
Secure Capacity of Wireless Broadcast Networks∗ †

Guanfeng Liang, Rachit Agarwal, Nitin H. Vaidya
Department of Electrical and Computer Engineering,

University of Illinois at Urbana-Champaign,
IL, USA

{gliang2, agarwa16, nhv}@illinois.edu

ABSTRACT
We give a constructive characterization for the capacity of
wireless broadcast networks that are prone to Byzantine at-
tacks. The adversary controls a single node in the network
and can modify the packets flowing through the node. The
central trade-off in such a scenario is that of security and
throughput. We define secure capacity as the highest possible
transmission rate from the source such that the destination
can detect any modification in the information packets. Prior
work in this direction mainly concentrate on nodes perform-
ing random network coding, where the capacity is shown to
be bounded by C − z0, where C is the minimum cut between
the source and the destination and z0 is the maximum num-
ber of packets the adversary can modify.

We show that by carefully designing the transmission scheme,
rates higher than C − z0 are achievable. In particular, we
show that some nodes in the network carefully duplicating
the packets results in increased capacity of the network. In
order to efficiently search over all the possible transmission
strategies, we formulate the problem of characterizing secure
capacity as a linear optimization program. We give an ex-
plicit routing (and duplication) strategy that achieves the ca-
pacity given by the optimal solution of the optimization pro-
gram, thus establishing the secure capacity of the given wire-
less broadcast network. We also show that there exist net-
works in which secure capacity with in-network monitoring
can be arbitrarily larger than that without in-network moni-
toring.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Data Commu-
nications; C.2.6 [Computer-Communication Networks]: Wire-
less Communications

∗Submitted for conference publication on September 28,
2009.†This research was supported in part by Army Research Of-
fice grant W-911-NF-0710287

General Terms
Algorithm, Design, Theory

Keywords
Wireless Networks, Byzantine Attack, Capacity, Monitoring

1. INTRODUCTION
Security and reliability are at the forefront of the networking
research. It is becoming increasingly crucial to quantify the
trade-off between security and traditional quality of service
parameters such as throughput and delay. While characteri-
zation of this trade-off is relevant in all forms of networking,
it is particularly significant in the case of wireless networks,
where the medium is shared, and hence is highly susceptible
to attacks. It is important for the network to be able to detect
any attack in the network, while being able to provide high
performance under attack scenarios.

In this paper, we explore the security-throughput trade-off
in wireless broadcast networks. An adversary in a wireless
network can attack in several ways: it could inject erroneous
packets on the outgoing link of the node it attacks on; it could
cause interference on the links that are close enough to the
node it attacks on; or it can jam the outgoing link it attacks
on. In this paper, we study the first kind of attack, i.e., when
the adversary in the network injects erroneous packets on its
outgoing link. We refer to such an adversary as a Byzan-
tine adversary henceforth, and call such attacks Byzantine
attacks.

We define the secure capacity of the network as the maximum
number of data packets that can be sent from the source to
the destination, under the condition that any Byzantine at-
tack can be detected at the destination. In this paper, we
consider a pure broadcast transmission model in which each
node is restricted to broadcasting all the packets it has to all
its neighbors. We give a constructive characterization of the
secure capacity of networks for the case of a single Byzan-
tine attacker in the network. Under the broadcast model, we
show that combining end to end error detection scheme with
duplication of packets (whenever possible) increases the ca-
pacity of the network.

We approach the problem by formulating a set of constraints
that capture the intermediate nodes forwarding or duplicat-
ing the information packets. We say that a node is forward-
ing the incoming packets when it does not mix any of the
incoming data packets and simply forwards one or all of the



data information packets. We say that a node is duplicat-
ing a packet if there are multiple copies of the same data
packet on its outgoing link. These constraints, combined
with a search over the space of solutions that satisfy these
constraints, give us an upper bound on the secure capacity of
the network. The search space we consider is that of neigh-
bors of the source doing error detection coding and the rest
of the nodes in the network either forwarding or duplicating
the incoming packets.

We give a routing strategy that allows us to achieve the upper
bound given by the search over the space of solutions. We
believe that our search space also contains the set of solutions
where the intermediate nodes in the network may mix the
information packets (known as network coding). In other
words, we believe that intermediate nodes in the network
doing network coding does not increase the capacity of the
network under such Byzantine attacks. Finally, using some
examples, we show that the secure capacity of the network
can be increased if intermediate nodes in the network may
perform monitoring.

1.1 Related Works
The broadcast nature of wireless networks expose them to at-
tacks that are not encountered in wired networks. The shared
medium allows an attacker to easily eavesdrop over the in-
formation being transmitted, tamper with the messages flow-
ing through the nodes under attack, and, allows the attacker
not only to jam the packets flowing through the node it at-
tacks on but also on the links that it could interfere on. En-
cryption and authentication techniques are expensive appro-
aches to confront these attacks. Such solutions are not only
expensive, but may also be impractical for resource constra-
ined networks. This leads to the trade-off between security
and resource consumption in the network. This trade-off
has been explored in some recent works [17, 1, 16, 11, 12],
which characterize the trade-off between security and mes-
sage complexity for the case of an attacker tampering the
packets.

Recently, the security issue in network coding systems has
drawn much attention. Due to the mixing nature of network
coding, such systems are subjects to a severe security threat,
known as a pollution attack, where attackers inject corrupted
packets into the network. Several solutions to address pollu-
tion attacks in intra-flow coding systems use special-crafted
digital signatures [10, 18, 19, 14] or hash functions [13, 5].
Non-cryptographic solutions have also been proposed [8, 9].
Two practical schemes are proposed in [3] to address pollu-
tion attacks against network coding in wireless mesh net-
works without requiring complex cryptographic functions
and incure little overhead. The above results, in the con-
text of network coding, consider only the case of so-called
random network coding, where intermediate nodes in the
network randomly combine the incoming information pack-
ets. With such a transmission scheme, it has been shown that
the secure capacity of the network is C − z0, where C is the
maximum number of packet that can be transmitted from the
source to the destination in the absence of the adversary and
z0 is the maximum number of packets that the adversary can
modify. Our approach is significantly different, in that, we
show that by carefully designing a routing scheme, includ-
ing duplicating of data packets when possible, the secure ca-

pacity of the network can be increased.

Finally, the impact of in-network monitoring (where inter-
mediate nodes in the network exploit the broadcast medium
to perform monitoring using overhearing) on secure capac-
ity of wireless network has been studied empirically in some
recent works [15, 4]. However, these works have not char-
acterized the potential benefits of such in-network monitor-
ing. We believe that further work on developing a theoret-
ical framework is required in order to quantify the benefits
of in-network monitoring. We take a first step in this di-
rection, demonstrating that there exist networks for which
the secure capacity with in-network monitoring is arbitrarily
larger than that without in-network monitoring.

1.2 Organization of the Paper
The rest of the paper is organized as follows. In Section 2, we
illustrate the ideas in the paper using some simple examples.
Section 3 covers the formal definitions of the network and
the adversarial model considered in the paper. We formulate
the set of constraints for intermediate nodes in the network
forwarding or duplicating the data in Section 4. The set of
constraints formulated in Section 4 allow us to derive a sim-
ple expression for the upper bound on the secure capacity of
the networks, discussed in Section 5. We also give a rout-
ing strategy in this section that achieves the derived upper
bound, thereby establishing the secure capacity of wireless
broadcast networks. We show, using some simple examples
in Section 6, that the secure capacity of the network with in-
termediate nodes performing monitoring can be arbitrarily
larger than the secure capacity derived in Section 5. We close
the paper with future research directions in Section 7.

2. ILLUSTRATIVE EXAMPLES
In this section, we illustrate the ideas explored in this pa-
per using some simple network topologies. To ease the dis-
cussion, we informally describe some of the terms used in
this section. The broadcast capacity of a node is the maximum
number of packets that node can transmit to its neighbors per
unit time. To avoid the notion of time, we will generally re-
fer to the number of packets transmitted per unit time by a node
(link) as the rate of that node (link). Any modification by a node
in the packet being routed through that node, as discussed in
Section 1, is referred to as Byzantine attack.

Consider the network shown in Fig. 1. First assume that
all the relay nodes can only forward one of the data packets
received from the source to d. In such a case, to be able to
detect any Byzantine attack in the network, we claim that s
can only transmit at rate 1. If s transmits 2 packets per unit
time, say a and b, without loss of generality, assume that r1

and r2 forward packet a and r3 forwards packet b. In such
a case, the attacker can attack at r3 and modify b without
being detected at d. Hence, to be able to detect Byzantine
modification, s can only transmit at rate 1.

On the other hand, if the relay nodes were allowed to mix
the information, while r1 and r3 transmit packets a and b
respectively, r2 could transmit a⊕b. It is easy to see that with
such a transmission mechanism, Byzantine modification at
any one of the relay nodes r1, r2 or r3 will be successfully
detected by d. Hence, a rate of 2 is achievable in the network.
It is also easy to show that a rate more than 2 is not achievable



Figure 1: A single source (s), single destination (d) network
with three unreliable nodes r1, r2 and r3. s has a broad-
cast capacity of 2 units and each link ri → d is of capacity
1 unit. All links are reliable. In this network, nodes sim-
ply forwarding the received packets does not achieve the
secure capacity of the network.

in the network and hence, the secure capacity of the network
is 2 packets per unit time.

Figure 2: A network in which s has a broadcast capacity of 2
units, each of r1, r2, r3 has a broadcast capacity of 1 unit and
r4, r5 have a broadcast capacity of 2 units. In this network,
packets must be mixed and duplicated within the network.

Now, consider the network shown in Fig. 2. The secure ca-
pacity of this network is 2 packets per unit time, which is
achieved using the following strategy: s broadcasts a, b to all
its neighbors. r1, r2, r3 broadcast a, b and a⊕b respectively to
all their neighbors. r4 forwards a, b and r5 forwards a, a ⊕ b.
It is easy to see that with this transmission strategy, attack at
any single node in the network can be detected at the desti-
nation.

Finally, consider the network shown in Fig. 3. The capacity
of this network is 1 packet per unit time, which is achieved
by forwarding a single data packet at all the nodes. It is not
very difficult to prove that no more than a single packet from
the source to the destination can be transmitted per unit time.

We make the following two observations from the above ex-
amples:

• Similar to the network of Fig. 1, forwarding at the inter-
mediate nodes in the network of Fig. 2 does not suffice.
It is easy to see that if r3 in Fig. 2 would send either
of a or b rather than a ⊕ b, the adversary can attack at

Figure 3: A network in which s has a broadcast capacity
of 3 units, each of r1, r2, r3, r6, r7, r8 has a broadcast capac-
ity of 1 unit and r4, r5 have a broadcast capacity of 2 units
each. In this network, no coding at intermediate nodes is
required. Some packets need to be duplicated.

one of the nodes and the destination will not be able to
detect the attack. However, in the network of Fig. 3,
forwarding does suffice for achieving the capacity.

• We also notice from the networks of Fig. 2 and Fig. 3
that in a capacity achieving scheme, some packets may
need to be duplicated for the destination to be able to
detect the attack (in this example, packet a for exam-
ple). It is not a priori clear which packets need to be du-
plicated and which nodes need to duplicate the pack-
ets. Whether the duplication can be done or not is also
not very clear. For example, in the network of Fig. 3
sending two packets and duplicating them at any of the
intermediate nodes does not help.

In this paper, we take a first step towards formalizing the
ideas of above three examples. In particular, we give a con-
structive characterization of the secure capacity of the net-
works in which the intermediate nodes can either forward
the data packets or duplicate some of the data packets. To
achieve this, we first formulate a set on constraints that cap-
ture the forwarding and duplication of packets at intermedi-
ate nodes and then search over the entire space of solutions
satisfying these constraints. Before going to the formulation,
let us formally describe our network and adversary models.

3. MODEL AND DEFINITIONS
The transmission model considered in this paper is "broad-
cast model", where each node is restricted to broadcasting
the information packets it has to all its neighbors. To sim-
plify notation, we consider information transmission from a
single source to a single destination only.

3.1 Network Model
We model the network as a hypergraph G = (V, E) along
with an associated function, c = 〈ce〉, c : E → Z, where V
is the set of nodes and E is the set of hyperedges in G. Each
packet transmission corresponds to a hyperedge directed from
the transmitting node to the set of receiver nodes. c is the
function that defines the capacities of edges in E . For any
edge e ∈ E , we denote the capacity of this edge by ce. The hy-
pergraph model captures both wired and wireless networks.
For wired networks, the hyperedge is a simple point-to-point
link. For wireless, each such hyperedge connects the trans-
mitter to all nodes that hear the transmission. We denote,
by G[V\v], the subgraph induced by removing node v from
V and removing all incoming and outgoing hyperedges of v



from E . For any v ∈ V , denote by N(v) the set of all those
nodes that are on the hyperedge corresponding to v’s trans-
mission.

3.2 Transmission Model
As mentioned earlier, the transmission model considered in
this paper is a "pure broadcast model". In particular, each
node v ∈ V broadcasts the packets it has to all nodes u ∈
N(v). Note that we do not have any restriction on |N(v)|,
which means that the model also allows some nodes in the
network to have a single neighbor resulting in a unicast from
that node to its neighbor. However, if a node has multiple
neighbors it is restricted to transmitting the same packets to
all its neighbors, where the maximum number of packets that
the node can transmit per unit time is equal to the capacity
of the hyperedge corresponding to that node’s transmission
1.

3.3 Adversary Model
We consider the omniscient adversary model [9], where noth-
ing is hidden from the adversary. In particular, we assume
that the adversary in the network is computationally unbou-
nded, has complete knowledge of the network topology (the
hypergraph) and the transmission scheme employed in the
network (end-to-end error detection scheme and forward-
ing/mixing of packets at each node in the network). It can
also observe all transmissions in the network and in this pa-
per, we assume that it can attack at most a single node in the
network, except for the source and destination. At the node
it attacks, it can inject erroneous packets on the outgoing link
of that node.

3.4 Definitions
A (v, v′,S)-cut between any v, v′ ∈ V is a partition of V into
S and V − S such that v ∈ S and v′ ∈ V − S . A hyperedge
e = (u N(u)) is said to be in a cut (v, v′,S) if u ∈ S and
N(u) ∩ (V − S) 	= φ. The cut edge-set E(v, v′,S) comprises
e ∈ E such that e is on the cut (v, v′,S). The size of a cut
(v, v′,S), denoted by |E(v, v′,S)|, is the sum of the capacities
of all the hyperedges that are on that cut. The min-cut be-
tween two nodes v, v′ ∈ V is defined as minS |E(v, v′,S)| and
will be denoted as min-cut(G, c, v, v′). In our formulation,
the flow through a node may not be equal to the capacity
of the outgoing hyperedge of that node. In such a case, we
say that a function z = 〈ze〉 defines the number of packets
that are routed through node v. Clearly, zv is bounded by
the capacity of its outgoing edge. With such a flow assign-
ment, we denote the cut as (v, v′, z,S) and the min-cut as
min-cut(G, z, v, v′). Min-cut from a set of nodes V ′ ⊂ V to
some node v will be denoted as min-cut(G, z, V ′, v).

We also give the following definitions regarding the capacity
expressions discussed in the paper:

• The network capacity, denoted by C, is the time-average
of the maximum number of packets that can be deliv-
ered from the source to the destination, assuming no
adversarial interference, i.e., the max flow. It can also
be expressed as the min-cut from source to destination.

1We, however, remark that our results can be easily general-
ized to cases when a node in the network has both broadcast
and unicast outgoing links.

• The broadcast capacity of a node is the capacity of the
hyperedge corresponding to that node’s transmission.

• The secure capacity of the network is the maximum ach-
ievable rate at which information transmission is pos-
sible from the source to the destination such that any
single node Byzantine attack, which is defined as an
adversary injecting errors on its outgoing link, can be
detected at the destination node.

4. FORMULATING THE CONSTRAINTS
We start with some definitions that will allow us to succinctly
describe our formulation for the secure capacity of the net-
work.

DEFINITION 1 (ORDERING OF NODES). A partial ordering
over the set of nodes is an ordering < between every pair of nodes
u, v such that u < v if and only if min-cut(G, z, u, v) > 0.

In other words, an ordering over the set of nodes defines
for every node u, the set of ancestors and descendants of
that node in the flow. Recall that our network is a directed
acyclic hypergraph. This allows us to define a specific order-
ing over the set of nodes using topological sort [2]. Given such
an ordering, we will from here on refer to the set of nodes as
V = {1, 2, . . . , N}, where 1 is the source of the network and
N is the destination of the network.

DEFINITION 2 (DUPLICATION). We say that a packet p is
duplicated by some node in the network if and only if the destina-
tion receives multiple copies of the packet p.

Before defining the source of duplication for a particular packet,
we give a network transformation which helps us in formu-
lating the optimization program:

DEFINITION 3 (NETWORK TRANSFORM). Given a network
G = (V, E), we construct a "transformed network" GT = (V, ET )
as follows: for each hyperedge e = (u N(u)) ∈ E , we create |N(u)|
edges (u v), v ∈ N(u) such that there is a single edge between u
and every v ∈ N(u) and the capacity of all these |N(u)| edges is
ce.

Note that for equivalence of the original network and the
transformed network, we need to impose some restrictions
on the min-cut between every pair of nodes in the trans-
formed network. Indeed, the only restriction required is the
total number of distinct packets that can be transferred from
u to N(u). We will, in the optimization program, impose the
restriction that the total number of distinct packets that can
be transferred from u to N(u) is no more than the broad-
cast capacity of node u. We leave it for the interested readers
to see that this restriction results in the equivalence of the
original network and the transformed network. We will sim-
ply refer to the transformed network as the original network
from now on. For any node v, we define In(v) and Out(v) to
be the set of incoming and outgoing edges of node v.



DEFINITION 4 (SOURCE OF A DUPLICATE PACKET). We say
that a packet p is duplicated at node with index u if u is the node
with least index such that at least two nodes in N(u) forward the
packet p.

Before formulating the optimization problem, we first point
out some properties of some optimal duplicate and forward
algorithm. Note that it is not necessary that all optimal algo-
rithms should have the following properties. Instead, we ar-
gue that there must exist some optimal algorithms that have
these properties. For any optimal duplicate-and-forward al-
gorithm that any of the properties not hold, we can derive a
optimal algorithm that all these properties hold.

• Property 1: All packets and all duplicated copies of a
packet should be routed to the destination. Otherwise
nodes can just not forward the copies that will not ar-
rive at N and makes no difference at node N .

• Property 2: At most two copies of each packet are needed
to be transmitted.
Suppose there is an optimal solution in which more
than two copies of packet p are transmitted. If between
the first node that duplicates p, say u, and the desti-
nation N , there is no a single node that forms a cut
for the paths of copies of p, then there must be two
node-disjoint paths between u and N that carry two
copies of p. Since at least two copies of p travel through
two node-disjoint path, no one single node can tam-
per the copies it carries without being detected. So
we can keep these two node-disjoint paths and remove
all other paths and it is still optimal. If there is some
nodes that each is a cut between u and N , then be-
tween each consecutive pair of such nodes, including
u and N , there is two node-disjoint paths. Following a
similar argument as before, we only need to keep two
node-disjoint paths between each consecutive pair and
remain optimal.

As discussed in Example of Fig. 1, the broadcast nature of the
source allows the neighbors of the source to perform coding
on the packets received from the source. To make the fol-
lowing discussion more coherent, we will assume that the
broadcast capacity of the source is large enough so that the
source can transmit these "coded" and "uncoded" packets it-
self and the neighbors of the source do not need to perform
any coding. Under such an assumption, we will now for-
mulate a linear program that characterizes the capacity of a
given network for the cases when the intermediate nodes in
the network may either forward the packets or "duplicate"
the packets.

Finally, we give the following notation used in the rest of the
paper:

• wu,e: number of packets with u as the duplication source
and routed through edge e.

• ze: number of packets routed through edge e that have
not been duplicated at any node u ≤ tail(e).

• win
u (v) =

∑
e:e∈In(v) wu,e: number of incoming packets

at node v that have been duplicated at node u.

• wout
u (v) =

∑
e:e∈Out(v) wu,e: number of outgoing pack-

ets from node v that have been duplicated at node u.

• zin(v) =
∑

e:e∈In(v) ze: number of incoming packets at
node v that have been not been duplicated at any node
u < tail(e).

• zout(v) =
∑

e:e∈Out(v) ze: number of outgoing packets
from node v that have been not been duplicated at any
node u ≤ tail(e).

Let Csec(z, w) be the secure capacity of the network, given
a flow assignment 〈z〉 and 〈w〉 (we give the expression for
Csec(z, w) in the following section). Given the above no-
tation and definitions, consider the following optimization
program:

max
z,w

Csec(z, w)

subject to

win
u (v) = 0 ∀u ≮ v

wout
u (u) = 2(zin(u) − zout(u)) ∀u 	= 1, N

wout
u (v) = win

u (v) ∀v 	= 1, u, N

ze +
∑

u

wu,e ≤ ce ∀e ∈ E

zout(u) +
∑
u �=v

wout
u (v) + wout

u (u)/2 ≤ cout(u) ∀u ∈ V

Let us consider each of the constraint individually:

1. The first constraint captures the acyclic nature of our
network model. In particular, only descendants of node
u can can forward packets being duplicated at u.

2. The second constraint restricts two possibilities: (1) a
packet that has been duplicated by a node before u can
not be duplicated again at u, and, (2) no more than two
copies of any packet are created at node u (in other
words, no more than two neighbors of node u forward
the same packet).

3. The third constraint is the flow conservation for the du-
plicated packets. In particular, we require each node
to forward all the duplicated packets that it receives
(while also allowing it to be the source of duplication
for other packets).

4. The fourth constraint is due to the capacity constraint
of the outgoing links for each node. It restricts the total
amount of traffic flowing on any of the edges to be no
more than the broadcast capacity of that node.



5. The last constraint captures the equivalence of the net-
work transform. In particular, it restricts the total num-
ber of distinct packets flowing through a node to be no
more than the broadcast capacity of that node. To count
the number of distinct packets flowing through a node,
we count all the non-duplicated flows through the node
(zout(u)), the total number of packets duplicated at other
nodes (

∑
v �=u wout

v (u)) which u is bound to forward
due to the third constraint and the total number of pack-
ets duplicated at u, half of which are distinct. Notice
that the last constraint is not needed in wired networks
where all outgoing links from a node are unicast links,
and the first four constraints suffice to capture the se-
cure capacity for wired networks.

We remark that these constraints, combined with the follow-
ing discussion on the number of packets a single adversary
in the network may attack and the capacity formulation, cap-
ture all the possible routing strategies that include the inter-
mediate nodes in the network forwarding and/or duplicat-
ing the packets in the network. It is worth mentioning that
not all optimal strategies may satisfy the above constraints;
rather we argue that among all the strategies that achieve the
optimal throughput, there must be at least one strategy that
satisfies the above constraints.

5. CAPACITY CHARACTERIZATION
Given the above constraints, we now discuss the number of
packets a single adversary in the network may be able to at-
tack without being detected by duplication . Note that the
above formulation allows a node to forward multiple copies
of the same packet p (p might be duplicated at some node
before this node). Hence, we need to count the number of
distinct packets that the adversary can attack. To do this, we
identify two specific attack possibilities for any node v:

• For any node u < v, wout
u (v) ≤ wout

u (u)/2: there may
exist a routing scheme such that all win

u (v) = wout
u (v)

packets are unique. In such a case, the adversary can
not attack any of these win

u (v) packets without being
detected by the destination.

• For any node u < v, wout
u (v) > wout

u (u)/2: for any
routing scheme, at least wout

u (v) − wout
u (u)/2 pairs of

packets must be in duplicate. In such a case, the adver-
sary can attack any of these wout

u (v)−wout
u (u)/2 packets

without being detected by the destination (it can attack
both, the original packet and its duplicate and will go
undetected at the destination).

• Finally, the adversary at node v can always attack the
packets that have not been duplicated by any node be-
fore v.

To capture the first two attack scenarios, we define:

du(v) = max{0, wout
u (v) − wout

u (u)/2} (1)

as a lower bound of the number of duplicated packets flow-
ing through v that the adversary at v can attack without be-
ing detected by the duplication. The above discussion then

leads to the following lower bound on the total number of
packets the adversary at any node u may be able to attack:

zin(v) +
∑
u<v

du(v) (2)

Since the adversary attacks after a routing strategy has been
decided, it has the freedom to attack on any node in the net-
work. Hence, a lower bound on the adversary’s attack capa-
bility is given by:

Cadv(z, w) = max
v �=1,N

{
zin(v) +

∑
u<v

du(v)

}
. (3)

Finally, the number of distinct packets received by the desti-
nation under the flow constraints is clearly:

zin(N) +
∑

u

win
u (N)/2 (4)

This leads to the following upper bound on the capacity of the
network:

Csec(z, w) ≤ zin(N) +
∑

u

win
u (N)/2 − Cadv(z, w) (5)

5.1 Achieving the upper bound
In this section, we will prove that the upper bound is actually
achievable.

To show that the upper bound is achievable, we need to show
that for packets duplicated at any node u, there exists a rout-
ing strategy such that exactly du(v) pairs of identical copies
are routed through every v in the network.

For any rational number assignment of wu,e that satisfies the
constraints, consider the subgraph between i and N : G′(V, E , wu)
, whose link capacity is determined by wu,e. Since all wu,e

are rational, we can find a number 
 such that all wu,e and
wout

u (u)/2 are integer multiples of 
, and let 
 be the packet
size, or the unit of the weights.

First consider the case when wout
u (v) ≤ wout

u (u)/2 for all
v. The following algorithm finds wout

u (u)/2 pair of node-
disjoint paths from u to N so that no two copies of any du-
plicated packet are routed through the same node.

• Step 1: If maxv∈V wout
u (v) < wout

u (u)/2, find a pair of
node-disjoint paths from u to N . Go to Step 3.

• Step 2: If maxv∈V wout
u (v) = wout

u (u)/2, find a pair of
node-disjoint paths such that all nodes with outgoing
weight , wout

u (v), equal to wout
u (u)/2 are on either paths.

Go to Step 3.

• Step 3: Route the copies of a packet through the node-
disjoint paths found in Step 1 or 2. Reduce the weights
of the links , wu,e, belong to either paths by 1.

• Step 4: Repeat Step 1 to 3 until all weights , wu,e, be-
come 0.



LEMMA 1. Two node-disjoint paths can always be found in
Step 1.

PROOF. Since maxv∈V wout
u (v) < wout

u (u)/2, no two nodes
can forward all the wout

u (u) copies of packets. So there are
always two node-disjoint paths from u to N .

LEMMA 2. Such node-disjoint paths can always be found in
Step 2.

PROOF. To start with, we first split the “source” of the du-
plicated flow u into two virtual nodes u1 and u2 that are not
connected with each other and set wu(u1, v) = wu(u2, v) =
wu(u, v)/2 for every node v that is a child of u. The destina-
tion N is split into two virtual nodes N1 and N2 in the same
way. It is obvious that if we can connect (u1, u2) to (N1, N2)
through two node-disjoint paths, so we can for u and N .

Let M = {v ∈ V : wout
u (v) = wout

u (u)/2 or win
u (v) =

wout
u (u)/2} be the set of nodes with weight outgoing/incoming

flow wout
u (u)/2. Obviously, the four virtual nodes we just

created belong to M . We will call the nodes in M the big
nodes for convenience. It is also easy to see that if two big
nodes are not connected, then every duplicated copy from u
to N must pass through one of these two nodes. We will call
two nodes that are not connected to each other in G′ to be
parallel. So every pair of parallel big nodes form a cut of G ′

between u and N .

Let (a, b) and (c, d) be two pairs of parallel big nodes. We
will say ordering "up to permutation" – (b,a) < (d,c) and (a,b)
< (c,d) if a = c, b < d or a < c, b < d. Also define
(a, b) = (b, a). Under such ordering, (u1, u2) is the first pair
of parallel nodes and (N1, N2) is the last pair. We will show
that two node-disjoint paths from (u1, u2) to (N1, N2) that
travel through all nodes in M always exist by show such
paths exist between every two consecutive pair of such par-
allel nodes.

Consider any two consecutive pairs (s1, s2) and (t1, t2) such
that there does not exist another pair (s1, s2) < (s, t) < (t1, t2).
Let X ⊆ M be the subset of big nodes that are descendants of
s1 or s2 and are ancestors of t1 or t2 (if there is any). Nodes
in X cannot be parallel with each other, so there is a paths
that goes through all nodes in X and it forms a total order-
ing along the paths. So we can order them as x1, x2, ..., xK ,
where K = |X|. Moreover, nodes in X cannot be parallel
with any one of s1, s2, t1, and t2 by definition. Then there
must be two disjoint paths from s1 and s2 to x1. Similarly,
there must be two disjoint paths from xK to t1 and t2.

Case 1: s1 = t1. In this case, X = φ. Since s2 and t2 are both
parallel with s1, t2 must be a descendant of s2 and s1 cannot
be on any path from s2 to t2. So s1 itself and any path s2 − t2
consist the desired disjoint paths.

Case 2: s1 < t1, s2 < t2 and X is empty. There are two node
disjoint paths between (s1, s2) and (t1, t2), use them.

Case 3: s1 < t1, s2 < t2 and the total flow to/from X from/to
(s1, s2) and (t1, t2) is wout

u (u)/2, i.e., min-cut{G′, wu, (s1, s2),
X} = min-cut{G′, wu, X, (t1, t2)} = wout

u (u)/2. In Appendix

A, we show the existence of two node-disjoint paths from
(s1, s2) to (t1, t2), one of which covers all nodes in X.

Case 4: s1 < t1, s2 < t2 and the total flow to/from X from/to
(s1, s2) and (t1, t2) is greater than wout

u (u)/2, i.e., min-cut{G′,
wu, (s1, s2), X} = min-cut{G′, wu, X, (t1, t2)} > wout

u (u)/2.

In this case, X is non-empty, and it must contain at least
two nodes, since the cut from X exceeds wout

u (u)/2, but each
node in X has outgoing flow only wout

u (u)/2. Thus x1 	= xK .
Moreover, there must exist a xn, n > 1 that has a path from s1

or s2 that does not cover any other big nodes. Otherwise, the
incoming paths to every node in X must be all from x1. Then
the total incoming flow to X is just the incoming flow to x1,
i.e., min-cut{G′, wu, (s1, s2), X)} = min-cut{G′, wu, (s1, s2),
x1)} = wout

u (u)/2, which contradicts the case definition.

Let’s call a path between node v and v′ a direct path if it does
not cover any big node except for v and v′. Let xn, n > 1 be
the node that has the smallest index among nodes in X\x1

that has a direct path from s1 or s2. Then there must exist a
direct path to xn, DPn that is node disjoint with a path from
s1 or s2 that goes through x1, . . . , xn−1. Without loss of gen-
erality, suppose that DPn originates at s1. Then DPn must
be node disjoint with some path from s2 to xn−1 that goes
through nodes x1, ..., xn−1. We will argue the correctness of
this observation by contradiction. Consider a path Pn−1 from
s2 to xn−1 that goes through x1, . . . , xn−1 and intersects with
DPn. If they intersect at a node xm or between xm−1 and
xm, m ≤ n− 1, then node xm has a direct path from s1 along
the segment of DPn before the intersection and the segment
of Pn−1 after the intersection, which leads to contradiction,
since xm has a direct path from s1, but m < n. If DPn and
Pn−1 only intersect in the segment before x1, let D1 and D2

denote two disjoint paths from s1 and s2 to x1. DPn must in-
tersect with at least one of D1 and D2. If the last intersection
is on D1: new DPn is formed as the union of the segment of
D1 before the last intersection and the segment of DPn after.
Also for Pn−1 we now choose D2 as the first segment from s2

to x1. We can see the new DPn is disjoint with the new Pn−1

and Fig.4 (a) shows an example. If the last intersection is on
D2, we can construct the new DPn from s2 to xn, and new
Pn−1 from s1 in a similar way.

Now extend DPn so that it goes through xn+1, . . . , xK (if
n = K, no extension needed). Then every node of X is either
on DPn or Pn−1. So there exists at least one pair of two dis-
joint paths from (s1, s2) that terminate at xK and one of its
ancestors in X (in particular, Pn−1 terminates at xn−1) and
cover X. Let’s denote (P1, P2) as a pair of such disjoint paths
from (s1, s2) that terminate at xK and one of its ancestors in
X, and cover X. Without loss of generality, assume P1 ter-
minates at xK and denote Π as the set of all such (P1, P2).
Let

xl = max
(P1,P2)∈Π

{arg max
v

(v covered by P2, v ∈ X)} (6)

be the node in X with the largest index that is covered by
some P2. And let (P ∗

1 , P ∗
2 ) ∈ Π be a solution in which P∗

2

covers xl. Thus, P ∗
1 includes xl+1, ..., xK (and possibly some

other nodes in X as well).

Claim 1: There must be two disjoint paths from xl, say Pl and



Figure 4: (a) The thick arrow indicates a direct path to xn that intersects with D1 and D2. The lightblue and green area
indicate P1 and P2 respectively. (b) The thick arrow indicats an outgoing path from xl that intersects with a path between
xj and xj+1. The green and lightblue area indicate P ′

1 and P ′
2 respectively. (c) The thick arrow indicates an direct path from

xl that intersects with two disjoint paths from xK to t1 and t2. The colored areas indicate two disjoint paths that cover all
nodes of X.

Pl,l+1, such that Pl is a direct path to a node in {xl+2, . . . ,
xK , t1, t2} and Pl,l+1 is a direct path to xl+1.

PROOF. See Appendix B.

Claim 2: Pl cannot intersect with P∗
1 at descendants of xl+1.

PROOF. If l +1 = K, by definition, there is no intersection
after xl+1 = xK , since P ∗

1 terminates at xK . Now let’s con-
sider the case when l + 1 < K. Suppose in contradiction that
Pl intersects with P ∗

1 at some descendants of xl+1. Let’s de-
note their first intersection after xl+1 is node v. And assume
that, for some m > l + 1, v is either same as node xm, or a
node between xm−1 and xm (excluding xm−1).

First notice that Pl can only intersect with P ∗
1 at descendants

of xh, the last bing node on P ∗
1 before xl+1 (xh may be s1/s2

if xl+1 has a direct path from one of them). Otherwise, if Pl

intersects with P ∗
1 at xh or its ancestors, there is a path from

the intersection to xh, hence to xl, and then through Pl back
to the intersection, contradicting with the acyclic assumption
of the graph.

Let xj be the node in X on P ∗
1 with the smallest index at or

after the first intersection with Pl. Notice that j must be at
least l + 1.

If the first intersection of Pl and P ∗
1 is after xl+1, i.e., j =

m > l + 1, then connect the segments of Pl upto v and the
segment of P ∗

1 after v, and then append it onto P∗
2 to create a

new path P ′
1. And create P ′

2 by truncating P ∗
1 at node xj−1.

Easy to see (P ′
1, P

′
2) ∈ Π. Then xj is covered by P ′

2 and its
index is larger than xl, which contradicts with the definition
of xl as it is illustrated in Fig.4 (b).

If the first intersection is in the segment between xh and xl+1,
i.e., j = l + 1 < m, there are two cases:

(1) P ∗
1 intersects with Pl at some node y before it intersects

with Pl,l+1.

(2) P ∗
1 intersects with Pl,l+1 at some node y before it inter-

sects with Pl.

We prove by contradiction that Pl cannot intersect with P∗
1

between xh and xl+1 in both cases in Appendix C.

Claim 2 shows that Pl cannot not intersect with P∗
1 after xl+1,

hence Pl does not cover any one of {xl+2, ..., xK}. And since
Pl is a path to {xl+2, ..., xK , t1, t2}, it must be a direct path
from xl to {t1, t2} that does not intersect with P∗

1 after xl+1.

If Pl does not intersect with P ∗
1 before xl+1 either (Pl cannot

intersect AT xl+1 by definition of direct path – Pl is a direct
path to {xl+2...}), then similar to the proof of existence of xn,
there must be two disjoint direct paths from xK to t1 and t2,
say D1 and D2. Without loss of generality, suppose that Pl

terminates at node t1. If Pl does not intersect with D1 and
D2, then P ∗

1 − D2 and P ∗
2 − Pl are two disjoint paths from

(s1, s2) to (t1, t2) covers X. If Pl intersects with at least one of
D1 and D2. If the first intersection is on D2: new Pl is formed
as the union of the segment of Pl before the first intersection
and the segment of D2 after. The new Pl terminates at t2 and
is disjoint with D1. Now we have two node disjoint paths
from s1 and s2 to t1 and t2 that cover all nodes of X. An
example is shown in Fig.4 (c). If the first intersection is on
D1, we can construct the new Pl from xl to t1 and disjoint
with D2 in a similar way.

If Pl intersects with with P ∗
1 before xl+1, create P ′′

1 by ap-
pending Pl,l+1 and P ∗

1 ’s segment after xl+1 to P ∗
2 . And cre-

ate P ′′
2 by truncating P ∗

1 upto the node xh, the last big node
on P ∗

1 before xl+1. Notice that the union of the segment of
P ∗

1 between xh and its first intersection with Pl, and the seg-
ment of Pl after the same intersection creates a direct path
from xh, the last node on P ′′

2 , to {t1, t2} that does not inter-
sect with P ′′

1 . Then we can treat xh as xl and follow the same
process in the previous paragraph, we can find two node dis-
joint paths from (s1, s2) to (t1, t2) that cover all nodes of X.

To summarize, in any case, we can find two node-disjoint
paths connecting every two pairs of consecutive parallel big
nodes that cover all big nodes between them. Then we can
start with (u1, u2) and find two such disjoint paths to one
pair of the immediate parallel big nodes, and repeat this until
it reaches (N1, N2). Then we have two node disjoint paths
from u to N that cover all big nodes.



LEMMA 3. wout
u (v) ≤ wout

u (v)/2 for all v after Step 3.

PROOF. Denote wmax = maxv{wout
u (v)}.

If wmax < wout
u (u)/2, then wmax ≤ w−

u (u)/2 − 1. By Lemma
1, two node-disjoint paths can be found in Step 1. After up-
dating the weights, wmax will either decreased by one or
remain the unchanged, while wout

u (u) is reduced by 2. So
wnew

max ≤ wmax ≤ wout
u (u)/2 − 1 = wout,new

u (u)/2.

If wmax = wout
u (u)/2, the paths are found in Step 2. Accord-

ing to Lemma 2, all nodes with wmax belong to either one
of the paths, their weights are all reduced by 1. And since
weight of any other node is at most wmax − 1, so wnew

max =
wmax − 1 = wout

u (u)/2 − 1 = wout,new
u (u)/2.

From Lemma 3, we can conclude that the whole process can
be repeated until all weights , wu,e, become zero. And then
we have wout

u (u)/2 pairs of disjoint paths from u to N .

Now consider the case when wout
u (v) > wout

u (u)/2 for some
v 	= u. In this case, we first split every such node v into
two disjoint nodes v1 and v2 such that the weights of links
to/from them are in same proportion as the original links
to/from v and the total incoming/outgoing flow to/from v1

is wout
u (u)/2. Then we apply the previous algorithm on this

extended graph. In each round, v1 must be on one of the
paths while v2 may or may not be on the other path. If both
v1 and v2 are one the two paths, it means both copies of a
packet is routed through v, otherwise only one copy is routed
through v. Since there are wout

u (v2) = wout
u (v)−wout

u (u)/2 =
du(v) packets through v2, exactly du(v) pairs of copies are
routed through v.

Now we have shown that the solution to the optimization
problem indeed achieves the secure capacity of the network.
For example, consider the network in Fig. 2. A solution to the
optimization problem for this network is z(s,r1) = z(s,r2) =
z(s,r3) = 1, wr1,(r1,r4) = wr1,(r1,r5) = 1, z(r2,r4) = z(r3,r5) =
1, z(r4,d) = wr1,(r4,d) = z(r5,d) = wr1,(r5,d) = 1, and all
other z’s and w’s are zero. So the number of distinct pack-
ets the destination receives is z(r4,d) + z(r5,d) + (wr1,(r4,d) +
wr1,(r5,d))/2 = 3, and the adversary’s capability is 1 for ev-
ery intermediate node. So the secure capacity is 3 − 1 = 2.

6. POWER OF PROMISCUOUS MONITOR-
ING

Recall that under a broadcast model, intermediate nodes may
need to perform linear operations over the incoming packets
to achieve the capacity of the network. In this section, we
demonstrate a stronger requirement: even linear operations
do not suffice to achieve the capacity [6], [7]. To show this,
we use the idea of promiscuous monitoring. Promiscuous
monitoring means that if a node A is within the transmission
range of a node B, it can overhear the communication to and
from B even if those communications do not directly involve
A. Promiscuous monitoring allows A to monitor the behav-
ior of B, thereby reducing the possibility of attack at node B
(assuming that the channels are symmetric, B could monitor
A too). It is easy to see that promiscuous monitoring of B by
A can be seen as a non-linear operation.

Figure 5: A single source (s), single destination (d) network
with three unreliable nodes r1, r2 and r3. s has a broad-
cast capacity of 2 units, r1 and r3 have a broadcast capacity
of 1 unit and r2 has a broadcast capacity of 2 units. The ca-
pacity of links from w1 and w2 is asymptotically negligible.
The secure capacity of the network with promiscuous mon-
itoring is twice the secure capacity of the network without
promiscuous monitoring.

Consider the network shown in Fig. 5. The secure capacity
of the network without promiscuous monitoring is 1 unit by
duplicating the packets at r1 and r3. However, the secure
capacity of the network is 2 units. To see this, consider the
following transmission strategy: r1 and r3 broadcast packets
a and b respectively. r2 broadcasts packets a and b. With such
a strategy, w1 can compare the packet from r1 to one of the
packets from r2 and w2 can do the same for the packet from
r3. If either of w1 or w2 notice that the packet has been modi-
fied, they can inform the destination using an asymptotically
negligible rate channel.

Next, we show that the ratio of secure capacity with and
without promiscuous monitoring can be arbitrarily large [6],
[7].

Figure 6: A single source (s), single destination (d) network
with two unreliable nodes r1 and r2. s has a broadcast ca-
pacity of R units, r1 has a broadcast capacity of R unit and
r2 has a broadcast capacity of R/k packets per unit time
to d. All links are reliable. In this network, nodes sim-
ply forwarding the received packets or mixing the received
packets does not achieve capacity of the network.

Consider the network shown in Fig. 6. The network has edge



capacities as described in the figure (assume that the size of
the packets is large enough). It is easy to show that if the re-
lay nodes are restricted to forwarding the received informa-
tion packets, s can transmit at no more than R/k packets per
unit time while detecting any Byzantine modification in the
network. It is also easy to show that mixing of packets does
not increase the number of packets s can transmit per unit
time. However, if a comparison operation (which can be for-
mally described as a non-linear operation over the received
packets) is allowed at node r2, the network can achieve its
capacity of R(1 − 1/k) packet per unit time. In this case, r2

can compare each packet transmitted by s to each packet for-
warded by r1 and can inform d if any of these packets do not
match. On the other hand, if r1 is under attack s can cre-
ate a (R,R(1 − 1/k), R/k) error detecting code so that any
modification at r2 can be detected. Since the adversary can
attack at any of the nodes, the secure capacity with promis-
cuous monitoring is R(1 − 1/k). The ratio of secure capacity
with and without promiscuous monitoring is then given by
R(1 − 1/k)/R/k = (k − 1), which can be arbitrarily large
depending on k.

7. CONCLUSIONS
In this paper, we have characterized the trade-off between
security and throughput in wireless broadcast networks. In
particular, we have shown that the problem of characterizing
the secure capacity of any wireless broadcast network can be
formulated as a linear optimization problem. This, combined
with a carefully designed routing strategy that achieves the
bound given by the optimal solution for the optimization
program, establishes the secure capacity of any given wire-
less broadcast network. The main observation used in de-
signing a capacity achieving routing strategy is that some
nodes in the network may duplicate the packet in order to
check the correctness of the received packets at the destina-
tion.

Recall the ideas from Example of Fig. 1. In the example,
we showed that the neighbors of the source doing coding in-
creases the capacity of the network. This brings up the ques-
tion whether the capacity can further be increased by nodes
other than the neighbors of the source doing coding. We be-
lieve that such is not the case. In particular, we believe that
forwarding and duplication at all intermediate nodes in the
network except for neighbors of the source achieves the se-
cure capacity of the network. Hence, we conjecture the fol-
lowing:

CONJECTURE 1. The secure capacity of the network is achieved
with all nodes in V\N(s) just forwarding and duplicating the in-
formation packets. Network coding at any node other than N(s)
does not increase the capacity of the network.

An interesting observation we make towards the end of the
paper is that the capacity of wireless broadcast networks can
be increased if the intermediate nodes in the network can
perform monitoring. In fact, we show that there exist net-
works for which the secure capacity of the network with in-
network monitoring is arbitrarily larger than that without in-
network monitoring. Our current work is in the direction of
developing a theoretical framework is required to quantify
the benefits of in-network monitoring.

8. REFERENCES
[1] V. Bhandari and N. H. Vaidya. On reliable broadcast in

a radio network. In In ACM Symposium on Principles of
Distributed Computing (PODC’05), 2005.

[2] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, 1997.

[3] J. Dong, R. Curtmola, and C. Nita-Rotaru. Practical
defenses against pollution attacks in intra-flow
network coding for wireless mesh networks. In WiSec
’09: Proceedings of the second ACM conference on Wireless
network security, pages 111–122, New York, NY, USA,
2009. ACM.

[4] T. Ghosh, N. Pissinou, and K. Makki. Towards
designing a trusted routing solution in mobile ad hoc
networks. Mob. Netw. Appl., 10(6):985–995, 2005.

[5] C. Gkantsidis and P. Rodriguez Rodriguez.
Cooperative security for network coding file
distribution. INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings,
pages 1–13, April 2006.

[6] L. Guanfeng and V. Nitin. When watchdog meets
coding. Technical Report, CSL, UIUC, May 2009.

[7] L. Guanfeng, A. Rachit, and V. Nitin. When watchdog
meets coding ii. Technical Report, CSL, UIUC, September
2009.

[8] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and
D. Karger. Byzantine modification detection in
multicast networks using randomized network coding,
2004.

[9] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and
M. Medard. Resilient network coding in the presence of
byzantine adversaries. INFOCOM 2007. 26th IEEE
International Conference on Computer Communications.
IEEE, pages 616–624, May 2007.

[10] D. C. Kamal, D. Charles, K. Jain, and K. Lauter.
Signatures for network coding. In In Proceedings of the
fortieth annual Conference on Information Sciences and
Systems, 2006.

[11] C. Y. Koo. Broadcast in radio networks tolerating
Byzantine adversarial behavior. In In ACM Symposium
on Principles of Distributed Computing (PODC’04), 2004.

[12] C. Y. Koo, V. Bhandari, J. Katz, and N. H. Vaidya.
Reliable broadcast in radio networks: The bounded
collision case. In In ACM Symposium on Principles of
Distributed Computing (PODC’06), 2006.

[13] M. N. Krohn. On-the-fly verification of rateless erasure
codes for efficient content distribution. In In Proceedings
of the IEEE Symposium on Security and Privacy, pages
226–240, 2004.

[14] Q. Li, D.-M. Chiu, and J. Lui. On the practical and
security issues of batch content distribution via
network coding. Network Protocols, 2006. ICNP ’06.
Proceedings of the 2006 14th IEEE International Conference
on, pages 158–167, Nov. 2006.

[15] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehavior in mobile ad hoc networks. In
MobiCom ’00: Proceedings of the 6th annual international
conference on Mobile computing and networking, pages
255–265, New York, NY, USA, 2000. ACM.

[16] A. Pelc and D. Peleg. Broadcasting with locally
bounded byzantine faults. In Information Processing
Letters, 2005.



[17] A. Pelc and D. Peleg. Feasibility and complexity of
broadcasting with random transmission failures. In In
ACM Symposium on Principles of Distributed Computing
(PODC’05), 2005.

[18] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan. An efficient
signature-based scheme for securing network coding
against pollution attacks. INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE, pages
1409–1417, April 2008.

[19] F. Zhao, T. Kalker, M. Medard, and K. J. Han.
Signatures for content distribution with network
coding. In In Proc. of International Symposium on
Information Theory (ISIT, 2007.

APPENDIX

A. PROOF OF CASE 3 IN LEMMA 2
s1 < t1, s2 < t2 and the total flow to/from X from/to
(s1, s2) and (t1, t2) is wout

u (u)/2, i.e., min-cut{G′, wu, (s1, s2),
X} = min-cut{G′, wu, X, (t1, t2)} = wout

u (u)/2.

In this case, all the outgoing paths from xn must pass xn+1,
for n = 1, ..., K − 1. Similarly, all the incoming paths to xn

must pass xn−1 for n = 2, ..., K. And since only half of the
packets go though X, there must be a path P from (s1, s2) to
(t1, t2) that does not intersect with any path PX that passes
through X from x1 to xK . P may intersect with some paths
from (s1, s2) to x1 and some paths from xK to (t1, t2) though
In this case, consider two disjoint paths D1 and D2 from s1

and s2 to x1 and two disjoint paths D3 and D4 from xK to
t1 and t2. Without loss of generality, assume P is from s1 to
t1. If P does not intersect with any one of D1, D2, D3 and
D4, then P is disjoint with D2 − PX − D4 and they form the
disjoint paths we are looking for. If P intersects with at least
one of D1 and D2. Without loss of generality, suppose the
last intersection is on D1, then create the new P as the union
of the segment of D1 before the last intersection and the seg-
ment of P after, and it is disjoint with D2 − PX since the
segment from D1 is disjoint with D2 and the segment from
P is after the last intersection and cannot intersect with D2

any more. Similary, if P intersects with at least one of D3

and D4, without loss of generality, suppose the first intersec-
tion is on D3. Then form the new P as union of the segment
of P before the first intersection and the segment of D3 after,
and it is disjoint with D4. Now we have two disjoint paths P
and D2 − PX − D4, and X is covered by D2 − PX − D4.

B. PROOF OF CLAIM 1
First notice that xl must have a direct path that goes into
{xl+2, . . . , xK , t1, t2} without covering xl+1. Otherwise all
paths from xl must converge to xl+1. So no matter whether
P ∗

1 intersects with some of these paths or not, xl+1 has at least
one incoming packet along P ∗

1 in addition to the wout
u (u)/2

from xl, and then the incoming flow to xl+1 is greater than
wout

u (u)/2, contradicting with the weight assignment of xl+1.

The mincut between xl and {xl+1, . . . , xK , t1, t2} equals to
the outgoing flow of xl, wout

u (u)/2. And since any node be-
tween xl and {xl+1, . . . , xK , t1, t2} has outgoing flow less
than wout

u (u)/2, there must be two disjoint paths from xl

to {xl+1, . . . , xK , t1, t2}, similar to Lemma 1. Note that the
two disjoint paths from xl to {xl+1, . . . , xK , t1, t2} are direct,
by definition. Thus, two disjoint direct paths do exist (the
paths do not have any intermediate nodes in common,but
may have the same destination). To prove claim 1 by contra-
diction, suppose that there does not exist Pl and Pl,l+1, such
that Pl is a direct path to a node in {xl+2, . . . , xK , t1, t2} and
Pl,l+1 is a direct path to xl+1. Then any two disjoint paths
from xl are either both to xl+1 or both to {xl+2, . . . , xK , t1, t2}.
Consider a pair of such disjoint paths q1 and q2 to {xl+2, . . . ,
xK , t1, t2}, then any path Pl,l+1 from xl to xl+1 must intersect
with both, otherwise Pl,l+1 and the path it does not intersect
are the paths we are looking for. Without loss of generality,
assume the last intersection is on q1. Then the union of the
segment of q1 before the last intersection and the segment of
Pl,l+1 after that intersection becomes a path to xl+1. Since
the segment from q1 is disjoint with q2 by assumption and



the segment from Pl,l+1 after the last intersection cannot in-
tersect with q2, then the new path is disjoint with q2.

It is a similar argument if both disjoint paths are q1 and q2 to
xl+1. If Pl does not intersect with one of q1 and q2, then Pl

and the one it does not intersect are the paths we are look-
ing for. If Pl intersects with both, without loss of general-
ity, assume the last intersection is on q1. Then the union of
the segment of q1 before the last intersection and the seg-
ment of Pl after that intersection becomes a path to one of
{xl+2, ..., xK , t1, t2}. Since the segment from q1 is disjoint
with q2 by assumption and the segment from Pl after the last
intersection cannot intersect with q2, then the new path is
disjoint with q2.

C. PROOF OF LATER PART OF CLAIM 2
(1) P ∗

1 intersects with Pl at some node y before it intersects
with Pl,l+1.

Then create P ′
1 by replacing the segment of P ∗

1 between y
and v with the corresponding segment of Pl. Note that by
definition of P ∗

1 , y cannot be same as xl. We can see that
P ′

1 is disjoint with P ∗
2 because P ∗

1 is disjoint with P ∗
2 , and

the segment from Pl is also disjoint with P ∗
2 since it is an

outgoing path from xl, the last node on P ∗
2 . Then we extend

P ∗
2 to P ′

2 by appending Pl,l+1 and the segment of P ∗
1 between

xl+1 and xm−1. Pl,l+1 is disjoint with P ′
1 since it is disjoint

with Pl and the segment of P ∗
1 before y. The segment from

P ∗
1 between xl+1 and xm−1 is disjoint with Pl since it is the

segment before v, the first intersection with Pl after xl+1, and
hence it is disjoint with P ′

1. So P ′
1 and P ′

2 are disjoint and they
cover X. So (P ′

1, P
′
2) ∈ Π and P ′

2 covers xm−1, m−1 > l, and
it leads to a contradiction with the definition of xl.

(2) P ∗
1 intersects with Pl,l+1 at some node y before it inter-

sects with Pl. Create P ′
1 by extending P ∗

2 by appending the
segment of Pl upto v, Pl’s first intersection with P ∗

1 after
xl+1, and the segment of P ∗

1 after v. Easy to see P ′
1 is disjoint

with the segment of P ∗
1 upto node u. Notice that the seg-

ment of Pl,l+1 between y and xl+1 is disjoint with P ′
1 since

it is disjoint with Pl. Also notice that the segment of P ∗
1 be-

tween xl+1 and xm−1 is also disjoint with P ′
1 since it is before

v, the first intersectiong of P ∗
1 and Pl after xl+1. Then we

can create P ′
2 by truncating P ∗

1 at xm−1 and replace the seg-
ment between y and xl+1 with the corresponding segment
of Pl,l+1. So P ′

1 and P ′
2 are disjoint and they cover X. So

(P ′
1, P

′
2) ∈ Π and P ′

2 covers xm−1, m − 1 > l, and it leads to
a contradiction with the definition of xl.


	Introduction
	Related Works
	Organization of the Paper

	Illustrative Examples
	Model and Definitions
	Network Model
	Transmission Model
	Adversary Model
	Definitions

	Formulating the Constraints
	Capacity Characterization
	Achieving the upper bound

	Power of Promiscuous Monitoring
	Conclusions
	References
	Proof of Case 3 in Lemma 2
	Proof of Claim 1
	Proof of Later Part of Claim 2

