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Abstract— In this paper, we present two variants of an on-
demand TDMA (Time Division Multiple Access) MAC protocol.
These protocols are designed specifically for sensor networks.
Thus, they attempt to reduce energy consumption while still
providing efficient delivery of sensor data to the sinks. The two
variants of the protocol presented in this paper are Busy Tone
On-Demand Scheduling (BTODS) and On-Demand Scheduling
(ODS). BTODS is designed for sensors capable of using non-
interfering channels to transmit busy tones, while ODS is
designed for single channel architectures. These protocols are
designed to schedule slots for sensor-to-sink flows that do not
interfere with existing flows. Thus, nodes can conserve energy by
switching to a sleep state in slots in which they are neither sending
nor receiving data. The tradeoffs between the two protocols are
discussed in detail, along with the protocols’ interactions with
upper layers in the network stack.

I. INTRODUCTION

The emergence of sensor networks presents many new
challenges in wireless ad-hoc networks. While the precise
application of sensor networks is speculative, certain char-
acteristics are typically assumed. First, the sensors are static
after initial deployment (unless placed on a mobile entity [1]).
Second, energy is scarce and it is inconvenient or impossible
to replenish the energy source frequently.

Because energy should be conserved, power save protocols
are needed. At the MAC layer, we seek to switch the wireless
radio off as much as possible without significantly hindering
performance metrics such as latency and throughput. The four
major sources of energy waste at the MAC layer are [2]:

Collisions When packets collide, energy is wasted because
the packet, along with associated control overhead, must
be retransmitted.

Overhearing This occurs when a node promiscuously listens
to a packet intended for a different destination. In this
case, the node could sleep rather than idly listening to
the channel.

Control Overhead Aside from the data packet, which has
additional header bytes prepended, usually other MAC
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TABLE I

CHARACTERISTICS OF A SENSOR RADIO [3].

Radio State Power Consumption (mW)
Transmit 81

Receive/Idle 30
Sleep 0.003

level packets add overhead. For example, an ACK packet
is usually required from the receiver to verify whether
the data transmission was a success or failure.

Idle Listening This is when a node is listening to the channel,
but not transmitting or receiving any data. This typically
consumes much more energy than if the node were to
sleep.

Radios typically have four power levels corresponding to
the following states: transmitting, receiving, listening, and
sleeping. Typically, the power required to listen is about the
same as the power to transmit and receive. The sleep power
is usually one to four orders of magnitude less. Thus, idle
listening is the largest source of waste in sensor networks. A
sensor should sleep as much as possible when it is not engaged
in communication. The power levels for Mica Mote sensors [3]
are shown in Table I.

In this work, we propose a Time Division Multiple Access
(TDMA) protocol to schedule flows of sensor traffic in non-
interfering slots. Scheduling the flows can reduce the energy
wasted from the aforementioned sources. In a steady-state,
collisions should not occur because each flow has chosen a slot
which does not interfere with its neighbors’ communications.
Overhearing and idle listening are less of a problem because
sensors only need to wakeup in slots in which they are sched-
uled to send or receive. It is difficult to quantify the effects of
overhearing avoidance on overall energy consumption because
some upper-layer protocols [4], [5] use promiscuous listening
to improve performance. We do not explicitly address this,
but note that nodes can choose to listen in other slots if this
is desired.

There are some disadvantages of a TDMA protocol when



compared to a random access protocol, like IEEE 802.11 [6].
First, scheduling must be done by predicting future traffic
arrivals, delaying packets until scheduling can be done, or
requiring traffic to follow a predictable pattern. Also, TDMA
requires synchronization to divide time into slots across the
whole network. However, as mentioned in Section II, we
believe sensor networks can be designed to overcome these
disadvantages.

In addition to saving energy, our protocol is also designed to
recover from occasional packet loss and slot collisions (due to
physical layer effects such as fading). The protocol is designed
to be simple and robust enough to be implemented on current
sensors (e.g., [3]).

In Section II, we present the target sensor network for our
protocols. Related work is discussed in Section III. Section IV
describes our proposed protocols. Section V discusses issues
with the MAC protocol and upper layers in the network stack.
Future work is presented in Section VI. We conclude the paper
with Section VII.

II. SENSOR NETWORK OVERVIEW

We now describe the type of sensor network for which our
protocol is targeted. While the described network may not
be general enough for some objectives, we feel it would be
useful in a large number of applications (e.g., the monitoring
applications mentioned in [7]).

There are M data sinks, where M ≥ 1, and N sensor
nodes, where N À M . The sinks have an out-of-band means
of aggregating their received data, so the sensors only need
to anycast their data to a sink. The sinks are not energy
constrained like the sensors. All data packets in the system
have the same size and take Tdata time to transmit over the
channel1. All ACK packets take Tctrl time to transmit. Based
on these values, time is divided into slots of length Tslot,
where Tslot is slightly larger than (Tdata + Tctrl) for reasons
discussed in Section IV.

Let Tcycle = Kcycle×Tslot, where Kcycle is an integer value
that is specified when the network is deployed. We assume
that packets are sent from a sensor at a deterministic, periodic
rate. The rate may change over time, but changes are assumed
to be infrequent. For an example of such behavior, consider
sensors that periodically report their samples at a low rate
in steady-state. When an event occurs, the detecting sensors
will temporarily increase their sending rate to provide more
detailed information about the event.

If a sensor chooses to send information to the sinks, it must
send at a rate between Rmin and Rmax. Sensors may choose
to send at a rate less than Rmin, but it will not result in extra
energy savings. The minimum rate is once per cycle, Rmin =

1

Tcycle
. The maximum rate can be set when the network is

deployed, but at most one data packet can be sent per slot, so
Rmax ≤ 1

Tslot
.

The sensors are assumed to be periodically synchronized
by the sinks such that the difference in clocks between any

1If larger packets are needed, fragmentation can be done at the application
layer.

two nodes in the network is always less than ∆. To do
this, we assume the sinks have enough energy to periodically
broadcast with sufficient power to reach all sensors and
provide a synchronization epoch. Thus, the broadcast must
be done frequently enough to maintain a desired level of
synchronization.

Based on hardware specifications, it is possible to maintain
a synchronization level based on a clock drift of around 10 to
40 parts-per-million (ppm) [8], [9]. Thus, to maintain ∆ = 1
ms, beacons would need to be sent every 25 to 100 seconds. In
practice, even better results have been observed: sensors only
need to be synchronized once every 13 minutes for ∆ = 1 ms
(i.e., about 1.3 ppm drift) [10].

Currently, sensor hardware [3] can achieve a data rate
of about 40 kbps. A widely used sensor operating system,
TinyOS [11], uses 30 byte data packets, with an additional 34
bytes for MAC and physical layer headers. Thus, to transmit a
data packet and its headers takes about 13 ms on this platform.
If ∆ ≤ 1 ms is maintained, then ∆ ≤ 1

13
Tdata for current

sensor hardware and software.

III. RELATED WORK

IEEE 802.11 [6] specifies a simple Power Save Mode
(PSM). Nodes are assumed to be time-synchronized and awake
at the beginning of each beacon interval. After waking up,
each node stays on for a period of time known as the
ATIM window. During the ATIM window, since all nodes
are guaranteed to be on, packets are advertised that have
arrived since the previous beacon interval (or could not be
sent in the previous beacon interval). These advertisements
take the form of ATIM packets. More formally, when a node
has a packet to advertise, it sends an ATIM packet to the
intended destination during the ATIM window, following the
rules of IEEE 802.11’s CSMA/CA mechanism. In response to
receiving an ATIM packet, the destination will respond with an
ATIM-ACK packet (unless the ATIM specified a broadcast or
multicast destination address). When this ATIM handshake has
occurred, both nodes will remain on after the ATIM window
and attempt to send their advertised data packets before the
next beacon interval, subject to CSMA/CA rules. If a node
remains on after the ATIM window, it must keep its radio
on until the next beacon interval. If a node does not receive
an ATIM or ATIM-ACK (assuming unicast advertisements), it
will enter sleep mode at the end of the ATIM window until the
next beacon interval. This process is illustrated in Figure 1.
The dotted arrows indicate a “causes” relationship. Node A
sends a data packet to B while C, not receiving any ATIM
packets, returns to sleep for the rest of the beacon interval.

While 802.11 PSM is a simple protocol to implement (if
synchronization can be achieved) there are some disadvan-
tages. First, the ATIM window and beacon interval times must
be adjusted for different traffic patterns [12], [13]. Also, nodes
must remain on for the entire beacon interval if they have
only one packet to send and/or receive. This can be wasteful
in terms of energy. For example, if packet interarrival time is
less that one beacon interval, then the node will never sleep,
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Fig. 1. IEEE 802.11 power save mechanism [6].

regardless of how large the beacon interval is compared to the
time to transmit one data packet. Finally, the protocol uses
802.11’s CSMA/CA mechanism to avoid collisions. This may
not work well when a large number of competing nodes try to
send their packets immediately after the ATIM window rather
than spreading the packet transmissions out uniformly over the
beacon interval.

Research in power save protocols at the MAC layer has
taken three general directions. First, there is a scheduling
approach whereby packet transmission times are carefully
chosen to avoid collisions. This approach lends itself well to
power save since nodes can sleep when they are not scheduled
to communicate. Second, there are protocols which attempt to
allow all but a small subset of nodes to sleep. The members
of this subset are periodically rotated and chosen to preserve
multihop paths in the network. Finally, work has been done
with “wakeup” channels where nodes have an out-of-band
means of waking their sleeping neighbors. We will mention
work from each category, but focus on the first category since
it is most related to our protocol.

The PAMAS protocol [14] was among the first power save
protocols. It adapts basic mechanisms of IEEE 802.11 [6] to
a two-radio architecture. Nodes can sleep when other nodes
are transmitting or their transmission would interfere with the
transmissions of neighbors. However, PAMAS ignores the idle
listening problem. S-MAC [2] adopts the PAMAS protocol
to single-radio nodes and adds a simple scheduling mecha-
nism to reduce idle listening. Nodes attempt to synchronize
sleep schedules with surrounding neighbors by periodically
broadcasting their schedule. T-MAC [15] extends S-MAC
by adjusting the length of time sensors are awake between
sleep intervals based on communication of nearby neighbors.
In [16], a large number of non-interfering frequency bands are
used for a primarily FDMA scheduling approach.

The TRAMA protocol [17] is similar to our protocol be-
cause it uses collision-free packet scheduling for energy effi-
ciency. Nodes periodically awake to exchange broadcasts and
learn their two-hop neighborhood. Based on this knowledge,
nodes periodically reserve future slots for backlogged traffic.
A hash-based priority scheme is then used so that only one
node in a two-hop neighborhood will transmit in a given slot.
Our protocol is different than TRAMA because it attempts
to schedule long-lived, end-to-end, periodic flows instead of
scheduling recently received packets on a hop-by-hop basis.
Also, our protocol does not need to maintain consistent two-
hop neighborhood information and results in a much simple
scheduling algorithm.

In [18], a TDMA scheduling protocol is presented for
constant bitrate (CBR) traffic. In this protocol, nodes listen
for data and ACK packets from neighboring nodes. Whenever
one of these packets is overheard in a slot, the node marks
that slot as “used.” Thus, when a node wants to schedule its
own flow, it can look at its slot table and find an open slot
to use. However, this approach is not energy efficient because
nodes must constantly listen to the channel to keep their slot
table up-to-date.

Another related protocol is presented in [19]. Collision-free,
deterministic, periodic flows are scheduled toward a data sink.
Nodes maintain a table of times when they should wakeup to
send and receive. When a node wishes to schedule a new flow
on a link, nodes awake at a specified time and the sender will
try to send an RSETUP packet if no data transmission is sensed
in the slot. If the RSETUP packet is received successfully, an
ACK is sent back and the slot is scheduled. However, if the
RSETUP causes a collision at the receiver, no ACK is sent. In
this case, the sender must try to send the RSETUP packet in
a different slot because using the current slot would interfere
with an existing flow.

One disadvantage of this approach is broadcasts/multicasts
cannot be scheduled since explicit ACKs are required to
create a schedule. This is particularly detrimental because
nearly all ad-hoc routing and neighbor discovery protocols
rely on broadcasts. Our protocol is able to support broadcast
scheduling.

Additionally, this protocol may cause significant data packet
loss while trying to setup a flow by causing multiple collisions
with the RSETUP packet. Also, this protocol may destroy
an existing flow while setting up a new flow. This situation
is demonstrated by the topology in Figure 2. Assume B is
sending a previously scheduled flow to A through C. At some
point, D attempts to schedule a flow to A through E. If
D sends its RSETUP packet at the same time B sends its
scheduled DATA packet, a collision will occur at C (D may
have been sleeping when B and C originally scheduled their
flow). However, E is still able to respond with an ACK to D.
Thus, the flow D→E will be scheduled in the same slot as
B→C, causing deterministic packet loss at C. This problem
and the potential multiple collisions caused by an RSETUP
do not exist in our protocol.

The approach of keeping a small subset of nodes awake for
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Fig. 2. Example topology to demonstrate flow scheduling problem in [19].

multihop communication is taken in SPAN [20], GAF [21],
and ASCENT [22]. Each of these protocols is designed for
dense network where a large fraction of nodes can sleep
without significantly reducing connectivity. In [23], the subset
of nodes discovered via an on-demand routing protocol remain
awake to communicate at a low latency while allowing all
other nodes to sleep.

The PicoRadio [24]–[26] design uses a special hardware to
do paging on a low-power wakeup channel. STEM [27], [28]
uses two radios, to periodically listen on a paging channel
while allowing both radios to sleep a large fraction of the time.
In [29], [30], STEM is combined with a scheduling technique
to further minimize energy consumption. In [31], a paging
protocol for use with centralized access points is implemented
from off-the-shelf hardware.

Though not related to power save protocols, we propose
the use of busy tones in our protocol. This technique has
been proposed previously to avoid interference with on-going
communication when nodes are mobile [32], [33]. Our use of
busy tones is different because it is used to avoid collisions in
packet scheduling.

IV. PROTOCOL DESCRIPTION AND DISCUSSION

Our goal is to schedule sensor-to-sink flows by scheduling
a slot for transmission and reception at each hop along the
path that does not interfere with existing flows. To achieve
this goal, we propose two similar protocols called On-Demand
Scheduling (ODS) and Busy Tone On-Demand Scheduling
(BTODS). Both are TDMA scheduling protocols and do not
require nodes to maintain consistent two-hop neighborhood
information, a source of control overhead. Additionally, the
protocols allow broadcasts and multicasts to be scheduled for
use in upper layer protocols.

We begin by describing the common part of both protocols.
ODS and BTODS differ in how nodes behave within data
slots. In Section IV-A we describe the BTODS protocol
for data slots. Section IV-B discusses how flow collisions
are detected and handled. Section IV-C describes the ODS
protocol. The comparative advantages and disadvantages of
ODS and BTODS are discussed in Section IV-D.

A “flow” refers to a MAC layer flow in which data packets
are sent every Tcycle time. If an upper layer needs to send at a
rate faster than once every Tcycle, multiple MAC layer flows
can be scheduled. If data needs to be send at a rate that is not
a multiple of Tcycle, then extra slots can be reserved in each
cycle. For example, if three data packets need to be sent every
two cycles, then two slots per cycle can be reserved. This
allows up to four data packets to be sent every two cycles.
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Fig. 3. Timing Diagram for Tcycle.

Thus, one of the reserved slots could be used to transmit a
“dummy” packet (and keep the slot reserved for future cycles)
while the other three slots are used to send data. We assume
a routing layer exists. In Section V-A, we describe a simple
routing protocol that can be used with our protocols.

After each data packet, an ACK is sent if the data is received
correctly. If a data packet is not received in a scheduled
slot, a NACK packet is sent. The NACK packet has a bit
which indicates whether a collision was occurred or the packet
was just received with an error or lost. The sender can then
respond appropriately. Reliability issues are discussed further
in Section V-C.

Each sensor maintains a table of Kcycle entries (recall that
Tcycle = Kcycle × Tslot) indicating which slots it should be
awake to transmit and which it should be awake to receive
data from a neighbor. When a data packet is sent, there is a
ONE-SHOT bit piggybacked on the header. If this bit it set, it
indicates this data packet is not part of a flow and, hence, it
will not be included in the sender or receiver’s schedule table.

At the beginning of every cycle all nodes wake up for a few
slots, called the FLOW-ADV window, which takes a total time
of Tadv . Thus, if a node has no packets to send or receive, it
will idly listen for Tadv/Tcycle fraction of the time and sleep
for the remaining (Tcycle − Tadv)/Tcycle fraction of the time.
Presumably, Tadv ¿ (Tcycle − Tadv). The timing diagram for
this is shown in Figure 3.

When a node has a new flow to schedule, it must advertise
it during the FLOW-ADV window by sending a FLOW-ADV
packet. This is similar to 802.11’s ATIM window except flows,
instead of packets, are being advertised. Because there are only
a few slots available during the FLOW-ADV window, it is
assumed that few FLOW-ADV packets are sent each interval.
To address contention, nodes can do random access during the
FLOW-ADV window or choose the slot to send their FLOW-
ADV packet uniformly at random among the slots available
during the FLOW-ADV window. These advertisements require
a FLOW-ACK similar to in 802.11’s ATIM protocol (unless the
FLOW-ADV is for a broadcast). The FLOW-ADV indicates
how many flows the sender desires to schedule with the
receiver in the upcoming interval. No data packets are sent
during the FLOW-ADV window, so the window does induce
some control overhead.

At the end of the FLOW-ADV window, all nodes that did
not send or receive a FLOW-ADV return to sleep and follow
their schedule table for waking up during the current interval.
Nodes that received a FLOW-ADV will remain on until a slot
has been scheduled for the number of flows specified in the



FLOW-ADV. If the nodes remain on for the entire Tcycle and
are unable to schedule a flow, this results in a route error
(RERR) and the flow must find a different path to be scheduled
on. For now, we will assume all flows are able to be scheduled.
Handling RERRs is left up to the routing layer.

Flows can be destroyed explicitly or implicitly. A node can
transmit a FLOW-DEL message during the flow’s scheduled
data slot (or set a FLOW-DEL bit in the data header of the
flow’s last data packet). The FLOW-DEL message will traverse
along the path in this manner and each node will remove
the flow from its schedule table. Additionally, each node that
does not receive a scheduled transmission in KRX flow−del

consecutive intervals will delete the flow from its schedule
table2. If a sender does not receive an ACK for a scheduled
flow in KTX flow−del consecutive intervals, it will delete the
current scheduled sending slot from its table and attempt to
find a new path for the flow at the routing layer.

A. BTODS

Using busy tones requires that the channel can be divided
into two sub-channels, one for data and one control channel
for busy tones. Busy tones do not need to be demodulated,
but neighbors must be able to detect the presence of the
busy tone signal on the control channel. It is assumed that
the transmission ranges of control channel and data channel
are chosen to keep interference sufficiently low. Thus, busy
tones are used to avoid the hidden terminal because receivers
can emit a busy tone while they are receiving data to let
all its neighbors know that a transmission would interfere
with the receiver’s packet reception. An alternative to using a
busy tone would be to equip sensors with two identical radios
operating at different frequencies (e.g., [27]). One radio could
transmit data, while the control radio transmits dummy packets
periodically during packet reception. Surrounding nodes could
detect on-going receptions by listening long enough on their
control radio to hear a dummy packet or else decide no
neighbors are receiving. For the rest of this paper, we will
assume busy tones are used.

In BTODS, a node will transmit a busy tone under the
following conditions:

• It is receiving on the data channel.
• It overhears another node sending on the data channel.

We now discuss how BTODS finds non-interfering slots.
First, we will describe the structure of slots in BTODS.
Figure 4 shows the timing diagrams for BTODS slots with
unicast data. In this figure, Trand 1 is chosen uniformly at
random from (Tmin, Trand] and Trand 1 + Trand 2 = Trand

to keep the slots aligned3. Tmin is chosen to be long enough
to allow a node’s busy tone to be propagated to its two-hop
neighbors. For example, if node B is a one-hop neighbor of

2Alternatively, instead of using the criteria of missing packets for k

consecutive intervals, we could use criteria of missing packets for any k of
most recent n intervals.

3Thus, whatever value a node selects for Trand 1, it will set Trand 2 =

Trand − Trand 1. This ensures that the entire slot time is (3∆ + Trand +

Tdata + Tctrl).
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Fig. 4. Timing diagram for slots in BTODS.

node A, then Tmin must be long enough that B can detect
A’s busy tone, transmit a busy tone, and have it detected by
all of B’s one-hop neighbors. For broadcasts and multicasts,
the timing diagram is the same except that no ACKs are sent
during Tctrl.

Every slot begins with an idle listening period of ∆ to
account for synchronization errors. As we can see from
Figure 4(a) and Figure 4(b), data that has been previously
scheduled in a slot will receive priority over data which
is attempting to be scheduled in the slot. This is because
previously scheduled data is sent immediately after the ∆
listening period whereas the data attempting to be scheduled
will wait (2∆ + Trand 1) before attempting to sent its data.
The length of Trand 1 is chosen such that a node has enough
time to carrier sense the control channel as idle before sending.
If any signal is detected, the nodes will try to find a different
slot to communicate.

From Figure 4, we make three claims about the correctness
of the protocol:

• A previously scheduled flow will always send its data
before a new flow: From Figure 4(b), the earliest a
new flow will send its data is (2∆ + Trand 1) after the
beginning of the slot. From Figure 4(a), the latest an
existing flow will send its data (assuming its clock is ∆
later than the clock of the node scheduling the new flow)
is 2∆. Thus, the previously scheduled flow will always
send its data first.

• An existing flow’s data will never overlap with a new
flow’s ACK: This assures that an ACK being sent by the
receiver of an existing flow will not interfere with the
data receiver of a new flow. From Figure 4(a), we see
that the earliest an ACK for an existing flow can be sent
is (3∆ + Trand + Tdata). Assuming a ∆ synchronization
error, from Figure 4(b), the latest a new flow’s data can
end is (3∆ + Trand + Tdata). Thus, the new flow will
always finish sending its data before the existing flow
begins sending its ACK.
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• An existing flow’s data will never overlap with another
existing flow’s ACK: This is similar to the previous claim.
From Figure 4(a), we see that the earliest an ACK for an
existing flow can be sent is (3∆ + Trand + Tdata). Also
from Figure 4(a), the latest the data can finish being sent
is (2∆ + Trand + Tdata), assuming a ∆ synchronization
error. To see why this property is important, consider
nodes S2 and S3 in Figure 5. These nodes will be able to
send data to their receiver and receive the corresponding
ACK in the same slot. In particular, S3’s data transmis-
sion cannot interfere with S2 receiving an ACK from R2

in the same slot (and vice versa).

We use the topology in Figure 5 as an example of how
BTODS works. Assume that node S2 wants to schedule a flow
to send data to R2. Nodes S1 and S3 already have previously
scheduled flows in which they are transmitting. Nodes R1 and
R3 already have previously scheduled flows in which they
are receiving. After S2 and R2 have completed their FLOW-
ADV/FLOW-ACK exchange, both will remain on until they
can find an open slot in which S2 can send a packet and receive
an ACK from R2 without interfering with existing flows.
BTODS requires the sender, S2, to refrain from attempting
to schedule and send a data packet in any slot in which it
detects a busy signal. Obviously, the sender will also refrain
from transmitting in slots in which it will receive a previously
scheduled flow.

Now, using Figure 5, we will explain why the slot BTODS
schedules for the S2 → R2 communication will not interfere
with existing communication in the slot. In the slot in which
R1 is receiving, the flow will not be scheduled because S2

will refrain from sending data when it hears R1’s busy tone.
In the slot in which S1 is sending data, the new flow will not
be scheduled because R2 will overhear S1’s transmission in
the slot and emit a busy tone. S2 will detect this busy tone
and refrain from sending data in the slot. The communication
between S2 → R2 can be scheduled in the same slot as
S3’s transmission or R3’s reception without interfering. As
discussed previously, the slot structure in Figure 4 ensures
that the beginning of R3’s ACK transmission will not interfere
with the end of R2’s data reception (and vice versa). The slot
structure also ensures that the end of S3’s data transmission
will not collide with the beginning of S2’s ACK reception
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Fig. 6. Example topology for overly conservative scheduling.

(and vice versa).
We can see that BTODS can easily support broad-

cast/multicast scheduling as well. When a node sends a
FLOW-ADV for a broadcast packet, all of its neighbors will
remain on after the FLOW-ADV window. The sender will only
transmit its packet in a slot in which none of its neighbors are
transmitting busy tones or data. Note that because the intended
receivers will transmit a busy done when they overhear or
receive a previously scheduled data packet, the absence of a
busy tone and absence of a data transmission implies that the
sender’s broadcast will be received by all its neighbors in the
chosen slot. For unicast data, if a sender attempts to schedule
a flow in a slot where the intended receiver is transmitting to
a different node, the intended receiver will not reply with an
ACK and the sender will try a different slot.

One problem with BTODS is it may be too conservative
it its scheduling. This means non-interfering flows may not
always be scheduled in the same slot when possible. Consider
the topology in Figure 6.

Assume that the existing flow S1 → R1 is using a slot
and S2 and S3 are trying to schedule a flow to R2 and R3,
respectively, in the same slot. Obviously, it would be possible
for the flows S1 → R1 and S3 → R3 to use the same
slot without interfering. However, in the given slot, R2 will
overhear S1’s data transmission and, in response, transmit a
busy tone to let S2 know it cannot send data in the current
slot. However, S3 will also detect R2’s busy tone and falsely
assume it cannot send to R3 during the current slot.

We expect that flow scheduling will be an infrequent task
and, therefore, the situation in Figure 6 will rarely ever occur.
To avoid deterministic behavior, if a node cannot schedule
its flow over an entire Tcycle time, it could choose a random
number of cycles to wait before trying again. In this case, S2

and S3 in Figure 6 should eventually choose a cycle in which
the other is not trying to schedule its data. Also, once S2 finds
a slot to schedule its data, S3 will be able to schedule its flow
in the same slot as S1.

B. Handling Flow Collisions

Interfering flows could still be scheduled in the same slot
in the following situations:



1) The senders of two flows attempting to be scheduled
choose Trand 1 such that their data transmissions start
at virtually the same time.

2) Physical layer effects (e.g., fading on the busy tone
channel) allow nodes to determine that the channel is
“free” when, in reality, the slot is already being used by
an interfering flow.

3) The topology changes (e.g., an obstacle is removed) to
create an interfering link that was not there when flows
were originally scheduled.

The common characteristic of all these situations is that
we assume they occur infrequently and nondeterministically.
However, our protocol still needs to specify how to detect
interfering flows and recover.

Consider Situation 1 using Figure 5. Assume that SR1
(not

shown) is attempting to schedule a flow with R1 and S2 is
attempting to schedule a flow with R2 in the same slot. In
this situation, a collision will occur at R1. Thus, R1 will not
respond with an ACK (and hence not schedule the flow). When
SR1

does not receive an ACK, it will try to schedule the flow
in a different slot. If S1 does receive its ACK, it will schedule
its flow in the current slot. Otherwise, S1 will also attempt a
different slot.

Situation 2 and Situation 3 can be handled similarly. In
Figure 5, assume that S1 is sending to RS1

(not shown) in
the same slot as S2 is sending to R2 before the link from
S1 ↔ R2 exists. In this case, when the interference exists, R2

will suffer a collision during Tdata and respond with a NACK
indicating a collision to S2. Upon receiving this NACK, S2

will attempt to schedule the flow in a different slot. Also,
if a collision occurs during Tctrl, the sender will attempt to
reschedule the flow. In this manner, our protocols can recover
from occasional flow collisions.

C. ODS

As we will discuss in Section IV-D, there are some dis-
advantages to using BTODS. Therefore, in this section, we
present ODS which is similar to BTODS, but does not use
busy tones. The slot structure of ODS is shown in Figure 7.

As explained in Section IV-A, Trand 1 is chosen uniformly
at random from (0, Trand] and Trand 1 + Trand 2 = Trand

to keep the slots aligned. Busy tones are not used in ODS,
so extra periods are added for nodes to indicate they will be
busy sending or receiving in the current slot. These slots take
TTX busy and TRX busy , respectively, as shown in Figure 7.
When a node is scheduled to send data in the current slot, it
will transmit on the data channel during the TX busy period.
A node will transmit on the data channel during the RX busy
period if either it is scheduled to receive data in the current slot
or it heard another node transmit during the TX busy period.
The latter case indicates another node is already scheduled to
transmit in the current slot. Thus, a node which detects the
data channel busy during the TX busy period must indicate
that it will not be able to receive in the current slot to all
potential senders, which it does during the RX busy period.
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Fig. 7. Timing diagram for slots in ODS.

ODS can handle flow collisions using the methods discussed
in Section IV-B.

Based on this description, we make the following five claims
about ODS:

• The TX busy period will never overlap with another
node’s RX busy period: From Figure 7(a), the earliest a
node’s RX busy period will begin is (2∆ + TTX busy).
The latest another node’s TX busy period can end,
assuming a drift of ∆, is (2∆ + TTX busy). Thus, nodes
will always be able to tell whether the data channel is
busy during the TX busy period or RX busy period
without overlap between the two.

• The RX busy period will never overlap with another
node’s data communication: From Figure 7(a), the earli-
est a data communication can begin is (3∆+TTX busy +
TRX busy). Assuming a ∆ drift, the latest a node’s
RX busy period can end is (3∆+TTX busy+TRX busy).
Thus, a node’s data reception will never suffer interfer-
ence due to transmissions in the RX busy period.

• A previously scheduled flow will always send its data
before a new flow: From Figure 7(b), the earliest a new
flow will send its data is (4∆ + TTX busy + TRX busy +
Trand 1) after the beginning of the slot. From Figure 7(a),
the latest an existing flow will send its data (assuming its
clock is ∆ later than the clock of the node scheduling
the new flow) is (4∆+TTX busy +TRX busy). Thus, the
previously scheduled flow will always send its data first.

• An existing flow’s data will never overlap with a new
flow’s ACK: This assures that an ACK being sent by the
receiver of an existing flow will not interfere with the
data receiver of a new flow. From Figure 7(a), we see
that the earliest an ACK for an existing flow can be sent
is (5∆+TTX busy+TRX busy+Trand+Tdata). Assuming
a ∆ synchronization error, from Figure 7(b), the latest a
new flow’s data can end is (5∆+TTX busy +TRX busy +
Trand + Tdata). Thus, the new flow will always finish
sending its data before the existing flow begins sending
its ACK.



• An existing flow’s data will never overlap with another
existing flow’s ACK: This is similar to the previous claim.
From Figure 7(a), we see that the earliest an ACK for an
existing flow can be sent is (5∆+TTX busy+TRX busy+
Trand +Tdata). Also from Figure 7(a), the latest the data
can finish being sent is (4∆ + TTX busy + TRX busy +
Trand + Tdata), assuming ∆ synchronization error.

ODS works similar to BTODS on the topology in Figure 5,
assuming S2 wants to schedule a flow with R2. Nodes S2

and S3 can transmit in the same slot without interference.
Similarly, R2 and R3 can receive in the same slot without
interference. S2 will decide not to use a slot if it detects
the data channel as busy during the RX busy period. If
S2 detects a collision during the RX busy period, the data
channel is considered busy. S2 can still use a slot if it detects
the TX busy period busy but not the RX busy period.

In a slot in which R1 is receiving, S2 will detect R1’s
transmission on the data channel during the RX busy period
and will not use the slot. In a slot in which S1 is transmitting,
R2 will detect S1’s transmission during the TX busy period.
In response, R2 will transmit during the RX busy period. S2

will detect R2’s transmission during the RX busy period and
defer from using the current slot.

ODS suffers from the same problem as BTODS of being
overly conservative in scheduling flows. For example, consider
the situation described in Section IV-A using Figure 6. In
the given slot, R2 will overhear S1’s transmission during
the TX busy period. In response, R2 will transmit during
the RX busy period to let S2 know it cannot send data
in the current slot. However, S3 will also detect R2’s data
transmission during the RX busy period and falsely assume
it cannot send to R3 during the current slot.

D. Comparison of ODS and BTODS

There are advantages and disadvantages to both ODS and
BTODS. As discussed in Section IV-A and Section IV-C,
both protocols may be too conservative in scheduling flows.
It is our assumption that flow scheduling will be relatively
infrequent and, therefore, being conservative will not greatly
effect protocol performance.

The main disadvantage of BTODS is it requires the hard-
ware capability to provide two non-interfering channels, either
by splitting a channel or using two separate radios. If the
channel is split (e.g., using a small portion of the bandwidth
for the busy tone), then the bitrate of the data channel may be
slightly reduced and the busy tone may be more susceptible
to the effects of fading [34]. Also, the radio must be able to
receive on the data channel while simultaneously transmitting
on the busy tone channel, which may be difficult to achieve. If
two radios are used, then twice as much bandwidth is needed
and energy will be consumed by both radios. Also, by using a
separate busy tone channel, the channel conditions on the data
and busy tone channel may differ. BTODS requires that the
busy tone and data channel have the same receive and carrier
sense range, which may be difficult to achieve in practice. ODS
does not suffer these problems because it uses one channel.

The main disadvantage of ODS is the longer slot time
required by the protocol relative to BTODS. As shown in
Figure 4 and Figure 7, one ODS slot takes (2∆+TTX busy +
TRX busy) longer than a BTODS slot. Thus, less time is
devoted to data transmission in ODS. There is more control
overhead in terms of time and transmissions because nodes
must transmit during the TX busy and RX busy periods
when appropriate.

V. INTERACTIONS WITH UPPER LAYERS

A. Routing

For routing, we are focused on sensor-to-sink communi-
cations. Thus, we do not need an approach as general as
DSR [35] or AODV [36]. Instead, a simple approach for our
scenario is to periodically broadcast beacons from each of the
M sinks. We assume that the TTL of the broadcast is large
enough to reach all the nodes in the network and that beacon
sequence numbers are maintained such that each node sends
only one copy of each broadcast and suppresses all others.
This type of routing, which has been proposed previously [37],
[38], works well with BTODS and ODS because sinks can
schedule the beacons to propagate through the network at
periodic intervals. The disadvantage of this approach is when
the topology changes, nodes must wait a beacon interval to
learn of the change (as opposed to DSR or AODV, which adapt
faster). However, we feel that this beacon-based approach is
appropriate for sensor networks since the topology is fairly
static and the sensors can route to any of the M sinks.
Therefore, if a path to one of the sinks becomes unusable,
a sensor can route to a different sink until a new beacon is
heard.

The beacons do not have to be sent every Tcycle seconds.
Instead, they can be sent every (Kbeacon × Tcycle) time units,
where Kbeacon in an integer value. If Kbeacon is small, it
may be worthwhile to actually schedule a slot for the beacons
and defend the slot with dummy packets (if Kbeacon 6= 1) as
discussed in Section IV. However, if Kbeacon is large, nodes
could just send broadcasts with the ONE-SHOT bit set.

If a RERR needs to be propagated back to the flow’s source,
this can be done in BTODS and ODS by piggybacking the
RERR information on NACK packets sent during the Tctrl

period of a slot.

B. Congestion Control

Because each node maintains a schedule table of slots which
it is transmitting and receiving, this gives us an opportunity to
do congestion control proactively based on how full a node’s
schedule table is. Proactive congestion control is preferable to
the more traditional approach of rapidly decreasing sending
when packet loss is detected because it does not induce packet
loss or assume all loss is due to congestion. Each node can
calculate ffull, the fraction of slots in its schedule table which
are being used (i.e., ffull ∈ [0, 1]). Congestion notification
information can be piggybacked on the ACKs sent during
Tctrl.



One disadvantage of this simple congestion control scheme
is that a large ffull value is a sufficient, but not necessary,
condition for indicating the node will have a smaller proba-
bility of scheduling new flows. If ffull is small, a node may
still have a small probability of scheduling new flows if its
neighbors’ scheduled flows would interfere with most of the
node’s open slots in its schedule table.

C. Reliability

The BTODS and ODS protocols provide notification when
a packet is not received by the ACK/NACK sent during Tctrl.
However, BTODS and ODS do not retransmit the packet at the
MAC layer like IEEE 802.11. If retransmissions at the MAC
layer are desired, this could be done in a couple of ways.
First, there could be time set aside in each cycle which is
reserved for retransmissions. When a packet is not received in
an assigned slot, the nodes could turn on during this reserved
time and compete for retransmission (similar to competition
during the FLOW-ADV window). However, this incurs extra
overhead and requires tuning based on the number of expected
retransmissions per cycle.

An alternative is to have the nodes remain on when the
packet is not received in an assigned slot and attempt to
retransmit the packet in another slot with the ONE-SHOT bit
set. This allows the retransmission to be done in an on-demand
fashion. However, there is no guarantee that an open slot will
be found and the nodes may have to remain on for many slots
to listen to find an open slot.

Obviously, finding and using high-quality links is helpful
in increasing reliability. This is beyond the scope of the MAC
protocol. However, if links are thought to be of poor quality,
BTODS and ODS could attempt to compensate by scheduling
multiple slots for the flow rather than just one. This creates a
tradeoff in reliability and energy usage.

VI. FUTURE WORK

In the future, we plan to implement the protocols presented
in this paper in sensors [3]. We believe that the protocols
should be reasonably effective in scheduling flows at the MAC
layer to conserve energy and reduce interference. However,
there are many future avenues of work that are possible to
improve BTODS and ODS.

One possible improvement to BTODS and ODS is to
investigate how Tadv can dynamically change based on the
amount of flows that need scheduled. For example, one can
envision a scenario when flows are rarely scheduled except in
response to an event. When the event occurs, many nodes will
attempt to schedule flows. Thus, we would like Tadv to be
small in a steady-state, but increase quickly when events are
detected. A challenge is keeping all of the nodes synchronized
in this situation. Similar work has been done with the ATIM
window in IEEE 802.11 [12], [13].

Another area for future work is determining how to best
fragment the schedule table. For example, nodes may favor
scheduling flows in consecutive slots to reduce the energy cost
of transitioning on and off multiple times. However, because

A
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Fig. 8. Example topology to demonstrate BTODS scheduling effect on
latency.

of previous, existing flows, the sender and receiver pair may
not always be able to choose a slot which minimizes schedule
table fragmentation for each node.

Broadcast scheduling is another direction to improve
BTODS and ODS. If a broadcast cannot be scheduled for
a sender, it may be possible to send two multicast packets
instead. We plan to investigate how broadcast messages could
be scheduled as multiple multicast packets.

Finally, there is the issue of how scheduling affects buffering
requirements at intermediate nodes. We assume that a sensor
can schedule when it generates a data packet so that it does not
have to buffer a packet long before sending it in its scheduled
slot.

If a node receives a packet in slot i and sends it in slot
i + 1, the node buffers the packet less time than if it must
wait until slot i + j to send it (where j > 1). This also has
an effect on the sensor-to-sink latency. Consider the topology
in Figure 8 where D and E both want to create a flow to A.
If the D→B transmission is scheduled in slot i and the E→C
transmission is scheduled in slot i, then the B→A transmission
can be scheduled in slot i+1, but the C→A transmission must
be scheduled in slot i+2. Thus, the D→A flow has latency of
2 slots whereas the E→A flow has a latency of 3 slots (where
the packet remains buffered at C for 1 slot). If, however, the
E→C transmission had been scheduled during slot i+1, both
flows could have a 2 slot delay with no intermediate buffering
(again, this assumes that E can adjust its data packet generation
to create the packet in slot i instead of i + 1).

In addition to these proposed directions of future work, there
should be more extensive work on the interactions with upper
layers discussed in Section V. The upper layer interactions
should be specified in more detail and the tradeoffs more fully
explored.

VII. CONCLUSIONS

We have presented an on-demand TDMA MAC protocol
for sensor networks. We have described two variants of this
protocol, ODS and BTODS. The major difference is one
assumes that a separate, similar channel is available for busy
tones. Both protocols are designed to schedule sensor-to-sink
flows while reducing energy consumption due to collisions,
overhearing, control overhead, and idle listening. Sensors
schedule slots to send or receive data and then sleep for the



remaining slots in each cycle. BTODS and ODS allow nodes
to find slots which do not interfere with existing flows in their
vicinity. We discussed how the protocols interact with upper
layers in the network stack as well as areas of future work. We
believe BTODS and ODS represent light-weight protocols that
can be implemented in many sensor networks to allow efficient
data transmission while reducing energy consumption.
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