ y ≤ (b+1+2r)
D3 (a+1− r) ≤ x ≤ (a+ p− r) (b+1+ r +q) ≤ y ≤ (b+1+2r)
J (a−2r) ≤ x ≤ a (b+1) ≤ y ≤ (b− p+ r)
K1 (a−2r) ≤ x ≤ a (b− p+1) ≤ y ≤ b
K2 (a−2r) ≤ x ≤ a (b− p+ r +1) ≤ y ≤ (b+ r)

TABLE I
SPATIAL EXTENTS OF VARIOUS REGIONS

of these paths are guaranteed to be fault-free and shall allow
communication of the correct value.

We show this for a corner node in pnbd(a,b) i.e. the
node marked P (which is located at (a− r,b + r + 1)) in Fig.
1, which represents the worst case. For all other nodes in
pnd(a,b), the condition can be seen to be achieved via a
similar argument. We briefly discuss this in Section VI-A.

We show that node P is able to reliably determine the
values committed to by the nodes in the shaded region M in
Fig. 1 which comprises r(2r +1) nodes. Region M comprises
{(a− r + p,b− r + q)|2r ≥ q > p ≥ 0}. The first observation
is that P can directly hear the nodes in the shaded region R in
Fig. 2, comprising {(x,y)|(a−r)≤ x≤ a;(b+1)≤ y≤ (b+r)}
(this constitutes r(r +1) nodes), and so is certain of the value
they committed to. The remaining regions are depicted in Fig.
3 as U (comprising 1

2 r(r−1) nodes), S1 (comprising r nodes
), and S2 ( comprising 1

2 r(r − 1) nodes). We now explicitly
prove existence of suitable node-disjoint paths for nodes that
lie in the upper triangular region U in Fig. 3. Any node N
in this region may be considered located at (a + p,b + q)
(Fig. 4), such that r ≥ q > p ≥ 1 in this region. We show the
existence of r(2r + 1) node-disjoint paths between N and P,

that all lie within the same single neighborhood (centered at
(a,b + r + 1), and indicated by the square with dark outline
in Fig. 5). For greater clarity, the spatial extents of various
demarcated regions used in the following argument are
tabulated in Table I.

The region marked A comprises {(x,y)|(a + p − r) ≤
x ≤ a;(b+1) ≤ y ≤ (b+q+ r)}, and nodes in this region are
neighbors of both N and P. Thus, there are (r− p+1)(r +q)
paths of the form N → A → P that comprise one intermediate
node each.

The region B1 comprises {(x,y)|(a + 1) ≤ x ≤
(a + p− 1);(b + 1) ≤ y ≤ (b + q + r)}, and falls in nbd(N)
(recall that N is located at (a + p,b + q)). The region B2
comprises {(x,y)|(a + 1− r) ≤ x ≤ (a + p− 1− r);(b + 1) ≤
y ≤ (b + q + r)}, and falls in nbd(P). As may be seen, B2 is
obtained by a translation of B1 to the left by r units. Thus
there is a one-to-one correpondence between a point (x,y) in
B1 and a point (x− r,y) in B2, such that the points in each
pair are neighbors. This yields (p − 1)(r + q) paths of the
form N → B1 → B2 → P.

Region C1 comprises {(x,y)|(a + p + 1) ≤ x ≤
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(a + r);(b + q + 1) ≤ y ≤ (b + r + 1)} and thus falls within
nbd(N). Region C2 comprises {(x,y)|(a + p + 1 − r) ≤ x ≤
a;(b+q+1+ r) ≤ y ≤ (b+1+2r)} and falls within nbd(P).
It may be seen that there is a one-to-one correspondence
between any point (x,y) in C1 and point (x− r,y + r) in C2,
with the paired points being neighbors. Hence there exist
(r− p)(r− q + 1) paths of the form N → C1 → C2 → P that
comprise two intermediate nodes each.

Region D1 comprises {(x,y)|(a+ p)≤ x ≤ (a+ p+r−q),(b+
r +q− p+1) ≤ y ≤ (b+ r +q)}, and falls in nbd(N). Region
D2 comprises {(x,y)|(a + 1) ≤ x ≤ (a + p);(b + 1 + r + q) ≤
y ≤ (b+1+2r)} . Region D3 comprises {(x,y)|(a+1− r) ≤
x ≤ (a + p− r);(b + 1 + r + q) ≤ y ≤ (b + 1 + 2r)}, and falls
in nbd(P). We note that regions D1, D2 and D3 have exactly
the same number of nodes each. Besides, the regions D1 and
D2 are mutually located in a manner that each node in D2 is
a neighbor of each node in D1 (maximum distance between
any two nodes ≤ r). Hence, any one-to-one pairing of nodes
in D1 with nodes in D2 is valid. Further, a node located at
(x,y) in D2 has a one-to-one correpondence with a node
(x− r,y) in D3. Thus, there are p(r−q+1) paths of the form
N → D1 → D2 → D3 → P that comprise three intermediate
nodes each (Fig. 5). Thus the r(2r + 1) node-disjoint paths

are obtained.

We now consider nodes in regions S1 and S2 depicted
in Fig. 3. Then: S1 = {(a− r,b− p)|0 ≤ p ≤ (r− 1)}. It can
be shown that P has r(2r + 1) disjoint paths to each node
N = (a− r,b− p) in S1, as depicted in Fig. 6. Any point N in
S1 is located at (a− r,b− p). Consider region J comprising
{(x,y)|(a − 2r) ≤ x ≤ a;(b + 1) ≤ y ≤ (b − p + r)}. All
nodes in J are common neighbors of N and P, and provide
(r − p)(2r + 1) paths of the form N → J → P. Region K1
comprises {(x,y)|(a − 2r) ≤ x ≤ a;(b − p + 1) ≤ y ≤ b},
and falls enirely within nbd(N). Region K2 is
{(x,y)|(a − 2r) ≤ x ≤ a;(b − p + r + 1) ≤ y ≤ (b + r)},
and falls in nbd(P). For each node (x,y) falling in K1, there is
a one-to-one correspondence with a node (x,y+ r) in K2, and
thus we obtain p(2r+1) paths of the form N →K1 → K2 → P.
This yields a total of r(2r +1) paths (all lying entirely within
nbd(a− r,b+1)), as depicted in Fig. 6.

Region S2 comprises {(a−q,b− p)|(r−1) ≥ q > p ≥ 0}. For
the nodes in S2, observe that each node (a−q+1,b− p+1)
in S2 possesses the same relative position w.r.t. P as the node
(a+ p,b+q) in region U of Fig. 3 (note the axial symmetry
about axis OO′), and due to the symmetric structure of the
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Fig. 7. Arbitrary Position of P

network, shall enjoy exactly the same connectivity properties
to P as the node (a + p,b + q) in region U . Since we have
already shown existence of sufficient connectivity for those
nodes, the same holds for nodes in S2.

Observe that the inductive hypothesis along with the
base case suffice to show that every honest node will
eventually commit to the correct message, since starting at
(0,0), one can cover the entire infinite grid by moving up,
down, left and right. Thus the neighborhood of every grid
point can be shown to have decided i.e. every honest node
will have decided on the correct value.

We note that the connectivity condition proved above is
also sufficient to prove that upto 2t < r(2r + 1) crash-stop
failures are tolerable in L∞ metric. We shall elaborate further
in Section VII.

A. Arbitrary Position of P

We briefly discuss how the connectivity argument holds for
all P ∈ pnbd(a,b)− nbd(a,b). We consider non-worst case
locations of P ∈ {(a− r + l,b+ r +1)|1 ≤ l ≤ r}. For all other
locations, the argument holds by symmetry. The situation is
depicted in Fig. 7. One may consider P to be translated to the
right by l units from its worst case location at (a− r,b + r +
1). Then, region R that lies in direct range of P (recall from
Fig. 2) now comprises r(r + l +1) nodes. If we also translate
regions U , S1, and S2 by l units each to the right, they preserve
their relative positions and hence connectivity to P. However,
now 1

2 l(l −1) nodes from U fall out of nbd(a,b), but this is
more than compensated by the increase of rl nodes in region
R. Thus, if we count the number of nodes in nbd(a,b)∩U ,
nbd(a,b)∩ S1, and nbd(a,b)∩ S2, it can be shown that they
are ≥ r(r− l) in number. Together with the r(r + l +1) nodes
in region R, they provide at least r(2r +1) nodes to which P
is connected either directly or via 2t + 1 node-disjoint paths
all lying within some single neighborhood.

x=a+r−1x=a

(0, 0)

Fig. 8. Network Partition due to Crash Stop Failures

B. A Simpler Protocol

We have formulated a new protocol [10] in which only the
immediate neighbors of a node that sent a COMMIT T ED
message, send out a HEARD message reporting it. Thus, infor-
mation about the value committed to by a node propagates only
upto its two hop neighborhood. This suffices to achieve reliable
broadcast. The correctness of this protocol proceeds from
the observation that a much simpler connectivity condition is
sufficient to ensure reliable broadcast. Given that all honest
nodes in nbd(a,b) have been able to correctly determine the
broadcast value, any node P in pnbd(a,b)−nbd(a,b) should
be connected to 2t +1 nodes N in nbd(a,b) via a single path
each, such that collectively these 2t +1 paths are node-disjoint
and they all (the endpoints N, as well as any intermediate
nodes) lie in some single neighborhood.

VII. CRASH-STOP FAILURES

We first note that when only crash-stop failures are admis-
sible, no special protocol is required. Each node that receives
a value, commits to it, re-broadcasts it once for the benefit of
others, and then may terminate local execution of the protocol.
Thus the sole criterion for achievability is reachability. In this
failure mode, we establish an exact threshold for tolerable
faults in L∞ metric.

THEOREM 4: If t ≥ r(2r +1) , it is impossible to achieve
reliable broadcast in L∞ metric.

Proof: We present a construction with t = r(2r +1) that
renders reliable broadcast impossible. Consider the network
in Fig. 8. The nodes in the designated region {(x,y)|a ≤ x <

a + r} are all faulty while all other nodes are correct. As
may be seen, the maximum number of faulty nodes in any
given neighborhood is ≤ r(2r+1). However this configuration
partitions all nodes in the half-plane x ≥ a+ r from the source
and they are unable to receive the broadcast.

THEOREM 5: If t < r(2r + 1), it is possible to achieve
reliable broadcast in L∞ metric.
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Proof: One possible proof proceeds from the proof
of Theorem 1, as was noted earlier. Since, we showed
that each node is connected to each of r(2r + 1) already
committed nodes lying in some single neighborhood, via
r(2r + 1) node-disjoint paths that all lie within some single
neighborhood, it follows that upto t < r(2r + 1) crash-stop
faults may be tolerated, as each node would still be connected
to at least one non-faulty committed node, via at least one
fault-free path. However, we also present a simpler proof
that indicates achievability of reliable broadcast. This proof
presents a clearer picture of the progress of the broadcast
in the network. The proof is by induction, similar to the
inductive argument for Byzantine agreement.

Base Case:

When (0,0) initially broadcasts the message, all correct
nodes in nbd(0,0) hear it directly, and thereby receive the
broadcast.

Inductive Hypothesis:

If all correct nodes in nbd(a,b) have received the broadcast,
then all correct nodes in pnbd(a,b) will also receive the
broadcast.

Proof of Inductive Hypothesis:

Consider the situation as in Fig. 9. All correct nodes in
nbd(a,b) (depicted by square ABCD) have received the
broadcast. We consider the partition of ABCD into two
rectangles by the horizontal axis through (a,b). These

regions are depicted as ABFE and EFCD in Fig. 9. The
nodes on the partitioning axis i.e. on EF may be included
in any one region or split between the two. It does not
affect the proof, as these nodes do not play a role in the
proof argument. A similar partitioning by the vertical axis
through (a,b) yields AGHD and GBCH, with nodes along
GH assigned arbirarily to either region. Since the number
of faulty nodes in ABCD < r(2r + 1), one of the regions
ABFE and EFCD has ≤ 1

2 r(2r +1) = r2 + r
2 faults i.e. strictly

less than r(r + 1) faults 1. Similarly one of the regions
AGHD and GBCH has ≤ 1

2 r(2r +1) = r2 + r
2 faults. Without

loss of generality we assume that the regions satisfying
the condition are ABFE and AGHD. Then every node in
{(x,a + r + 1)|(a− r ≤ x ≤ a + r} i.e. along line segment PQ
in the figure has at least r(r + 1) neighbors in nbd(a,b) and
these neighbors fall entirely in region ABFE. Given that the
number of faults in ABFE is strictly less than r(r + 1) each
node on PQ is able to hear the broadcast from at least one
correct neighbor in nbd(x,y). By a similar argument, every
node in {(a− r−1,y)|b− r ≤ y ≤ b + r}, i.e., along segment
VW, has at least r(r+1) neighbors in AGHD, and is thus able
to receive the broadcast from at least one correct neighbor in
nbd(a,b).

Given that ABFE has strictly less than r(r + 1) faulty
nodes, it follows that GBFO (being a subset of ABFE)
also has strictly less than r(r + 1) faults. Thus each node
in {(a + r + 1,y)|b ≤ y ≤ b + r} (segment RR’) has at
least one correct neighbor belonging to nbd(a,b) and can
receive the broadcast. By a similar argument, every node
in {(x,b − r − 1)|a − r ≤ x ≤ a} (segment TT’) is able to
receive the broadcast. Therefore all those nodes belonging to
pnbd(a,b)−nbd(a,b) that lie along in these regions (depicted
by the dark line segments in Fig. 9) receive the broadcast.
We know need to show that the remaining nodes will also be
able to do so. These remaining nodes are the ones along line
segment U’U and segment S’S. We explicitly consider the
nodes along segment U’U. The same argument holds for S’S.

Now consider the nodes in the shaded region
{(x,y)|a ≤ x ≤ a + r,b − r ≤ y < b}. If even one of these
nodes is correct, then the nodes along U’U are guaranteed
to receive the broadcast. If all these nodes are faulty then
these faulty nodes number r2 + r. Therefore, if we consider
the neighborhood centred at (a,b − r − 1) (Fig. 10), only
< r2 more nodes can be faulty in this entire neighborhood
apart from those in the shaded region. This number of faulty
nodes is not sufficient to completely partition a correct node
in WH’T’T from all correct nodes in TT’J’J. Then at least
one correct node in region TT’J’J should be able to hear
from at least one correct node in region WH’T’T, and in turn
all other correct nodes in TT’J’J should be able to receive
the broadcast. Similarly, at least one correct node in region

1If t items are split between two regions, one will get ≤ t
2 and the other

will get ≥ t
2 .
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Fig. 11. Illustrating an Approximate Argument for Euclidean Metric

U’UK’K should be able to hear from at least one correct node
in TT’J’J, and in turn all correct nodes along U’U should be
able to receive the broadcast. A symmetric argument holds
for the nodes along S’S.

Thus, if all nodes in nbd(a,b) receive the broadcast,
then all nodes in pnbd(a,b) also receive the broadcast.
Since the considered failures are only of crash-stop kind, the
received value is guaranteed to be correct.

VIII. RELIABLE BROADCAST IN EUCLIDEAN METRIC

We now briefly consider the issue of reliable broadcast in
the L2 i.e. Euclidean metric. We refrain from establishing
exact thresholds as it is difficult to precisely determine lattice
points falling in areas bounded by circular arcs. We do
however present informal arguments that suggest that reliable
broadcast in L2 should be achievable if slightly less than
one-fourth fraction of nodes in any neighborhood exhibit
Byzantine faults. We work with the value t < 0.23πr2. The
basis for the argument is that, for sufficiently large r, the
number of nodes that lie in various subregions (having area
A) of a circle of radius r (elaborated later) are approximately
A±O(r). Thus, we expect the argument to hold well for large
values of r. The argument proceeds by induction, as in the
previous section.

Base Case:

All honest nodes in nbd(0,0) are able to commit to the
correct value. This follows trivially since they hear the origin
directly.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b) are
able to commit to the correct value, then all honest nodes in
pnbd(a,b) are able to commit to the correct value.
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Fig. 12. Approximate Construction depicting Node-Disjoint Paths (PQ from
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Justification of Inductive Hypothesis:

We show that each node in pnbd(a,b) should be able
to reliably determine the value committed to by 2t +1 nodes
in nbd(a,b). Since no more than t of these can be faulty,
this would guarantee that the node will become aware of
t + 1 nodes in nbd(a,b) having committed to a (the correct)
value, and will also commit to it. In order to show this, we
show that each node is connected to at least 2t + 1 nodes in
nbd(a,b) either directly, or through 2t +1 node disjoint paths
that all lie entirely within some single neighborhood. Thus at
least t + 1 of these paths are guaranteed to be fault-free and
shall allow communication of the correct value.

Consider the node at (a,b), as in Fig. 11. Let d be the distance
between the node at (a,b) (we call it node N) and any node in
(pnbd(a,b)−nbd(a,b)) (we call it node Q). Then d ≤ r +1.
Consider the half-neighborhood of (a,b) demarcated by the
medial axis perpendicular to NQ (not counting the points
falling on the medial axis). Then, as the number of faults
t < 0.23πr2, it implies that the number of nodes lying in
this half-neighborhood (0.5πr2 ± O(r)) should be at least
2t + 1. We attempt to quantify the number of node-disjoint
paths between any node P in this half-neighborhood, and
the node Q. Observe that in the worst case, the distance
D between P and Q is ≈ r

√
2. We consider the situation

in Fig. 12 with PQ rotated to the horizontal axis. The
distance PQ is r

√
2. We attempt to construct node-disjoint

paths that all lie within the neighborhood centred at M (the
midpoint of PQ). The set of nodes marked A are common
neighbors of P and Q and constitute two-hop PQ paths
(P → A → Q). A set of three-hop paths P → B1 → B2 → Q
and P → D1 → D2 → Q is also formed where each point
(x,y) in region B1 has a corresponding point (x + r,y) in B2.
Similarly there is a set of three-hop paths P →C1 →C2 → Q
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Fig. 13. Impossibility Construction for Byzantine Failures in Euclidean
metric

and P → D1 → D2 → Q, since each point (x,y) in C1 (D1)
has a correponding point (x + 1√

2 r,y) in C2 (D2). Finally,
there is a set of paths P → E1 → E2 → Q such that each point
in E1 has a one-to-one correpondence with its mirror image
with respect to axis OO’ which lies in E2. The number of
such paths is approximately equal to the sum of the areas
A, B1, C1, D1, and E1 which turns out to be approximately
1.47r2 = 0.47πr2 > (2(0.23πr2)+1) (for sufficiently large r).
Thus approximately 0.23πr2 ±O(r) Byzantine faults may be
tolerated.

We also argue similarly that reliable broadcast is not possible
if t ≥ 0.3πr2. The argument is based on a construction
identical to that presented in [1] for L∞, which is depicted in
Fig. 13. As already argued in [1], this arrangement of faults
renders reliable broadcast impossible. Note that the maximum
number of faults lying in any single neighborhood is given
by the number of faulty nodes in the circled region (Fig. 13).
The relevant area under the circle is approximately 0.6πr2,
and we expect approximately 0.6πr2 ±O(r) nodes to lie in it.
Of these around 0.3πr2 ±O(r) are expected to be faulty. This
concludes the argument that if t ≥ 0.3πr2 (approximately),
reliable broadcast would be unachievable. Thus the critical
threshold for L2 metric seems to lie between a 0.23 and a 0.3
fraction i.e. close to one-fourth fraction of faults.

Observe that the above argument also leads to the conclusion
that upto 2t = 0.46πr2 crash-stop failures may be tolerated,
while around 0.6πr2 failures would render reliable broadcast
impossible. Thus, for crash-stop failures, the threshold is
expected to be somewhere around half the number of nodes
in a neighborhood.

IX. RELIABLE BROADCAST WITH A SIMPLER BYZANTINE
PROTOCOL

We present bounds for tolerable faults when an extremely
simple protocol (described in [1]) is used. In this protocol,
initially the source transmits the value, and its immediate
neighbors are able to commit to that value instantly. They then

re-broadcast the value committed to and terminate protocol
operation. Any other node that has heard the same value re-
ported by at least t +1 neighbors, commits to it, re-broadcasts
it, and then terminates. Thus the protocol proceeds till either
all nodes have terminated, or a situation is reached where
no further progress is possible. We present an asymptotically
tighter bound for the number of tolerable Byzantine faults
in the L∞ metric (using this protocol) than that presented
in [1], viz., we claim and prove that reliable broadcast is
always possible for t ≤ 2

3 r2 which dominates the bound of
t <

1
2 (r(r +

√ r
2 + 1))− 2, proved in [1], for all sufficiently

large r.

THEOREM 6: If t ≤ 2
3 r2, it is possible to achieve reliable

broadcast, in the L∞ metric, with the given protocol.

Proof: Base Case:

All honest nodes in nbd(0,0) are able to commit to the
correct value. This follows trivially since they hear the origin
directly.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b) i.e.
all honest nodes in nbd(a,b) are able to commit, then all
honest nodes in pnbd(a,b) are able to commit.

Proof of Inductive Hypothesis:

A sufficient condition for a node to be able to commit
to the correct message value is that at least 2t + 1 = 4

3 r2 + 1
of its neighbors must have committed and broadcast their
committed value before it. Assume that all honest neighbors
of node (a,b) have arrived at a decision. Then after all
these nodes have broadcast their committed value, a certain
number of other nodes will definitely be able to commit as
the sufficient condition is satisfied for them. We consider
a subset of these nodes which are indicated in Fig. 14
i.e. 2d r

2e + 1 such nodes along each edge of the central
square are definitely able to commit, for all r > 1. That
these nodes are able to commit is evident by observing
that the number of committed neighbors of these nodes
is ≥ (r + 1 + r

2 )r >
3
2 r2 + r >

4
3 r2 + 1 = 2· 2

3 r2 + 1 (shaded
region in Fig. 14). Once these nodes have broadcast their
committed value, the adjacent row of 2d r

2e+ 1 nodes (Fig.
15) will be able to commit and so on, till the stack of
committed nodes adjoining each edge of the central square
reaches a size of b r

3c rows. This may be seen as follows:
we have already argued that row 1 will be able to commit.
Given that row(i − 1) has committed, row i can commit if
(d 3

2 re+1)(r+1− i)+(i−1)(2d r
2e+1)+(i−1)(d r

2e− i+1)≥
4
3 r2 + 1. This condition holds for all i ≤ b r√

6c, when r ≥ 2.
This implies that the stack can grow to at least r

3 rows , since√
6 < 3 (Fig. 16).
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Fig. 17. Second Stage: Step 1
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Fig. 18. Progress of Second Stage
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Fig. 19. Completion of Second Stage

Once this first stage is over, we show that the remaining
nodes would be able to commit. As Fig. 17 depicts, after
the first stage completes, there are 8 more nodes which will
definitely be able to commit since their committed neighbors
≥ (r + 1 + d r

2e)r + 2d r
2eb r

3c ≥ 11r2
6 ≥ 4r2

3 + 1 (for all r ≥ 2).
Thereafter all the other remaining nodes will be in a position
to commit since the minimum number of committed neighbors
that any of these nodes has is ≥ (r +1)r +2d r

2eb r
3c+4 >

4r2
3

(see shaded region in Fig. 17). Thus the inductive hypthesis
stands proven.

The inductive hypothesis along with the base case suffice to
show that every honest node will eventually commit to the
correct message.

X. IMPACT OF ADDRESS-SPOOFING AND COLLISIONS

The presence of a broadcast channel introduces numerous
difficulties by way of the possibility of a malicious node
spoofing another node’s address and sending spurious
messages under guise, as well as the possibility of disruption

of communication via deliberate collisions. The results
presented in this paper assume that neither problem exists.

When the adversary has control over low-level networking
functions, reliable broadcast is extremely diffcult to achieve.
If address spoofing is allowed, any malicious node may
attempt to impersonate any honest node. Similarly, reliable
broadcast is rendered impossible if the adversary can cause
an unbounded number of collisions, since a faulty node can
cause collision with any transmission made by a good node
in its vicinity. When the number of collisions is bounded,
it may be possible to come up with protocols that achieve
reliable broadcast. If the adversary uses collisions to merely
disrupt communication, the problem is trivially solved by re-
transmitting messages a sufficient number of times. However,
the adversary might use it to send contradicting messages to
different parts of the network (a situation briefly discussed
in [1]). This situation might be remediable via a protocol
that involves consultation between the neighbors of a node as
to the value they heard it transmit, as well as any detected



collisions, and requires further investigation.

XI. CONCLUSIONS

We have presented results regarding the number of
Byzantine and crash-stop failures that may be tolerable
in a radio network without rendering reliable broadcast
impossible. We have considered an adversarial model where
the adversary is free to choose faulty nodes as long as the
placement satisfies the constraint that no neighborhood has
more than t faults. Another useful model to consider would be
that of random failure, whereby each node has a probability
of failure p f , and nodes fail independently of each other.
Observe that in case of crash-stop failures, the problem is
similar to the problem of site percolation [11].

Another aspect that requires further attention is that of
efficient implementation of a reliable broadcast service in a
real wireless network. In the presence of channel errors etc.,
the basic reliable local broadcast requirement is by itself not
trivial to achieve. A mechanism for reliable broadcast in a
multi-hop mobile network is described in [12]. However, only
temporary and non-Byzantine node failures are taken into
account, and the mechanism primarily relies on a clustering
scheme with unicast messages (where link errors are handled
via retransmissions). There is need for further work on
efficient Byzantine fault-tolerant protocols for multi-hop
wireless networks, in order to bridge the gap between theory
and practice.
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