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ABSTRACT

Spectrum auctions are efficient mechanisms for licensed users
to relinquish their under-utilized spectrum to secondary links
for monetary remuneration. Truthfulness and social wel-
fare maximization are two natural goals in such auctions,
but cannot be achieved simultaneously with polynomial-
time complexity by existing methods, even in a static net-
work with fixed parameters. The challenge escalates in prac-
tical systems with QoS requirements and volatile traffic de-
mands for secondary communication. Online, dynamic deci-
sions are required for rate control, channel evaluation/bidding,
and packet dropping at each secondary link, as well as for
winner determination and pricing at the primary user. This
work proposes an online spectrum auction framework with
cross-layer decision making and randomized winner determi-
nation on the fly. The framework is truthful-in-expectation,
and achieves close-to-offline-optimal time-averaged social wel-
fare and individual utilities with polynomial time complex-
ity. A new method is introduced for online channel evalua-
tion in a stochastic setting. Simulation studies further verify
the efficacy of the proposed auction in practical scenarios.

1. INTRODUCTION
As wireless devices and applications proliferate, static spec-

trum allocation (e.g., by FCC in the U.S.A.) can no longer
meet the dynamic demand for channels, resulting in con-
gestion in unlicensed spectrum and under-utilization in the
licensed counterparts [1]. Spectrum leasing [2] has been pro-
posed to allow a primary user (licensed spectrum user) to
lend its idle channel to secondary users with a monetary
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remuneration, for improved utilization of the spectrum re-
source.

Auctions are natural mechanisms for implementing spec-
trum leasing. Each secondary user can strategically bid for
channels from the primary users to maximize its utility. Re-
cent research in spectrum auction [3, 4, 5, 6, 7, 8, 9, 10] has
mainly focused on the design of truthful and efficient auc-
tion mechanisms that can avoid market manipulation while
boosting social welfare, i.e., the overall utility of all partic-
ipants in the auction. However, two fundamental issues are
still not well addressed, when we consider repeated auctions
in a long-run system: Issue 1, how can each bidder decide
its true value of the spectrum for its utility maximization
over the long term? And Issue 2, how can the long-term
social welfare be maximized by exploiting the spatial reuse of
channels without transmission collisions?

Before discussing the two issues, we first define the true
value.

Definition 1 (True value). The true value of a chan-
nel is one that satisfies the following condition: if a sec-
ondary link wins the channel by paying a price equal to the
true value, then it ends up with the same time-averaged util-
ity as when losing the channel.

Issue 1. A bidder’s true valuation of a channel is always as-
sumed known in the current literature. This may be reason-
able in the static case, where the true value is only related to
the utility of one-time data delivery. However, in a dynamic
network where data traffic from each secondary user varies
unpredictably how to decide the true value of a channel that
maximizes the long-term utility while maintaining network
stability, is a non-trivial issue. Furthermore, we consider a
practical quality-of-service goal for secondary communica-
tion, that there is a predefined maximum allowable delay
for the delivery of each packet, by when it is either delivered
or dropped. This goal further complicates channel evalua-
tion. Besides, channel evaluation at one time is also closely
connected with channel allocation and rate control in the
subsequent time. How can a bidder calculate the impact of
winning/losing the channel in time slot t on its long-term
utility, without any future information?

The following example illustrates the challenge from issue
1. Consider a channel with unit capacity, i.e., one packet
can be transmitted in each time slot. Suppose a packet
queue is maintained at each bidder, and one packet arrives
at the queue in each time slot. The gain of getting one
packet delivered is 5. Each packet should be delivered within
3 slots, or dropped at the penalty of 10 if not delivered.



(a) Policy A

Queue 1 2 3 3
Bid price 5 5 15 15

Charged price 0 0 5 5
Action None None Deliver Deliver

Utility 0 0 0 0

(b) Policy B

Queue 1 2 2 2
Bid price 5 10 10 10

Charged price 0 4 4 4
Action None Deliver Deliver Deliver

Utility 0 1 1 1

Table 1: A motivating example.

The bidder, who knows nothing about future packet arrival,
comes up with two policies for channel evaluation: i) policy
A evaluates the channel based on the bidder’s utility in the
current time slot, and computes the value of the channel in
current slot as 5 + 1drop ∗ 10, where 1drop is an indicator
function that equals 1 if there is any packet reaching its
maximum allowable delay and 0 otherwise, given that the
utility of the bidder is 5 − (5 + 1drop ∗ 10) = −1drop ∗ 10
if it wins the channel and is charged at the true value of
5+1drop ∗10, which is equivalent to the utility of −1drop∗10
if not getting the channel; and ii) policy B considers not only
any to-be-outdated packet, but also the other packets in the
queue, and derives the value of the channel in current slot
as 5 ∗m+1drop ∗ 10, where m is the number of packets that
have not reached their maximum allowable delays.

The bidder bids in each time slot with its true value of
the channel. Suppose the bidder can always win the chan-
nel with any price higher than 9. The charge to the bidder
is 4 (or 5) if it wins the channel with a bidding price 10 (or
15), and 0 if it loses. Table 1.a and 1.b present the bid-
der’s queue length, channel evaluation (i.e., bidding price),
charged price, actions (deliver or drop a packet, or none) and
utility in 4 consecutive time slots. The overall utility ob-
tained using policy A and B is 0 and 3, respectively. Hence,
deciding true values based only on utility in an individual
time slot is not suitable for long-term utility maximization
in a dynamic system. A more elaborated channel evaluation
method is needed.

Issue 2. The second issue typically leads to an NP-hard
problem, since collision-free channel allocation for social wel-
fare maximization is equivalent to the weighted maximum
independent set problem. Even for social welfare maximiza-
tion in a static network, only heuristics are exploited to ap-
proximate the optimum [3, 4, 5, 6, 7, 8, 9, 10]. The problem
becomes more difficult when we set to achieve long-term
social welfare maximization in a dynamic system, together
with guarantees of truthfulness in bids.

Our contributions. We propose a new, online auction
framework to dynamically evaluate the true value of chan-
nels in each time slot, while maximizing the time-averaged
individual utility and social welfare in the long run, under
practical system dynamics. In the framework, each sec-
ondary link strategically decides its channel evaluation/bids,
transmission rates and packet dropping in each time slot,
through an online algorithm utilizing Lyapunov optimiza-
tion [11]. Upon receiving the bids, a primary user selects a

set of collision-free bids with maximum expected weights as
the winners of the auction of its channel, based on a ran-
dom access control protocol derived with Glauber dynamics
[12]. Subsequently, the primary user charges each winner
a tailored price, and the winning secondary links schedule
their data transmissions on the obtained channels. Below
we summarize the contributions of this work.

⊲ To our knowledge, this work is the first to dynamically
evaluate the true value of a channel in an online auction,
instead of assuming it as a priori knowledge, for maximizing
long-term averaged utility at each secondary link. Our main
idea is that the true value of the channel at a bidder at each
time should be proportional to the urgency level of delivering
packets: higher when the cumulative delay of packets in the
queue is large, i.e., when packet dropping is a more imminent
threat.

⊲ As the current best result, our proposed randomized auc-
tion mechanism achieves the arbitrarily close-to-offline-optimal
long-term averaged social welfare with polynomial-time com-
plexity and the guarantee of truthfulness in expectation, i.e.,
bidding with the true evaluation is the optimal strategy for
the bidder in maximizing its expected time-averaged utility.
Moreover, the long-term averaged utility of each individual
secondary link is also arbitrarily close to its offline optimum.
There is a tradeoff between how close these quantities are
to their offline optima, and the maximum allowable delivery
delay of packets, which we investigate in details.

In the rest of the paper, we discuss related literature in
Sec. 2 and introduce the system model in Sec. 3. The auction
framework and online algorithms are in Sec. 4. A benchmark
algorithm is presented in Sec. 5 for comparison. We evaluate
the efficacy of the proposed framework through theoretical
analysis and simulation studies in Sec. 6 and Sec. 7, respec-
tively. Sec. 8 concludes the paper.

2. RELATED WORK
Auctions have been widely studied for trading idle spec-

trum between a primary user and the secondary links. Truth-
fulness and social welfare optimality are two natural eco-
nomic properties in spectrum auction design. The VCG
mechanism, by Vickrey [13], Clarke [14] and Groves [15],
is known to achieve both goals concurrently. However, the
VCG mechanism can only be efficient when optimal solu-
tions can be computed in polynomial time, while the collision-
free channel allocation problem is typically NP-hard since it
requires solving a maximum weight independent set prob-
lem.

Existing studies often focus on truthfulness while approx-
imating the optimal social welfare using efficient algorithms.
Zhou et al. [3] propose the first truthful spectrum auction
with a monotonic allocation mechanism. A truthful double
auction with multiple sellers is introduced by Zhou et al. [5].
The work of Jia et al. [4] maximizes the expected revenue
of the spectrum seller, and approximately maximizes the
social welfare with the guarantee of truthfulness. Wang et
al. [6] present the first truthful online double auction for the
spectrum market, but with a complete interference graph.
A multi-unit double auction with truthfulness and asymp-
totic efficiency in social welfare is proposed by Xu et al. [7],
without spacial spectrum reuse. Dong et al. [16] investigate
the time-frequency flexibility using a combinatorial auction
with both truthfulness and worst-case approximation of the



social welfare.
With a natural extension of truthfulness into truthfulness

in expectation, randomized algorithms are designed to ap-
proximate expected social welfare maximization in a spec-
trum auction. Gopinathan et al. [8] investigate truthful-in-
expectation spectrum auction mechanisms with a balance
between social welfare and fairness among secondary users.
Hoefer et al. [10] present a novel linear program formula-
tion using a non-standard parameter of the conflict graph,
achieving an approximation of the social welfare with truth-
fulness in expectation. Zhu et al. [9] are first to study spec-
trum auctions for multi-hop communications, with truthful-
ness in expectation and provable approximation for optimal
social welfare.

The above solutions either provide no efficiency guarantee
or achieve only a fraction of the optimal social welfare, when
truthfulness is guaranteed, with the assumption of known
true evaluation of the spectrum. In contrast, this paper
presents a spectrum auction mechanism which can arbitrar-
ily closely approach the maximum social welfare in expec-
tation with polynomial-time complexity, while guaranteeing
truthfulness in expectation. A novel way to calculate the
true evaluation of spectrum at each secondary link is also
proposed.

3. PROBLEM MODEL
We consider a secondary network (vp, Vs, E). vp is the

primary user of a licensed spectrum, which can be divided
into C non-overlapping orthogonal channels for lease to a
set of secondary links, Vs. E is a set characterizing the
interference relation, and <vi, vj> ∈ E indicates a collision
between vi, vj ∈ Vs if transmitting simultaneously on the
same channel. Each sender/receiver of the secondary link
has a half-duplex software-defined radio that can be tuned
to any channel provided by the primary user. The network
operates in a time-slotted fashion, such that each link can
transmit on one channel only in each time slot, at a unit
capacity.

3.1 Data traffic model at secondary links
For each secondary link vi, data packets arrive at its sender

node with an ergodic process, with Ai(t) ∈ [0, Amax
i ] being

the data arrival rate in t, upper-bounded by Amax
i . To main-

tain network stability, rate control is applied such that ri(t)
packets in Ai(t) are admitted into the transport layer with

ri(t) ∈ [0, Ai(t)]. (1)

Transport-layer queue: A data queueQi(t) is maintained
on the transport layer at each link vi:

Qi(t + 1) = max{Qi(t) −
∑

c∈[1,C]

µic(t) − di(t), 0}+ ri(t). (2)

Here, µic(t) ∈ {0, 1} is the channel allocation variable (de-
cided by the primary user via auction) indicating whether
vi is transmitting on channel c in t, and di(t) is the number
of dropped packets that exceed their maximum allowable
delays (see (6)) with

di(t) ∈ [0, dmax
i ], (3)

where dmax
i is the maximum dropping rate. A secondary

link can transmit over one channel only at a given time,
through the pair of half-duplex radios, i.e.,

∑

c∈[1,C]

µic(t) ≤ 1, ∀vi ∈ Vs. (4)

Table 2: Important notations.

Vs Set of secondary links vp Primary user

E Edges in conflict graph C # of channels

Ui(·) revenue func. of link

vi

Qi(t) data queue at link vi

ηi(t) Aux. var for ri(t) ǫi constant for QoS at vi

Ai(t) Data arrival of secondary link vi at slot t

Amax
i Maximum data arrival rate of secondary link vi
b̃i(t) true value for vi to buy a channel at t

b̂i(t) Payment by secondary link vi at slot t

bi(t) bid of vi for a channel at t

Yi(t) Virtual queue for rate control at secondary link vi
Zi(t) Virtual queue for QoS at secondary link vi
ri(t) Admitted data at secondary link vi at slot t

µic(t) Transmission variable: data delivered out of Qi(t)

di(t) Dropped packets by secondary link vi at slot t

dmax
i Maximum packet drop rate by secondary link vi
βi Penalty to drop one packet by secondary link vi

To avoid interference, two mutually interfering links can-
not be scheduled on the same channel at t:

µic(t) + µjc(t) ≤ 1, ∀vi, vj ∈ Vs, < vi, vj >∈ E, c ∈ [1, C]. (5)

3.2 Quality of service model
We consider the following transmission guarantee at each

secondary link vi:

A packet on link vi is either delivered or dropped within

Di slots after entering the queue. (6)

Here, Di is the maximum allowable delay for packets on link
vi. Naturally, a penalty βi is incurred for dropping a packet
at secondary link vi.

3.3 Spectrum auction model
There are two types of entities in the spectrum auction:

secondary links (bidders) and the primary user (auctioneer).
The auction consists of three main steps:

Step 1: Each secondary link vi ∈ Vs computes true value
b̃i(t) of obtaining one channel for transmission at t, and sub-
mits a bid bi(t) to the primary user. The secondary link
aims to maximize its utility and could bid untruthfully, i.e.,
bi(t) 6= b̃i(t). We aim to design a strategy-proof spectrum
auction where bidding truthfully is a dominant strategy for
each secondary link.

Step 2: After collecting the bids from all secondary links,
the primary user computes the channel allocation decisions
µic(t), indicating whether channel c is allocated to secondary
link vi at t. We consider the spatial reuse of channels such
that a set of collision-free links can be concurrently sched-
uled on the same channel subject to constraints (4) and (5).

Step 3: The primary user decides the payment b̂i(t) to be
charged to each secondary link vi ∈ Vs.

3.4 Economic properties of the auction
We now define the economic properties pursued in our

design of the spectrum auction mechanism.

Definition 2 (Truthfulness in expectation). An ran-
domized auction is truthful in expectation if bidding the true



value is a dominant strategy for each buyer, i.e., the bid-
der cannot gain a higher utility (in expectation) by unilater-
ally deviating from bidding true values, while other bidders’
strategies remain the same.

Definition 3 (Individual rationality in expectation).
An randomized auction is individually rational in expecta-
tion if each bidder ends up with non-negative expected util-
ity.

Definition 4 (Budget balance in expectation). The
auctioneer’s expected utility is non-negative, i.e., the total
charge collected from the bidders is non-negative in expec-
tation.

3.5 Utility model at secondary links
Hereinafter, for any variable α(t), we denote its time-

averaged value as ᾱ, i.e., ᾱ = limt→∞
1
t

∑t−1
τ=0 E(α(τ )), where

E(·) is the expectation.
We consider the selfishness of each secondary link vi ∈ Vs,

which aims to maximize its time-averaged utility ϕi. ϕi

consists of three components: the revenue gain from data

delivery, Ui(r̄i), the cost of leasing spectrum,
¯̂
bi, and the

penalty for dropping packets, βi · d̄i:

ϕi = Ui(r̄i)−
¯̂
bi − βi · d̄i.

Here, Ui(·) is a non-decreasing, concave and twice-differentiable
revenue function for vi. Hence, individual long-term utility
maximization at secondary link vi ∈ Vs becomes:

max ϕi (7)

s.t. Queue stability, and constraints (1), (3), (4), (5), (6) at vi.

3.6 Social welfare
The economic efficiency of an auction is measured in terms

of its achieved social welfare, i.e., the overall utility of all
participants in the auction. The utility of each secondary
link is its utility as discussed above, while the utility of the
primary user is the overall payment from all the secondary

links,
∑

vi∈Vs

¯̂
bi.

Cancelling payments made by links and revenue gleaned
by the primary user, the social welfare, ϕ, becomes:

ϕ =
∑

vi∈Vs

[Ui(r̄i)− βi · d̄i].

The long-term-average social welfare maximization prob-
lem is:

max ϕ (8)

s.t. Queue stability and constraints (1), (3), (4), (5), (6) at each link.

Our objective includes for each secondary link to max-
imize its time-averaged utility, i.e., optimization problem
(7), and for the network to maximize its social welfare at
the same time.

4. ALGORITHM DESIGN
In this section, we present our spectrum auction frame-

work and the algorithms designed for both the secondary
links and the primary user. Fig. 1 outlines the sketch of the
spectrum auction between secondary links and the primary
user.

Winner determination & 

pricing

Spectrum evaluation 

& bidding
Link transmission

Figure 1: The modules of spectrum auction.

4.1 Spectrum Evaluation and Bidding at Sec-
ondary Link

A secondary link dynamically decides its channel evalua-
tion and bids, as well as associated decisions on allocation
of acquired channels for packet transmission, rate control
and packet dropping, in each time slot, with the goal of
maximizing its time-averaged utility in (7). We transform
(7) into a sequence of one-shot optimization problems, and
solve them respectively to derive the online algorithm based
on the Lyapunov optimization technique [11]. To achieve
that, apart from the data packet queues defined in Eqn. (2),
each secondary link vi ∈ Vs also maintains two types of vir-
tual queues.

Virtual queue for rate control: To deal with non-linear
revenue functions Ui(·) [11], each secondary link vi has the
following virtual queue for its rate control:

Yi(t + 1) = max{Yi(t) − ri(t), 0}+ ηi(t). (9)

Here ηi(t) is an auxiliary variable for rate control at sec-
ondary link vi with

ηi(t) ∈ [0, Amax
i ]. (10)

If virtual queue Yi(t) is kept stable, η̄i ≤ r̄i, i.e., the time-
averaged value of auxiliary variable ηi(t) constitutes a lower
bound for the time-averaged throughput. We will show that
maximizing the utility of η̄i can approximately maximize the
utility on average throughput r̄i.

Virtual queue for QoS guarantee: We apply the ǫ−persistence
queue [17] technique to guarantee the QoS goal in (6). Each
link vi maintains the following virtual queue

Zi(t + 1) =max{Zi(t) + 1{Qi(t)>0} · (ǫi −
∑

c∈[1,C]

µic(t)) − di(t)

− 1{Qi(t)=0}, 0}. (11)

Here, 1{·} is a binary indicator function. ǫi is a positive
constant. The virtual queue Zi(t) approximately keeps track
of the delay in data packet queue Qi(t). A longer virtual
queue Zi(t) represents a larger cumulative queuing delay of
packets in Qi(t). In Sec. 6, we demonstrate that, with the
aid of this virtual queue, our algorithm can provide worst-
case delay guarantee for each packet.

Hence, the sender of each secondary link vi maintains a
set of queues Θi(t) = {Qi(t), Yi(t), Zi(t)} at each time t. We
define a Lyapunov function as follows:

L(Θi(t)) =
1

2
[[Qi(t)]

2 + [Yi(t)]
2 + [Zi(t)]

2].

The one-slot conditional Lyapunov drift is:

∆(Θi(t)) = L(Θi(t+ 1)) − L(Θi(t)).

The drift-plus-penalty is (equivalent to drift-minus-utility
here; derivation details are in Appendix A),

∆(Θi(t)) − V · [Ui(ηi(t)) − b̂i(t) − βi · di(t)]

≤Bi − Φ
(1)
i (t) − Φ

(2)
i (t) − Φ

(3)
i (t) −Φ

(4)
i (t) + ǫi · Zi(t). (12)



Here, V > 0 is a user-defined parameter for gauging the
optimality of time-averaged utility. Bi =

1
2
[[ǫi]

2+3[Amax
i ]2+

2[1 + dmax
i ]2] is a constant value. Φ

(1)
i (t), Φ

(2)
i (t), Φ

(3)
i (t)

and Φ
(4)
i (t) are related to the auxiliary variable ηi(t), the

rate control variable ri(t), channel allocation & charge vari-

able µic(t) and b̂ic(t), and packet dropping variable di(t),
respectively:

Φ
(1)
i (t) =V · Ui(ηi(t)) − ηi(t) · Yi(t), (13)

Φ
(2)
i (t) =ri(t) · [Yi(t) −Qi(t)], (14)

Φ
(3)
i (t) =

∑

c∈[1,C]

[µic(t) · [Qi(t) + Zi(t)] − V · b̂i(t), (15)

Φ
(4)
i (t) =di(t) · [Qi(t) + Zi(t) − V · βi]. (16)

According to the Lyapunov optimization theory [11], we
can maximize a lower bound of the time-averaged utility
for vi and find optimal solutions to the rate control, chan-
nel evaluation & bidding, and packet dropping variables by
minimizing the RHS of the drift-plus-penalty equality (12),
observing the queue lengths Θi(t) and the packet arrival
Ai(t) in each time slot t. Hence, we can derive an online
algorithm to solve (7), that solves the one-shot optimization
problem in each time slot t as follows:

max Φ
(1)
i (t) + Φ

(2)
i (t) + Φ

(3)
i (t) + Φ

(4)
i (t) (17)

s.t. Constraints (1), (3), (4), (5) and (10) at vi.

The maximization problem in (17) can be decoupled into
four independent optimization problems:

max Φ
(3)
i (t) (18)

which is related to the optimal channel evaluation & bid-
ding decisions, with b̃i(t) and bi(t), which also determine
the channel allocation decisions with µic(t), ∀c ∈ [1, C] and

channel charge decisions with b̂i(t) after the auction by pri-
mary user (the interference constraints (4) and (5) are sat-
isfied by getting channel allocation decisions from the spec-
trum auction mechanism, to be introduced in Sec. 4.2); and

max Φ
(1)
i (t) (19)

s.t. Constraint (10),

which is related to the optimal decision on the auxiliary
variable ηi(t); and

max Φ
(2)
i (t) (20)

s.t. Constraint (1),

which is related to the optimal decision on the rate control
variable ri(t); and

max Φ
(4)
i (t) (21)

s.t. Constraint (3),

which is related to the optimal decision on packet dropping
with di(t). The following is our algorithm to solve the four
one-shot optimization problems. The detailed derivation is
given in [18]

Channel evaluation and bidding: We seek to design a
truthful auction (in Sec. 4.2) where each secondary link vi
bids its true valuation of the channel, i.e., bi(t) = b̃i(t).
According to the definition in Sec. 1, the true value of a
bidder is the highest price it is willing to pay, charged with
which (i.e., b̂i(t) = b̃i(t)) its utility in (18) if one channel
is allocated to link vi, i.e., ∃c, µic(t) = 1, is exactly the
same as if losing the auction. Following this argument, each

Algorithm 1 Dynamic Utility Maximization Algorithm at Sec-
ondary Link vi in Time Slot t

Input: Ai(t), Amax
i , Yi(t), Qi(t), Zi(t), βi, dmax

i , Ui(·) and V .

Output: ηi(t), ri(t), b̂i(t), b̃i(t), bi(t), di(t) and µic(t), ∀c ∈

[1, C].

1: Rate control: Decide ηi(t) and ri(t) with Eqn. (23) and

(24);

2: Channel valuation and bid: Decide b̃i(t) and bi(t) with

Eqn. (22);

3: Channel allocation and payment: Get decisions on b̂i(t)

and µic, ∀c ∈ [1, C], from the auction;

4: Packet dropping: Decide di(t) with Eqn. (25);

5: Update Qi(t), Yi(t) and Zi(t) with Eqn. (2) (9) and (11).

secondary link vi evaluates a channel based on its queue
lengths in each time slot as follows:

b̃i(t) =
Qi(t) + Zi(t)

V
. (22)

The rationale is that the true value for vi to buy one chan-
nel is determined by its level of traffic congestion and cumu-
lative delay (or data transmission urgency), i.e., Qi(t) +
Zi(t). A large value of Qi(t) implies high congestion (or
transmission urgency), while a large value of Zi(t) indicates
an urgency in dropping packets.

Rate control: Each secondary link computes assignments
to the auxiliary variable and the rate control variable by
solving the one-shot optimization problems (19) and (20)
respectively,

ηi(t) = max{min{U ′−1
i (

Yi(t)

V
), Amax

i }, 0}, (23)

where U ′−1
i (·) is the inverse function of the first-order deriva-

tive of Ui(·), and

ri(t) =

{

Ai(t) if Yi(t) > Qi(t)

0 Otherwise
. (24)

Note, each secondary link only needs local information,
i.e., revenue function Ui(·) and queue lengths. Virtual queue
Yi(t) can be regarded as the unused tokens for data admis-
sion. A large value for Yi(t) indicates an adequate number
of available tokens, which results in fewer new tokens (i.e.,
ηi(t)) to be added in this time slot. Meanwhile, Qi(t) re-
flects the congestion level on the link. Yi(t) − Qi(t) > 0
means that we have enough tokens while relatively low con-
gestion. Thus, we admit all the arrived jobs. Otherwise, no
job is admitted into the network.

Packet dropping: We decide the number of packets to
drop by solving optimization (21) at each t:

di(t) =

{

dmax
i if Qi(t) + Zi(t) > V · βi

0 Otherwise.
(25)

The rationale is that Qi(t) + Zi(t) represents the urgency
level to schedule/drop packets. If the scheduling/dropping
urgency outweights the weighted dropping penalty V · βi,
packets are dropped at the maximum rate; otherwise no
packets are dropped. That is, each link is reluctant to drop
packets unless the queue lengths exceed certain thresholds,
above which packets are suffering long delays.

4.2 Auction at Primary User
After collecting all the bids from secondary links, the pri-

mary user executes a randomized auction mechanism, which



is truthful, individual rational and budget balanced, all in
expectation. This randomized auction has two modules:
winner determination and channel pricing.

Winner determination: This module randomly decides
a subset of secondary links in Vs, each winning one of the
C channels; other secondary links are not allocated with a
channel. Equivalently, the auctioneer finds a collision-free
channel allocation strategy χ(t) = {µic(t) ∈ {0, 1}|∀vi ∈
Vs, c ∈ [1, C]} in each time slot, such that constraints (4)
and (5) are satisfied. Glauber dynamics are utilized in the
algorithm design. Especially, the winners in each time slot
are selected randomly based on i) the bidding prices, ii)
channel allocation in the previous time slot, and iii) inter-
ference constraints. There are two steps of the algorithm at
each t:

Step 1 : The primary user uniformly randomly selects a set
of collision-free channel allocation variables, m(t) (referred
to as the decision set). For each channel allocation variable
not included in the decision set, i.e., µic(t) 6∈ m(t), it sets
µic(t) = µic(t− 1).

In practical implementation, we can associate a timer,
which is uniformly randomly set with a value from a range
[0,W ] (W > 0), with each channel allocation variable µic(t),
∀vi ∈ Vs, c ∈ [1, C]. If the timer of µic(t) expires before that
of any of its mutually-interfering allocation variables, i.e.,
µjc(t) with <vi, vj> ∈ E and µic′(t) with c′ 6= c, µic(t) is
included in the decision set m(t); otherwise, µic(t) is not in
the set m(t) and let µic(t) = µic(t− 1).

Step 2 : For each channel allocation variable µic(t) in the
decision set m(t), do the following:
- If any mutual-interfering allocation variable of µic(t) is
included in the decision set in a previous time slot, i.e., ∃
<vi, vj> ∈ E with µjc(t−1) = 1 or ∃c′ 6= c with µic′(t−1) =
1, variable µic(t) will not be included in the decision set in
the current time slot by setting µic(t) = 0;
- Otherwise, µic(t) is included with probability pi, i.e.,

µic(t) = 1 with probability pi =
eV ·bi(t)

1 + eV ·bi(t)
,

and not included with probability 1− pi, i.e.,

µic(t) = 0 with probability 1− pi =
1

1 + eV ·bi(t)
.

Step 3 : If µic(t) = 1, channel c is allocated to secondary
link vi for data transmission.

Remarks: The rationale of the winner determination module
is that: i) in step 1, we provide equal chance for each link
to change its status, i.e., winning or losing the auction; and
ii) in step 2, we give preference to those links with higher
bidding price, i.e., bi(t).

Channel Pricing: For each link vi ∈ Vs, its payment to
the primary user in time slot t is calculated as:

b̂i(t) =
∑

vj∈Vs,vj 6=vi

bj(t) ·
∑

c∈[1,C]

[µ
(i)
jc (t) − µjc(t)]. (26)

Here, µ
(i)
jc (t) is the channel allocation decision made by the

winner determination algorithm stated above, with bi(t) = 0
and unchanged bids from other links.

4.3 Computation complexity
We show that, in each time slot, the computation com-

plexity of our auction framework, i.e., Alg. 1 and 2, is in a
polynomial order of the total network size and number of
channels, i.e., |Vs| and C.

Algorithm 2 Spectrum Auction at Primary User vp in Time
Slot t

Input: bi(t), µic(t − 1), and E, ∀vi ∈ Vs, c ∈ [1, C].
Output: b̂i(t), and µic(t), ∀vi ∈ Vs, c ∈ [1, C].

Module 1: Winner determination

1: Step 1 : Uniformly randomly select a decision set m(t);

2: Step 2 : For each channel allocation variable µic(t) (∀vi ∈

Vs, c ∈ [1, C]):

– If µic(t) 6∈ m(t), set µic(t) = µic(t − 1);

– Otherwise,

–If ∃vj ∈ Vs, < vi, vj >∈ E with µjc(t − 1) = 1 or

∃c′ 6= c with µic′ (t− 1) = 1, set µic(t) = 0;

–Otherwise, set µic(t) = 1 with probability pi =
eV ·bi(t)

1+eV ·bi(t)
while µic(t) = 0 with probability 1 − pi =

1

1+eV ·bi(t)

3: Step 3 : If µic(t) = 1, channel c is allocated to secondary link

vi.

Module 2: Channel Pricing

1: The payment of each secondary link vi ∈ Vs is calculated

with Eqn. (26).

For each secondary link vi ∈ Vs, Algorithm 1 decides the
rate control, channel evaluation/bidding, and packet drop-
ping in constant complexity with Eqn. (23), (24), (22) and
(25). Thus, the overall complexity to run Algorithm 1 in the
network is in the order of the secondary network size |Vs|.

In each time slot, Algorithm 2 decides the decision set with
a complexity in the order of total number of channel allo-
cation variables, i.e., |Vs| ·C, by keeping one timer for each
of them. In the next step, for each channel allocation vari-
able in the decision set, the allocation decision in previous
slot for each of its mutually-interfering variable is checked.
In the worst case, the size of the decision set is in O(|Vs|)
while the interference degree of one channel allocation vari-
able is in O(C + |Vs|). Hence, the complexity in this step
is O(|Vs|(C + |Vs|)). Since the primary user also runs the
same winner determination module (for the sake of channel
pricing) for each secondary user vi by setting bi(t) = 0 at
each time t, the overall complexity for the winner determi-
nation module is O(|Vs|

2(C+ |Vs|)). The channel allocation
and pricing decisions are then computed in constant com-
plexity for each allocation variable. Therefore, the overall
complexity of Algorithm 2 is O(|Vs|

2(C + |Vs|)).
In summary, our auction framework has a computation

complexity of O(|Vs|
2(C + |Vs|)).

5. SOCIAL WELFARE MAXIMIZATION
We next propose a benchmark algorithm for evaluating

the efficiency of our spectrum auction mechanism in social
welfare. In this benchmark algorithm, each participant in
the network, including each secondary link and the primary
user, is altruistic. There is no more auction, but a cen-
tralized decision maker to decide channel allocation, rate
control, link scheduling, and packet dropping in each time
slot, to maximize the time-averaged social welfare of the
entire network as defined in (8). A set of queues Θ(t) =
{Qi(t), Yi(t), Zi(t)|∀vi ∈ Vs} are maintained over time. To
solve (8), a Lyapunov function is defined as follows:

L(Θ(t)) =
1

2

∑

vi∈Vs

[[Qi(t)]
2 + [Yi(t)]

2 + [Zi(t)]
2].



The one-slot conditional Lyapunov drift is:

∆(Θ(t)) = L(Θ(t + 1)) − L(Θ(t)).

The drift-plus-penalty (equivalent to drift-minus-utility here;
derivation details can be found in Appendix B) is:

∆(Θ(t)) − V ·
∑

vi∈Vs

[Ui(ηi(t)) − b̂i(t) − βi · di(t)]

≤B −
∑

vi∈Vs

[Φ
(1)
i (t) + Φ

(2)
i (t) + Φ

(4)
i (t)]−Ψ(t). (27)

Here V > 0 is a user-defined parameter for gauging the op-
timality of time-averaged social welfare. B = 1

2

∑
vi∈Vs

[[ǫi]
2+

3[Amax
i ]2+2[1+dmax

i ]2] is a constant value. Φ
(1)
i (t), Φ

(2)
i (t),

and Φ
(4)
i (t), ∀vi ∈ Vs, are defined in Eqn. (13), (14) and (16).

Ψ(t) is related to the channel allocation variables µic(t),
∀c ∈ [1, C], vi ∈ Vs:

Ψ(t) =
∑

vi∈Vs

[Qi(t) + Zi(t)]
∑

c∈[1,C]

µic(t). (28)

Similarly, we can maximize a lower bound of the time-
averaged social welfare and find optimal solutions to the rate
control, channel allocation and packet dropping variables by
minimizing the RHS of (27), observing the queue lengths
Θ(t) and the packet arrivals Ai(t), ∀vi ∈ Vs, in each time
slot t. An online algorithm is hence derived for solving (8),
that solves the one-shot optimization problem in each time
slot t as follows:

max
∑

vi∈Vs

[Φ
(1)
i (t) + Φ

(2)
i (t) + Φ

(4)
i (t)] + Ψ(t) (29)

s.t. Constraints (1), (3), (4), (5) and (10) at each link.

The maximization problem in (29) can be decoupled into
four independent optimization problems: i) problem (19) for
each vi ∈ Vs; ii) problem (20) for each vi ∈ Vs; iii) problem
(21) for each vi ∈ Vs; and we make the channel allocation
decisions by solving optimization problem (30),

max Ψ(t) =
∑

vi∈Vs

[Qi(t) + Zi(t)]
∑

c∈[1,C]

µic(t) (30)

s.t. Interference constraints Eqn. (4) and (5), ∀vi ∈ Vs.

(30) is a maximum weight scheduling problem, which is
NP-hard since computing a maximum weighted independent
set is required. A centralized branch-and-bound algorithm
can be implemented to approximate 1−δ (δ ∈ [0, 1]) fraction
of the maximum Ψ(t) [19]. The benchmark algorithm is
summarized in Alg. 3.

Algorithm 3 Dynamic Social Welfare Maximization Algorithm
in Time Slot t

Input: Ai(t), Amax
i , Yi(t), Qi(t), Zi(t), βi, dmax

i , Ui(·) and V ,
∀vi ∈ Vs.
Output: ηi(t), ri(t), di(t) and µic(t), ∀c ∈ [1, C], vi ∈ Vs.

1: Rate control: Decide ηi(t) and ri(t), ∀vi ∈ Vs, with
Eqn. (23) and (24).

2: Channel allocation: Decide µic(t), ∀c ∈ [1, C], vi ∈ Vs,
by solving optimization problem Eqn. (30) with branch-and-
bound algorithm [19].

3: Packet dropping: Decide di(t), ∀vi ∈ Vs, with Eqn. (25);
4: Update Qi(t), Yi(t) and Zi(t), ∀vi ∈ Vs, with Eqn. (2) (9)

and (11).

6. THEORETICAL ANALYSIS
We present theoretical analysis of our proposed spectrum

auction framework and dynamic algorithms in this section.
All detailed proofs are included in the Appendix.

6.1 QoS guarantee

Lemma 1 (Bounded queues). Let Y max
i , Qmax

i and
Zmax
i be defined as follows,

Y max
i =V · U ′

i(0) + Amax
i , ∀vi ∈ Vs,

Qmax
i =V · U ′

i(0) + 2Amax
i , ∀vi ∈ Vs,

Zmax
i =V · βi + ǫi, ∀vi ∈ Vs.

For each vi ∈ Vs, if d
max
i ≥ max{Amax

i , ǫi}, the transport
layer data queue Qi(t), and the virtual queues Yi(t) and
Zi(t) are bounded for each slot t as follows,

Yi(t) ≤ Y max
i , Qi(t) ≤ Qmax

i , Zi(t) ≤ Zmax
i .

This lemma is proved by induction based on Algorithm 1
and the queueing laws (2), (9) and (11).

Theorem 1 (QoS guarantee). Each packet on sec-
ondary link vi ∈ V is either delivered or dropped with
Algorithm 1 before its maximum delay Di, if we set ǫi =
Qmax

i +Zmax
i

Di
and dmax

i ≥ max{Amax
i , ǫi}.

This theorem can be proved based on Lemma 1 and the
ǫ−persistence queue technique [17]. The condition on ǫi is
to ensure that the queue lengths can grow to satisfy the job
drop condition, i.e., Qi(t) + Zi(t) > V · βi, if some packets
remain undelivered in the last Di slots.

6.2 Economic Properties of the Auction

Theorem 2 (Optimal Winner Determination). The
winner determination in Algorithm 2 computes collision-free
channel allocations that maximize the expectation of Ψ(t)
as defined in (30), if each secondary link bids truthfully and
V → ∞.

The correctness of the collision-free channel allocations
can be proved by contradiction, while the maximization of
Ψ(t) in expectation is based on the Glauber dynamics to find
a stationary distribution (which is converged when V → ∞)
for each feasible channel allocation decision. This theorem
is utilized in the proof for the truthfulness, individual ratio-
nality, budget balance and optimality in social welfare.

Theorem 3 (True Evaluation). The channel valua-
tions in (22), ∀vi ∈ Vs, are true values.

This theorem is proved based on the definition of the true
values and that (17) is solved in each time slot by each sec-
ondary link.

Theorem 4 (Truthfulness in Expectation). Bidding
truthfully is the dominant strategy of each secondary link
in the auction in Algorithm 2, i.e., no secondary link can
achieve a higher utility in expectation in terms of the one-
shot optimization problem (17), by bidding with values other
than its true values in Eqn. (22), if V → ∞.

We prove this theorem by contradiction and show that,
in all cases, no secondary link can do better with one-shot
optimization problem (17) by bidding untruthfully.

Theorem 5 (Individual Rationality). No winning sec-
ondary link pays, in expectation, more than its bidding
price, i.e., E{b̂i(t)} ≤ bi(t), ∀vi ∈ Vs, if V → ∞.



This theorem can be proved based on the winner deter-
mination and pricing schemes in our auction mechanism,
together with Theorem 2.

Theorem 6 (Budget Balance at Primary User).
At the primary user, the total payment-in-expectation col-
lected from the secondary links is non-negative, i.e.,

∑
vi∈Vs

E{b̂i(t)} ≥
0, if V → ∞.

This theorem is proved with the pricing mechanism and
Theorem 2.

6.3 Optimality of Individual Utility and So-
cial Welfare

Theorem 7 (Individual Utility Maximization). Let
Ω∗

i be the offline optimum of time-averaged utility of sec-
ondary link vi ∈ Vs, obtained in a truthful-in-expectation,
individual-rational-in-expectation and budget-balanced spec-
trum auction, with complete information on its data arrivals
and channel availability in the entire time span [0, T-1]. The
online Algorithm 1 can achieve a time-averaged utility Ωi for
secondary link vi within a constant gap Bi/V to Ω∗

i , i.e.,

Ωi ≥ Ω∗
i −Bi/V,

where V > 0 and Bi =
1
2
[[ǫi]

2 + 3[Amax
i ]2 + 2[1 + dmax

i ]2] is
a constant.

The proof to Theorem 7 is rooted in Lyapunov optimiza-
tion theory [11]. The gap Bi/V can be arbitrarily close to
zero by increasing V .

Theorem 8 (Social Welfare Optimality). Let Π∗

be the offline optimum of the time-averaged social welfare in
(8), obtained with full information of the network over the
entire time span [0, T-1]. The time-averaged social welfare
Π12 and Π3, achieved by running Alg. 1 & 2 and Alg. 3,
respectively, approach the offline-optimal social welfare Π∗

with a constant gap B/V , i.e.,

Π12 ≥ Π∗ − B/V, Π3 ≥ Π∗ −B/V,

where V > 0 and B = 1
2

∑
vi∈Vs

[[ǫi]
2 + 3[Amax

i ]2 + 2[1 +

dmax
i ]2].

We prove this theorem by first showing that the dynamic
decisions made by Alg. 1 & 2 have the same expected values
as that by Alg. 3 according to their Algorithm definitions
and Theorem 2, which means they have the same expected
social welfare in a long run. Next, we prove their social wel-
fare optimality based on Lyapunov optimization theory [11].
The gap B/V can be arbitrarily close to zero by increasing
V .

With Theorem 7 and 8, we see that both the individual
utility of each secondary link and the social welfare of the
network can be made arbitrarily close to their optima by
setting V → ∞. However, by Lemma 1 and Theorem 1, the
maximum allowable delay Di is also proportionally increas-
ing with V if ǫi is a constant. Hence, there is a tradeoff,
adjusted by V , between the maximum allowable delay and
the optimality of individual utility and social welfare.

7. PERFORMANCE EVALUATION

7.1 Simulation Setup
We consider 16 secondary links1 uniformly randomly dis-

tributed in a network with an average interference degree
of 4. The primary user has 4 orthogonal channels for sale.
Each link has a data arrival rate per time slot uniformly
distributed between 0 and 0.4, with an average of 0.2 (data
units). The revenue function for an average throughput r̄i is
log(1+ r̄i). The penalty to drop one unit of data is βi = 1.0,
∀vi ∈ Vs. The constant value of ǫi, ∀vi ∈ Vs is fixed at 1.0.
The maximum packet drop rate dmax

i is also 1.0 such that
dmax
i ≥ max{Amax

i , ǫi}.
For the benchmark algorithm, its channel allocation deci-

sions are derived in each time slot by solving problem (30)
with glpk [20]. Each experiment is executed for 100, 000
time slots, and each datum is the average of 100 trials.

7.2 Social Welfare
Since it is not computationally feasible to derive the offline-

optimal long-term-average social welfare, we compare the
social welfare achieved by our auction framework, i.e., Al-
gorithms 1 and 2, with that of the benchmark Algorithm
3, which is proven to be arbitrarily close to the offline opti-
mum long-term-average social welfare (in Theorem 8). Fig. 2
shows that, when V is larger, the social welfare obtained by
our auction framework is even better, and is mostly within
10.1% of that by the benchmark algorithm. Hence, our auc-
tion framework achieves a social welfare closer to its offline
optimum when V scales up, validating the result in Theorem
8.
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Figure 2: Comparisons of social welfare.

7.3 Average delay and packet drop rate
From Lemma 1 and Theorem 1, we see that the maximum

allowable delay is proportional to the value of V . Thus, ap-
proaching the optimal social welfare by scaling up V will
inevitably lead to an increased delay. We next examine the
performance of average delay and packet drop rate by our
auction framework and the benchmark algorithm with dif-
ferent values of V .

A nice observation in Fig. 3(a) is that, although the maxi-
mum allowable delay grows proportionally to V , the average
delay that packets actually experience increases slowly with
V , implying that our auction framework can approach the
offline optimal social welfare without significantly sacrificing
the average delay.

We also study the average number of admitted packets in
the entire secondary network that are eventually dropped,
in our auction framework and in the benchmark algorithm,
respectively. Fig. 3(b) reveals that the average drop rate
decreases quickly as V grows, and drops to a level close to
that of the benchmark algorithm when V > 2500. Intu-
itively, with a larger V , less packets are dropped in order to

1While our auction is efficient, the benchmark algorithm
needs to solve an integer program in each time slot, limiting
the network size in the simulation.



decrease the penalty incurred by packet dropping, which in
turn increases the achievable social welfare.
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(a) Average delay
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(b) Average drop rate

Figure 3: Average delay and drop rate.

For reasons behind such low average delay and its slow
scaling with V , we compare the average lengths of the packet
queues and virtual ǫ−persistence queues in Fig. 4. Fig. 4(a)
shows that the average packet queue length is a small value
within 0.25, so packets are promptly delivered/dropped with-
out being accumulated, consistent with the low and slow
scaling average delay in Fig. 3(a). Similar result is also found
for the benchmark algorithm. However, in Fig. 4(b), the av-
erage lengths of the virtual queue Z have clear differences
in our auction framework and in the benchmark algorithm:
the former is large and grows quickly with V while the lat-
ter is mostly close to zero. In each time slot, the channel
allocation decisions in Algorithm 3 are derived by solving a
max-weight scheduling problem. As long as the scheduling
weight for the allocation variable µic(t), i.e., Qi(t) + Zi(t),
is positive, link vi has a chance to be scheduled. Thus, the
virtual queue is neither necessary, since the packet queue
length is already positive, nor possible to accumulate to a
long length, since the transmission opportunities are readily
obtained. To the contrast, our auction framework requires a
higher value of Qi(t)+Zi(t) at a link to get a larger chance
of being allocated a channel, according to the definition of
probability pi in Algorithm 2 and the bidding price bi(t)
with its true value in Eqn. (22). However, a nice property of
our auction is that, packet queues are not necessarily long
since the lengths of virtual queue are already large enough,
leading to a high chance of channel allocation and a short
delay. The only cost lies in convergence time, scaling with
V , for each virtual queue Zi(t) to reach its stable length.
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(a) Average length of packet
queue Q
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(b) Average length of virtual
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Figure 4: Average lengths of queues.

8. CONCLUSION
We investigated online auction design for maximization

of long-term-averaged social welfare in a network of sec-
ondary links, and of long-term-averaged utility at each sec-
ondary link, under QoS requirements and volatile traffic de-
mands. The goals are truthfulness and computational ef-
ficiency. A novel, online spectrum auction framework was
proposed to dynamically decide the rate control, channel
evaluation/bidding and packet dropping at each secondary
link, as well as the winner determination and pricing at the
primary user, achieving the above goals simultaneously.
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APPENDIX

A. DERIVATION OF THE ONE-SHOT OP-

TIMIZATION PROBLEM FOR INDIVID-

UAL UTILITY MAXIMIZATION AT SEC-

ONDARY LINKS
Squaring the queueing laws (2), (9), and (11), we can

derive the following inequality,

∆(Θi(t)) ≤
1

2
[[ηi(t)]

2 + [ri(t)]
2 + 2Yi(t) · [ηi(t) − ri(t)]

+ [ri(t)]
2 + [

∑

c∈[1,C]

µic(t) + di(t)]
2

+ 2Qi(t) · [ri(t) −
∑

c∈[1,C]

µic(t) − di(t)]

+ [ǫi]
2 + [

∑

c∈[1,C]

µic(t) + di(t)]
2

+ 2Zi(t) · [ǫi −
∑

c∈[1,C]

µic(t) − di(t)]]

≤
1

2
[[Amax

i ]2 + [Amax
i ]2 + 2Yi(t) · [ηi(t) − ri(t)]

+ [Amax
i ]2 + [1 + dmax

i ]2

+ 2Qi(t) · [ri(t) −
∑

c∈[1,C]

µic(t) − di(t)]

+ [ǫi]
2 + [1 + dmax

i ]2

+ 2Zi(t) · [ǫi −
∑

c∈[1,C]

µic(t) − di(t)]]

=Bi + Yi(t) · [ηi(t) − ri(t)]

+Qi(t) · [ri(t) −
∑

c∈[1,C]

µic(t) − di(t)]

+ Zi(t) · [ǫi −
∑

c∈[1,C]

µic(t) − di(t)],

where Bi = 1
2
[[ǫi]

2 + 3[Amax
i ]2 + 2[1 + dmax

i ]2]. The first
inequality is based on the queueing laws (2), (9), and (11),
and the fact that: if a, b, c ≥ 0, we have that (a+b−c)2−a2 ≤
b2+c2+2a(b−c). The second inequality is derived based on
the conditions that ηi(t) ≤ Amax

i ], r ≤ Amax
i , di(t) ≤ dmax

i

and
∑

c∈[1,C] µic(t) ≤ 1.

By applying the drift-plus-penalty framework (or equiv-
alently, drift-minus-utility here), we subtract the weighted
one-shot individual utility of secondary link vi in time slot
t, i.e., V · [Ui(ηi(t))− b̂i(t)− βi · di(t)], on both sides of the
above inequality. Hence, we have the following inequality,

∆(Θi) − V · [Ui(ηi(t)) − b̂i(t) − βi · di(t)]

≤Bi − Φ
(1)
i (t) − Φ

(2)
i (t) − Φ

(3)
i (t) −Φ

(4)
i (t).

V > 0 is a user-defined positive constant that can be under-

stood as the weight of utility in the expression. Here, Φ
(1)
i (t),

Φ
(2)
i (t), Φ

(3)
i (t) and Φ

(4)
i (t) are defined as in Eqn. (13), (14),

(15) and (16), respectively.
⊓⊔

B. DERIVATION OF THE ONE-SHOT OP-

TIMIZATION PROBLEM FOR SOCIAL

WELFARE
Squaring the queueing laws (2), (9), and (11), ∀vi ∈ Vs,

we can derive the following inequality,



∆(Θ(t)) ≤
1

2

∑

vi∈Vs

[[ηi(t)]
2 + [ri(t)]

2 + 2Yi(t) · [ηi(t) − ri(t)]

+ [ri(t)]
2 + [

∑

c∈[1,C]

µic(t) + di(t)]
2

+ 2Qi(t) · [ri(t) −
∑

c∈[1,C]

µic(t) − di(t)]

+ [ǫi]
2 + [

∑

c∈[1,C]

µic(t) + di(t)]
2

+ 2Zi(t) · [ǫi −
∑

c∈[1,C]

µic(t) − di(t)]]

≤
1

2

∑

vi∈Vs

[[Amax
i ]2 + [Amax

i ]2 + 2Yi(t) · [ηi(t) − ri(t)]

+ [Amax
i ]2 + [1 + dmax

i ]2

+ 2Qi(t) · [ri(t) −
∑

c∈[1,C]

µic(t) − di(t)]

+ [ǫi]
2 + [1 + dmax

i ]2

+ 2Zi(t) · [ǫi −
∑

c∈[1,C]

µic(t) − di(t)]]

=B +
∑

vi∈Vs

Yi(t) · [ηi(t) − ri(t)]

+
∑

vi∈Vs

Qi(t) · [ri(t) −
∑

c∈[1,C]

µic(t) − di(t)]

+
∑

vi∈Vs

Zi(t) · [ǫi −
∑

c∈[1,C]

µic(t) − di(t)],

where B =
∑

vi∈Vs
Bi.

By applying the drift-plus-penalty framework (or equiv-
alently, drift-minus-utility here), we subtract the weighted
one-shot social welfare in time slot t, i.e., V ·

∑
vi∈Vs

[Ui(ηi(t))−

βi · di(t)], on both sides of the above inequality. Hence, we
have the following inequality,

∆(Θ(t)) − V ·
∑

vi∈Vs

[Ui(ηi(t)) − βi · di(t)]

≤B −
∑

vi∈Vs

[Φ
(1)
i (t) − Φ

(2)
i (t) − Φ

(4)
i (t)] −Ψ(t).

V > 0 is a user-defined positive constant that can be under-
stood as the weight of social welfare in the expression. Here,

Φ
(1)
i (t), Φ

(2)
i (t), Φ

(4)
i (t) and Ψ(t) are defined as in Eqn. (13),

(14), (16) and (28), respectively.
⊓⊔

C. PROOF TO LEMMA 1
We prove this lemma by induction.

Induction basis: At time slot 0, each queue in the network
is zero. Hence, we have that

Yi(0) ≤Y max
i ,

Qi(0) ≤Qmax
i ,

Zi(0) ≤Zmax
i .

Induction steps: We assume that, at time slot t, each
queue is bounded as

Yi(t) ≤Y max
i ,

Qi(t) ≤Qmax
i ,

Zi(t) ≤Zmax
i .

Next, we analyze the queue lengths at time slot t+1. We
start with the virtual queue Yi(t), which has the following
two possible cases.

Case 1 : Yi(t) ≤ V · U ′
i(0). For this case, we have that

ηi(t) = max{min{U ′−1
i (

Yi(t)

V
), Amax

i }, 0}

> max{min{U ′−1
i (

V U ′
i(0)

V
), Amax

i }, 0}

= max{min{U ′−1
i (U ′

i(0)), A
max
i }, 0} = 0,

according to Eqn. (23). Note that the inequality is because
that Ui(·) is differential and concave, which means U ′−1

i (·)
is a decreasing function.

Hence, in this case, 0 < ηi(t) ≤ Amax
i . We further have

that

Yi(t + 1) =max{Yi(t) − ri(t), 0}+ ηi(t)

≤max{V · U ′
i(0), 0} +Amax

i

≤Y max
i .

The first inequality is based on the fact that ri(t) ∈ [0, Amax
i ]

and ηi(t) ∈ [0, Amax
i ].

Case 2 : V ·U ′
i(0) < Yi(t) ≤ V ·U ′

i(0)+Amax
i . For this case,

we have that

ηi(t) = max{min{U ′−1
i (

Yi(t)

V
), Amax

i }, 0}

≤ max{min{U ′−1
i (

V U ′
i(0)

V
), Amax

i }, 0}

= max{min{U ′−1
i (U ′

i(0)), A
max
i }, 0} = 0,

according to Eqn. (23).
Hence, we further have that

Yi(t + 1) =max{Yi(t) − ri(t), 0}+ ηi(t)

≤max{V · U ′
i(0) +Amax

i , 0}

≤Y max
i .

The first inequality is based on the fact that ri(t) ∈ [0, Amax
i ].

Up to now, Yi(t) ≤ Y max
i , ∀vi 6= Vs for each time slot t is

proved.
We next analyze the queue length of Qi(t+ 1). We have

the following two possible cases.

Case 1 : Qi(t) ≤ V · U ′
i(0) + Amax

i . For this case, we have
that

Qi(t+ 1) =max{Qi(t) −
∑

c∈[1,C]µic(t)−di(t)

, 0}+ ri(t)

≤max{V · U ′
i(0) + Amax

i , 0}+ Amax
i

≤Qmax
i .

The first inequality is based on the fact that ri(t) ∈ [0, Amax
i ].

Case 2 : V ·U ′
i(0)+Amax

i < Qi(t) ≤ V ·U ′
i(0)+ 2Amax

i . For
this case, we have that

Qi(t+ 1) =max{Qi(t) −
∑

c∈[1,C]

µic(t) − di(t), 0}+ ri(t)

≤max{V · U ′
i(0) + 2Amax

i , 0}

≤Qmax
i .

The first inequality is based on the fact that ri(t) = 0 with
Eqn. (24) and Qi(t) > V · U ′

i(0) + Amax
i = Y max

i ≥ Yi(t).
Up to now, Qi(t) ≤ Qmax

i , ∀vi 6= Vs for each time slot t
is proved.

Then, we analyze the queue length of Zi(t). We can have
the following two cases.



Case 1 : Zi(t) ≤ V · βi. In this case, we have that

Zi(t + 1) =max{Zi(t) + 1{Qi(t)>0} · (ǫi −
∑

c∈[1,C]

µic(t)) − di(t)

− 1{Qi(t)=0}, 0}

≤max{V · βi + ǫi, 0}

≤Zmax
i .

Case 2 : V · βi < Zi(t) ≤ V · βi + ǫi. For this case, we can
have that

Zi(t + 1) =max{Zi(t) + 1{Qi(t)>0} · (ǫi −
∑

c∈[1,C]

µic(t)) − di(t)

− 1{Qi(t)=0}, 0}

≤max{V · βi + ǫi, 0}

≤Zmax
i .

The first inequality is based on the fact that di(t) = dmax
i

with Eqn. (25) and dmax
i ≥ ǫi.

Up to now, Zi(t) ≤ Zmax
i , ∀vi 6= Vs for each time slot t is

proved.
In conclusion, Lemma 1 is proved.

⊓⊔

D. PROOF TO THEOREM 1
We prove this theorem by contradiction.
For each secondary link vi ∈ V , the admitted data packets

at time slot t ≥ 0 is ri(t) and the earliest time they can
depart the queue Qi(t) is t + 1. We show that all these
packets depart (by being either delivered or dropped) on or
before t+Di.

Suppose this is not true, we will come to a contradiction.
We must have that Qi(τ ) > 0 for all τ ∈ [t + 1, . . . , t +Di]
(otherwise, all the packets have departed by time t + Di).
With the queueing law in Eqn. (11), we have that

Zi(τ + 1) =max{Zi(τ) + ǫi −
∑

c∈[1,C]

µic(τ) − di(τ), 0}

≥Zi(τ) + ǫi −
∑

c∈[1,C]

µic(τ)− di(τ).

Summing the above over τ ∈ [t + 1, . . . , t + Di], we have
that

Zi(t +Di + 1) − Zi(t + 1) ≥ ǫi ·Di −

t+Di
∑

τ=t+1

[
∑

c∈[1,C]

µic(τ) + di(τ)].

Rearranging the above inequality and using the fact that
Zi(t+Di + 1) ≤ Zmax

i and Zi(t+ 1) ≥ 0, we have that

ǫi ·Di − Zmax
i ≤

t+Di
∑

τ=t+1

[
∑

c∈[1,C]

µic(τ) + di(τ)]. (31)

Since the packets are departing in a FIFO fashion, the
packets ri(t), which arrive and are admitted at slot t, are
placed at the end of the queue at slot t + 1, and should be
fully cleared when all the packets backlogged in Qi(t + 1)
have departed. That is, the last job of ri(t) departs on
slot t + T with T > 0 as the smallest integer satisfying∑t+T

τ=t+1[
∑

c∈[1,C] µic(τ ) + di(τ )] ≥ Qi(t + 1). Based on our

assumption that not all of the ri(t) packets depart by time
t+Di, we must have that

t+Di
∑

τ=t+1

[
∑

c∈[1,C]

µic(τ) + di(τ)] < Qi(t+ 1) ≤ Qmax
i . (32)

Combining Eqn. (31) and (32), we have that

ǫi ·Di − Zmax
i < Qmax

i

⇒ǫi <
Qmax

i + Zmax
i

Di
.

This contradicts with the given fact that ǫi =
Qmax

i +Zmax
i

Di
.

Hence, we have proved that each packet on secondary link
vi is either scheduled or dropped with Algorithm 1 before

its maximum delay Di, if we set ǫi =
Qmax

i +Zmax
i

Di
.

⊓⊔

E. PROOF TO THEOREM 2
We first prove the correctness of Algorithm 2 by show-

ing that the generated channel allocations are collision-free.
We prove the optimality by modeling the channel alloca-
tion decisions as a Discrete-Time Markov Chain (DTMC),
which is next proved to be reversible. Hence, we derive the
stationary distribution for each collision-free channel allo-
cation decision, based on which we evaluate the achievable
value for Ψ(t) in expectation with Algorithm 2.

Note that, in the following proof, we make the time sep-
aration assumption, whereby the CSMA Markov chain con-
verges to its steady-state distribution instantaneously com-
pared to the timescale of adaptation of the CSMA param-
eters. That is commonly assumed in [12] and references
therein, and justified by [21, 22].

Let χ(t) = {µic(t)|µic(t) = 1,∀vi ∈ Vs, c ∈ [1, C]} be a
channel allocation decision in time slot t, and Λ be the set
of all collision-free channel allocation decisions. Denote M
be the set of all possible decision sets of m(t). It is clear that
M ⊆ Λ, since the inclusion of allocation variable µic(t) into
m(t) means no interfering allocation variable of µic(t) times
out before it, and µic(t) will generate a ‘INTENT’ message
that blocks its interfering allocation variables from joining
m(t).

Let ρ(m(t)) > 0 be the probability of selecting m(t) as
the decision set. We have that

∑
m(t)∈M ρ(m(t)) = 1.

We denote C(µic(t)) as the set of interfering channel allo-
cation variables of µic(t) and C(χ(t)) as the set of interfering
channel allocation variables of channel allocation decision
χ(t).

The correctness can be proven by induction. The induc-
tion basis is trivial since, at the beginning of the system
(time 0), no channel is allocated, i.e., χ(0) = ∅, which is
naturally a collision-free decision. The induction steps can
be proved with the following lemma.

Lemma 2. If the channel allocation in time slot t−1 and
the decision set in time slot t are both collision free, i.e.,
χ(t − 1) ∈ Λ and m(t) ∈ Λ, we have that the channel allo-
cation in time slot t with Algorithm 2 is also collision free,
i.e., χ(t) ∈ Λ.

Proof. A channel allocation decision χ(t) is collision-free
if and only if ∀µic(t) ∈ χ(t), we have µjk(t) = 0, ∀µjk(t) ∈
C(µic(t)).

Consider any µic(t) ∈ χ(t). If µic(t) 6∈ m(t), we have
that µic(t − 1) = µic(t) = 1 based on Step 2 in the winner
determination module of Algorithm 2, which means µic(t−
1) ∈ χ(t− 1). Since χ(t− 1) is collision-free, we know that
µjk(t − 1) = 0, ∀µjk(t − 1) ∈ C(µjk(t − 1)). Then, we can
discuss the value of µjk(t) as follows.



• If µjk(t) 6∈ m(t), we know that µjk(t) = µjk(t− 1) = 0
based on Step 2 in the winner determination module of
Algorithm 2.

• If µjk(t) 6∈ m(t), we have µjk(t) = 0 since µic(t − 1) ∈
χ(t− 1) and µic(t) ∈ C(µjk(t)).

If µic(t) ∈ m(t), we have that µic(t) ∈ χ(t) only if µjk(t−
1) = 0, ∀µjk(t− 1) ∈ C(µic(t− 1)). Since µic(t) ∈ m(t) and
m(t) is collision-free, we know that C(µic(t)) ∩ m(t) = ∅.
Hence, µjk(t) = µjk(t− 1) = 0.

Thus, we prove this lemma by showing that ∀µic(t) ∈ χ(t),
we have µjk(t) = 0, ∀µjk(t) ∈ C(µic(t)).

⊓⊔

To sum up the above, we have proved the correctness of
Algorithm 2 to generate collision-free channel allocation de-
cisions. Next, we prove the optimality on the basis of the
following two lemmas.

Lemma 3. A channel allocation decision χ ∈ Λ can tran-
sit to a channel allocation decision χ′ ∈ Λ if and only if
χ ∪ χ′ ∈ Λ and there exists a decision set m ∈ M such that

χ△ χ′ = (χ/χ′) ∪ (χ′/χ) ⊆ m,

and the transition probability from χ to χ′ is

P (χ, χ′) =
∑

m∈M:χ△χ′⊆m

ρ(m)





∏

µic∈χ/χ′

1− pi









∏

µic∈χ′/χ

pi









∏

µic∈m∩(χ∩χ′)

pi









∏

µic∈m/(χ∪χ′)/C(χ∪χ′)

1− pi





(33)

Proof. we first prove the necessity and then the suffi-
ciency.
Necessity : Suppose µ is the current decision in time slot t
and χ′ is the next decision in slot t+1. χ/χ′ = {µic|µic(t) =
1, µic(t + 1) = 0} is the set of channel allocation variables
that change their state from 1 to 0. χ′/χ = {µic|µic(t) =
0, µic(t + 1) = 1} is the set of channel allocation variables
that change their state from 0 to 1.

Based on Algorithm 2, we have that a channel allocation
variable can change its state only if it is included in the
decision set m(t) (m in the proof). Therefore, χ can transit
to χ′ only if there exists a decision set m ∈ Λ such that
the symmetric difference χ△ χ′ = (χ/χ′) ∪ (χ′/χ) ⊆ m. In
addition, we have χ ∪ χ′ = (χ/χ′) ∪ (χ′/χ) ∪ (χ ∩ χ′) ∈ Λ,
since (χ∩ χ′)∪ (χ/χ′) = χ ∈ Λ, (χ∩ χ′)∪ (χ′/χ) = χ′ ∈ Λ,
and (χ/χ′) ∪ (χ′/χ) = χ△ χ′.
Sufficiency : Suppose χ∪χ′ ∈ Λ and there is an m ∈ Λ such
that χ △ χ′ ⊆ m. Given m is selected randomly, we can
calculate the probability for χ to transit to χ′ by dividing
the variables in m 5 cases as follows.

• µic(t) ∈ χ/χ′: Variable µic(t) is decided to change its
state from 1 to 0, which happens with probability 1−pi
with Algorithm 2.

• µic(t) ∈ χ′/χ: Variable µic(t) is decided to change its
state from 0 to 1, which occurs with probability pi.

• µic(t) ∈ m∩ (χ∩χ′): Variable µic(t) is decided to keep
the sate 1, which occurs with probability pi.

• µic(t) ∈ m ∩ C(χ): Variable µic(t) has to keep its state
0. This occurs with probability 1.

• µic(t) ∈ m/(χ ∪ χ′)/C(χ): Variable µic(t) decides to
keep its state 0, which happens with probability with
1− pi

Note that m ∩ C(χ′/χ) = ∅ since χ′/χ ⊆ m, we have
that m/(χ ∪ χ′)/C(χ) = m/(χ ∪ χ′)/C(χ ∪ χ′). As each
variable in m is decided independently of each other, we
can multiply these probabilities together. Summing over
all possible decision sets, we can get the overall transition
probability from χ to χ′ as in Eqn. (33). ⊓⊔

Lemma 4. A necessary and sufficient condition for the
DTMC of the channel allocation decisions to be irreducible
and aperiodic is

⋃

m(t)∈M

m(t) = {µic|∀vi ∈ Vs, c ∈ [1, C]},

and in this case DTMC is reversible and has the following
stationary distribution,

π(χ) =
1

H

∏

µic∈χ

pi

1− pi
, (34)

H =
∑

χ∈Λ

∏

µic∈χ

pi

1− pi
, . (35)

Proof. We first prove the necessity and sufficiency con-
dition for the DTMC to be irreducible and aperiodic, and
next verify the reversibility and stationary distribution.
Necessity : Suppose

⋃
m(t)∈M m(t) 6= {µic|∀vi ∈ Vs, c ∈

[1, C]}. Let µjk(t) 6∈
⋃

m(t)∈M m(t). Then, we have that,

from the initial state of channel allocation decision, i.e., ∅,
the DMTC will never reach a collision-free decision including
µjk(t). The necessity is proved.
Sufficiency : If

⋃
m(t)∈M m(t) = {µic|∀vi ∈ Vs, c ∈ [1, C]},

with Lemma 3, we have that the initial decision ∅ can reach
any other collision-free decision χ ∈ Λ with positive prob-
ability in a finite number of steps, and vice versa. To sum
up, the DTMC is irreducible and aperiodic.

If allocation decision χ can transit to decision χ′, we can
verify that Eqn. (34) satisfies the balance equation,

π(χ)P (χ, χ′) =
1

H

∑

m∈M:χ△χ′⊆m

ρ(m)

(
∏

µic∈χ∪χ′ pi
∏

µjk∈χ∩χ′ 1− pj

)

×





∏

µic∈m∩(χ∩χ′)

pi









∏

µic∈m/(χ∪χ′)/C(χ∪χ′)

1− pi





=π(χ′)P (χ′, χ). (36)

Therefor, the DTMC is reversible and Eqn. (34) is the
stationary distribution [23].

⊓⊔

Finally, we prove Theorem 2 based on the above lemmas.

Proof. Given any δ and θ with 0 < δ, θ < 1. Let Ψ∗(t) =
maxχ∈Λ Ψ(t). We define

ξ = {χ ∈ Λ|Ψ(t) < (1− δ)Ψ∗(t)} .

As the DTMC has the stationary distribution in Eqn. (34),
we have that

π(ξ) =
∑

χ∈ξ

π(χ) =
∑

χ∈ξ

e
∑

µic(t)∈χ V ·bi

H

≤
|ξ|e1−δΨ∗(t)

H
<

2|Vs|·C

eδΨ
∗(t)

, (37)



where the secondary inequality comes from the fact that
|ξ| ≤ |Λ| ≤ 2|Vs|·C (Here, |Vs|·C is the total number of chan-

nel allocation variables), and H > e
maxχ∈Λ

∑
µic∈χ V ·bi(t) =

eΨ
∗(t). Hence, if

Ψ∗(t) >
1

δ

(

|Vs| · C log 2 + log
1

θ

)

, (38)

we could have that π(ξ) < θ. Since Ψ∗(t) is a continu-
ous, nondecreasing function of the packet queues and QoS
virtual queues, i.e., Γ(t) = {Qi(t), Zi(t)|∀vi ∈ Vs}, we can
further have that, with lim‖Γ(t)‖→∞ Ψ∗(t) = ∞, there exists
a constant value BΓ such that inequality (38) holds so that
π(ξ) < δ whenever ‖Γ(t)‖ > B.

According to Lemma 1, the value of Γ(t) is proportional
to V . By scaling up V → ∞, we have that Ψ∗(t) → ∞
such that δ → 0 and θ → 0 with Eqn. (37) and (38). Since
the DTMC generate a value of Ψ(t) in (1 − δ)Ψ∗(t) with a
probability of at least 1 − θ, we have that, with V → ∞,
Algorithm 2 results in an expected value of Ψ(t) arbitrarliy
close to Ψ∗(t).

⊓⊔

F. PROOF TO THEOREM 3

Proof. The maximization of (17) is decoupled into four
independent one-shot optimizations as in (19), (20), (18)
and (21). Since (19), (20), and (21) are independent of the
spectrum auction, and already optimized with Algorithm 1.
We just need to prove that, bidding truthfully can optimize
the one-shot optimization problem in (18).

The definition of the bud-bid’s true evaluation is the value,
charged above which the bidder will have negative utility
gain from the auction. According to the definition, we know

that the true value of b̃i(t) should be Qi(t)+Zi(t)
V

as defined in

Eqn. (22), since: i) if b̂i(t) >
Qi(t)+Zi(t)

V
, the utility in (18)

is negative for secondary link vi; ii) if b̂i(t) < Qi(t)+Zi(t)
V

,

the utility in (18) is positive; and iii) if b̂i(t) =
Qi(t)+Zi(t)

V
,

the utility in (18) is zero for secondary link vi.
⊓⊔

G. PROOF TO THEOREM 4
We prove this theorem to show that any secondary link

vi ∈ Vs cannot obtain higher utility gain in expectation by
bidding untruthfully, i.e., bi(t) 6= b̃i(t), by analyzing all pos-
sible auction results.

The expected utility gain by bidding with bi(t) is
∑

c∈[1,C]

[πic · [Qi(t) + Zi(t)]] − V · E{b̂i(t)}

=V ·
∑

c∈[1,C]

[πic · b̃i(t) +
∑

j 6=i

bj(t) · πjc −
∑

j 6=i

bj(t) · π
′
jc]

≥V ·
∑

c∈[1,C]

[π′′
ic · b̃i(t) +

∑

j 6=i

bj(t) · π
′′
jc −

∑

j 6=i

bj(t) · π
′
jc].

Here, π′
jc denotes the stationary distribution for µjc(t) = 1,

∀vj ∈ Vs, c ∈ [1, C], when bi(t) = 0; and π′′
jc denotes the sta-

tionary distribution for µjc(t) = 1, ∀vj ∈ Vs, c ∈ [1, C], when

bi(t) 6= b̃i(t). The inequality is based on Theorem 2 that bid-
ding truthfully results in maximized value of E{Ψ(t)}, which
equals to

∑
c∈[1,C][πic · bi(t) +

∑
j 6=i bj(t) · πjc].

⊓⊔

H. PROOF TO THEOREM 5
We prove this theorem by showing that, the expected util-

ity gain of each secondary link vi is non-negative.
The expected utility gain by bidding with b̃i(t) is
∑

c∈[1,C]

[πic · [Qi(t) + Zi(t)]]− V · E{b̂i(t)}

=V ·
∑

c∈[1,C]

[πic · b̃i(t) +
∑

j 6=i

bj(t) · πjc −
∑

j 6=i

bj(t) · π
′
jc]

≥V ·
∑

c∈[1,C]

[πic · b̃i(t) +
∑

j 6=i

bj(t) · πjc −
∑

j 6=i

bj(t) · π
′
jc − π′

ic · b̃i(t)]

≥0.

The first inequality comes from the fact that π′
ic · b̃i(t) ≥

0. And the second inequality is based on Theorem 2 that
bidding truthfully results in maximized value of E{Ψ(t)},

which equals to
∑

c∈[1,C][πic · b̃i(t) +
∑

j 6=i bj(t) · πjc].
Hence, each secondary link is individually rational in ex-

pectation.
⊓⊔

I. PROOF TO THEOREM 6
We prove this theorem by showing that, the expected pay-

ment from each secondary link vi is non-negative. Hence,
the cumulative payment from all secondary links is also non-
negative.

The expected payment from secondary link vi is as follows,

E{b̂i(t)} =E{
∑

j 6=i

bj(t) · [µ
(i)
j (t) − µj(t)]}

=
∑

j 6=i

bj(t) · [π
′
j − πj ].

Since
∑

j 6=i bj(t) ·π
′′
j +0 ·π′′

i =
∑

j 6=i bj(t) ·π
′′
j , the winner

determination in Algorithm 2 maximizes
∑

j 6=i bj(t)·π
′′
j only

with bi(t) = 0 and π′′
j = π′

j . Hence, we have that
∑

j 6=i

bj(t) · [π
′
j − πj ] ≥ 0

Hence, the expected income of primary user is non-negative.
⊓⊔

J. PROOF TO THEOREM 7
We prove this theorem based on the Lyapunov optimiza-

tion theory. Since the data arrivals and channel availabili-
ties follow ergodic processes at each secondary link, we know
that there exits a stationary randomized algorithm, which
dynamically decides the rate control (with η∗

i (t) and r∗i (t)),

channel evaluation & bidding (with b̂∗i (t) and b∗i (t)), and
packet dropping (with d∗i (t)) such that the offline optimal
utility Ω∗

i can be achieved at secondary link vi ∈ Vs, to-
gether with η̄∗

i ≤ r̄∗i , r̄∗i ≤
∑

c∈[1,C] µ̄
∗
ic + d̄∗i , and ǫi ≤

∑
c∈[1,C] µ̄

∗
ic + d̄∗i .

2

Based on the derivations of the optimization problem (17)
and its solution in Sec. 4, we know that the Algorithm 1 min-
imizes the right-hand-side of the drift-plus-penalty (drift-
minus-utility) inequality (12), in expectation, at time slot
t, with individual utility maximization as the utility, overall
all possible algorithms. Hence, we can have that

2The assignment to µ∗
ic(t) is totally determined by the bid-

ding price b∗i (t) and the auction mechanism. The stationary
randomized algorithm does not decide µ∗

ic(t) directly.



E{∆(Θi(t))} − V · [E{Ui(ηi(t))} − E{b̂i(t)} − βi · E{di(t)}]

≤Bi + ǫi · Zi(t) − V · E{Ui(ηi(t))} + E{ηi(t)} · Yi(t)

− E{ri(t)} · [Yi(t) −Qi(t)]

−
∑

c∈[1,C]

E{µic(t)} · [Qi(t) + Zi(t)] + V · E{b̂i(t)}

− E{di(t)} · [Qi(t) + Zi(t) − V · βi]

≤Bi + ǫi · Zi(t) − V · E{Ui(η
∗
i (t))} + E{η∗i (t)} · Yi(t)

− E{r∗i (t)} · [Yi(t) −Qi(t)]

−
∑

c∈[1,C]

E{µ∗
ic(t)} · [Qi(t) + Zi(t)] + V · E{b̂∗i (t)}

− E{d∗i (t)} · [Qi(t) + Zi(t) − V · βi]

=Bi − V · [E{Ui(η
∗
i (t))} − E{b̂∗i (t)} − βi · E{d

∗
i (t)}]

+ Yi(t) · [E{η
∗
i (t)} − E{r∗i (t)}]

+Qi(t) · [E{r
∗
i (t)} −

∑

c∈[1,C]

E{µ∗
ic(t)} − E{d∗i (t)}]

+ Zi(t) · [ǫi −
∑

c∈[1,C]

E{µ∗
ic(t)} − E{d∗i (t)}].

By summing over the T slots on both sides of the inequal-
ity, we have that

E{L(Θi(T ))} − E{L(Θi(0))} − V ·

T−1
∑

t=0

[E{Ui(ηi(t))}

− E{b̂i(t)} − βi · E{di(t)}]

≤T ·Bi −

T−1
∑

t=0

V · [E{Ui(η
∗
i (t))} − E{b̂∗i (t)} − βi · E{d

∗
i (t)}]

+

T−1
∑

t=0

Yi(t) · [E{η
∗
i (t)} − E{r∗i (t)}]

+

T−1
∑

t=0

Qi(t) · [E{r
∗
i (t)} −

∑

c∈[1,C]

E{µ∗
ic(t)} − E{d∗i (t)}]

+

T−1
∑

t=0

Zi(t) · [ǫi −
∑

c∈[1,C]

E{µ∗
ic(t)} − E{d∗i (t)}].

Since E{L(Θi(T ))} ≥ 0 and E{L(Θi(0))} = 0 according
to the definition of the Lyapunov function, we have that

− V ·

T−1
∑

t=0

[E{Ui(ηi(t))} − E{b̂∗i (t)} − βi · E{d
∗
i (t)}]

≤T ·Bi −

T−1
∑

t=0

V · [E{Ui(η
∗
i (t))} − E{b̂∗i (t)} − βi · E{d

∗
i (t)}]

+

T−1
∑

t=0

Yi(t) · [E{η
∗
i (t)} − E{r∗i (t)}]

+

T−1
∑

t=0

Qi(t) · [E{r
∗
i (t)} −

∑

c∈[1,C]

E{µ∗
ic(t)} − E{d∗i (t)}]

+

T−1
∑

t=0

Zi(t) · [ǫi −
∑

c∈[1,C]

E{µ∗
ic(t)} − E{d∗i (t)}].

Dividing T · V on both sides of the above inequality and
taking limitation on T to infinity, we have that

−Ωi ≤Bi/V −Ω∗
i + Ȳi · [η̄

∗
i − r̄∗i ]

+ Q̄i · [r̄
∗
i −

∑

c∈[1,C]

µ̄∗
ic − d̄∗i (t)]

+ Z̄i · [ǫi −
∑

c∈[1,C]

µ̄∗
ic − d̄∗i (t)]

≤Bi/V −Ω∗
i .

The second inequality comes from the fact that η̄∗
i ≤ r̄∗i ,

r̄∗i ≤
∑

c∈[1,C] µ̄
∗
ic + d̄∗i , and ǫi ≤

∑
c∈[1,C] µ̄

∗
ic + d̄∗i . Rear-

ranging the two sides, we have that

Ωi ≥ Ω∗
i − Bi/V.

⊓⊔

K. PROOF TO THEOREM 8
Our proof is based on the Lyapunov optimization the-

ory. Since the data arrivals and channel availabilities fol-
low ergodic processes at each secondary link, we know that
there exits a stationary randomized algorithm, which dy-
namically decides the rate control (with η∗

i (t) and r∗i (t)),
channel allocation (with µ∗

ic(t)), and packet dropping (with
d∗i (t)), such that the offline optimal social welfare Π∗ can be
achieved, together with η̄∗

i ≤ r̄∗i , r̄
∗
i ≤

∑
c∈[1,C] µ̄

∗
ic+ d̄∗i , and

ǫi ≤
∑

c∈[1,C] µ̄
∗
ic + d̄∗i , ∀vi ∈ Vs.

Based on the derivations of the optimization problem (29)
and its solution in Sec. 5, we know that the Algorithm 3 min-
imizes the expected right-hand-side of the drift-plus-penalty
(drift-minus-utility) inequality (27) at each time slot t, with
social welfare maximization as the utility, overall all possible
algorithms. Comparing Algorithm 3 and the combination of
Algorithm 1 and 2, we have that they share the same de-
cisions on the auxiliary variables, rate control and packet
dropping. Also, as proved in Theorem 2, we have that the
expectation of Ψ(t) as defined in Eqn. (28) is maximized
with Algorithm 1 and 2 if each secondary link bids truth-
fully. Hence, the expectation of Ψ(t) by Algorithm 3 and
the combination of Algorithm 1 and 2 are the same. Then,
we have that Algorithm 1 and 2 also minimizes the expected
right-hand-side of the drift-plus-penalty (drift-minus-utility)
inequality (27) at each time slot t. Therefore, Algorithm 3
should achieve the same social welfare in expectation with
that by Algorithm 1 and 2.

We can have that

E{∆(Θ(t))} − V ·
∑

vi∈Vs

[E{Ui(ηi(t))} − βi · E{di(t)}]

≤B +
∑

vi∈Vs

ǫi · Zi(t) − V ·
∑

vi∈Vs

E{Ui(ηi(t))}

+
∑

vi∈Vs

E{ηi(t)} · Yi(t) −
∑

vi∈Vs

E{ri(t)} · [Yi(t) −Qi(t)]

−
∑

vi∈Vs

∑

c∈[1,C]

E{µic(t)} · [Qi(t) + Zi(t)]

−
∑

vi∈Vs

E{di(t)} · [Qi(t) + Zi(t) − V · βi]

≤B +
∑

vi∈Vs

ǫi · Zi(t) − V ·
∑

vi∈Vs

E{Ui(η
∗
i (t))}

+
∑

vi∈Vs

E{η∗i (t)} · Yi(t) −
∑

vi∈Vs

E{r∗i (t)} · [Yi(t) −Qi(t)]

−
∑

vi∈Vs

∑

c∈[1,C]

E{µ∗
ic(t)} · [Qi(t) + Zi(t)]

−
∑

vi∈Vs

E{d∗i (t)} · [Qi(t) + Zi(t) − V · βi]



=B − V ·
∑

vi∈Vs

[E{Ui(η
∗
i (t))} − βi · E{{d

∗
i (t)}]

+
∑

vi∈Vs

Yi(t) · [E{η
∗
i (t)} − E{r∗i (t)}]

+
∑

vi∈Vs

Qi(t) · [E{r
∗
i (t)} −

∑

c∈[1,C]

E{µ∗
ic(t)} − E{{b̂∗i (t)}]

+
∑

vi∈Vs

Zi(t) · [ǫi −
∑

c∈[1,C]

E{µ∗
ic(t)} − E{{d∗i (t)}].

By summing over the T slots on both sides of the inequal-
ity, we have that

E{L(Θ(T ))} − E{L(Θ(0))} − V ·

T−1
∑

t=0

∑

vi∈Vs

[E{Ui(ηi(t))}

− βi · E{di(t)}]

≤T ·B −

T−1
∑

t=0

V ·
∑

vi∈Vs

[E{Ui(η
∗
i (t))} − βi · E{{d

∗
i (t)}]

+

T−1
∑

t=0

∑

vi∈Vs

Yi(t) · [E{η
∗
i (t)} − E{r∗i (t)}]

+

T−1
∑

t=0

∑

vi∈Vs

Qi(t) · [E{r
∗
i (t)} −

∑

c∈[1,C]

E{µ∗
ic(t)} − E{{b̂∗i (t)}]

+

T−1
∑

t=0

∑

vi∈Vs

Zi(t) · [ǫi −
∑

c∈[1,C]

E{µ∗
ic(t)} − E{{d∗i (t)}].

Since E{L(Θ(T ))} ≥ 0 and E{L(Θ(0))} = 0 according to
the definition of the Lyapunov function, we have that

− V ·

T−1
∑

t=0

∑

vi∈Vs

[E{Ui(ηi(t))} − βi · E{di(t)}]

≤T ·B −

T−1
∑

t=0

V ·
∑

vi∈Vs

[E{Ui(η
∗
i (t))} − βi · E{{d

∗
i (t)}]

+

T−1
∑

t=0

∑

vi∈Vs

Yi(t) · [E{η
∗
i (t)} − E{r∗i (t)}]

+

T−1
∑

t=0

∑

vi∈Vs

Qi(t) · [E{r
∗
i (t)} −

∑

c∈[1,C]

E{µ∗
ic(t)} − E{{b̂∗i (t)}]

+

T−1
∑

t=0

∑

vi∈Vs

Zi(t) · [ǫi −
∑

c∈[1,C]

E{µ∗
ic(t)} − E{{d∗i (t)}].

Dividing T · V on both sides of the above inequality and
taking limitation on T to infinity, we have that

−Π12 ≤B/V −Π∗ +
∑

vi∈Vs

Ȳi · [η̄
∗
i − r̄∗i ]

+
∑

vi∈Vs

Q̄i · [r̄
∗
i −

∑

c∈[1,C]

µ̄∗
ic − d̄∗i (t)]

+
∑

vi∈Vs

Z̄i · [ǫi −
∑

c∈[1,C]

µ̄∗
ic − d̄∗i (t)]

≤B/V −Π∗.

The second inequality comes from the fact that η̄∗
i ≤ r̄∗i ,

r̄∗i ≤
∑

c∈[1,C] µ̄
∗
ic + d̄∗i , and ǫi ≤

∑
c∈[1,C] µ̄

∗
ic + d̄∗i . Rear-

ranging the two sides, we have that

Π12 ≥ Π∗ − B/V.

As discussed at the beginning of the proof, we can also
have that

Π3 ≥ Π∗ − B/V.

⊓⊔


