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TCP-DCR:A novel protocol for tolerating
wirelesschannelerrors

SumithaBhandarkarNauzadSadryA. L. N. ReddyNitin Vaidya

Abstract— This paper presents,TCP-DCR, a set of
simple modifications to the TCP protocol to impr ove
its robustness to channel errors in wir elessnetworks.
TCP-DCR is based on the simple idea of allowing the
link level mechanism to recover the packets lost due
to channel errors thereby limiting the responseof the
transport protocol to mostly congestion losses.This is
done by delaying the triggering of congestionresponse
algorithms for a small boundedperiod of time � to allow
the link level retransmissionsto recover the loss due to
channel errors. If at the end of the delay � the packet
is not recovered, then it is tr eated as a packet lost due
to congestion.We analyse TCP-DCR to show that the
delay in congestionresponsedoesnot impact the fair ness
towards the native implementationsof TCP that respond
to congestionimmediately after receiving thr eedupacks.
We evaluate TCP-DCR thr ough simulations to show that
it offers significantly better performance when channel
errors contribute more towards packet losses in the
network with no or minimal impact on the performance
when congestionis the primary causefor packet loss.We
alsopresentan analysisto show that protocol evaluation
in the wir elessnetworks is significantly influencedby the
number of flows in the network.

Index Terms— Wir eless Network, Channel Err ors,
TCP, Delayed CongestionResponse,Local Recovery.

I . INTRODUCTION

Thepopularityof wirelessnetworking hasincreased
dramaticallyover the past few years.However, inte-
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grating high delay, high channelerror wireless net-
works with existing wired networks still posessignif-
icant challengesto the researchcommunity. Incorpo-
rating end-to-endcongestioncontrol for wirelessnet-
worksis oneof theprimaryconcerns.Consideringthat
TCP is the mostprevalentcongestioncontrol protocol
usedon the wired Internet,compatibility issueswould
necessitateits useon wirelessnetworks as well. But,
TCP wasdesignedto work well in networks with low
channelerrorratesandwhenusedin wirelessnetworks
which are generally characterisedby larger channel
error rates,the lossesdue to channelerrors also get
treatedas congestionlosses,resulting in suboptimal
performance[1].

When both congestionlossesand lossesdue to the
transmissionerrorscanoccur, a simplesolutionwould
be to let the link layer mechanismsrecover the losses
due to transmissionerrorsand the transportprotocol
to recover the lossesdue to congestion.In order to
maintain the segregation betweenthe different layers
of the TCP/IP stack, the link layer should not be
requiredto know the semanticsof the transportlevel
protocol and the transport layer should not expect
explicit notificationaboutthe typeof the lossfrom the
network layer. Basedon theseideasandthe additional
requirementthat the solution should be simple and
incrementallydeployable, in this paper, we propose
Delayed Congestion ResponseTCP protocol (TCP-
DCR).

TCP-DCRworks in conjunctionwith a simple link
level protocol to provide the benefitsof standardTCP
implementationswithout the associateddegradationin
performancedue to channel errors in wireless net-
works. In TCP-DCR, the responseto the receipt of
duplicate acknowledgements(henceforthreferred as
dupacks)is delayedby a shortboundedperiod � . If the
packet is recoveredby link level retransmissionbefore
the endof the delayperiod � (indicatedby the receipt
of a cumulative acknowledgementacknowledgingthe



lost packet), TCP-DCRproceedsas if the packet loss
neveroccurred.However, if thepacket is not recovered
by link level retransmissionby the end of the delay
period,TCP-DCRprotocol triggersthe congestionre-
covery algorithmsof fastretransmissionandrecovery.
By doing this, we effectively changethe paradigm
of TCP that all lossesare due to congestion to the
paradigmthat all lossesare due to channelerrors for
a period of � . It may be notedhere,that no changes
needto be madefor the TCP at the receiver, andbase
stationsare not requiredto maintainany TCP-related
stateinformation.

The rest of the paper is organisedas follows. In
sectionII, we take a brief look at someof theexisting
solutionsto improveperformanceof TCPoverwireless
networks. In sectionIII, we provide the detailedanal-
ysis and discussionof TCP-DCR. In sectionIV, we
presentan evaluationof the TCP-DCRprotocolusing
simulations.SectionV wrapsup the paperby taking
a look at the conclusionsand open issuesregarding
TCP-DCR.

II . RELATED WORK

Over the past few years, several solutions have
been proposedto improve the performanceof TCP
over wireless networks. Thesesolutions fall in one
of the following broad categories: split connection
approaches,link layer schemes,explicit loss notifi-
cation approachesand receiver-basedapproaches.In
split connectionapproaches,the connectionbetween
the sender and receiver is split into two separate
connections,one betweenthe fixed senderand the
basestation and the other betweenthe basestation
andthemobile receiver. The lossesthatarenot related
to congestionarerecoveredby theconnectionbetween
thebasestationandthemobilehost,andhencehidden
from the fixed sender. I-TCP [2], MTCP [3], M-TCP
[4] andMETP[5] areexamplesof thisapproach.Some
of theseapproachesdo not maintain the end-to-end
semanticsof TCP. Theseprotocolsmay requirestate
to bemaintainedandpacketsto bebufferedat thebase
station.

In the link layer schemes,the lossesdue to trans-
missionerror are recoveredlocally by the link layer.
Suchschemescanbepurely local suchas[8] or aware
of the semanticsof the TCP protocolsuchas[6], [7].

The explicit loss notification approacheslike ELN
[9], ECN [10] andETEN [11] provide theTCPsender

with explicit notification that a loss has occurred.
Thesendercanthendecouplecongestioncontrol from
retransmissionto recover the packets lost, basedon
the type of notification. Theseschemesrequire the
receivers/network routers be able to distinguish the
channelerrorsfrom congestionlossesandbe capable
of marking the acknowledgementswith appropriate
notification.The sendersthen respondto the notifica-
tion. Suchapproachesrequiremodificationsto network
infrastructure,the receiversand the senders.

WTCP for WWANs [12] is a receiver-basedap-
proachwhere receiver computesthe desiredsending
rateusingratecontrolalgorithmandnotifiesthesender
of this rateusingthe acknowledgements.The receiver
has to do considerableprocessingto compute the
statistical information regarding lossesand observed
RTT. Another receiver-basedapproachis the Delayed
Dupackscheme[13] which closelyimitatesthe snoop
protocol at the receiver, so that the link level scheme
neednot be TCP-aware. In this schemethe third and
subsequentdupacksaredelayedfor a boundedperiod
of time, to allow the link layer time to recover the
packet. If the packet is recovered within the delay
period, the dupacksare not sent, otherwise all the
dupacksarereleased.

It has also beenshown that by using TCP-SACK
[14] or TCP-Westwood[15] insteadof TCPReno,per-
formancecanbe improved.However, theperformance
improvementgainedby usingTCP-SACK protocol,is
due to its ability to recover from multiple lossesin
oneRTT anddoesnot necessarilyindicaterobustness
to channelerrors.TCP-Westwood(referredhenceforth
as TCPW) aims at distinguishingthe lossesdue to
congestionin thenetwork from otherrandomlosses.In
TCPW, a rateestimatorthat estimatesthe fair rateby
samplingandexponentiallyfiltering the acknowledge-
mentsdictatesthewindow reduction.TCPWalgorithm
hasbeenshown to performbetterthanTCPRenowhen
the transmissionloss rate is large. In this paperwe
advocatethe useof TCP-DCRmodificationswith the
TCP-SACK flavor. The simplicity of this approach,in
our opinion, makes it a far more compellingsolution
than other TCP basedsolutions or non-TCP based
solutions for improving the robustnessof TCP to
channelerrorsin the wirelessnetworks.
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I I I . DISCUSSION

In this sectionwe provide a detaileddescriptionfor
the Delayed CongestionResponseTCP (TCP-DCR)
modifications.Traditionalimplementationsof TCPas-
sumethatpacket lossesareprimarily dueto congestion
in the network. As a result, when a packet loss is
indicated either by the receipt of three DUPACKs
or a time-out of the retransmissiontimer, it embarks
on congestioncontrol and packet recovery. This may
not be appropriatein a wireless network, where a
significantamountof the lossesin the network could
bedueto channelerrors.TheTCP-DCRmodifications
aim to remedythis by changingthe time at which the
fast retransmit/recovery algorithmsare triggered.The
receiptof dupacksis assumedto becausedby channel
errors, for a boundeddelay period � . If the packet
lossis indeeddueto channelerrorsandthe link layer
supportslocal recovery, thenthepacket is recoveredby
the link level retransmission,and our presumptionis
correct.However, if by theendof thedelayperiod,the
packet is still not recovered,the presumptionthat the
packet loss is dueto channelerrorsis abandonedand
the packet is recoveredusing the fast retransmission
andrecovery algorithms.

The delay in respondingto congestiondetermines
the performanceof TCP-DCR and the choice of �
is a critical aspectfor the TCP-DCR modifications.
In this section, we look at the behavior of TCP-
DCR underdifferent typesof losses,the choiceof � ,
the implementationdetails,assumptionsaboutthe link
level retransmissionschemeand the analysisof the
steadystatebandwidthfor TCP-DCR.

A. Behaviorof TCP-DCR

Fig. 1 shows the graphicalrepresentationof TCP-
DCR when (a) the loss of a packet is due to trans-
mission errors and (b) the loss of a packet is due
to congestion.The TCP-DCRsendersendspackets1
through5. However, due to channelerror, say, packet
2 is lost. This is communicatedby the link layer to
the basestation,say, by a negative acknowledgement
(NACK). The base station immediately retransmits
packet2. But beforepacket2 is recoveredby link level
retransmission,the TCP receiver sendsdupacksfor
packet 2. In thecaseof thetraditionalimplementations
of TCP, three dupackswould trigger an immediate

retransmissionof packet 2 at the TCP sender, fol-
lowedby anunnecessarywindow reduction.However,
in the caseof TCP-DCR, a delayedresponsetimer
of one RTT is startedat the senderwhen the first
dupackis received. During this delay period, packet
2 is recovered via link level retransmissioncausing
the TCP receiver to generatea cumulative acknowl-
edgementacknowledging packet 2. On the receiptof
this acknowledgement,the TCP-DCR sendercancels
the delayedresponsetimer, and the unnecessaryre-
transmissionof packet 2 and reductionin congestion
window is avoided. Also, TCP-DCR sendsone new
packet on thereceiptof eachdupack,if allowedby the
congestionwindow, similar to the proposedstandard
“Limited TransmitAlgorithm” [25]. This ensuresthat
during the delay � the sendingrate of the TCP-DCR
is the sameas it waswhenthe first dupackarrived.

Fig. 1. Behavior of TCP-DCR

In thecaseof acongestionloss,thepacketcannotbe
recoveredthroughlink level retransmission.Upon the
receiptof the first dupackthe delayedresponsetimer
is started.However, since the packet is droppedby
an intermediaterouterdueto congestion,a cumulative
acknowledgementfor the lost packet is not received.
When the timer expires, packet 2 is retransmitted
and the congestionwindow is reducedto half. An
important fact to rememberhere is that, the delay of� doesnot causetheTCP-DCRsenderto dramatically
over-sendpackets becausethe protocol is still ACK-
clocked. That is, a new packet is sentonly upon the
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receipt of a dupackand the sendingrate during the
delayperiod is atmostthe sendingratewhen the first
dupackarrived.

B. Choiceof �
It is clearfrom the discussionabove that the choice

of the delay � determinesthe performanceof TCP-
DCR. Too large a delaywould meanthat the protocol
respondstoo sluggishlyto congestionin the network.
Too small a delay would not allow the link layer
sufficient time to recover from the lossesdueto chan-
nel errors.Hencechoosingthe correct value for the
delay is important.It is essentiallya tradeoff between
unnecessarilyinferring congestion,and unnecessarily
waiting for a long time before retransmittinga lost
packet.In this sectionweprovideguidelinesfor choos-
ing reasonableboundson the delay to make it useful,
without adverselymodifying the TCP behavior. Note
that the currentpracticeof waiting for threedupacks
at the senderis merelya heuristic.

Fig. 2 shows a general scenariowhere the TCP
receiver is connectedto a basestationover a wireless
link. The wired pathbetweenthe basestationandthe
TCP sendercould consistof several hops,but would
not affect the discussionhere and so is shown as
a single hop. The round trip time betweenthe base
station and wirelesslink is indicatedby ����� and the
end-to-endround trip time betweenthe TCP sender
and the TCP receiver is indicatedby �
	�	 .

Fig. 2. Analysisof TCP-DCRwith no CongestionLosses

In the above scenario,if we ignore ambientdelays
(e.g., inter-packet delay, queuingdelay, etc.),a packet
sentby the TCP senderat sometime �
� reachesthe
basestationat �
�������
	�	����������
������� andthe receiver
at time �������
	�	���� . Suppose,a packet � sentat time��� is lost on the wirelesslink due to channelerrors.

Thenat ��� ���
	�	���� �����
����� the basestationreceives
indication that the packet � is lost. If it immediately
retransmitsthe packet, then the packet � is recovered
at the receiver at time �����!�
	�	������!�"�
� . The sender
receives an acknowledgementfor the packet � at�������
	�	����#�����
�$���
	�	���� . Hencethe senderwould
have to delay the congestionresponseby at least �����
timeunitsafterreceiving threeDUPACKs,to allow the
link layer to recover the packet. In practice,the inter-
packet delaysare non-zeroand the TCP sendermay
not know the value of ���
� . Hence,a simple solution
would be to set the lower bound on the delay in
congestionresponseto one �
	�	 .

The TCP protocol usestwo mechanismsfor iden-
tifying congestionin the network - the receipt of
threedupacksand the retransmissiontimeout (RTO).
The receipt of three dupacksis consideredto be an
indicationof mild congestionin thenetwork andhence
the responseto it is the triggering of fast retrans-
mission/recovery algorithms. An RTO, on the other
hand is treatedas an indication of severe congestion
in thenetwork, andsoin responseto it, thecongestion
window is resetto 1 and the window evolution starts
over with a slowstart.This is an extremely expensive
operation.The choice of � should be such that un-
necessaryretransmissiontimeoutsare avoided. Thus,
the upper bound on the delay � is imposedby the
retransmissiontimer of TCP. The RTO is usually set
to RTT + 4 times the measuredvariancein RTT. The
standardrecommendsa minimum of 1 secondfor the
RTO, but many TCP implementationshave a much
smallerminimum,e.g.,100 ms. A choiceof oneRTT
or less for the delay � , can ensurethat RTO can be
avoided.Thus,theupperlimit on thevalueof � is one
RTT.

Basedon the discussionabove, we concludethat a
choiceof waiting for one RTT after the first dupack
before respondingto congestionis reasonable.By
settingthedelayto oneRTT, ratherthana fixedvalue,
we also provide inherent robustnessto fluctuations
in the queuing delays ensuring that we do not get
into RTO timeout even during suddenchangesin the
network load.

C. ImplementationDetails

The TCP-DCR modifications need to be applied
only to the sender. The receiver remainsunmodified.
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The congestionresponseis delayedonly during the
congestionavoidancephaseandhencedoesnotmodify
the behavior during the slow start phase.During the
congestionresponsedelay, the congestionwindow
continuesto evolve as indicated by the congestion
avoidancealgorithm(additive increase).However, only
one new packet is transmittedin responseto each
dupackreceived.This is similar to the proposedstan-
dardlimited transmitalgorithm[25]. This ensuresthat
TCP-DCRremainsack-clocked during the congestion
responsedelayperiodanda new packet is put on the
network only when indication is received that one of
the previously sentpacketshasleft the network. Thus
the sending rate of the TCP-DCR senderduring �
remainsat best, the sameas when the first dupack
wasreceived.

If the congestionresponsedelay timer expires, the
fast retransmit/recovery algorithmsare triggered.The
ssthreshandthecongestionwindow aresetto half the
currentvalueof thecongestionwindow justasit would
be in a traditional implementationof TCP.

The sendercan implementthe delay either by us-
ing a timer or by modifying the threshold on the
number of dupacksto be received before triggering
the congestionrecovery algorithms (dupthresh). The
timer basedimplementationis quite straight forward,
but dependson the clock granularity. In the dupack-
baseddelay implementation,the sendercould delay
respondingto congestionfor awindow of packets,with
thewindow correspondingto thedelayrequired.Thus,
when � is chosento be one RTT, the senderwould
wait for the receiptof % dupacks,beforeresponding
to congestion,where % is the sendingwindow when
the first dupack is received. The implementationof
thedelayshouldtake carethata faulty implementation
doesnot endup resultingin anRTO. So,for thetimer-
implementationwe suggestthat thetimer besetto one
RTT as indicatedby the smoothedrtt estimatesince
the RTO estimateis computedbasedon the smoothed
RTT. In case of the dupack-basedimplementation,
the number of dupackscorrespondto the estimate
of current instantaneousrtt and so we suggestthat
the new value for dupthresh be scaledby the factor�'&"(*)�)��,+.-0/ �����1� / ��2435���6-879� :'7;&0�
<=79��<�7;-0)�3>& �"�
�1� .

The TCP-DCR modificationswork with most fla-
vors of the TCP protocol. However, in this paper
we advocate the use of TCP-DCR with TCP-SACK
to ensure that the performancecan be maintained

high even underthe conditionsof multiple lossesper
roundtrip time. Whenusedwith TCP-SACK, theonly
thing modified by TCP-DCR is the time at which
the fast retransmit/recovery algorithm is triggered in
responseto dupacksgeneratedby the first losswithin
a window of packets.All subsequentlosseswithin the
samewindow (irrespective of whetherthey aredueto
congestionor channelerrors) are handledin exactly
the sameway asTCP-SACK would in the absenceof
TCP-DCRmodifications.If the receiver is not SACK-
capable,however, then the senderwill have to use
TCP-DCR with other flavors such as NewReno. If
several packets are lost in one RTT, then the number
of dupacksbeing received is less,and becauseof the
ack-clocked natureof the sender, it implicitly forces
the senderthe reduceits sendingrate.

Use of delayedacks will not intervene with the
TCP-DCRmodifications,provided that the implemen-
tation of delayedacks follow the guidelinesin [24]
that the dupacks(or SACKs) arenot delayed.

D. ReceiverBuffer Requirementwhen TCP-DCR is
used

When TCP-DCR is used, the receiver will need
to have additional buffer spaceto accommodatethe
extra packets correspondingto the delay � , when a
packet is lost due to congestion.Having theseextra
buffers allows TCP-DCR to achieve the best perfor-
mance.However, if the buffers are not available, it
doesnot degradethe performancedrastically, but the
maximumperformanceimprovementis not achieved.
This is because,apart from congestioncontrol, TCP
also provides flow control such that a faster sender
does not flood a slow receiver. The flow control is
achieved by usinga receiver advertisedwindow, such
that at any point the TCP sendermay not sendmore
packetsthanthatallowedby (*:?7@��2BAC7D/.E,��A�7D/.� where24AC7D/ is the congestionwindow and ��A�7D/ is the
receiver advertisedwindow. When the buffer spaceis
not available,the receiver advertisedwindow is small.
As a result,duringthedelay � eventhoughthelimited
transmitandcongestionwindow allow a packet to be
transmittedit will not be sentif the ��A�7D/ (andhence
the receiver buffer) doesnot allow it. However, the
TCP sendercanstill delaythe congestionresponseby� allowing the local recovery mechanismto recover
from lossesdue to channelerrors.
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E. Link Level RetransmissionScheme

The performancebenefitsto be gainedfrom using
the TCP-DCR modificationsdependheavily on the
existenceof an underlyingschemefor recovering the
lossesdueto channelerrors.In this paper, we assume
that the underlyingmechanismis a simple link level
retransmissionscheme,possibly NACK-based, that
doesnot attemptin-orderdelivery. Someof the recent
researchin the area of networking for multimedia
[22] alsoadvocatethe useof link level retransmission
schemesthatdo not attemptin-orderdelivery. Alterna-
tively, FEC(ForwardError Correction)schemescould
alsobe used.

A link layer protocol that doesnot attemptin-order
delivery in combinationwith the TCP-DCR protocol
is suitedwell for satelliteconnectionswhich arechar-
acterizedby large roundtrip delays.The wirelesslink
continuesto transmitsubsequentpacketswhile it waits
for the ACK/NACK for a particular packet, thereby
keeping the pipe full. If the packet is lost due to
channelerrors,thenit is retransmittedandrecoveredat
thelink level withoutunnecessaryreductionin sending
rateat the transportlevel.

F. Analysisof SteadyStateBandwidth

In this sectionwe presentan analysisof the steady
state bandwidth of TCP-DCR. The analysis is con-
ducted along the similar lines of that presentedin
[19], [20]. This is an approximatemodel aimed at
capturingthe behavior of TCP-DCRin networks with
mild congestion,such that the protocol is mostly in
the congestionavoidancestate.When the TCP-DCR
modificationsare applied to the TCP-SACK variant,
timeouts are largely avoided and this assumptionis
close to the real behavior of the protocol. The time
betweentwo successivepacket lossesis assumedto be
deterministic.Undertheseassumptions,thecongestion
window behavior of TCP is cyclical and easier to
analyse.This simplified model for analyzing TCP-
DCR provides us with the relationshipbetweenthe
throughputand the packet loss rate and allows us to
comparethe samewith a standardimplementationof
TCP undersimilar assumptions.

The congestionwindow for TCP-DCRcan be rep-
resentedusing two functions FHG"�I�1� and F�J��I�1� , whereFHG"�I�K� determinesthe window behavior beforethe time�
L,M�NPO when a packet is droppedand F�J��I�1� determines

the behavior after the packet drop. The function FHG"�I�1�
is the additive increasefunction just as in traditional
flavors of TCP. The function F J �I�1� has two com-
ponents.For the time period � between ��L,M�NIO and�
L,M�NIO"Q>R , F�J��I�K� continues with the additive increase
function.Immediatelyafter thecongestiondelaytimer
expires, i.e., at ��LKM
NIO"Q>R8Q9S , the congestionwindow is
decreasedmultiplicatively. Thesetwo functionscanbe
representedas follows-FHG"�I�1� THA�U Q9V5W.W X A�UY�[Z#\KZ�]^�F J �I�1� THA U Q9V5W.W X A U �[Z#\KZ�]^�_E���L,M�NIOa`[�b`��
L,M�NPOC�[�A�Udc'eIfdg
h"i X jlk A�Udc�e�fdg
h"i,m"n1\ j ]o�_E���pq�
L,M�NPO�Q>R

(1)

where A�U is the congestionwindow at time � , �
	�	
is the round trip time, � is the delay in congestion
responseand Z and j are constants.Fig. 3 shows
the graphicalrepresentationof the congestionwindow
againsttime.

Fig. 3. Analysisof TCP-DCRwith no ChannelErrors

Let the 	Dr be the time betweentwo successive
drops and let str be the numberof packets sent by
the protocol in this time. From equation[1], using
continuousfluid approximationandlinearinterpolation
of the window betweenA�U and A�U Q9V.W5W we get/uA/u� p Z�
	�	 v Aqp Z;��
	�	 �ow (2)

As canbe seenfrom Fig. 3, the parameters	 r andstr areindependentfrom time shifting thecurvealong
the horizontal (time) axis. This implies that one can
arrangeit such that a downward interpolationof the
curve passesthroughthe origin. That is, without loss
of generalityandwith no changeto 	Dr and sxr , one
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canset w = 0. Thuswe have,A p Z;��
	�	v � p A��
	�	Z
The throughput y (in packets per second)can be

given by the number of packets that can be sent
betweentwo successive drops ( sxr ) divided by the
time interval betweentwo successivedrops( 	Dr ). From
the Fig. 3 we have,	9r p �
zJ �{��z G p �
Jb���,Gp �
	�	Z �'AbJ��{A�G0�

Thewindow reductionis determinedby theconstantj . Hencewe have, A�Gbp j AbJ . Substitutingthis in the
above equation,we get,	Dr p �
	�	Z | AbJ | ��}�� j � (3)str is theshadedareunderthecurve in Fig3.Hence,str p ~ U��U�� Ax�I�K� /H��
	�	 p }�6Zq| A JJ |>� }�� j JB�

(4)
However, since str is the numberof packets be-

tween two consecutive drops, the steadystate drop
probability p = 1/s r .}� p strop }�6Z | A JJ |Y� }�� j J����	�+.3Y&uE,A J p � �6Z� �,}b� j J � (5)

Substitutingthesevaluesin thethroughputequation,

y p � �_� G QY�"�J � GK� �"��
	�	�� � (6)

It is evident from the above result that the through-
put of the TCP-DCR protocol is similar to that of
a standardimplementationof TCP that respondsto
congestionsignals immediately after the receipt of
threedupacks[19] and is not affectedby the choice
of � . Even though,the TCP-DCRprotocol continues
to increasethe congestionwindow and seemsmore
aggressive than TCP during the delay period � , the
window reductionat the end of �
	�	q��� resultsin
a larger decreasethan the reduction at the end of�
	�	 . So,theoverall characteristicsof theprotocolare

similar to thatof TCP. However, in practiceincreasing� arbitrarily is not a recommendedaction, as this
would delay relieving the congestionin the network.
Moreover, it would delay the recovery of the lost
packet by the TCP-DCR sender. Our analysisonly
applies to the casewhere a single packet is lost in
a congestionwindow andan arbitrarily large � would
negatethat assumption.

Basedon the analysisin sectionIII-B, we hypoth-
esizethat setting the delay in congestionresponseto
oneRTT would be an appropriatechoice.This would
allow sufficient time for the basestation to recover
the lost packet at the link layer, while relieving the
congestionquickly.

G. Sender-basedDelay Vs Receiver-baseddelay

Postponingthedecisionthat thedupacksarecaused
by apacket lossdueto congestioncanbedoneateither
thesenderor thereceiver. However, in thereceiver-side
transportlayer schemesuchas [13] it is difficult to
find an optimal value for the delay, sincethe receiver
is unawareof sendersRTT estimates.

Also, whenthedelayis implementedat thereceiver,
be it at the transport layer or at the link layer [8],
the ack-clockat the senderis lost. As a result,during
the delay while the lossesdue to channelerror are
recovered,the senderdoesnot sendany packets and
the flow remainsidle.

In the caseof small hand-heldreceivers, it may
not be feasibleto perform complicatedprocessingat
the receiver. In order to keep the receiver simple, it
maybedesirableto leave theprocessingto thesender.
In addition, if the architectureis a client-server, by
modifying oneserver, all theclientscouldbenefitfrom
improved performance.

Traditionally, in thedesignof TCPalgorithms,most
of the intelligenceof flow andcongestioncontrol has
been at the sender. It would be in tune with this
practiceto include the modificationsat the sender.

IV. SIMULATION RESULTS

In this section we present the evaluation of the
TCP-DCR protocol basedon simulationson the ns-
2 simulator[21]. TheTCP-DCRagentis implemented
by modifying the TCP-Sack1agent in ns-2. Timer-
baseddelay is usedfor delayingthe triggering of the
fast retransmit/recovery algorithms. The TCP clock
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resolutionis setto 10ms(similar to Linux TCP).Upon
receiving the first dupack, the congestionresponse
delay timer is set. If a cumulative acknowledgement
is received acknowledging the packet perceived to be
lost, thenthetimer is reset.If thetimer expiresandthe
fast retransmit/recovery algorithmsare triggeredthen,
any additional“holes” are treatedin exactly the same
way asTCP-SACK would, irrespective of whetherthe
holesare due to channelerrorsor congestionlosses.
The TCPSink agent is used for the receivers. The
buffersizeavailable at the receivers (indicatedby the
receiver advertised window) is set to atleast twice
the highestpossiblecongestionwindow, to ensurethe
maximumperformanceimprovementduring the delay� . Link level retransmissionis simulatedby modifying
the errormodelandthe queueobjectsprovidedby ns-
2. The error model is exponential,and the corrupted
packets are buffered at the basestation and retrans-
mitted after a delay correspondingto the ���
� of the
wirelesslink, thussimulatinglink level retransmission.
The packet to be retransmittedis addedat the headof
thequeuethatholdsthepacketsawaiting transmission.
FTP sourcesare usedto generatetraffic, which start
sending data at time 0. In experimentswhere the
topology consistsof several flows, the start time of
the different sourcesare staggeredby 1 secondto
avoid synchronization.All simulationsarerun for 1100
seconds,but data is collectedonly after the first 100
secondsto ensurethat steadystateis reached.

In thesesimulations,wecomparetheperformanceof
TCP-DCRwith theperformanceof TCP-SACK. Since
TCP-DCRis theTCP-SACK protocolwith thedelayed
triggeringof thefastretransmit/recoveryalgorithm,the
resultsgive us an idea of the extent of performance
improvementsto be gained by simply delaying the
congestionresponseby oneRTT. It hasbeenshown by
earlierwork [18], [16] that the impactof a slowly re-
spondingprotocolon fairness,goodput,droprates,etc
arebetterwhenthebottlenecklink routerusesanactive
queuemanagementschemelike RED. Since the aim
is to find if, and by how much the behavior of TCP-
DCR impactsunmodifiedTCP-SACK or the network,
we have chosento use Droptail queuemanagement
in our experiments.To be complete,we have carried
out someexperimentsusing RED as well and some
of theseresultsare reportedin section [IV-B.6] and
[IV-B.7].

The resultsof thesimulationsarepresentedin three

separatecategories- 1. Experimentswith no conges-
tion losses: This category of simulationshelp under-
standtheeffectof channelerrorson theperformanceof
the protocolswith andwithout the delayedcongestion
response.2. Experimentswith only congestionlosses:
It is importantto evaluatehow theTCP-DCRbehavior
differs from the behavior of the TCP-SACK protocol
in the presenceof congestionlosses.In orderto avoid
interferencefrom channelerrors, in this category we
presentresultsof simulationswhere the network has
only congestionlosses.3. Other Experiments:This
category presentsresultsfor scenarioswherethe net-
work has both channelerrors and congestionlosses
for low-delay wireless links as well as high-delay
satellite links. In this category, we also presentthe
resultsof thecomparisonwith theTCP-Westwood[15]
protocol. By evaluating the TCP-DCR protocol in
differentscenarioswe aim to provide a comprehensive
understandingof the protocol behavior with delayed
congestionresponse.

A. Experimentswith No CongestionLosses

Thesimplenetwork topologyshown in Fig. 4 is used
for theseexperiments.ThesourceS is connectedto the
routerR1 which in turn is connectedto thebasestation
by wired links. Thereceiver R is connectedto thebase
stationby wirelesslinks. Thewired link bandwidthand
delay is fixed at 100 Mbps and5 ms respectively and
the buffersize is set to the delay-bandwidthproduct.
The wirelesslink bandwidth,delayandthe buffersize
areasshown in eachindividual simulation.Thesource
S performsa single bulk datatransferto the receiver
R with a packet sizeof 1000bytes.

Fig. 4. Network Topology for Experimentswith No Congestion
Losses

1) PerformanceComparisonat Different Channel
Error Rates: For this experiment the wireless link
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bandwidthand delayare fixed at 1 Mbps and 20 ms.
The wirelesslink bandwidthis muchsmallerthan the
wired link bandwidth.In orderto ensureno congestion
lossesoccur, thereceiver advertisedwindow is fixedat
40 packetsand the wirelesslink buffersizeis fixed at
50 packets.The X-axis shows the channelerror rates
in percentageof the packetscorruptedand the Y-axis
shows the throughputin Mbps.

Fig. 5. ThroughputVs ChannelError Rate

Theexperimentaltopologyhasbeenchosento allow
theTCPflows to maximizethe link utilization without
causing any drops due to congestion.However, in
the caseof TCP-SACK, sincethe sourcerespondsto
the channelerrors by reducingthe sendingrate, the
throughputstarts to deteriorateas the channelerror
rate increases.Even thoughthe link capacityis small
andthedelayis relatively short,resultingis a relatively
small rtt, the TCP-SACK flow cannotfully utilize the
link. On the other hand, due to delayedcongestion
responsealgorithm,TCP-DCRpostponesthe window
reductionupon loss notification. This allows the link
layer retransmissionschemetime to recover the lost
packets therebymakinga window reductionunneces-
sary. Thus,whenthereis nocongestionin thenetwork,
the performanceof TCP-DCR is better than that of
TCP-SACK and even at high channelerror rates it
is comparableto the performancewhen thereare no
channelerrorsat all.

2) PerformanceComparisonat Different Wireless
Delays: Someof the wirelessnetworks, suchas local
wirelessLANs have delaysof the order of few mil-
lisecondsto few tensof millisecondswhile thesatellite
links, are characterizedby much larger delaysin the
order of hundredsof milliseconds[26], [27]. In this
sectionwe show theeffect of thewirelessdelayon the
performanceof the different protocols.The wireless
link bandwidth is fixed at 1Mbps and the receiver

advertised window and the wireless link buffersize
are adjustedto maximize the link utilization even at
large delays,without incurring congestionlosses(125
packets and 150 packets respectively). Fig. 6 shows
the results.Throughputis plotted on the y-axis. The
x-axis shows the differentwirelessdelays.

Fig. 6. ThroughputVs WirelessLink Delay

It canbe seenfrom the graphthat the performance
of TCP-DCRdoesnot vary much when the wireless
delayis varied.Theperformanceof TCP-SACK on the
other hand,deterioratesdrasticallyas wirelessdelays
areincreased.This is becauseat largerwirelessdelays,
when the window is reduced,it takesa long time for
the protocol to increaseit back to the optimal value.
This resultsin fairly degradedperformanceat higher
link delays.TCP-DCR is more robust in the face of
large wirelessdelayseven at high channelloss rates.

3) PerformanceComparisonat Different Wireless
Bandwidths: Improvementin wirelesstechnologyhas
beenconstantlyraising the bar on how much band-
width the wireless channelsoffer. We evaluate the
impactof channelbandwidthon protocolperformance.
The wirelesslink delay is fixed at 20ms.The buffer
size and the receiver window are adjustedfor each
simulationto allow maximumlink utilization, without
causingany congestion.Fig. 7 shows the results.

It can be seen from the graph that the TCP-
SACK flows cannotutilize the link bandwidthwell.
At higher channelerrors,due to persistentreduction
in the sendingrate the congestionwindow remains
small,andno matterhow muchnetwork bandwidthis
available,thethroughputof theTCP-SACK flowsstays
almostconstantat a small value.TCP-DCRon the the
otherhand,avoidsreducingthecongestionwindow for
channelerrors and hence,is capableof utilizing the
availablebandwidthmuchmoreefficiently.
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Fig. 7. ThroughputVs WirelessBandwidth

4) PerformanceComparisonwith Varying Number
of Flows: At this point we take a slight deviation
to inspectan important factor to be consideredwhile
evaluatingthenew flavorsof TCPprotocol- theeffect
of the numberof flows on the simulationresults.An
importantobservation madeduring the above experi-
mentswasthatTCPflows werenot ableto completely
utilize the bandwidthat high channelerror ratesand
high wirelessdelays.It would seemintuitive thenthat
as the numberof flows in the network is increased,
the utilization of the link could be improved, because
when one flow backsoff in responseto packet loss,
someotherflow couldutilize thelink. Soweconducted
a simulation where the wireless link bandwidthand
delaywerefixedat 6Mbpsand20 ms,but the number
of flows betweenthe source S and the receiver R
wasincreased.Thereceiveradvertisedwindow andthe
buffersize are adjustedso that a single flow without
any lossescan almostfully utilize the link. However,
note that, when the numberof flows is increased,the
congestionlossesno longer remainzero. The results
arepresentedin Fig. 8.

Fig. 8. ThroughputVs Numberof Flows

As expected,the link utilization does improve at
highernumberof flows.Wehave includedtheseresults

in this paperto demonstrateanimportantpoint: results
for new protocolsshown for just a fixed numberof
flows are not sufficient. In this case,for the network
topology that we have chosen,by having a fixed
numberof flows greaterthan8, TCP-SACK could be
shown to provide very goodperformanceevenat very
high channelerror rates.

Another perspective on this issuecan be provided
by the following argument.It hasbeenshown in [19]
thatthethroughputof theTCPprotocolis proportional
to GV5W.W>��� O (whentimeoutsareignored),where� is the
lossrateseenby aTCPflow and �
	�	 is theroundtrip
time perceived by the TCP sender. When there is no
congestionin the network, � representsonly channel
errors for TCP-SACK . Theselossesdo not depend
on the numberof flows in the network, and are fixed
relative to the numberof flows in the network. Then
for any particularvalueof � and �
	�	 , the throughput
obtainedby a TCP sourceis fixed, sayat 	 . The fair
shareof bandwidthfor any particularflow whenthere
are 7 differentflows in thenetwork is ����7 . Whenthe
valueof 7 is chosensuchthat �a��7��[	 , it will appear
as if the protocol is making the bestutilization of the
available bandwidth,irrespective of how the protocol
treatsthe channelerrors.

ConsiderTCP-DCR on the other hand.As shown
in the equation6, the throughoutof a TCP-DCRflow
is alsoproportionalto GV5W.W>��� O . However, in this case,� primarily representsthe loss rate due to congestion
in the network. As a result, when congestionin the
network is zero, the throughoutis only controlledby
the receiver’s window. In other words, when there is
no congestionin thenetwork, theTCP-DCRcaneffec-
tively utilize all the available bandwidth,irrespective
of the numberof flows in the network.

It might be tempting at this point to suggestthat
all we need,to improve the performanceof TCP on
a wirelessnetwork, is to fill up the pipe with many
flows suchthatall the bandwidthcanbe utilized. This
couldprobablybe a feasiblesolutionif we canensure
that at all the times therewill be enoughflows in the
network to keepit fully utilized.However, if thatis not
the case,and we wish to have maximum utilization
irrespective of how many flows are in the network,
then we would requiremodificationsto existing TCP
protocols.Also, wirelesstechnologyis improving at a
rapid rate,and as new technologybecomesavailable,
thebandwidthkeepsincreasing.Thehigherbandwidth
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would requirelarger numberof flows to keepthe link
fully utilized for the samechannelerror rate.It would
beunreasonableto dependonly on thenumberof flows
in the network to make the bestuseof the available
bandwidth.

B. Experimentswith Only CongestionLosses

In this section, we present the results from the
simulations,where the lossesare only due to con-
gestion.The TCP-DCR protocol was designedwith
the goal of providing robustnessto wirelesschannel
errors, with minimal modificationsto the core TCP
behavior. Hence,in the absenceof channelerrors,we
would like theTCP-DCRprotocolto behavesimilar to
the TCP-SACK protocol. In this sectionwe evaluate
this issue at three different levels - (a) flow level -
throughput (relative fairness)when TCP-SACK and
TCP-DCRflows competewith eachother, time taken
to relieve and reclaim bandwidthfor suddenchanges
in available bandwidthand interactionwith web-like
transfers.(b) protocollevel - Packet Delivery time and
RTT estimationfor individual flows. (c) the network
level - averagequeuelengths and drop rates at the
bottlenecklink.

Thetopologyusedfor theseexperimentsis asshown
in Fig. 9. The links between the sourcesand the
router are high-capacitywired links with bandwidth
100Mbps,delay5msandbuffersizeequalto thedelay-
bandwidth-product.The link betweenthe router and
thebasestationis thewired bottlenecklink of capacity
10Mbps and delay 5ms. The links betweenthe base
station and the receivers are wireless with capacity
1Mbps, delay 20ms and queue-lengthof 50 packets.
Congestionlevel on the bottlenecklink is modified
by varying the buffersize on the link between the
router and the basestation. The receiver advertised
window is set suchthat in the absenceof congestion
at the bottlenecklink, the per-flow throughputdoes
not exceedthe wireless link capacity to ensurethat
the congestionhappensonly on the link betweenthe
router and the basestation. Each sourceperformsa
singlebulk datatransferto the correspondingreceiver
with a packet sizeof 1000bytes.The durationfor the
ftp transferfor most experimentsin this paperis set
to 1100 seconds,but for the experimentsinspecting
the behavior at the flow level and the queuelevel,
the transferduration is smaller - 200 seconds- due

to the large amountof databeingcollected.The total
numberof flows in thenetwork is 24 (unlessotherwise
mentioned).

Fig. 9. Network Topology for Experimentswith Congestion
Losses

1) PerformanceComparisonat Different Conges-
tion Loss Rates: In this experiment we evaluate
the interaction between12 TCP-DCR and 12 TCP-
SACK flows. Fig. 10 shows the averagethroughputof
the TCP-DCR flows in comparisonwith the average
throughputof the TCP-SACK flows.

Fig. 10. ThroughputVs CongestionLossRate

As can be seen from the graph, the TCP-DCR
flows sharethe bottlenecklink with the TCP-SACK
flows in a relatively fair manner. For long-termflows,
delaying the congestionresponseby one RTT does
not make TCP-DCRmoreaggressive comparedto the
TCP-SACK flows. TCP-DCR is observed to respond
to congestionfasterthan someof the other proposed
protocols [16],[18] which are shown to be TCP-
compatible.The earlier studieshave shown that even
in dynamicnetwork conditions,the slowly responding
protocolsare fair andsafefor deployment[17]. Since
TCP-DCR respondsto congestionfaster than these
earlier protocols,we expect TCP-DCR will be safe
even in dynamicnetwork conditions.
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2) PerformanceComparisonfor SuddenChangesin
Available Bandwidth: In this experimentwe evaluate
the performanceof TCP-DCR in comparisonwith
TCP-SACK for suddenchangesin the available bot-
tleneckbandwidth.The network consistsof 24 flows.
Half the flows do long-term ftp transfer starting at
time 0 secondsusing the protocol being evaluated.
The other half of the flows carry shorter ftp trans-
fer (referredhenceforthas traffic) using TCP-SACK
starting at 50 secondsand lasting for 50 seconds.
Thus,50 secondsafter the long-termflows arestarted,
the available network bandwidthgoesdown by 50%.
At 100 seconds,the traffic stops, and the available
bandwidth doubles back to the original level. The
averagelink droprateover theperiodof thesimulation
is about2%. Fig. 11 shows the aggregatethroughput
of the long term flows and the traffic (computedwith
1 secondbins) againsttime. From the figure it is clear
that the responseof TCP-DCRto suddenfluctuations
in traffic is similar to that of TCP-SACK.

Fig. 11. ThroughputVs Time for SuddenChangesin Traffic

In order to quantify the reaction time to sudden
changesin load, we computedthe time it takes for
existing flows to drop down to 55% of the link
capacity, thusallowing the new flows to achieve 45%
of the link capacity. The time to reach(55%, 45%)
allocation for TCP-SACK was 5.89 secondsand for
TCP-DCR,it was3.80seconds.This shows thatTCP-
DCR is not worsethan TCP-SACK in respondingto
suddenincreasesin traffic load.

3) Interaction with Web-like Traffic: In this section
we evaluatethe performanceof TCP-DCRand TCP-
SACK when competingwith a traffic mix of several
short-term flows simulating web-transfers.The net-
work consistsof 8 long-term ftp flows(TCP-SACK
or TCP-DCR) and 500 web-like flows(TCP-SACK).
The transfersare started at around 0 secondswith
a staggeringof 1ms to avoid synchronization.Each

short-termflow sendsN packetsafter T secondsfrom
the start of its previous transfer. N is drawn from a
uniformdistribution between10and20andT is drawn
from a pareto distribution with mean 15 seconds,
simulating the different requestsizesand user think-
times. The randomvariable generatorsfor the short-
term flows are seededwith the flow id, so that any
given flow hasa fixed pseudorandomsequence.This
ensuresthatwhenthesimulationis first run with TCP-
SACK ftp transfersandthenrepeatedwith TCP-DCR
ftp transfers,the randomvariablesusedin simulating
the web transfers,have the samevalue. The average
link droprateover the periodof the simulationis 3%.
Fig. 12 shows the aggregate throughputof the long
term flows and the traffic (computedwith 1 second
bins) againsttime.

Fig. 12. Interactionwith Web-like Traffic

In the caseof TCP-SACK, the aggregatethrough-
put of TCP-SACK flows over the simulation pe-
riod is 4.76Mbps, and that for the web traffic is
4.84Mbps. The aggregate throughput of TCP-DCR
flows is 4.73Mbps and that for the web traffic is
4.82Mbps.This indicatesthat the interaction of the
TCP-DCRflows with short-termweb traffic is similar
to that of TCP-SACK.

4) Packet Delivery Time: In this section and the
next we take a look at some of the protocol level
dynamics.Since the TCP-DCR protocol delays the
triggering of the congestionrecovery algorithms by
one RTT, it is possiblethat the packet delivery time
duringcongestionis increasedby uptooneRTT. When
there is no congestionin the network, the packet
delivery time is unaffected.In this sectionwe present
the resultsof simulationsverifying the packet deliv-
ery time for the TCP-DCR flows in comparisonto
the TCP-SACK flows. Threeseparatesimulationsare
considered- in the first, all 24 flows areTCP-SACK,
in the secondall 24 flows are TCP-DCR and in the

12



third, half the flows (ie, 12 flows) are TCP-SACK
and the other half are TCP-DCR. This allows us to
comparethe packet delivery time for TCP-DCRwith
that of TCP-SACK, and also examine the effect of
TCP-DCRflows on the packet delivery time of TCP-
SACK flows whenthe workflows consistsof a mix of
thetwo flavors.Theaveragecongestiondroprateat the
bottlenecklink is maintainedat about3.3%by usinga
buffersizeof 70 packetsat the bottlenecklink. Fig. 13
shows theplot of packet delivery timesfor a randomly
chosenTCP-DCR/TCP-SACK flow againstthe packet
sequencenumber.

Fig. 13. Packet Delivery Time

The plots show that the packet delivery times are
scatteredin two regions. The dense population of
points around 60-100ms representthe packets that
are delivered normally. The points with larger delay
representspacketsdelayeddueto larger instantaneous
queue lengths and the packets that are recovered
through retransmission.In the first simulation where
all theflows areTCP-DCRtheaveragepacket delivery
time for packets of the sample flow recovered via
retransmissionis 398ms. In the second simulation
whereall theflows areTCP-SACK flows, it is 302ms.
In the third simulation where 50% flows are TCP-
DCR and the other 50% are TCP-SACK, the average
packet delivery time for retransmittedpackets of the
sampleTCP-DCRflow is 356msandfor TCP-SACK,
it is 296ms.We noticefrom theseobservationsthat the
recovery time for a retransmittedpacket in caseof the
sampleTCP-DCR flow is aboutone RTT more than

that of the sampleTCP-SACK flow. Also, we notice
thatwhentheworkloadconsistsof a mix of TCP-DCR
and TCP-SACK flows, the time to recover a packet
throughretransmissionsfor TCP-SACK is notaffected,
comparedto thesimulationwith all TCP-SACK flows.

5) RTT Estimates:As explainedin the above sec-
tion, delayingthe congestionresponseof TCP by one
RTT can increasethe packet recovery time of lost
packets. The packet delivery time for the rest of the
packetsis similar to that in any standardimplementa-
tion of TCP. According to Karn’s algorithm usedby
moststandardimplementationsof TCP, a retransmitted
packet is not usedin estimatingthe round trip time.
Thus the delayedcongestionresponseof TCP-DCR
does not affect the rtt estimation of TCP. Fig. 14
showstheplot of instantaneousrtt, smoothedrtt andrtt
variancefor a randomlychosenTCP-DCR/TCP-SACK
flow againstthe packet sequencenumber. The results
agreewith the discussionpresentedhere.

Fig. 14. RTT Estimation

6) Effect on network QueueLengths: In this sec-
tion, we evaluatethe effect of TCP-DCRflows on the
bottlenecklink queuelength. The network topology
is similar to that in the above section.The average
bottlenecklink drop rate is about3.3 - 3.4%. Fig. 15
shows the plot of the instantaneousand the average
queuelengthat the bottlenecklink.

With 24 flows in the network, the droptail queue
at the bottleneck link is almost full all the time
irrespective of whether the flows are TCP-DCR or
TCP-SACK. Thus it is hard to evaluatethe impactof
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Fig. 15. Bottleneck Link QueueLength with Droptail Queue
Management

TCP-DCR on the queuelengths.The averagequeue
length variesslightly (51 packets when all flows are
TCP-DCR, 50 packets when all the flows are TCP-
SACK and 52 packets for the mixed workload), but
the differenceis negligible.

To further investigatethis matter, we replacedthe
queue managementscheme at the bottleneck link
router with RED. The minthresh and maxthresh pa-
rametersaresetto 25%and75%of thetotalbuffersize.
Fig. 16 shows the plot of the instantaneousand the
averagequeuelengthat the bottlenecklink.

Fig. 16. Bottleneck Link Queue Length with RED Queue
Management

It canbeseenfrom this graph,that thequeuelength
doesnot changemuch.The averagequeuelengthsare
36, 34 and35 packets,whenall flows areTCP-DCR,
TCP-SACK or a mixture of the two respectively.

7) Effect on Bottleneck Link CongestionLossRate:
One of the primary concernswhen protocol charac-
teristics are modified is the effect the modifications
have on thenetwork. TCP-DCRdelaystheresponseto
lossnotification.Hence,it is interestingto studyhow
an increasein the offered load effects the congestion
droprateon the bottlenecklink. For this simulation,
we keep all the other parametersconstantand vary
the number of flows in the network and study the
congestiondroprateat the bottlenecklink. Note that
the receiver window is adjustedsuch that the per-
flow throughput is always less than the capacity of
the wireless link and hence the congestionoccurs
only at the bottleneck link. The buffersize at the
bottlenecklink betweentherouterandthebasestation
is fixed at 50 packets to ensurethat a wide rangeof
congestiondropratesmay be observed,as the number
of flows is varied. The simulationswere conducted
acrossthe three traffic workloads consideredin the
earlier sections.The first graph in Fig. 17 shows the
results.TCP-SACK (100,0),TCP-DCR(0,100)repre-
senttheaveragelink dropratewhenall theflows in the
network are TCP-SACK and TCP-DCR respectively.
TCP-SACK (50,50) and TCP-DCR (50,50) represent
the averagedropratesobserved by TCP-SACK flows
and TCP-DCRflows respectively when the workload
consistsof a mix of both the flows. It can be seen
from the graph that the averagecongestionloss rate
observed for TCP-DCR is similar to that of TCP-
SACK.

Fig. 17. BottleneckLink CongestionLoss RateVs Numberof
Flows

Again, in the interestof being comprehensive, we
repeatedthis experimentwith REDqueuemanagement
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schemeat the bottlenecklink. The secondgraph in
Fig. 17 shows the results. In the previous section
we noticed that the averagequeuelength is slightly
differentin the threecases.In anRED queue,thedrop
probability dependson the averagequeuelength and
hencethe averagedrop probability variesslightly for
the threecases,but the differenceis fairly negligible.

C. Other Experiments

In this sectionwe presentresultsfor thesimulations
where the network has both wireless channelerrors
andcongestionlossesaswell asresultsfor comparison
with TCP-Westwood.Thetopologyfor thesenetworks
is similar to thatof experimentswith congestionlosses
only.

1) PerformanceComparisonat Different Channel
Error Ratesand Congestion losses: In this section,
we presentthe results when the network has both
channelerrors and congestion.The network has 24
flows and the buffersizeat the bottlenecklink router
is modified to obtain different levels of congestion.
Half of the flows use TCP-SACK and the other half
useTCP-DCR.Fig. 18 shows theresults.In thegraph,
congestionloss ratesof less than 1% are labelledas
low error, in the range of 2.5-3.5% are labelled as
moderatecongestionandgreaterthan3.5%arelabelled
ashigh congestion.

Fig. 18. ThroughputVs ChannelError Ratewith Congestionin
the Network

It can be seenfrom the figure that when the con-
gestionlossrate is low, the averagethroughputof the
TCP-DCRflows is far more than that of TCP-SACK
flows. This is not becausethe TCP-DCR flows are
more aggressive than TCP-SACK. Rather, it is due
to the fact that the TCP-DCRflows can make useof
the link bandwidthnot utilized effectivelyby theTCP-
SACK flows. Recall from the discussionin section

IV-A.1 that the TCP-SACK flows cannotutilize the
availablebandwidthcompletelyat high channelerrors
becauseof persistentwindow reductions.The TCP-
DCR flows claim this shareof thebandwidthnot used
by the TCP-SACK flows. So when the congestionin
the network is low, the TCP-DCRflows help improve
the link utilization without starving the TCP-SACK
flows.

The throughput achieved by TCP-DCR flows is
inversely proportional to the congestionloss rate in
the network, whereasthe throughput of the TCP-
SACK flows is inversely proportional to the sum of
thecongestionlossrateandthechannelerror rate.So,
as the congestionloss rate in the network increases,
the differencein the averagethroughputof the TCP-
DCR flows in the network comparedto that of the
TCP-SACK flows becomesnarrower.

2) PerformanceComparisonon Satellite Links:
Satellitelinks are characterisedby very high wireless
delays, with the one way delays being as large as
250ms [26]. With such high delays,when the con-
gestionwindow is reducedunnecessarilyin response
to channelerrors, it takes a long time to recover the
window backto theoptimalsize.Thustheperformance
of TCP-SACK degradesdrastically in satellite net-
worksasthechannelerror increases.In this sectionwe
presentthe resultsof the simulationsfor performance
comparisonon satellitelinks. Thenetwork topologyis
similar to thatabove,exceptthathewirelesslink hasa
large oneway delayof 250ms,makingthe end-to-end
RTT 520ms.The averagelink dropratedueto conges-
tion is in the rangeof 0.1-0.4%.Fig. 19 shows the
results,demonstratingthe performanceimprovements
with TCP-DCR.

Fig. 19. PerformanceComparisonover SatelliteLinks

3) Comparisonwith other TCP flavors: We have
conductedextensive simulationsto comparethe per-
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formance of TCP-DCR with TCP-Reno and TCP-
Westwood [15]. Our simulationsshow that that the
performanceof TCP-DCRis muchbetterthan that of
TCP-Renoin the presenceof channelerrors.Due to
lack of spacewe have includedonly oneof theresults,
showing the performancecomparisonof TCP-DCR
with TCP-Westwood at different wirelessdelaysand
channelerror ratesin Fig. 20. TheWestwoodNRagent
wasusedin this simulationin thens-2.26version.The
topologyfor this simulationis thesameasexplainedin
section[IV-A.2]. The simulationsindicatethat at low
channelerrorsandlow delays,theperformanceof both
the protocols flavors are similar. At higher channel
errorratesandlargedelays,TCP-DCRperformsbetter.

Fig. 20. PerformanceComparisonof TCP-DCR Vs TCP-
Westwood

V. CONCLUSION AND FUTURE WORK

In this paper, we haveproposedDelayedCongestion
Responseto improve the performanceof TCP over
wireless networks that support link level recovery
mechanisms.The main advantageof the TCP-DCR
protocol is the simplicity with which the schemecan
be implemented.Sincemodificationsneedto be made
only to the TCP at the sender, the deploymentmay be
easierthan other schemesthat require modifications
to network infrastructure,the receiversandthe sender.
The basestationdoesnot have to maintainany state
other than that requiredfor a rudimentarylink level
retransmissionscheme.We have implementedTCP-
DCR on the Linux 2.4.x network stack and are cur-
rently evaluatingit on a realistic testbed.

An interestingbenefitof using TCP-DCRis that it
provides inherentrobustnessagainstloss of degrada-
tion dueto packet reorderingin thenetwork [23]. This
hasled usto investigatefurtherthepossibilityof using

TCP-DCR as a unified solution for recovering from
different typesof non-congestionevents.
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