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1 Introduction

In this report, we study the multiparty communication complexity problem of the multiparty equality
function (MEQ):

EQ(x1, · · · , xn) =
{

0 if x1 = · · · = xn
1 otherwise.

(1)

The input vector x = (x1, · · · , xn) is distributed among n ≥ 2 nodes, with xi known to node i, where
xi is chosen from the set {1, · · · ,M}, for some integer M > 0.

1.1 Communication Complexity

The notion of communication complexity (CC) was introduced by Yao in 1979 [2], who investigated
the following problem involving two separated parties (Alice and Bob) want to mutually compute a
Boolean function that is defined on pairs of inputs. Formally, let f : X × Y 7→ {0, 1} be a Boolean
function. The communication problem for f is the following two-party game:

Alice receives x ∈ X and Bob receives y ∈ Y , and the goal is for them to compute f(x, y),
collaboratively. Alice and Bob have unlimited computational power and a full description of f , but
they do not know each other’s input. They determine the output value by exchanging messages. The
computation ends when either Alice or Bob has enough information to determine f(x, y), and sends a
special symbol “halt” to the other party.

A protocol P for computing f is an algorithm, according to which Alice and Bob send binary
messages to each other. A protocol proceeds in rounds. In every round, the protocol specifies whose
turn it is to send a message. Each party in his/her turn sends one bit that may depend on his/her
input and the previous messages he/she has received. A correct protocol for f should terminate for
every input pair (x, y) ∈ X × Y , when either Alice or Bob knows f(x, y).

The communication complexity of a protocol P is the number of bits exchanged for the worst case
input pair. The communication complexity of a Boolean function f : X × Y 7→ {0, 1}, is that of the
protocols for f with the least complexity.

1.2 Multiparty Communication Complexity

There is more than one way to generalize communication complexity to a multiparty setting. The most
commonly used model is the “number on the forehead” model introduced in [1]. Formally, there is
some function f : Πn

i=1Xi 7→ {0, 1}, and the input is (x1, x2, · · · , xn) where each xi ∈ Xi. The i-th
party can see all the xj such that j ̸= i. As in the 2-party case, the n players have an agreed-upon
protocol for communication, and all this communication is posted on a “public blackboard”. At the
end of the protocol all parties must know f(x1, · · · , xn). In this model, the communications may be
considered as being broadcast using the public blackboard. Tight lower bounds (at least up to constant
factors) often follow from considering two-way partitions of the set of parties.

2 Models

2.1 Communication Model

Instead of the “number on the forehand” model, we consider a point-to-point communication model
(similar to the message passing model), which we believe is more realistic in networking settings. We
assume a synchronous fully connected network of n nodes, the node IDs (identifiers) are common
knowledge. We assume that all point-to-point communication channels/links are private such that
when a node transmits, only the designated recipient can receive the message. The identity of the
sender is known to the recipient.
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2.2 Protocol

A protocol P is a sequence/schedule of transmissions and computations {α1α2 · · ·αL(P )}. Here αl =

(Tl, Rl, fl(xTl
, T+

l (l))) specifies that in the l-th step, node Tl sends a channel symbol as a function
fl(xTl

, T+
l (l)) to node Rl, with T+

l (l) denoting all the channel symbols party Tl has received up to step
l − 1. In the rest of the paper, we will use T+

l as T+
l (l) when it is clear from the context. L(P ) is the

length of protocol P . The communication complexity of protocol P is defined as

C(P ) =

L(P )∑
l=1

log2 Sl(P ), (2)

where Sl(P ) is the size of the range of fl(xTl
, T+

l (l)), i.e., the number of possible channel symbols
needed in step l of protocol P , considering all possible inputs. If only binary symbols are allowed, the
communication complexity simply becomes L(P ).

3 Problem Definitions

In this paper, we study the communication complexity of computing the MEQ function in a distributed
manner. We consider two versions of the problem, which differ in where the MEQ function is being
computed.

3.1 MEQ-AD: Anyone Detects

We first consider the protocols that terminates whenever one of the nodes detects a mismatch. Precisely
speaking, a protocol P is said to solve the MEQ-AD problem deterministically if by the end of the
L(P )-th step, every node computes its own decision EQi ∈ {0, 1} such that

EQ1 = · · ·EQn = 0 ⇔ EQ(x1, · · · , xn) = 0. (3)

We will say node i detects a mismatch if it sets EQi = 1. In other words, if the inputs to the n parties
are not identical, there must be at least one node that detects a mismatch.

3.2 MEQ-CD: Centralized Detect

The second class of protocols we consider are the ones in which a particular node is assigned to perform
mismatch detection. Without loss of generality, we can assume that node n has to perform detection.
Then a protocol P is said to solve the MEQ-AD problem if by the end of the L(P )-th step, node n
computes decision EQn, which is

EQn = EQ(x1, · · · , xn). (4)

3.3 Goal

Denote ΓAD(n,M) and ΓCD(n,M) as the set of all protocols that solve the MEQ-AD and MEQ-CD
problem with n nodes, each of which is given an input value xi ∈ {1, · · · ,M}, respectively. We are
interested in finding the communication complexity of the both problems, which are defined as

CAD(n,M) = inf
P∈ΓAD(n,M)

C(P ), (5)

CCD(n,M) = inf
P∈ΓCD(n,M)

C(P ). (6)
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It is worth pointing out that CAD(n,M) ≤ CCD(n,M), since any protocol that solves the MEQ-CD
problem solves the MEQ-AD problem with the same n and M as well. In the rest of this report, we
will mainly focus on the MEQ-AD problem, except for Section 10, in which we discuss the MEQ-CD
problem.

4 Upper Bound of the Complexity

An upper bound of the communication complexity of both versions of the MEQ problem is (n −
1) log2M , for all positive integer n ≥ 2 and M ≥ 1. This can be proved by a trivial construction: in
step i, node i sends xi to node n, for all i < n. The decisions are computed according to

EQi =

{
EQ(x1, · · · , xn) , i = n;
0 , i < n.

(7)

It is obvious that this protocol solves both the MEQ-AD and MEQ-CD problems with communication
complexity (n−1) log2M , which implies CAD(CD)(n,M) ≤ (n−1) log2M . In particular, when M = 2k,

we have CAD(CD)(n, 2
k) ≤ (n− 1)k.

5 Loose Lower Bound of Complexity using Traditional Techniques

In most of the existing literature on multiparty communication complexity, the “number on the fore-
hand” model or a broadcast communication model is usually assumed. Under these models, when a
node transmits, all other nodes receive the same message. This broadcasting property makes it pos-
sible to consider two-way partitions of the set of nodes since the nodes in each partition shares the
same information being broadcast and can be viewed as one virtual node. Thus results from two-party
communication complexity can be extended to the multiparty case, and tight bounds (rather than just
capturing the order) can then be obtained.

However, the above technique no longer works well in obtaining tight bounds under our point-to-
point communication model. For example, the complexity of the two-party EQ problem of k-bit inputs
can be proved to be k with the “fooling set” argument: Suppose in contradiction that there exists a
protocol of complexity at most C(P ) < k that solves the two-party EQ problem. Then there are at
most 2C(P ) ≤ 2k − 1 communication patterns possible between the two nodes. Consider all sets of 2k

pairs of input values (x, x). Using the pigeonhole principle we conclude there exist two pairs (x, x) and
(x′, x′) on which the communication patterns are the same. It is easy to see that the communication
pattern of (x, x′) is also the same as (x, x). Hence, the nodes’ final decisions on (x, x) must agree with
their decisions on (x, x′). But then the protocol must be incorrect, since EQ(x, x′) = 1 ̸= EQ(x, x).

The “fooling set” argument above can be extended to the case with n > 2 nodes and arbitrary
M ≥ 1: partition the n nodes into two sets (say L and R), there must be at least M patterns of
communication between the two sets L and R. By applying this argument to all possible two-partitions
such that |L| = 1 and |R| = n− 1, we can obtain a lower bound on the communication complexity as

CAD(CD)(n,M) ≥ n

2
log2M. (8)

This lower bound is within a factor of 1/2 of the upper bound we obtain previously, which implies that
CAD(CD)(n,M) = Θ(n log2M). However, we can show that the lower bound of n

2 log2M is generally
not achievable. An example for this is the MEQ(3,4) problem. It can be shown that CAD(3, 4) =
CCD(3, 4) = 4, while n

2 log2M = 3. Details can be found in Appendix A.

The example above has demonstrated that, under our point-to-point communication model, we
can no longer extend results from two-party communication complexity to multiparty version for tight

3



bounds in the way it has been done under the broadcast communication models. The main reason for
this is the lack of modeling of the “networking” aspect of the problem in both the two-party model
and the broadcast communication models. In the two-party model, since there are only two nodes, no
networking is necessary. In the broadcast communication models, all the nodes share a lot information
from the broadcast and have roughly the same view of system, which makes it a not-so-distributed
network. On the other hand, under our point-to-point communication modes, each node may only
receive information from a subset of nodes; it is even possible that two nodes may receive information
from two disjoint sets of nodes. As a result, different nodes can have very different views of the system.
This makes the problem of finding the tight bound of communication complexity difficult, and new
techniques may be required.

6 Equivalent MEQ-AD Protocols

In this section, we considers protocols ∈ ΓAD(n,M). A protocol P is interpreted as a directed multi-
graph G(V,E), where the set of vertices V = {1, · · · , n} represents the n nodes, and the set of directed
edges E = {(T1, R1), · · · , (TL(P ), RL(P ))} represents the transmission schedule in each step. From now
on, we will use the terms protocol and graph interchangeably, as well as the terms transmission and
link.

We will say that a protocol P is not better than protocol P ′ if C(P ) ≥ C(P ′). Two protocols P
and P ′ are said to be equivalent if they are not better than each other. The following lemma says
that we can flip the direction of any link in a protocol P and obtain a protocol that is equivalent to P .

Lemma 1 A protocol P = {α1 · · ·αl−1αlαl+1 · · ·} with αl = (Tl, Rl, fl(xTl
, T+

l )) is equivalent to P ′ =
{α1 · · ·αl−1α

′
lα

′
l+1 · · ·} if the following conditions are all satisfied:

• α′
l = (Rl, Tl, f

′
l (xRl

, R+
l )). Here f ′

l (xRl
, R+

l ) = fl(xTl
, T+

l )|x1=···=xn=xRl
is the symbol that party

Rl expects to receive in step l of protocol P , assuming all parties have the same input as xRl
.

• α′
m = (Tm, Rm, f ′

m(xTm , T
+
m)) for m > l.

– If Tm = Rl, f ′
m(xTm , T

+
m) = fm(xTm , T

+
m)|fl(xTl

,T+
l )=f ′

l (xRl
,R+

l ) is the symbol that party Rl

sends in step m, pretending that it has received f ′
l (xRl

, R+
l ) in step l of P .

– If Tm ̸= Rl, f
′
m(xTm , T

+
m) = fm(xTm , T

+
m).

• Tl first computes EQTl
in the same way as in P . Then Tl sets EQTl

= 1 if f ′
l (xRl

, R+
l ) ̸=

fl(xTl
, T+

l ), else no change.

Proof: There are two cases:

• f ′
l (xRl

, R+
l ) = fl(xTl

, T+
l ): It is not hard to see that in this case, the execution of every step is

identical in both P and P ′, except for step l. So for all i ̸= Tl, EQi is identical in both protocols.
Since f ′

l (xRl
, R+

l ) = fl(xTl
, T+

l ), EQTl
remains unchanged, so it is also identical in both protocols.

• f ′
l (xRl

, R+
l ) ̸= fl(xTl

, T+
l ): Observe that these two functions are different only if the inputs are

not all identical. So it is correct to set EQTl
= 1.

2

Let us denote all the symbols a node i receives from and sends to the other nodes throughout the
execution of protocol P as i+ and i−, respectively. It is obvious that i− can be written as a function
Fi(xi, i

+), which is the union of fl(xi, i
+(l)). If a protocol P satisfies Fi(xi, i

+) = Fi(xi) for all i, we
say P is individual-input-determined (iid). The following lemma shows that there is always an iid
equivalent for every protocol.
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Lemma 2 For every protocol P , there always exists an iid equivalent protocol P ∗, which corresponds
to a partially ordered acyclic graph.

Proof: According to Lemma 1, we can flip the direction of any edge in G and obtain a new protocol
which is equivalent to P . It is to be noted that we can keep flipping different edges in the graph, which
implies that we can flip any subset of E and obtain a new protocol equivalent to P .

In particular, we consider a protocol equivalent to P , whose corresponding graph is acyclic, i < j
for all (i, j) ∈ E, with a proper re-labeling of the indexes. In this protocol, every node i has no incoming
links from any node with index greater than i. This implies that the symbols transmitted by node
i are independent of the nodes with larger indexes. Thus we can re-order the transmissions of this
protocol such that node 1 transmits on all of its out-going links first, then node 2 transmits on all of
its out-going links, ..., node n− 1 transmits to n at the end. Name the new protocol Q. Obviously Q
is equivalent to P .

Since we can always find a protocol Q equivalent to P as described above, all we need to do now
is to find P ∗. If Q itself is iid, then P ∗ = Q and we are done. If not, we obtain P ∗ in the following way
(using function F ′), which is similar to how we obtain the equivalent protocol P ′ in Lemma 1:

• For node 1, since it receives nothing from the other nodes, F1(x1, 1
+) = F1(x1) is trivially true.

• For node 1 < i < n, we modify Q as follows: node i computes its out-going symbols as a function
F ′
i (xi) = Fi(xi, i

+|x1=···=xn=xi), where i
+|x1=···=xn=xi is the expected incoming symbols to node i

assuming all parties have the same input as i. At the end, node i checks if i+|x1=···=xn=xi equals
to the actual incoming symbols i+. If they match, nothing is changed. If they do not match, the
inputs can not be identical, and node i can set EQi = 1.

2

Lemma 2 shows that, to study CAD(n,M), it is sufficient to investigate only protocols that are iid
and partially ordered.

7 MEQ-AD(3,6)

Let us first consider MEQ-AD(3,6), i.e., the case where 3 nodes (say A, B and C) are trying to solve the
MEQ-AD problem when each node is assigned one out of six values, namely {1, 2, 3, 4, 5, 6}. According
to Lemmas 1 and 2, for any protocol that solves the MEQ-AD problem, there exists an equivalent
iid partially ordered protocol in which node A has no incoming link, node B only transmits to node
C, and node C has no out-going link. We construct one such protocol that solves MEQ-AD(3,6) and
requires only 3 channel symbols, namely {1, 2, 3}, per link. The channel symbol being sent over link ij
is denoted as sij . Table 1 shows how sij is computed as a function of xi.

x 1 2 3 4 5 6

sAB 1 1 2 2 3 3

sAC 1 2 2 3 3 1

sBC 1 2 3 1 2 3

Table 1: A protocol for MEQ-AD(3,6)

For nodes B and C, they just compare the channel symbol received from each incoming link with
the expected symbol computed with its own input value, and detect a mismatch if the received and
expected symbols are not identical. For example, node B receives sAB(xA) from node A. Then it detects
a mismatch if the received sAB(xA) ̸= sAB(xB).
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It can be easily verified that if the three input values are not all identical, at least one of nodes B
and C will detect a mismatch. Hence the MEQ-AD(3,6) problem is solved with the proposed protocol.
The communication complexity of this protocol is 3 log2 3 = log2 27. In fact, this protocol is optimal
in the sense that it achieves the communication complexity of MEQ-AD(3,6):

CAD(3, 6) = log2 27. (9)

The proof of optimality can be found in Appendix A.

8 MEQ-AD(3,6h)

Now consider the MEQ-AD(3,6h) problem. One way to solve this problem is to extend the Table 1 as
Table 2. This protocol’s communication complexity is 2 log2(6

h/2) + log2 3 = log2(36
h−1 × 27).

x 1 2 3 4 5 6 7 8 · · · 6h-1 6h

sAB 1 1 2 2 3 3 4 4 · · · 6h/2 6h/2

sAc 1 2 2 3 3 4 4 5 · · · 6h/2 1

sBc 1 2 3 1 2 3 1 2 · · · 2 3

Table 2: A protocol for MEQ-AD(3,6h)

A more efficient way to solve this problem is to map each of the 6h input values into a h-dimensional
vector in the vector space {1, 2, 3, 4, 5, 6}h, and then solve the MEQ-AD(3,6) problem h times, one for
each of the h dimensions. Using the optimal MEQ-AD(3,6) protocol introduced in Section 7, the
communication complexity of this protocol is h log2 27 = log2 27

h < log2(36
h−1 × 27).

9 MEQ-AD(3,2k)

Now we construct a protocol when the number of possible input values M = 2k, k ≥ 1 and only binary
symbols can be transmitted in each step, using the MEQ-AD(3,6) protocol we just introduced in the
previous sections as a building block.

First, we map the 2k input values into 2k different vectors in the vector space {1, 2, 3, 4, 5, 6}h,
where h = ⌈k log6 2⌉. Then h instances of the MEQ-AD(3,6) protocol are performed in parallel to
compare the h dimensions of the vector. Since 3 channels symbols are required for each instance of
the MEQ-AD(3,6) protocol, we need to transmit a vector from {1, 2, 3}h on each of the links AB, AC
and BC. One way to do so is to encode the 3h possible vectors from {1, 2, 3}h into b = ⌈h log2 3⌉ bits,
and transmit the b bits through the links. Since the h instances of MEQ-AD(3,6) protocols solve the
MEQ-AD(3,6) problem for each dimension, altogether they solve the MEQ-AD(3,2k) problem.

The communication complexity of the proposed MEQ-AD(3,2k) protocol can be easily computed
as

C(P ) = 3⌈h log2 3⌉ (10)

= 3⌈⌈k log6 2⌉ log2 3⌉ (11)

< 3⌈(k log6 2 + 1) log2 3⌉ (12)

< 3 [(k log6 2 + 1) log2 3 + 1] (13)

= 3k log6 3 + 3(log2 3 + 1) (14)

< 1.840k + 7.755 (15)
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Figure 1: Complexity of the proposed protocol v.s. upper bound 2k

From Eq.15, we can see that when k is large enough, the communication complexity this pro-
tocol becomes smaller than the upper bound 2 log2M = 2k from Section 4. In Fig.1, we plot the
communication complexity of this protocol, according to Eq.11. It is easy to see that for k > 39,
C(P ) < 2k.

The way in which the above protocol is constructed can be generalized to obtain a MEQ-AD(3,M)
protocol P with complexity

C(P ) < 1.840 log2M +∆ (16)

for arbitrary value of M , where ∆ is some positive constant.

10 About MEQ-CD

In this section, we will show that CCD(n,M) roughly equals to CAD(n,M):

CAD(n,M) ≤ CCD(n,M) ≤ CAD(n,M) + n− 2. (17)

We have shown the lower bound in Section 3. We will now prove the upper bound.

Consider any partially ordered iid protocol P ∈ ΓAD(n,M) as described in Lemma 2. We construct
a protocol P ′ by having node i to send EQi to node n by the end of P , for all 1 < i < n. Node n
collects n − 1 decisions (including EQn as computed in P ) from all nodes except for node 1. Then
node n compute the final decision

EQ′
n = max{EQ2, · · · , EQn}. (18)

It is easy to see that, EQ′
n = EQ(x1, · · · , xn). So P ′ ∈ ΓCD(n,M). Since C(P ′) = C(P ) + n − 2,

the upper bound is proved. From Eq.16 it then follows that there exist a protocol P ′ that solves
MEQ-CD(3,M) with complexity C(P ′) ≤ 2 log2M , for large enough M .
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11 Conclusion

In this report, we study the communication complexity problem of the multiparty equality function,
under the point-to-point communication model. We demonstrate that traditional techniques general-
ized from two-party communication complexity problem are not sufficient to obtain tight bounds under
the point-to-point communication model. We then introduce techniques to transform any MEQ-AD
protocol into a equivalent partially ordered iid protocol. These techniques significantly reduce the space
of MEQ-AD protocols to study. We then study the MEQ-AD(3,6) problem and introduce an optimal
protocol that achieves CAD(3, 6). This protocol is then used as building blocks for construction of
efficient protocols for MEQ-AD(3,6h) and MEQ-AD(3,2k). The problem of finding the communication
complexity of the MEQ problem for general values of n and M is still open.
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A Edge Coloring Representation of MEQ-AD(3,M)

From Sections 6 and 7, we have shown that it is sufficient to study 3-node systems where information
is transmitted only on links AB, AC and BC. Let us denote |sAB|, |sAC | and |sBC | as the number of
different symbols being transmitted on links AB, AC and BC, respectively. Now consider the following
simple bipartite graph G(U, V,E), where U and V are the two disjoint sets of vertices and E is the set
of edges:

• |U | = |sAB|, each vertex is labeled as UsAB(x) for all M values of x;

• |V | = |sAC |, each vertex is labeled as VsAC(x) for all M values of x;

• eij = (Ui, Vj) ∈ E if and only if i = sAB(x) and j = sAC(x) for some x.

In essence, each vertex Ui (or Vi) represents the set of value x’s that produce the same value sAB(x) = i
(or sAC(x) = i); and each edge eij = (Ui, Vj) represents the set of value x’s that produces the same pair
of channel symbols sAB(x) = i and sAC(x) = j. Let |eij | be the size set of value x’s corresponding to
edge eij. Fig.2 shows the bipartite graph corresponding to the MEQ-AD(3,6) protocol we introduced in
Section 7. Near the nodes Ui and Vi we show the set of value x’s such that sAB(x) = i and sAC(x) = i,
respectively. The number near each edges is the corresponding value of that edge.

We first argue that

Lemma 3 |eij | = 1 for all eij ∈ E. Hence |E| = M and |U | × |V | ≥ M .

Proof: Suppose to the contrary that there exists some eij ∈ E with |eij | ≥ 2. Then there must be
two values x, x′ such that x ̸= x′, sAB(x) = sAB(x

′) and sAC(x) = sAC(x
′). Similar to the “fooling

set” argument in Section 5, it is impossible for nodes B and C to tell the difference between the two
input vectors (x, x, x) and (x′, x, x), hence they will not be able to solve the MEQ-AD(3,M) problem,
which leads to a contradiction. Then the first part of the lemma follows.
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Figure 2: The bipartite graph corresponding to the MEQ-AD(3,6) protocol from Section 7.

Since every edge represents one x, and there are M possible values of x, it follows that |E| = M .
Also, in a simple bipartite graph, we always have |U | × |V | ≥ |E|. Thus |U | × |V | ≥ M .

2

Since there is a one-to-one mapping from the set of input values {1, · · · ,M} to the edges E, we
will use the terms input value (x) and edge (eij) interchangeably. Now we prove the following theorem
on the constraint of sBC :

Lemma 4 sBC(x) ̸= sBC(x
′) if edges x and x′ are adjacent or there is some other edge that is adjacent

to both of them, in the bipartite graph G(U, V,E).

Proof: Consider any pairs x, x′ such that x ̸= x′ and (UsAB(x), VsAC(x′)) ∈ E. Let x∗ (maybe equal to
x or x′) be the input value that edge (UsAB(x), VsAC(x′)) corresponds to. So we have sAB(x

∗) = sAB(x)
and sAC(x

∗) = sAC(x
′). Now consider the input vector (x∗, x, x′) at node A, B and C. Since sAB(x

∗) =
sAB(x), node B can not differentiate (x∗, x, x′) from (x, x, x). So node B cannot detect the mismatch.
Meanwhile, since sAC(x

∗) = sAC(x
′), node C can not differentiate (x∗, x, x′) from (x′, x′, x′) by just

looking into the receives sAC . So sBC(x) must be different from sBC(x
′), otherwise the MEQ-AD

problem is not solved. Then the lemma follows. 2

Now we can conclude that the problem of designing sBC , given functions sAB(·) and sAC(·),
is equivalent to finding a distance-2 edge coloring for the corresponding bipartite graph G(U, V,E).
Furthermore, it should not be hard to see that any protocol P that solves MEQ-AD(3,M) is equivalent
to a bipartite graph G(U, V,E) together with a distance-2 coloring scheme W such that |U | = |sAB|,
|V | = |sAC |, |E| = M , and |W | = |sBC |, where |W | denotes the number of colors in scheme W . Notice
that

C(P ) = log2 |sAB|+ log2 |sAC |+ log2 |sBC | = log2(|sAB| × |sAC | × |sBC |). (19)

So we have the following theorem:

Theorem 1 The existence of a MEQ-AD(3,M) protocol P with complexity C(P ) is equivalent to the
existence of a simple bipartite graph G(U, V,E) together with a distance-2 coloring scheme W such that
|U | × |V | × |W | = 2C(P ), given |E| = M , |U | × |V | ≥ M , |U | × |W | ≥ M and |V | × |W | ≥ M .

Proof: The last two conditions come from the fact that we can flip the directions of the links and
then apply Lemma 3. 2

According to Theorem 1, we can conclude that the problem of finding CAD(3,M) is equivalent to
the problem of finding the minimum of |U | × |V |× |W | for the bipartite graphs and distance-2 coloring
schemes that satisfy the above constrains.

Using Theorem 1, to show that CAD(3, 4) = 4, we only need to show that for every combination of
|U |× |V |× |W | < 24 = 16 there exists no bipartite graph G(U, V,E) and distance-2 coloring scheme W
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that satisfy the conditions as described in Theorem 1. In other words, if the conditions are all satisfied,
then the bipartite graph G(U, V,E) cannot be distance-2 colored with |W | colors. It is not hard to see
that there are only two combinations (up to permutation) that satisfy all conditions and have product
less than 16: (2, 2, 2) and (2, 2, 3). Notice that in both cases, |E| = |U |×|V |, where every pair of edges
are within distance of 2 of each other, which means graph G can only be distance-2 colored with at least
|E| colors. Together with the upper bound from Section 4, this proves that CAD(3, 4) = CCD(3, 4) = 4.

Similarly, it can be shown that CAD(3, 6) = log2 27. There are only two combinations that satisfy
all conditions in Theorem 1 and have product less than 27: (2, 3, 3) and (2, 3, 4). Again, |E| = |U |×|V |,
so at least |E| = 6 colors are needed, which proves that CAD(3, 6) = log2 27.
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