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Abstract—We consider the problem of selfish misbehavior in
the optimal cross-layered rate control mechanism of wireless
networks. Rate control algorithms of wireless networks are
designed under the assumption that network hosts will follow
the algorithm specifications. In this paper, we explain a scenario
in which a selfish user achieves extra throughput by misleading
the scheduling component of the network. We find an equivalent
optimization framework that captures misbehavior pattern of the
selfish user. We present a solution to prevent or alleviate such a
greedy behavior by imposing a cost term on the utility function
of the users.

I. INTRODUCTION

The problem of rate control in wireless networks has been
the subject of intensive research in the past few years. The
goal of any rate control (or congestion control) scheme is to
avoid congestion in the network as well as providing fairness
among users of the network. A cross-layered approach to rate
control is one where the network jointly optimizes data rates
of the users and link schedules. Cross-layered rate control
of wireless networks can be mapped to a utility optimization
framework. Moreover, the utility optimization framework can
be decomposed into two components: rate control at the
transport layer and scheduling at the MAC layer [1], [2], [3].

The rate control component controls the rates at which users
inject data into the network so as to ensure that they are within
the capacity region of the network. The capacity region is
the set of all feasible arrival rate vectors. More precisely, the
capacity region is defined as the set of all arrival rate vectors
for which the queueing system is stable under some scheduling
method. In a stable queueing system, queue lengths of links of
the network remain bounded over time. Appropriate choice of
the rate controller results in achieving some notion of fairness
among users of the network [4].

In a wireless network, data collected in queues are trans-
mitted over wireless links. The wireless medium is a shared
medium and simultaneous data transmission over conflicting
links is not possible. In other words, if two conflicting links are
transmitting at the same time, none of them can transfer any
useful data. A scheduling policy is a rule to determine a set of
links to be activated at each time slot such that the interference
constraints of the wireless network are not violated. The main
goal of any scheduling algorithm is to stabilize the network,

i.e. to determine the schedule in a way that queue lengths
of the links do not grow to infinity. Furthermore, achieving
good throughput characteristic is another important factor in
designing a scheduling algorithm for wireless networks. The
MAC-layer scheduling component of the rate control algo-
rithm considers the interference relationship among wireless
links and determines a set of non-conflicting links to be
activated for data transmission at each time slot. Examples
of wireless scheduling algorithms can be found in [6], [5],
[7].

Cross-layered rate control schemes of wireless networks are
mainly designed under the assumption that all network hosts
will follow the algorithm specifications. In this paper, we will
present a scenario in which a selfish host misbehaves in order
to achieve a better throughput performance. We consider a
wireless network in which the link capacities change over
time and users of the network are involved in the process
of measuring and estimating the link capacities. A selfish user
misbehaves in this process and misleads the scheduler. As we
will show, the primary goal of a selfish user is to improve its
own performance, but its greedy misbehavior usually results
in performance degradation of honest hosts.

Current literature addressing selfish misbehavior in wireless
networks can be divided into two categories [8]:

1) Solutions that detect misbehaving hosts.
2) Solutions that modify the underlying algorithm or proto-

col in order to discourage selfish behavior.

In the first set of solutions, methods for identifying misbe-
having users are designed. If a user is detected as greedy its
use of the network is prohibited. The second set of approaches
modify the protocol in a way that selfish misbehavior is
discouraged, for example by penalty mechanisms. Our pro-
posed solution in this paper belongs to the second category
of solutions. Our modification to the original framework is by
imposing a cost term on the data transmission of the users.

The rest of the paper is organized as follows. In Section II,
we study the optimal cross-layered rate control algorithm of
wireless networks. We explain greedy misbehavior model of
a selfish user in Section III. In this section, we also study the
effect of selfish behavior on the performance of the rate control
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mechanism. We present our proposed solution in Section IV.
We finally conclude in Section V.

II. THE OPTIMAL CROSS-LAYERED RATE CONTROL OF
WIRELESS NETWORKS

In this section, we explain the optimal cross-layered rate
control mechanism presented in [1]. We first review the prob-
lem formulation. We then describe their proposed approach
to solve the problem. In [1] and [2], the general category of
multi-hop wireless networks is considered. Here, we present
the single-hop version of their mechanism.

A. The Network Model

We consider a single-hop wireless network composed of
L links. Set L denotes the set of all links in the network.
In the single-hop traffic model, each route consists of only
one link l = (i, j) such that the transmission is from node i
towards node j. We assume that associated with each link l is
a user that uses the link for data transmission. Let xl denote
the arrival rate of link l, which is the rate with which data
is injected to the input buffer of link l. It is usually assumed
that xl is upper bounded by a constant Ml, i.e. 0 ≤ xl ≤Ml.
Let rl(t) denote the transmission rate on link l during time
slot t. rl is the average transmission rate on link l, where the
average is taken over time. cl(t) denotes the capacity of link
l at time slot t, which is the maximum rate at which data can
be transmitted on link l at time slot t. We assume that link
capacities change over time. The user associated with link l
has a utility function Ul(xl) which is a measure of satisfaction
of the user when its allocated data rate is xl. We assume that
the utility function Ul(·) is strictly concave, non-decreasing
and twice continuously differentiable on (0,Ml].

B. Problem Formulation

Lin and Shroff formulated the optimal cross-layered rate
control mechanism as follows [1].

1) We find the arrival rate of links ~x = (x1, x2, · · · , xL)
to be the vector that maximizes the total utility of the
network. In other words, ~x is the solution to the following
maximization problem:

max
0≤xl≤Ml

L∑
l=1

Ul(xl) (1)

subject to
xl ≤ r̄l for all l ∈ L

and
~̄r ∈ Co(R)

where Co(R) denotes the convex hull of the average
capacity region R of the wireless network. Precise defi-
nition of the capacity region can be found in [5].

2) We find the associated scheduling policy that stabilizes
the system. In other words, we determine when and at
which rate each link of the network transmits data.

Maximizing the total utility (1) is equivalent to achieving
some fairness objective when the utility functions are chosen
properly. A well-known family of utility functions is

Ul(xl) = wl
xl

1−β

1− β
, β > 0 (2)

Maximizing the total utility is equivalent to maximizing the
weighted throughput as β → 0, weighted proportional fairness
as β → 1, minimizing weighted potential delay as β → 2, and
max-min fairness as β →∞.

C. Solution to the cross-layered rate control problem

As discussed in [1] and [2], the solution to the problem (1)
can be found iteratively. The iterative solution is as follows.

At each iteration t:
• The arrival data rates of the users are computed by

xl(t) = argmax0≤xl≤Ml

[
Ul(xl)− ql(t)xl

]
(3)

• The schedule is found by

~r(t) = argmax~r∈R(t)

L∑
l=1

ql(t)rl (4)

• Each link updates its ql by

ql(t+ 1) =
[
ql(t) + αl[xl(t)− rl(t)]

]+
(5)

The equation (4) is known as the Backpressure scheduling
algorithm, which is a centralized scheduling method. αl is
called the step size and should be chosen sufficiently small
in order to achieve queue stability. Let Ql denote the queue
size of link l. In this framework, the approximate equation
according which Ql evolves is

Ql(t+ 1) ≈
[
Ql(t) + [xl(t)− rl(t)]

]+
(6)

III. MISBEHAVIOR IN THE OPTIMAL CROSS-LAYERED
RATE CONTROL MECHANISM

In this section, we address the problem of misbehavior in the
framework of optimal cross-layered rate control. We explain
how a misbehaving user associated with link m is able to
increase its allocated throughput share xm. We assume that
the optimal cross-layered rate control algorithm of Section II-C
is implemented in the network in order to determine both the
arrival rates and the schedule. We consider a scenario in which
each user computes (3) and updates (5) locally. On the other
hand, the schedule is determined centrally according to (4).
The scheduler needs the information about ql(t) and R(t) to
determine the schedule at time slot t, i.e. the transmission
rate vector ~r(t). In order to find the capacity region R(t),
the scheduler needs to know the instantaneous link capacities
cl(t) as well as the interference constraints of the network. In
the case of time-varying link capacities, capacity region R(t)
changes at each time slot t. We further assume that Co(R(t))
is linear. In this case, a link is either not chosen for data
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transmission at time slot t, rl(t) = 0, or it is scheduled to
transmit data with the rate equal to its link capacity, rl(t) =
cl(t).

We now describe the misbehavior pattern of a cheating user
m. We consider a case in which the scheduling component
of the network believes that the link capacity of user m is
ĉm(t) = kcm(t), with k > 1, while its actual link capacity
is cm(t). This happens for example in a setting where the
scheduler does not know the capacity of the links and is
not able to measure them. Instead, each user is required to
measure the capacity of its link and reports it to the scheduler.
Another scenario is where the scheduler itself measures the
link capacities, but the users are involved in the process of
estimating and measuring the link capacities, and a cheater
misbehaves in this process in order to mislead the scheduler.

If the cheater m is chosen for the data transmission at time
slot t, it uses its actual link capacity rm(t) = cm(t) in (5)
for updating qm. Equivalently, this means that the cheater m
transmits with its actual link capacity cm(t) if it is scheduled.
The reason for transmitting data with the actual link capacity
cm(t) and not ĉm(t) is that the data transmission on link m
is not reliable if the transmission rate is higher than the link
capacity cm(t).

Theorem 3.1: In the presence of a cheater m with the
above explained misbehavior pattern, the corresponding utility
optimization framework is

max
0≤xl≤Ml

L∑
l=1

Ûl(xl) (7)

subject to
xl ≤ r̄l for all l ∈ L (8)

and
~̄r ∈ Co(R)

New utility functions Ûl(·) are related to the actual utility
functions Ul(·) as follows:

Ûm(xm) = kUm(xm)

Ûl(xl) = Ul(xl), for all l ∈ L, l 6= m

Proof: We define

q̂m(t) = kqm(t), α̂m(t) = kαm(t), Ûm(xm) = kUm(xm)

For l ∈ L, l 6= m, we define

q̂l(t) = ql(t), α̂l(t) = αl(t), Ûl(xl) = Ul(xl)

and rewrite (3)-(5) in the presence of the cheater. We first
consider (3).

xm(t) = argmax0≤xm≤Mm

[
Um(xm)− qm(t)xm

]
= argmax0≤xm≤Mm

[
Um(xm)− q̂m(t)

k
xm

]
(9)

= argmax0≤xm≤Mm

[
kUm(xm)− q̂m(t)xm

]
(10)

= argmax0≤xm≤Mm

[
Ûm(xm)− q̂m(t)xm

]
(11)

(9) and (10) are equal because k is a positive constant. For
the honest users,

xl(t) = argmax0≤xl≤Ml

[
Ûl(xl)− q̂l(t)xl

]
(12)

We now rewrite (4)

~r(t) = argmax~r∈R̂(t)

[
qm(t)r̂m +

L∑
l=1,l 6=m

ql(t)rl

]

= argmax~r∈R(t)

[
qm(t)krm +

L∑
l=1,l 6=m

ql(t)rl

]

= argmax~r∈R(t)

[
q̂m(t)rm +

L∑
l=1,l 6=m

q̂l(t)rl

]

= argmax~r∈R(t)

L∑
l=1

q̂l(t)rl (13)

The update equation of qm is given by (5):

qm(t+ 1) =
[
qm(t) + αm

(
xm(t)− rm(t)

)]+
We multiply both sides of the above by k

kqm(t+ 1) =
[
kqm(t) + kαm

(
xm(t)− rm(t)

)]+
This is equivalent to

q̂m(t+ 1) =
[
q̂m(t) + α̂m

(
xm(t)− rm(t)

)]+
(14)

Since q̂l = ql and α̂l = αl for all l 6= m, their update equation
is given by

q̂l(t+ 1) =
[
q̂l(t) + α̂l

(
xl(t)− rl(t)

)]+
(15)

Considering (11)-(15), we conclude that the optimal cross
layered rate control algorithm in the presence of a cheater
is given by the following iterations. For all l (including the
cheater m) and at each iteration t,

xl(t) = argmax0≤xl≤Ml

[
Ûl(xl)− q̂l(t)xl

]
(16)

~r(t) = argmax~r∈R(t)

L∑
l=1

q̂l(t)rl (17)

q̂l(t+ 1) =
[
q̂l(t) + α̂l

(
xl(t)− rl(t)

)]+
(18)

(16)-(18) are subgradient descent iterations of the dual of the
following problem.

max
0≤xl≤Ml

L∑
l=1

Ûl(xl) (19)
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subject to
xl ≤ r̄l for all l ∈ L (20)

and
~̄r ∈ Co(R)

The above theorem considers the case where only one
cheater is present in the network. We note that the theorem can
be easily extended to the case of more than one misbehaving
user. In this case, in the corresponding optimization frame-
work, the utility function of each cheater is multiplied by the
ratio of its claimed link capacity to its actual link capacity.

According to Theorem 3.1, a misbehaving link m is able to
increase its utility function by a multiplicative factor k, while
the utility function of the honest users remain unchanged. As
a result, the cheater might receive higher throughput share
than its fair share. In the following subsection, we show an
example in which we compute how much the throughput share
of a cheater is increased, when it misleads the scheduler about
its link capacity.

A. A wireless network of L conflicting wireless links

In this section, we consider a wireless network composed
of L links where all of them are conflicting with each other.
This means that only one of them can transmit data at each
time slot. For simplicity, we assume that the link capacity of
each link is a constant c (cl = c, ∀l). The utility function of
user l is

Ul(xl) = wl
xl

1−β

1− β
The arrival rate vector ~x is determined by

max
0≤xl≤Ml

L∑
l=1

wl
xl

1−β

1− β
(21)

subject to
xl ≤ rl for all l

L∑
l=1

rl = c

In this example, Co(R) is the line defined by
∑L
l=1 rl = c.

The corresponding Lagrange function of (21) is

L(xl, γ) =
L∑
l=1

wl
xl

1−β

1− β
− γ(

L∑
l=1

xl − c)

We solve
dL(xl, γ)
dxl

=

wlx
−β
l − γ = 0 (22)

According to the KKT condition

γ(
L∑
l=1

xl − c) = 0 (23)

(23) has two solutions: γ = 0 and
∑L
l=1 xl = c. γ = 0 results

in xl =∞, which is not a feasible solution. So, KKT condition
implies that

L∑
l=1

xl = c (24)

Considering (22), for node 1 and node l 6= 1,

w1x
−β
1 = wlx

−β
l

xl = (
wl
w1

)1/βx1 (25)

Considering (25) and (24), we find the solution to (21):

xl = c
wl

1/β

L∑
l=1

wl
1/β

(26)

We now consider a case where user 1 misleads the scheduler
such that the scheduler assumes that c1 = kc, where k > 1.
Later, if user 1 is chosen for the data transmission at time slot
t, it transmits with its actual link capacity r1(t) = c. As we
explained in Section III, this selfish misbehavior changes the
optimization framework to the following

max
0≤xl≤Ml

kw1
x1

1−β

1− β
+

L∑
l=2

wl
xl

1−β

1− β
(27)

subject to

xl ≤ rl for all l

and
L∑
l=1

rl = c

The solution to (27) is

x1 = c
(kw1)1/β

(kw1)1/β +
L∑
l=2

wl
1/β

(28)

xl = c
wl

1/β

(kw1)1/β +
L∑
l=2

wl
1/β

, for l 6= 1

Comparing (26) and (28), we observe that since k > 1, the
throughput share of the cheater is increased from c w1

1/β∑L

l=1
wl1/β

to c (kw1)
1/β

(kw1)1/β+
∑L

l=2
wl1/β

at the expense of decreasing the

throughput share of honest users l 6= 1 from c wl
1/β∑L

l=1
wl1/β

to

c wl
1/β

(kw1)1/β+
∑L

l=2
wl1/β

.
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IV. COST FUNCTION FOR PREVENTING/ALLEVIATING
GREEDY MISBEHAVIOR IN A GENERAL SETTING

In this section, we present a solution that cancels or allevi-
ates the effect of a selfish user on the performance degradation
of honest users. The selfish user misbehaves according to
the pattern described in Section III. Our solution is based
on imposing a cost (or equivalently a penalty) on the data
transmission of the users. A lot of cost and reward metrics are
developed in the networking literature. Penalties and rewards
provide strong mechanisms for solving network problems and
achieving performance objectives. A comprehensive introduc-
tion to the network penalties and rewards can be found in [9].

By imposing cost function Cl(xl) on the data transmission
of the users, the optimization framework of (1) is modified as:

max
0≤xl≤Ml

L∑
l=1

[
Ul(xl)− Cl(xl)

]
(29)

subject to
xl ≤ r̄l for all l ∈ L

and
~̄r ∈ Co(R)

The optimal cost function Cl(·) is the one for which the
following two conditions are satisfied:

1) In the absence of any cheater, the optimal point of (1)
and (29) are the same.

2) In the presence of a cheater m, the arrival rate of the
cheater determined by (29) is no greater than its fair share,
which is its allocated throughput determined by (1) when
it is not cheating. Furthermore, the arrival rate of each
honest user determined by (29) is no less than its fair
share determined by (1).

The second requirement means that when a user is cheating,
its allocated throughput share should be less than or equal to
its fair share when it is honest. At the same time, the allocated
throughput share to the honest users should be greater than or
equal to their fair share. For instance, in the example III-A,
the solution to (29) when user 1 is cheating should be x1 ≤
c w1

1/β∑L

l=1
wl1/β

, xl ≥ c wl
1/β∑L

l=1
wl1/β

, l 6= 1.

In the following subsection, we first look at the example of
Section III-A and explain which cost function prevents selfish
misbehavior and how it can be found. Later, we explain how
in a general network the cost function is found.

A. Cost term of L conflicting wireless links
We consider the network described in Section III-A when

the cost term λxl is subtracted from the utility function of the
users. We call λ the cost factor. We discuss if a linear cost
function suffices to completely cancel the effect of the cheater,
in this example network. If so, what value of λ achieves this
objective. User 1 misbehaves in the way we explained earlier.
The equivalent optimization framework for finding the arrival
rate vector ~x is

max
0≤xl≤Ml

k

[
w1
x1

1−β

1− β
− λx1

]
+

L∑
l=2

[
wl
xl

1−β

1− β
− λxl

]

subject to
xl ≤ rl, for all l ∈ L (30)

and
L∑
l=1

rl = c

Our goal is to find λ such that no matter what k is the solution
to (30) be

xl = c
wl

1/β∑L
l=1 wl

1/β
(31)

(31) is equal to the share of user l when link 1 does not
misbehave, i.e. k = 1, and no cost is imposed on data
transmission of the users, i.e. λ = 0. Such a λ completely
cancels the effect of the misbehaving user on throughput
degradation of honest users. We are interested to figure out
if such an optimal λ exists or not in this example network.
The corresponding Lagrange function of (30) is

L(xl, γ) =

k

[
w1
x1

1−β

1− β
− λx1

]
+

L∑
l=2

[
wl
xl

1−β

1− β
− λxl

]
− γ(

L∑
l=1

xl − c)

dL(xl,γ)
dxl

= 0 results in

kw1x
−β
1 − kλ− γ = 0 (32)

wlx
−β
l − λ− γ = 0, l 6= 1 (33)

According to the KKT condition

γ(
L∑
l=1

xl − c) = 0 (34)

(34) has two solutions: γ = 0 and
∑L
l=1 xl = c. γ = 0 results

in
xl = (

wl
λ

)1/β ,∀l (35)

By choosing γ = 0, we find the global optimum point of the
optimization problem, i.e. we solve the unconstrained version
of the optimization problem (we ignore the constraints). (35) is
feasible (i.e. the global optimum point is inside the feasibility
region), if

∑L
l=1 xl ≤ c is satisfied.

∑L
l=1 xl ≤ c is hold only

if

λ ≥ [
1
c

L∑
l=1

wl
1/β ]β (36)

We conclude that for λ satisfied in (36), the global optimum
(35) is the same as the solution of the constrained problem
(30).

By choosing λ = [ 1c
∑L
l=1 wl

1/β ]β , the allocated arrival rate
to each user would be exactly the same as its arrival rate when
user 1 does not misbehave. In other words, we have found a
cost factor that achieves the fair share no matter if a node is
cheating or not. We also observe that if λ > [ 1c

∑L
l=1 wl

1/β ]β ,
the constraint of the maximization problem is satisfied with
strict inequality. This means that the network is under utilized,
i.e. the allocated rate vector is not on the boundary of the



6

capacity region, instead it is inside the capacity region. In order
to fully utilize the network as well as completely canceling the
effect of the cheater, we choose λ = [ 1c

∑L
l=1 wl

1/β ]β .

B. Finding the cost factor in a general setting

In a general wireless network, where network topology and
utility functions of the users are arbitrary, finding the optimal
cost function is not an easy task. In an arbitrary setting, the
optimal cost term is not necessarily linear. In this work, we
approximate the best cost function Cl(xl) with a linear term
λxl. Our goal is to find λ such that we prevent the cheater
from obtaining extra throughput as much as possible, while
utilizing the network resources completely.

Considering our computations in Section IV-A, we note
that we solved an optimization problem (30) in order to find
the cost factor. But in an arbitrary wireless network with a
complex set of constraints, following this method for finding λ
is difficult. It requires solving the corresponding optimization
problem centrally, which might be highly complex.

Instead, we propose a heuristic for finding λ without solving
the maximization problem centrally. Our proposed solution is
an iterative method in which cost terms of the form λxl with
different λ’s are imposed on the data transmission of the users.
For each λ, the underlying network implements iterations (3),
(4) and (5) and becomes stable at an arrival rate vector ~x,
which is the solution to the optimization problem (29). We
start from λ = 0, and we increase λ up to a point where the
network resources are under utilized, i.e. the λ for which some
constraints of the optimization problem are satisfied with strict
inequality. The value of λ after which the network is under
utilized is chosen as the cost factor. This is the maximum cost
that can be imposed on the data transmission of the users,
without under utilizing the network resources. We note that
in this method, no knowledge about the utility function of the
users is required. The only information we need to know is
the average capacity region R, in order to determine the set
of constraints.

C. Simulation Results

To make our method more clear, we run a simulation in
which we implemented our proposed heuristic in order to find
the cost factor λ. The network is composed of 6 wireless links
with the corresponding link contention graph depicted in Fig.
1. In this figure, a vertex represents a link of the network. An
edge connecting vertices i and j (1 ≤ i, j ≤ 6) denotes the
conflict between links i and j, i.e. it shows that links i and j
can not transmit at the same time. The actual link capacity of
each link is cl = 1. All links have logarithmic utility function
Ul(xl) = log (xl). Link 1 misleads the scheduler such that
the scheduler assumes that the capacity of link 1 is c1 = k
instead of c1 = 1. The utility maximization framework for this
network is

max
0≤xl≤Ml

k log (x1)− kλx1 +
6∑
l=2

[
log (xl)− λxl

]
(37)

Fig. 1. Link Contention Graph

subject to

x1 + x2 + x6 ≤ 1, x1 + x2 + x3 ≤ 1, x1 + x4 + x6 ≤ 1

x2 + x3 + x4 + x5 ≤ 1, x3 + x4 + x5 + x6 ≤ 1

We first consider the case where λ = 0 (no cost) and k = 1
(link 1 is honest). The iterative algorithm of Section II-C
stabilizes at the point

~x = (0.5, 0.25, 0.25, 0.25, 0.25, 0.25) (38)

If λ = 0 (no cost) and k = 5 (link 1 is cheating), the result
of the iterations is

~x = (0.64, 0.18, 0.18, 0.18, 0.46, 0.18)

We observe that the cheater obtains higher throughput than its
fair share. Now, we consider the case where a linear cost term
(λxl) with λ = 1 is imposed on all links. With k = 5 (link 1
is cheating), the stable point of the iterations is

~x = (0.55, 0.22, 0.22, 0.22, 0.33, 0.22)

We observe that with this choice of λ, all constraints are
satisfied with equality. So, we continue increasing λ. With
λ = 3 and k = 5, the result of the iterations is

~x = (0.33, 0.28, 0.24, 0.24, 0.24, 0.28)

In this case, the network is under utilized because the first
constraint is not satisfied with equality (x1+x2+x6 = 0.89 <
1). By changing λ between 1 and 3, we find that λ = 2.3 is
the point after which some of the constraints are satisfied with
strict inequality. We conclude that λ = 2.3 should be chosen as
the cost factor in this example network. The allocated arrival
rates in this case (λ = 2.3 and k = 5) are

~x = (0.43, 0.29, 0.24, 0.24, 0.24, 0.29) (39)

So, in a general network in order to find the cost factor, a
central authority imposes different λ’s, starting from λ = 0 and
increasing up to a point where some constraints of the utility
maximization problem are satisfied with strict inequality. This
value of λ will be chosen as the cost factor for the rest of the
network operation.
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V. CONCLUSION

In this work, we considered the problem of selfish mis-
behavior in the optimal cross-layered rate control scheme of
wireless networks. We explained how in this framework, a
selfish user is able to increase its allocated throughput by
misleading the scheduler about its link capacity. We have
found what the effect of this misbehavior in the optimization
framework of cross-layered rate control is. We also presented
a solution to prevent or alleviate the effect of such a greedy
user. Our solution is based on subtracting a linear cost term
from the utility function of the users. We computed the optimal
cost term for one example network. We also described how
the appropriate cost term is found in a general network.
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