
On Staggered Checkpointing�Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112Phone: 409-845-0512Fax: 409-847-8578E-mail: vaidya@cs.tamu.eduKey words: Consistent checkpointing, staggered checkpointing, checkpoint overhead, rollbackrecovery, experimental evaluation. AbstractA \consistent checkpointing" algorithm saves a consistent view of the distributed sys-tem state on stable storage. The loss of computation upon a failure can be bounded bytaking consistent checkpoints with adequate frequency.The traditional consistent checkpointing algorithms require the di�erent processes tosave their state at about the same time. This causes contention for the stable storage,potentially resulting in large overheads. Staggering the checkpoints taken by various pro-cesses can reduce the overhead. Some techniques for staggering the checkpoints have beenproposed previously [11], however, these techniques result in \limited staggering" in thatnot all processes' checkpoints can be staggered. Ideally, one would like to stagger thecheckpoints arbitrarily.This paper presents a simple approach to arbitrarily stagger the checkpoints. Ourapproach requires that the processes take consistent logical checkpoints, as compared toconsistent physical checkpoints enforced by existing algorithms. This paper presents ex-perimental results using an implementation on a nCube-2 multicomputer.1 IntroductionApplications executed on a large number of processors, either in a distributed environment,or on multicomputers such as nCube, are subject to processor failures. Unless some recoverytechniques are utilized, a processor failure will require a restart of the application, resulting insigni�cant loss of performance.�This research is supported in part by National Science Foundation grant MIP-9502563 and Texas AdvancedTechnology Program grant 009741-052-C. 1

Consistent checkpointing is a commonly used technique to prevent complete loss of com-putation upon a failure [1, 3, 5, 8, 10, 11, 13, 15]. A \consistent checkpointing" algorithm savesa consistent view of the distributed system state on a stable storage. The loss of computationupon a failure is bounded by taking consistent checkpoints with adequate frequency.The traditional consistent checkpointing algorithms require the di�erent processes to savetheir state at about the same time. This causes contention for the stable storage, potentiallyresulting in signi�cant performance degradation [11]. Staggering the checkpoints taken byvarious processes can reduce the overhead of consistent checkpointing by reducing stable storagecontention. Some techniques for staggering the checkpoints have been previously proposed [11],however, these techniques result in \limited" staggering in that not all processes' checkpointscan be staggered. Ideally, one would like to stagger the checkpoints arbitrarily. If processorsare able to make an \in-memory" copy of entire process state, then checkpoint staggering istrivial. This paper considers systems where it is not feasible to make an \in-memory" copy ofentire process state. This situation may occur because: (i) memory size is small, or (ii) thememory may be shared by processes of multiple applications { making in-memory copy of aprocess from one application may cause processes from other applications to be swapped out(degrading their performance).This paper presents a simple approach to \arbitrarily stagger" the checkpoints. Our ap-proach requires that the processes take consistent logical checkpoints, as compared to consistentphysical checkpoints enforced by existing algorithms for staggering. This paper discusses theproposed approach and presents experimental results (on nCube-2 multicomputer).The paper is organized as follows. Section 2 discusses the related work. Section 3 dis-cusses the notion of a logical checkpoint. Section 4 presents a consistent checkpointing algorithmproposed by Chandy and Lamport [1] and Plank [11]. Section 5 presents the proposed algo-rithm. Section 6 presents experimental results. Some variations of the proposed scheme arediscussed in Section 7. Section 8 concludes the paper.2 Related WorkThe algorithm presented here is closely related to [1, 10, 11, 14]. As discussed later in thepaper, the proposed algorithm combines two di�erent techniques: \staggered" checkpoints andconsistent \logical" checkpoints to obtain an algorithm with better performance than existing2

schemes. These terms will be explained later { the reader may want to revisit this section afterreading the rest of this paper.Although the proposed scheme uses message logging, our work di�ers from past work inthat our scheme only logs those messages that are needed to make the \staggered" checkpointsconsistent. In contrast, previous message logging schemes (e.g., [5]) log all messages, anddetermine a consistent state after a failure occurs.Plank [11] was the �rst to observe that stable storage contention can be serious problemfor consistent checkpointing, and suggested checkpoint staggering as a solution. Plank presenteda consistent checkpointing algorithms similar to Chandy-Lamport [1] that attempts to staggerthe checkpoints. However, often some checkpoints taken by this algorithm are not staggered. Incontrast, our algorithm allows arbitrary staggering of the checkpoints. Plank [11] also presentsanother approach for staggering checkpoints, that is applicable to wormhole routed networks.(This algorithm also does not permit arbitrary staggering.) As our algorithm applies to allnetworks, we do not consider Plank's second algorithm for comparison purposes.Long et al. [10] discuss an interesting approach, named evolutionary checkpointing, thatis similar to logical checkpointing. The fundamental di�erence between the two approaches isthat our algorithm staggers the checkpoints, while the scheme in [10] does not allow staggering.By enforcing staggering, our approach can perform better. Long et al. also assume synchronizedcommunication and an upper bounds on communication delays; no such assumptions are madein the proposed approach.Wang et al. [14, 15] introduced the notion of a logical checkpoint. They present analgorithm to determine a recovery line consisting of consistent logical checkpoints, after a fail-ure occurs. This recovery line is used to recover from the failure. Their goal is to determinethe \latest" consistent recovery line using the information saved on the stable storage. Duringfailure-free operation each process is allowed to independently take checkpoints and log mes-sages. On the other hand, our scheme coordinates logical checkpoints before a failure occurs.These logical checkpoints are used to recover from a future failure. One consequence of this isthat we do not need to log all messages, only those message are logged which make the staggeredcheckpoints consistent. 3

M1

M2

M3

time

process

 P

a physical checkpoint

a logical checkpoint
t0 t1Figure 1: Physical checkpoint + message log = logical checkpoint3 A Logical CheckpointA process is said to be deterministic if its state depends only on its initial state and the messagesdelivered to it [5, 12]. A deterministic process can take two types of checkpoints: a physicalcheckpoint or a logical checkpoint. A process is said to have taken a physical checkpoint atsome time t1, if the process state at time t1 is saved on the stable storage. A process is said tohave taken a logical checkpoint at time t1, if adequate information is saved on the stable storageto allow the process state at time t1 to be recovered.To the best of our knowledge, the term logical checkpoint was �rst introduced by Wanget al. [14, 15], who also presented one approach for taking a logical checkpoint. Now wesummarize three approaches for taking a logical checkpoint at time t1. Although the threeapproaches are equivalent, each approach may be more attractive for some applications thanthe other approaches. Not all approaches will be feasible on all systems.� One approach for establishing a logical checkpoint at time t1 is to take a physical check-point at some time t0 � t1 and log (on stable storage) all messages delivered to the processbetween time t0 and t1. (For each message, the message log contains the receive sequencenumber for the message as well as the entire message.) This approach is essentially iden-tical to that presented by Wang et al. [14].Figure 1 presents an example wherein process P takes a physical checkpoint at time t0.Messages M1, M2 and M3 are delivered to process P by time t1. To establish a logicalcheckpoint of process P at time t1, messages M1, M2 and M3 are logged on the stablestorage. As process P is deterministic, the state of process P at time t1 can be recoveredusing the information on the stable storage (i.e., physical checkpoint at t0 and messagesM1, M2 and M3).We summarize this approach as:physical checkpoint + message log = logical checkpoint4

� The essential purpose behind saving the messages above is to be able to recreate the stateat time t1, or to be able to \re-perform" the incremental changes made in process stateby each of these messages. This may be achieved simply by taking a physical checkpointat time t0 and taking an incremental checkpoint at time t1. The incremental checkpointis taken by logging1 the changes made to process state between time t0 and t1. Wesummarize this approach as:physical checkpoint + incremental checkpoint = logical checkpointThe scheme presented by Long et al. [10] takes checkpoints similar to above procedure,although they do not use the term logical checkpoint.� The above two approaches take a physical checkpoint prior to the desired logical check-point, followed by logging of additional information (either messages or incremental statechange).The third approach is the converse of the above two approaches. Here, the physicalcheckpoint is taken at a time t2, where t2 > t1. In addition, enough information issaved to un-do the e�ect of messages received between time t1 and t2. For each relevantmessage (whose e�ect must be undone), an anti-message is saved on the stable storage.The notion of an anti-message here is similar to that used in time warp mechanism [4]or that of UNDO records [2] in database systems. Anti-message M� corresponding to amessage M can be used to undo the state change caused by message M.Figure 2 illustrate this approach. A logical checkpoint of process P is to be establishedat time t1. Process P delivers messages M4 and M5 between time t1 and t2. A physicalcheckpoint is taken at time t2, and anti-messages corresponding to messages M4 and M5are logged on the stable storage. The anti-messages are named M4� and M5�, respectively.To recover the state, say S1, of process P at time t1, the process is initialized to thephysical checkpoint taken at time t2 and then anti-messages M5� and M4� are sent to theprocess. The order in which the anti-messages are delivered is reverse the order in whichthe messages were delivered. As shown in Figure 3, the �nal state of process P is identicalto the state (or logical checkpoint) at time t1.We summarize this approach as:anti-message log + physical checkpoint = logical checkpoint1The term logging is used to mean \saving on the stable storage".5

application message

anti-message

time

process

 P

M4*

M5*

M5

M4

to stable storage

t1 t2

state S1

Figure 2: Anti-message log + physical checkpoint = logical checkpoint
M4*M5*

process

 P

M5

M4

state S1 state S1Figure 3: Recovering a logical checkpoint using anti-messagesAn important issue is that of forming the \anti-messages". The anti-messages can possiblybe formed by the application itself, or they may consist of a copy of the (old) process statemodi�ed by the message (similar to copy-on-write [9]). We have, as yet, not experimentedwith anti-messages. Therefore, practicality of this idea is open to debate.Note that a physical checkpoint is trivially a logical checkpoint, however, the converseis not true.4 Chandy-Lamport Algorithm [1] and Plank's Scheme[11]Chandy and Lamport [1] presented an algorithm for taking a consistent checkpoint of a dis-tributed system. Although the proposed approach can potentially be used with any consistentcheckpointing algorithm, for brevity, we limit our discussion to the Chandy-Lamport algorithm.Assume that the processes communicate with each other using unidirectional communi-cation channels; a bidirectional channel can be modeled as two unidirectional channels. Thecommunication graph is assumed to be strongly connected. The algorithm presented next is6

essentially identical to Chandy-Lamport [1] and assumes that a certain process (named P0) isdesignated as the checkpoint coordinator. This algorithm is also presented in [11].Algorithm: The coordinator process P0 initiates the consistent checkpointing algorithm bysending marker messages on each channel, incident on, and directed away from P0 and imme-diately takes a checkpoint. (This is a physical checkpoint.)A process, say Q, on receiving a marker message along a channel c takes the followingsteps:if Q has not taken a checkpoint thenbeginQ sends a marker on each channel, incident on, and directed away from Q.Q takes a checkpoint.Q records the state of channel c as being empty.endelse Q records the state of channel c as the sequence of messages received along c,after Q had taken a checkpoint and before Q received the marker along c.4.1 Checkpoint Staggering with Chandy-Lamport AlgorithmPlank [11] suggested that the processes should send markers after taking their checkpoints,rather than before taking the checkpoint (unlike the algorithm above). This simple modi�cationintroduces some staggering of checkpoints. However, not all checkpoints can be staggered.In our experiments, we use the Chandy-Lamport algorithm that incorporates Plank'smodi�cation. In the rest of this paper, this modi�ed algorithm will be referred to asChandy-Lamport/Plank algorithm, or CL/P for brevity.Observations: Plank [11] observed that his staggering schemes work better than the original\non-staggered" algorithmwhen (i) degree of synchronization amongst the processes is relativelysmall, and (ii) the message volume is relatively small.7

5 Staggered Consistent CheckpointingThe extent of checkpoint staggering using CL/P algorithm is dependent on the application'scommunication pattern, and also on how the algorithm is implemented (e.g., whether the mark-ers are sent synchronously or asynchronously). On the other hand, the proposed algorithm canstagger the checkpoints in any manner desired. Many variations are possible, depending onwhich checkpoints are desired to be staggered. As an illustration, we assume that the objec-tive is to stagger all checkpoints, i.e., no two checkpoints should overlap in time. Later, wewill illustrate a situation where some overlap in checkpointing is desired (when multiple stablestorages are available).The proposed algorithm (named STAGGER) can be summarized as follows:staggered physical checkpoints + consistent logical checkpoints = staggered consistent checkpointsThe basic idea is to coordinate logical checkpoints rather than physical checkpoints.In this section, we assume that the �rst approach, described in Section 3, for taking logicalcheckpoints is being used. Thus, a logical checkpoint is taken by logging all the messagesdelivered to a process since its most recent physical checkpoint.For the purpose of this discussion, assume that the checkpoint coordinator is named P0,and other processes are named P1 through Pn�1. (n is the number of processes.)We now present the proposed algorithm (consisting of two phases), followed by an il-lustration. Presently, we assume that all processors share a single stable storage; Section 7considers the situation where multiple stable storages are available.Algorithm STAGGER1. Physical checkpointing phase: Checkpoint coordinator P0 takes a physical checkpoint andthen sends a take checkpoint message to process P1.When a process Pi, i > 0, receives a take checkpoint message, it takes a physical checkpointand then sends a take checkpoint message to process Pj , where j = (i+ 1) mod n.When process P0 receives a take checkpoint message from process Pn�1, it initiates thesecond phase of the algorithm (named consistent logical checkpointing phase).After a process takes the physical checkpoint, it continues execution. Each message de-livered to the process, after taking the physical checkpoint (but before the completion ofthe next phase), is logged in the stable storage.8

The above procedure ensures that physical checkpoints taken by the processes are stag-gered because only one process takes a physical checkpoint at any time. The physicalcheckpoints taken by the processes are not, in general, necessarily consistent. (No at-tempt is made to ensure consistency of physical checkpoints.)2. Consistent logical checkpointing phase: This phase is very similar to the Chandy-Lamportalgorithm. The di�erence between Chandy-Lamport algorithm and this phase is thatwhen the original Chandy-Lamport algorithm requires a process to take a \checkpoint",our processes takes a logical checkpoint (not a physical checkpoint as in the Chandy-Lamport algorithm). A logical checkpoint is taken by ensuring that the messages deliveredsince the physical checkpoint (taken in the previous phase) are logged on stable storage.The exact algorithm for this phase is provided below:Initiation: The coordinator P0 initiates this phase on receipt of the take checkpoint mes-sage from process Pn�1. Process P0 sends marker message on each channel, incidenton, and directed away from P0. Also, P0 takes a logical checkpoint by ensuring that allmessages delivered to it since its physical checkpoint are logged.A process, say Q, on receiving a marker message along a channel c takes the followingsteps:if Q has not taken a logical checkpoint thenbeginQ sends a marker on each channel, incident on, and directed away from Q.Q takes a logical checkpoint by ensuring that all messages delivered to it(on any channel) after Q's recent physical checkpoint have been logged.endelse Q ensures that all messages received on channel c since its recentlogical checkpoint are logged.Messages received on channel c after a marker is received on that channel are not logged.The above algorithm establishes a consistent recovery line consisting of one logical check-point per process. This algorithm reduces the contention for the stable storage by completelystaggering the physical checkpoints. However, contention is now introduced in the second phaseof the algorithm when the processes log messages. Our scheme will perform well if message vol-ume is relatively small compared to checkpoint sizes. A few variations to the above algorithmare possible, as discussed in Section 7. 9

(coordinator) M2

M5

physical checkpointing phase

consistent recovery line

M0

M4

consistent logical checkpointing phase

process P0

process P2

process P1

M1

M3

take_checkpoint message
physical checkpoint

logical checkpoint

application message

marker messages

Figure 4: An exampleFigure 4 illustrates the algorithm assuming that the system consists of three processes.Process P0 acts as the coordinator and initiates the checkpointing phase by taking a physicalcheckpoint and sending a take checkpoint message to P1. Processes P0, P1 and P2 take staggeredcheckpoints during the �rst phase. When process P0 receives take checkpoint message fromprocess P2, it initiates the consistent logical checkpointing phase. Process P0 sends markermessages to P1 and P2 and then takes a logical checkpoint by logging messages M0 and M2on the stable storage. When process P1 receives the marker message from process P0, it sendsmarkers to P0 and P2 and then takes a logical checkpoint by logging message M1 on the stablestorage. Similarly, process P2 takes a logical checkpoint by logging message M3 on the stablestorage. Messages M4 and M5 are also logged during the second phase (as they represent thechannel \state").Recovery: After a failure, each process rolls back to its recent physical checkpoint and re-executes (using the logged messages) to restore the process state to the logical checkpoint that10

belongs to the most recent consistent recovery line.Proof of correctness: The correctness follows directly from the proof of correctness for theChandy-Lamport algorithm [1]. The details are omitted here for brevity.Variations: In Section 7 we present some variations on the above algorithm, including analgorithm to stagger checkpoints when multiple stable storages are available.6 Performance EvaluationWe implemented the proposed algorithm STAGGER and the Chandy-Lamport/Plank scheme(abbreviated as CL/P) on a nCube-2 multicomputer. It should be noted that performance ofeach scheme is closely dependent on the underlying hardware and behavior of the applicationprogram. Clearly, no single scheme can perform well on all applications. Our objective here isto demonstrate that the proposed algorithm can perform better than the previously proposedalgorithm for staggering, and to identify the circumstances where it performs better.In our implementation of CL/P, the markers are sent asynchronously using interrupts{ su�cient care is taken to ensure that the markers appear in FIFO order with respect toother messages even though they are sent asynchronously. The other alternative is to send themarkers without using interrupts { the drawback of this approach is that the checkpointingalgorithm may not make progress in the cases where the synchronization is very infrequent. Asstaggering can be useful primarily under these circumstances, it is necessary to ensure that thealgorithm progresses without any explicit communication by application processes.The application used for evaluation is a synthetic program, named sync-loop, similar toa program used by Plank [11]. The pseudo-code for the program is presented below. (AlthoughC-like syntax is used, the program does not follow C grammar.)sync-loop(num_iteration, state_size, compute_size) {state_array = malloc(state_size); /* create state */initialize (state_array); /* initialize state */repeat (num_iteration) times {perform (compute_size) floating-point multiplications; /* compute */11

synchronize with all other processes; /* synchronize */}} Process state size (and checkpoint size) is controlled by the state size parameter. Eachprocess repeats a loop in which it performs some computation (the amount of computationcontrolled by compute size parameter). The loop is repeated num iteration times.By choosing a very large value for compute size the degree of synchronization in theprogram is minimized. A small compute size, on the other hand, implies that processes syn-chronize very frequently. Synchronization is achieved by means of an all-to-all message ex-change.Figure 5 presents the experimental results for the STAGGER and CL/P schemes.Synchronization interval is the time between two consecutive synchronizations of the processes{ thus, synchronization interval is approximately equal to the time required to perform thecomputation (i.e., the compute size multiplications) in each iteration of the loop. The check-point size for each process is approximately 2.1 Mbyte. Checkpoint overhead is obtained byusing the formula(execution time with S consistent checkpoints) � (execution time without any checkpoints)SFigure 5 presents overhead measurements for experiments on a cube of dimension 1, 2,3 and 4. (Curve labeled d = n in the �gure is for experiments on n-dimensional cube.) Allprocesses shared a single disk to store the checkpoints. Observe that, for a �xed dimension, asthe synchronization interval becomes smaller, the checkpoint overhead grows for both schemes.For very small synchronization intervals, the STAGGER scheme does not perform much betterthan the Chandy-Lamport/Plank scheme. However, when synchronization interval is large, theproposed scheme achieves signi�cant improvements. (For dimension d = 1, the two schemesachieve essentially identical performance.)Observe in Figure 5 that, for a given instance of the application, as the dimension isincreased the overhead for STAGGER as well as CL/P increases. However, the increase in theoverhead of CL/P is much greater than that of STAGGER.The stable storage contention tends to increase with an increase in the number of ap-plication processes. To better understand the impact of stable storage contention, in Figure 6,12

0

20

40

60

80

100

120

1 10 100 1000

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

synchronization interval (second)

sync-loop

(a) CL/P d=4
(b) Stagger d=4

(c) CL/P d=3
(d) Stagger d=3

(e) CL/P d=2
(f) Stagger d=2

(g) CL/P d=1
(h) Stagger d=1

Figure 5: Checkpoint overhead for sync-loop program13

0

1

2

3

4

5

6

7

1 10 100 1000

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

/

n
u
m
b
e
r

o
f

n
o
d
e
s

synchronization interval (second)

sync-loop

(a) CL/P d=4
(b) Stagger d=4

(c) CL/P d=3
(d) Stagger d=3

(e) CL/P d=2
(f) Stagger d=2

(g) CL/P d=1
(h) Stagger d=1

Figure 6: (Checkpoint overhead/number of nodes) for sync-loop program14

we plot the ratio (checkpoint overhead/number of nodes). Observe that, for a given instanceof the application, the ratio is higher for larger dimension when using the CL/P scheme { onthe other hand, the ratio is smaller for larger dimension when using the STAGGER scheme.The reason being that the increase in the overhead of STAGGER, with increasing dimension,is relatively small as compared to CL/P.The measurements presented above imply that when the parallel application has a largegranularity (thus, requiring infrequent communication or synchronization), the proposed STAG-GER algorithm can perform better than Plank's version of the Chandy-Lamport algorithm [11].As an example of an application with coarse-grain parallelism we present measurements for asimulation program (SIM), in Figure 7. The simulation program evaluates the expected ex-ecution time of a task when using rollback recovery. The simulation program is completelyparallelized, and the processes synchronize only at the beginning and at the completion of thesimulation. This synchronization pattern represents the best possible scenario for staggeredcheckpointing. As seen from Figure 7, the checkpoint overhead for STAGGER remains con-stant independent of the dimension, as synchronization is very infrequent. On the other hand,the overhead for CL/P increases with the dimension.
0

1

2

3

4

5

6

7

1 2 3 4

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

dimension d

SIM

CL/P
Stagger

Figure 7: Measurements for SIM applicationImpact of message size on performance: Plank [11] observed that his staggered check-pointing schemes log more messages than non-staggered checkpointing schemes. Therefore,his schemes do not perform well compared to non-staggering schemes, when message sizes arelarge. Similarly, as the STAGGER algorithm staggers checkpoints more than Plank's algorithm,it tends to log more messages than Plank's algorithm. Therefore, STAGGER will not perform15

well when message sizes are large. This observation follows directly from that made previouslyby Plank.7 Variations on the ThemeMany variations of the algorithm presented earlier are possible. Utility of these variationsdepends on the nature of the application and the execution environment. In the following, wediscuss some variations.(a) Process clustering to exploit multiple stable storages: The algorithm STAGGERpresented above assumes that all processes share a single stable storage. However, in somesystems, the processes may share multiple stable storages. For instance, number of processesmay be 16 and the number of stable storages may be 4. For such systems, we modify theproposed STAGGER algorithm to make use of all stable storages while minimizing contentionfor each stable storage. To achieve this we partition the processes into clusters, the numberof clusters being identical to the number of stable storages. Each cluster is associated with aunique stable storage; processes within the cluster access only the associated stable storage [7].The algorithm STAGGER modi�ed to use multiple stable storages di�ers from the orig-inal STAGGER algorithm only in the �rst phase (i.e., staggered checkpointing phase). Weillustrate the modi�ed staggered checkpointing phase with an example. Consider a system con-sisting of 6 processes, and 2 stable storages. The processes are now named Pij , where i denotesthe cluster number and j denotes the process number within the cluster. As 2 stable storagesare available, the processes are divided into 2 clusters containing 3 processes each. Clusteri (i = 0; 1) contains processes Pi0, Pi1 and Pi2. Process Pi0 in cluster i is identi�ed as thecheckpoint coordinator for cluster i, and process P00 is also identi�ed as the global checkpointcoordinator. Figure 8 depicts the �rst phase of the modi�ed algorithm.The global checkpoint coordinator P00 initiates phase 1 of the algorithm by sendingtake checkpoint messages to the checkpoint coordinators in all other clusters. Process P00 thentakes a physical checkpoint and sends a take checkpoint message to process P01.When a process Pij (ij 6= 00) receives a take checkpoint message, it takes a physicalcheckpoint and sends a take checkpoint message to process Pkm wherem = (j + 1) modulo (cluster size)16

take_checkpoint message

staggered checkpointing phase checkpointing phase
consistent logical

process P00

process P01

process P02

process P10

process P20

process P30

(coordinator)

(coordinator) Figure 8: Process clustering to utilize multiple stable storagesk = (0 if m = 0i otherwiseWhen the global coordinator P00 receives one take checkpoint message from a process ineach cluster, it initiates the second phase of the algorithm (this phase is identical to the originalSTAGGER algorithm).Essentially, the above procedure guarantees that at most one process accesses each stablestorage at any time during the �rst phase, and that all stable storages are used for savingphysical checkpoints.(b) Approach for taking a logical checkpoint: The discussion so far assumed that alogical checkpoint is taken by taking a physical checkpoint and logging subsequently receivedmessages. It is easy to see that the proposed algorithm can be modi�ed to allow a process to useany of the three approaches presented earlier (in Section 3) for establishing a logical checkpoint.In fact, di�erent processes may simultaneously use di�erent approaches for establishing a logicalcheckpoint.(c) Checkpointing versus message logging: As staggering tends to increase the numberof messages logged, the following variations will be bene�cial for some applications.17

� A process may decide to not take the physical checkpoint in the �rst phase, if it a prioriknows that its message log will be large. In this case, the process would take a physicalcheckpoint in the second phase.2� If a process receives too many messages after taking the physical checkpoint in the �rstphase of the algorithm, then it may decide to take a physical checkpoint in the secondphase (rather than logging messages). This makes the physical checkpoint taken by theprocess in the �rst phase redundant. However, this modi�cation may reduce the overheadwhen checkpoint size is smaller than what the message log would be.� The coordinator may initiate the consistent logical checkpointing phase even before allprocesses have taken the physical checkpoint. In this case, consider a process Q thatreceives a marker message before Q has taken the physical checkpoint (in the �rst phase).Then, process Q can take a physical checkpoint in the second phase rather than log-ging messages to establish a logical checkpoint (essentially, process P can pretend that itdecided to not take a physical checkpoint in the �rst phase).3A future goal of our research is to design an adaptive algorithm that can, at run-time, determineif staggering is bene�cial or not.7.1 Improving performance of CL/P:The performance of the CL/P algorithm is sensitive to the manner in which the markers are sent{ asynchronously using interrupts, or without interrupts. Both approaches have their bene�tsand disadvantages. One possible approach for improving performance of CL/P algorithm wouldbe to send some markers asynchronously (to ensure that the algorithm proceeds even withinfrequent application messages), and send the other markers without using interrupts. Forinstance, a process imay send an asynchronous marker only to process i+1. This will ensure thateach process receives at least one asynchronous marker, thus, guaranteeing that the algorithmwill make progress in tha absence of application messages.As the proposed STAGGER algorithm encompasses the CL/P algorithm, we have not2Johnson [6] suggested a scheme where each process uses a similar heuristic to decide whether to log messagesor not.3Recollect that a physical checkpoint is also trivially a logical checkpoint. So the process here is actuallytaking a logical checkpoint, but not by logging messages.18

studied variations on CL/P. Our future work will deal with variations on the STAGGER algo-rithm.8 SummaryThis paper presents an algorithm for taking consistent logical checkpoints. The proposed algo-rithm ensures that the physical checkpoints taken by various processes are completely staggeredto minimize the contention in accessing the stable storage. Experimental results on nCube-2suggest that the proposed scheme can improve performance as compared to existing staggeringtechniques, particularly when processes synchronize infrequently and message sizes are not verylarge. The paper also suggests a few variations of the proposed scheme, including an approachfor staggering checkpoints when multiple stable storages are available.AcknowledgementsThanks are due to James Plank and Yi-Min Wang for their comments on an earlier draftof the paper. Vidya Iyer wrote parts of the checkpointing layer used for experiments.References[1] K. M. Chandy and L. Lamport, \Distributed snapshots: Determining global states indistributed systems," ACM Trans. Comp. Syst., vol. 3, pp. 63{75, February 1985.[2] C. J. Date, An Introduction to Database Systems. Addison-Wesley, 1986.[3] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, \The performance of consistent check-pointing," in Symposium on Reliable Distributed Systems, 1992.[4] D. Je�erson, \Virtual time," ACM Trans. Prog. Lang. Syst., vol. 3, pp. 404{425, July 1985.[5] D. B. Johnson, Distributed System Fault Tolerance Using Message Logging and Checkpoint-ing. PhD thesis, Computer Science, Rice University, December 1989.[6] D. B. Johnson, \E�cient transparent optimistic rollback recovery for distributed applica-tion programs," in Symposium on Reliable Distributed Systems, pp. 86{95, October 1993.[7] S. Kaul (Advisor: N. Vaidya), \Evaluation of consistent logical checkpointing." M.S.Thesis, Dept. of Computer Science, Texas A&M University, May 1995.[8] R. Koo and S. Toueg, \Checkpointing and rollback-recovery for distributed systems," IEEETrans. Softw. Eng., vol. 13, pp. 23{31, January 1987.[9] K. Li, J. F. Naughton, and J. S. Plank, \Low-latency, concurrent checkpointing for parallelprograms," IEEE Trans. Par. Distr. Syst., vol. 5, pp. 874{879, August 1994.19

[10] J. Long, B. Janssens, and W. K. Fuchs, \An evolutionary approach to concurrent check-pointing," manuscript submitted for publication, 1994.[11] J. S. Plank, E�cient Checkpointing on MIMD Architectures. PhD thesis, Dept. of Com-puter Science, Princeton University, June 1993.[12] R. E. Strom and S. A. Yemini, \Optimistic recovery: An asynchronous approach to fault-tolerance in distributed systems," Digest of papers: The 14th Int. Symp. Fault-TolerantComp., pp. 374{379, 1984.[13] Y. M. Wang and W. K. Fuchs, \Lazy checkpoint coordination for bounding rollback prop-agation," in Symposium on Reliable Distributed Systems, pp. 78{85, October 1993.[14] Y. M. Wang, Y. Huang, and W. K. Fuchs, \Progressive retry for software error recoveryin distributed systems," in Digest of papers: The 23rd Int. Symp. Fault-Tolerant Comp.,pp. 138{144, 1993.[15] Y. M. Wang, A. Lowry, and W. K. Fuchs, \Consistent global checkpoints based on directdependency tracking." To appear in Inform. Process. Lett.

20

