Staggered Consistent Checkpointing*T

Nitin H. Vaidya
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112
Phone: 409-845-0512
Fax: 409-847-8578
E-mail: vaidya@cs.tamu.edu

Web: http://www.cs.tamu.edu/faculty/vaidya

September 17, 1996

Abstract

A consistent checkpointing algorithm saves a consistent view of a distributed application’s
state on stable storage. The traditional consistent checkpointing algorithms require different
processes to save their state at about the same time. This causes contention for the stable
storage, potentially resulting in large overheads. Staggering the checkpoints taken by vari-
ous processes can reduce checkpoint overhead [13]. This paper presents a simple approach
to arbitrarily stagger the checkpoints. Our approach requires that the processes take consis-
tent logical checkpoints, as compared to consistent physical checkpoints enforced by existing

algorithms. Fxperimental results on nCube-2 are presented.

Key words: Staggered checkpoints, consistent recovery line, rollback recovery,

stable storage contention, fault tolerance.

*This research is supported in part by National Science Foundation grant MIP-9502563 and Texas Ad-
vanced Technology Program grant 009741-052-C.

TTo be presented in part at the IEEE Symposium on Parallel and Distributed Processing (SPDP), October
1996, New Orleans.

1 Introduction

Applications executed on a large number of processors, either in a distributed environment,
or on multicomputers such as nCube, are subject to processor failures. Consistent check-
pointing is a commonly used technique to prevent complete loss of computation upon a
failure [1, 2, 4, 5, 8, 11, 13, 17]. A consistent checkpointing algorithm saves a consistent
view of a distributed application’s state on a stable storage (often, a disk is used as a stable
storage). The loss of computation upon a failure is bounded by taking consistent checkpoints

with adequate frequency.

The traditional consistent checkpointing algorithms require different application pro-

cesses to save their state at about the same time. This causes contention for the stable
storage when multiple processors share a stable storage, potentially resulting in significant
performance degradation. Clearly, if each processor has access to a separate stable stor-

1

age, such contention will not occur." However, many installations of multicomputers and

distributed systems require multiple processors to share a stable storage.

Staggering the checkpoints taken by various processes can reduce the overhead of
consistent checkpointing by reducing stable storage contention, as observed by Plank [13].
Plank proposed some techniques for staggering the checkpoints [13], however, these tech-
niques result in “limited” staggering in that not all processes’ checkpoints can be staggered.
Moreover, the previous algorithms do not have much control on which checkpoints are stag-
gered. Ideally, one would like to be able to stagger the checkpoints in a manner most

appropriate for a given system.

In systems where processors are able to make an “in-memory” copy of entire process
state, checkpoint staggering is trivial. In this case, the checkpoints can be first taken in-
memory, and then written to the stable storage one at a time. This paper considers systems
where it is not feasible to make an in-memory copy of entire process state. This situation may
occur because, either (i) memory size is small, or (ii) the memory may be shared by processes
of multiple applications — making in-memory copy of a process from one application may

cause processes from other applications to be swapped out (degrading their performance).

This paper presents a simple approach to arbitrarily stagger the checkpoints. Our

'If different stable storages are accessed over the same network, network contention can become a
bottleneck.

approach requires that the processes take consistent logical checkpoints, as compared to con-
sistent physical checkpoints enforced by existing algorithms for staggering. As elaborated
later, a physical checkpoint is a copy of a process’ state, and a logical checkpoint is obtained
by saving sufficient information (e.g., messages) to recover a process’ state. The objective
of this paper is to show how checkpoints can be staggered in a controlled manner, inde-
pendent of the application’s communication patterns, and to present different variations of
the algorithm. To illustrate that our approach can be of interest in practice, experimental

results for one version of the algorithm on nCube-2 multicomputer are presented.

The paper is organized as follows. Section 2 discusses the related work. Section 3
discusses the notion of a logical checkpoint. Section 4 presents consistent checkpointing algo-
rithms proposed by Chandy and Lamport [2] and Plank [13]. Section 5 presents the proposed
algorithm. Section 6 presents experimental results. Some variations of the proposed scheme

are discussed in Section 7. Section 8 summarizes the paper.

2 Related Work

Plank [13] was the first to observe that stable storage contention can be a problem for
consistent checkpointing, and suggested checkpoint staggering as a solution. The degree of
staggering with Plank’s algorithm (based on the Chandy-Lamport algorithm [2]) is limited
in that checkpoints of many processes are not staggered. In contrast, our algorithm allows
arbitrary and controlled staggering of checkpoints. Plank [13] also presents another approach
for staggering checkpoints, that is applicable to wormhole routed networks. This algorithm

also does not permit arbitrary/controlled staggering.

Fowler and Zwaenepoel [6] present an algorithm for determining causal breakpoints
(for the purpose of debugging). As a part of the breakpoint algorithm, they establish
consistent recovery lines using an algorithm similar to ours. Our approach can be considered
to be a modification of the algorithm in [6] to facilitate checkpoint staggering. Because the
algorithm in [6] was designed for debugging purposes, various possibilities for checkpoint

staggering, and different approaches for establishing checkpoints were not considered.

Long et al. [11] discuss an evolutionary checkpointing approach, that is similar to
logical checkpointing. Our algorithm staggers the checkpoints, while the scheme in [11] does

not allow staggering. [11] also assumes synchronized communication and an upper bound

on communication delays; no such assumptions are made in the proposed scheme.

Wang et al. [18] introduced the term logical checkpoint. They present an algorithm to
determine a recovery line consisting of consistent logical checkpoints, after a failure occurs.
This recovery line is used to recover from the failure. Their goal is to determine the “latest”
consistent recovery line using the information saved on the stable storage. Message logging
and independent checkpointing schemes, such as [8], also, effectively, determine a recovery
line consisting of consistent logical checkpoints after a failure occurs. In these schemes,
during failure-free operation, each process is allowed to independently take checkpoints and
log messages. On the other hand, our scheme coordinates logical checkpoints before a failure
occurs. These logical checkpoints are used to recover from a future failure. One consequence
of this approach is that our scheme does not log all messages; only those messages which

make the logical checkpoints consistent are logged.

Staggering the checkpoints taken by various processes tends to increase the elapsed
time (sometimes called checkpoint “latency” [15]) while the checkpointing algorithm is in
progress. Our previous work [15] shows that a large increase in checkpoint latency is ac-
ceptable if it is accompanied by even a small decrease in checkpoint overhead. Therefore,
techniques such as staggering are of interest even though they may result in greater check-

point latency.

3 A Logical Checkpoint

A process is said to be deterministic if its state depends only on its initial state and the
messages delivered to it [8, 14]. A deterministic process can take two types of checkpoints:
a physical checkpoint or a logical checkpoint. A process is said to have taken a physical
checkpoint at some time ¢y, if the process state at time ¢; is available on the stable storage.
A process is said to have taken a logical checkpoint at time t;, if adequate information is
saved on the stable storage to allow the process state at time ¢; to be recovered. A physical

checkpoint is trivially a logical checkpoint, however, the converse is not true.

Physical checkpoint itselt can be taken in two different ways: One possibility is to
save the entire process state on the stable storage. The second possibility is to take an
incremental checkpoint [12]. (That is, only the difference between the current state and the

state at the previous physical checkpoint needs to be saved.) We will return to incremental

M1 M3 physical
process \ \ - checkpoint
p — i

L
/ — logical
M2

t0 tL time D checkpoint

Figure 1: Physical checkpoint + message log = logical checkpoint

checkpointing soon again.

Now we summarize three approaches for taking a logical checkpoint at time ¢;. Al-
though the three approaches are equivalent, each approach may be more attractive for some

applications than the other approaches. Not all approaches will be feasible on all system:s.

Approach 1: One approach for establishing a logical checkpoint at time ¢; is to take a
physical checkpoint at some time ¢y < t; and log (on stable storage) all messages delivered to
the process between time ¢ty and ¢;. This approach is essentially identical to that presented
by Wang et al. [18]. Figure 1 presents an example wherein process P takes a physical
checkpoint at time t5. Messages M1, M2 and M3 are delivered to process P by time ¢;. To
establish a logical checkpoint of process P at time #;, messages M1, M2 and M3 are logged

on the stable storage. We summarize this approach as:

physical checkpoint 4+ message log = logical checkpoint

Approach 2: The essential purpose behind saving the messages above is to be able to
recreate the state at time ¢;. This may also be achieved by taking a physical checkpoint
at time ¢ and taking an ineremental checkpoint at time ¢;. The incremental checkpoint is
taken by saving (on the stable storage) the changes made to process state between time

and t;. We summarize this approach as:
physical checkpoint 4+ incremental checkpoint = logical checkpoint

As noted earlier, the physical checkpoint itself may be taken using the incremental check-
pointing method. Therefore, it is possible to completely eliminate the physical checkpoint.
However, it is not necessarily desirable. Figure 2 illustrates this. Assume that physical
checkpoint P2 at time ¢; is taken as the incremental change from the state at the previous
physical checkpoint P1. Also, the logical checkpoint at time ¢; is taken as the incremental

change from the state at time ¢y until time ¢;. The time interval between P1 and P2 is

P1 P2

— 1

t0 t1

Figure 2: Incremental checkpointing in approach 2 for logical checkpointing

much larger than time interval ¢; — t5. Therefore, the size of incremental state saved to
establish the physical checkpoint P2 is likely to be much larger than that saved to estab-
lish the logical checkpoint at ¢;. Our algorithm staggers the physical checkpoints, whereas
the logical checkpoints contend for the stable storage. Now consider the situation where
physical checkpoint P2 is not taken at all. In this case, the incremental state saved at t;
will consist of the modifications made to the state, from the time when checkpoint P1 is
taken, until time ¢;. Therefore, the size of this incremental state will be at least as large as
that saved above to establish P2. As will be apparent later, this would defeat the stagger-
ing algorithm by introducing significant stable storage contention when taking the logical
checkpoints. Therefore, it will often be desirable to take a physical checkpoint first (possibly

an incremental checkpoint), followed by an incremental logical checkpoint.

The evolutionary checkpointing scheme by Long et al. [11] also takes incremental

checkpoints similar to the above procedure.

Approach 3: The above two approaches take a physical checkpoint prior to the desired
logical checkpoint, followed by logging of additional information (either messages or incre-
mental state change). The third approach is the converse of the above two approaches.
Here, the physical checkpoint is taken at a time ¢3, where ¢ > ¢;. In addition, enough
information is saved to un-do the effect of messages received between time ¢; and ¢;. For
each relevant message (whose effect must be undone), an anti-message is saved on the stable
storage. The notion of an anti-message here is similar to that used in time warp mechanism
[7] or that of UNDO records [3] in database systems. Anti-message M* corresponding to a

message M can be used to undo the state change caused by message M.

Figure 3 illustrate this approach. A logical checkpoint of process P is to be established
at time #;. Process P delivers messages M4 and M5 between time ¢; and t3. A physical
checkpoint is taken at time t,, and anti-messages corresponding to messages M4 and M5 are

logged on the stable storage. The anti-messages are named M4* and M5*, respectively.

NOTATION state S1 M5
application process M r

message =) L N \
-7-~/-> anti-message \/ MA —_—
M4 R o tg e
S M4+ R
\\ MS*\\
\ A
to stable storage

Figure 3: Anti-message log + physical checkpoint = logical checkpoint

M5 M4*
state S1 M5 %, % sateSl
"= el
P

L

M4

Figure 4: Recovering a logical checkpoint using anti-messages

To recover the state, say S1, of process P at time ¢1, the process is initialized to the
physical checkpoint taken at time ¢, and then anti-messages M5* and M4* are sent to the
process. The order in which the anti-messages are delivered is reverse the order in which
the messages were delivered. As shown in Figure 4, the final state of process P is identical

to the state (or logical checkpoint) at time t;. We summarize this approach as:
anti-message log + physical checkpoint = logical checkpoint

The anti-messages can possibly be formed by the application itself, or they may

consist of a copy of the (old) process state modified by the message (similar to copy-on-write

110]).

4 Chandy-Lamport Algorithm [2]

Chandy and Lamport [2] presented an algorithm for taking a consistent checkpoint of a
distributed system. Assume that the processes communicate with each other using first-
in-first-out (FIFO) unidirectional communication channels; a bidirectional channel can be
modeled as two unidirectional channels. For simplicity, we assume that the communica-

tion graph is fully connected.? The algorithm presented next is essentially identical to

?Note that Chandy-Lamport algorithm is applicable to any strongly connected graph. Our algorithm
can also be generalized to strongly connected graphs.

Chandy-Lamport [2, 13] and assumes that a certain process (named F,) is designated as the

checkpoint coordinator.

Algorithm: The coordinator process Fy initiates the consistent checkpointing algorithm
by sending marker messages on each channel, incident on, and directed away from F, and

immediately takes a checkpoint. (This is a physical checkpoint.)

A process, say (), on receiving a marker message along a channel ¢ takes the following

steps:

if Q has not taken a checkpoint then

begin
Q sends a marker on each channel, incident on, and directed away from Q.
Q takes a checkpoint.
Q) records the state of channel ¢ as being empty.

end

else () records the state of channel ¢ as the sequence of messages received along ¢,

after) had taken a checkpoint and before () received the marker along c.

4.1 Plank’s Staggering Scheme

Plank [13] suggested that the processes should send markers after taking their checkpoints,
rather than before taking the checkpoint (unlike the algorithm above). This simple mod-
ification introduces some staggering of checkpoints. However, not all checkpoints can be

staggered.

In our experiments, we use the Chandy-Lamport algorithm that incorporates Plank’s
modification. In the rest of this paper, this modified algorithm will be referred to as Chandy-
Lamport/Plank algorithm, or CL/P for brevity.

Observations: Plank [13] observed that his staggering scheme works better than the
original “non-staggered” algorithm when (i) degree of synchronization (or communication)
amongst the processes is relatively small, and (ii) the message volume is relatively small
(message volume is the amount of information communicated by messages). In Figure 5,

the horizontal axis indicates degree of synchronization in an application, and the vertical

axis indicates the message volume. As shown in the figure, when synchronization is very
frequent and/or message volume is large, it is better to avoid staggering checkpoints [13].
Extrapolating Plank’s results, it follows that, the region where a given staggering algorithm
works best shrinks with the degree of staggering. Greater staggering is beneficial for appli-
cations with less synchronization and small message volume. This paper does not alter the
above conclusions. Our work provides an user the ability to choose the degree of staggering.

Our approach can achieve completely controlled staggering of checkpoints, unlike Plank [13].

no staggering

large works best
message
volume
less staggering
works best
mor e staggering
works best
small
message
volume
infrequent frequent
synchronization synchronization

Figure 5: Checkpoint staggering and performance: Qualitative observations

5 Staggered Consistent Checkpointing

The extent of checkpoint staggering using CL/P algorithm is dependent on the application’s
communication pattern, and also on how the algorithm is implemented (e.g., whether the
markers are sent asynchronously or not). On the other hand, the proposed algorithm can
stagger the checkpoints in any manner desired. Many variations are possible, depending
on which checkpoints are desired to be staggered [16]. As an illustration, we assume that
the objective is to stagger all checkpoints, i.e., no two checkpoints should overlap in time.
Later, we will illustrate a situation where some overlap in checkpointing is desired. The

proposed algorithm (named STAGGER) can be summarized as follows:

staggered physical checkpoints + consistent logical checkpoints = staggered consistent checkpoints

The proposed algorithm coordinates logical checkpoints rather than physical check-

points. In this section, we assume that the first approach, described in Section 3, for taking

logical checkpoints is being used. Thus, a logical checkpoint is taken by logging all messages

delivered to a process since its most recent physical checkpoint.

For the purpose of this discussion, assume that the checkpoint coordinator is named

Py, and other processes are named P; through P,_1. (n is the number of processes.)

We now present the proposed algorithm (consisting of two phases), followed by an
illustration. Presently, we assume that all processors share a single stable storage; Section 7

considers the situation where multiple stable storages are available.

Algorithm STAGGER

1. Physical checkpointing phase: Checkpoint coordinator Fy takes a physical checkpoint

and then sends a take_checkpoint message to process P;.

When a process P;, ¢ > 0, receives a take_checkpoint message, it takes a physical
checkpoint and then sends a take_checkpoint message to process P;, where j = (¢ + 1)
mod n.

When process P receives a take_checkpoint message from process P,_q, it initiates the

second phase of the algorithm (named consistent logical checkpointing phase).

After a process takes the physical checkpoint, it continues execution. Each message
delivered to the process, after taking the physical checkpoint (but before the completion
of the next phase), is logged in the stable storage.

The above procedure ensures that physical checkpoints taken by the processes are
staggered because only one process takes a physical checkpoint at any time. The

physical checkpoints taken by the processes are not necessarily consistent.

2. Consistent logical checkpointing phase: This phase is very similar to the Chandy-
Lamport algorithm. The difference between Chandy-Lamport algorithm and this
phase is that when the original Chandy-Lamport algorithm requires a process to take
a “checkpoint”, our processes take a logical checkpoint (not a physical checkpoint as
in the Chandy-Lamport algorithm). A logical checkpoint is taken by ensuring that
the messages delivered since the physical checkpoint (taken in the previous phase) are

logged on stable storage. The exact algorithm for this phase is provided below:

Initiation: The coordinator Fy initiates this phase on receipt of the take_checkpoint

message from process P,_;. Process Iy sends marker message on each channel, inci-

10

dent on, and directed away from Fy. Also, Fy takes a logical checkpoint by ensuring
that all messages delivered to it since its physical checkpoint are logged. (The number

of messages logged can be somewhat reduced, as discussed later.)

A process, say), on receiving a marker message along a channel ¢ takes the following

steps:

if Q has not taken a logical checkpoint then
begin
Q sends a marker on each channel, incident on, and directed away from Q.
Q) takes a logical checkpoint by ensuring that all messages delivered to it
(on any channel) after Q’s recent physical checkpoint have been logged.

end

else) ensures that all messages received on channel ¢ since its recent

logical checkpoint are logged.

Messages received on channel ¢ after a marker is received on that channel are not
logged. Similar to the Chandy-Lamport algorithm, messages sent by a process before its
logical checkpoint, but not received before the receiver’s logical checkpoint are logged as
part of the channel state. Note that a message M that is logged to establish a logical
checkpoint may be logged any time from the instant it is received until the time when the
logical checkpoint is to be established. In our implementation, due to insufficient memory

on nCube-2; such messages were logged immediately on receipt.

The above algorithm establishes a consistent recovery line consisting of one logical
checkpoint per process. This algorithm reduces the contention for the stable storage by
completely staggering the physical checkpoints. However, contention is now introduced in

3

the second phase of the algorithm when the processes log messages.” Our scheme will

perform well if message volume is relatively small compared to checkpoint sizes.

Figure 6 illustrates the algorithm assuming that the system consists of three processes.
Process Fy acts as the coordinator and initiates the physical checkpointing phase by taking
a physical checkpoint and sending a take_checkpoint message to P;. Processes Fy, Py and P,
take staggered checkpoints during the first phase. When process Fy receives take_checkpoint

message from process P, it initiates the consistent logical checkpointing phase. Process Py

3This contention can potentially be reduced by taking a logical checkpoint before sending markers in the
consistent logical checkpointing phase.

11

NOTATION physical checkpointing phase Jons stent logical checkpointing phase

- physical checkpoint prlggess

(coordinator)

D logical checkpoint

—= agpplication message process
— take_checkpoint message Pl
------=> marker messages MO M6
process
P2

consistent recovery line

Figure 6: An example

sends marker messages to P; and P, and then takes a logical checkpoint by logging messages
MO and M2 on the stable storage. When process P receives the marker message from
process Py, it sends markers to P and P, and then takes a logical checkpoint by logging
message M1 on the stable storage. Similarly, process P, takes a logical checkpoint by logging
message M3 on the stable storage. Messages M4 and M5 are also logged during the second
phase (as they represent the channel state). Message M6 is not logged.

Proof of correctness: The correctness follows directly from the proof of correctness of the

Chandy-Lamport algorithm [2].

Recovery: After a failure, each process rolls back to its recent physical checkpoint and

re-executes (using the logged messages) to restore the process state to the logical checkpoint

that belongs to the most recent consistent recovery line.

Note that, the above STAGGER algorithm was designed assuming that it is desirable
to stagger all checkpoints. If some other pattern of staggering is more desirable, the above
algorithm can be easily modified to achieve that pattern. Section 7 illustrates this with an

example.

12

6 Performance Evaluation

We implemented the proposed algorithm STAGGER and the Chandy-Lamport/Plank (CL/P)
algorithm on a nCube-2 multicomputer with a single disk (stable storage). It should be
noted that performance of each scheme is closely dependent on underlying hardware, soft-
ware implementation of the scheme, and nature of the application program. Clearly, no
single scheme can perform well for all applications. Our objective here is to demonstrate

that the proposed scheme can perform well under certain circumstances.

In our implementation of CL/P and STAGGER, the markers sent by process 0 are
sent asynchronously using interrupts (or signals) — sufficient care is taken to ensure that the
markers appear in first-in-first-out (FIFO) order with respect to other messages even though
the markers are sent asynchronously. Markers sent by other processes are sent without using
interrupts. If no markers are sent asynchronously, the checkpointing algorithm may not make
progress in the cases where synchronization (or communication) is infrequent. As staggering
is most beneficial under these circumstances, it is necessary to ensure that the algorithm
progresses without any explicit communication by application processes. Therefore, process
0 sends asynchronous markers. We will return to the issue of using asynchronous markers

later in Section 7.

The first application used for evaluation of STAGGER is a synthetic program, named
sync-loop, similar to a program used by Plank [13]. The pseudo-code for the program is

presented below using a C-like syntax.

sync-loop(iter, size, M) {
char statel[size];

initialize (state);

repeat (iter) times {
perform M floating-point multiplications;

synchronize with all other processes;

b

Process state size (and checkpoint size) is controlled by the size parameter. For the

size chosen for our experiments, checkpoint size for each process of sync-loop is approxi-

13

mately 2.1 Mbyte. Each process repeats a loop in which it performs some computation (the

amount of computation being controlled by the M parameter). The loop is repeated iter

times.

Synchronization is achieved by means of an all-to-all message exchange. By choosing
a very large value for M the degree of synchronization in the program is minimized. A small

M, on the other hand, implies that processes synchronize very frequently.

Figure 7 presents experimental results for STAGGER and CL/P schemes. Synchro-
nization interval in this figure is the time between two consecutive synchronizations of the
processes — thus, synchronization interval is approximately equal to the time required to
perform the computation (i.e., the M multiplications) in each iteration of the loop. The
synchronization interval on the horizontal axis in Figure 7 is determined by dividing by
iter the execution time of sync-loop without taking any checkpoints. Checkpoint overhead

is obtained as:

execution time with S consistent checkpoints — execution time without any checkpoints

S

For our measurements, S = 5 (that is, five checkpoints per execution of the program). Each
instance of the sync-loop application was executed five times, and checkpoint overhead was

averaged over these five executions.

Figure 7 presents overhead measurements for experiments on a cube of dimension
1, 2, 3 and 4. Curve labeled d = N in the figure is for experiments on N-dimensional
cube consisting of 2V processors. (Labels (a) through (h) in Figure 7 can be used to match
the curves with the corresponding legend in top right corner of the figure.) In Figure 7,
observe that, for a fixed dimension, as the synchronization interval becomes smaller, the
checkpoint overhead grows for both schemes. For very small synchronization intervals, the
STAGGER scheme does not perform much better than the Chandy-Lamport/Plank scheme.
However, when synchronization interval is large, the proposed scheme achieves significant
improvements for d > 1. For dimension d = 1 (that is, 2 processors), the two schemes

achieve essentially identical performance.

Observe in Figure 7 that, for a given instance of the application, as the dimension is
increased the overhead for STAGGER as well as CL/P increases. However, the increase in

the overhead of CL/P is much greater than that of STAGGER.

14

120

100

(o)} (o]
o o

D
o

checkpoi nt overhead (second)

20

Figure 7: Checkpoint overhead for sync-loop. Labels (a) through (h) can be used to match

sync-1 oop

d=4 ———

the curves with the corresponding legend in top right corner of the figure.

15

(a) CL/P
(a) (b) Stagger d=4 —+--
(c) CL/P d=3 -=--
(d) Stagger d=3 -
(f) Stagger d;2 %=
- (g) CL/P d=1 ----]
(h) Stagger d=1 -+ --
(b)
\\
\
- \\ -
\\
\
\\
\K\
_(c) \\ _
(d) :
\\K\
(e)
(1) R
(9) .
(hy ™ Tl N
— G Tl me—e
1 10 100 1000
synchroni zation i nterval (second)

The measurements presented above imply that when the parallel application has a
large granularity (thus, requiring infrequent communication or synchronization), the pro-
posed STAGGER algorithm can perform well. As an example of an application with coarse-
grain parallelism, Figure 8 presents measurements for a simulation program (SIM). Simu-
lation program SIM evaluates the expected execution time of a task when using rollback
recovery. State size for each process in SIM is approximately 34 Kbyte. The simulation
program is completely parallelized, and the processes synchronize only at the beginning and
at the completion of the simulation. This synchronization pattern represents the best pos-
sible scenario for staggered checkpointing. As seen from Figure 8, the checkpoint overhead
for STAGGER remains constant independent of the dimension, as synchronization is very

infrequent. On the other hand, the overhead for CL/P increases with the dimension.

SIM

CL/IP ——
6 I St agger —---

checkpoi nt overhead (second)

di mension d

Figure 8: Measurements for SIM application

To be fair, we should note that STAGGER does not always outperform CL/P. As
noted in Figure 5, an algorithm that staggers more tends to perform poorly when degree
of synchronization and/or message volume is large. To illustrate this, Figure 9(a) presents
measurements for a program named FFT-15 that repeatedly evaluates fast Fourier transform
of 2% data points, and has frequent interaction between processes. Checkpoint size for each
process is approximately 1.85 Mbyte. For this application, the overhead of STAGGER is
larger than that of CL/P.

The performance of STAGGER can be improved by reducing the amount of informa-
tion logged, using an optimization similar to that in [6]. Unlike in the original STAGGER

algorithm, it is not necessary to log a message’s data content if it was sent by a process after

16

FFT-15 FFT-15

120 ‘ ‘ 120
a/p —— |
STAGGER ——

CL/P —-—
nodi fi ed STAGGER -+--

100 | 100 |

80 80
60 60
40 r 40 r

20 r 20 r

checkpoi nt overhead (second)
checkpoi nt overhead (second)

di nensi on d di nensi on d

(a) Using STAGGER algorithm (b) Using modified STAGGER algorithm

Figure 9: Measurements for FFT-15 application

taking its physical checkpoint — for such a message, it is sufficient to log its order informa-
tion (i.e., send and receive sequence numbers, and sender and receiver identifiers). During
recovery, such a message is always reproduced by the sender process. Therefore, logging
of order information is sufficient. Figure 9(b) plots overhead of the STAGGER algorithm
modified to implement the above optimization. The overhead of the modified algorithm is
lower than the original STAGGER algorithm (see Figure 9(a)), however, the overhead is still
not much better than CL/P. As the FFT-15 application performs frequent communication,
it is hard to achieve overhead better than CL/P.

7 Variations on the Theme

(a) Process clustering to exploit multiple stable storages:

The algorithm STAGGER presented above assumes that all processes share a single stable
storage. However, in some systems, the processes may share multiple stable storages. For
instance, number of processes may be 16 and the number of stable storages may be 4.
For such systems, we modity the proposed STAGGER algorithm to make use of all stable
storages while minimizing contention for each stable storage. To achieve this we partition
the processes into clusters, the number of clusters being identical to the number of stable
storages. Each cluster is associated with a unique stable storage; processes within a cluster

access only the associated stable storage [9].

17

The algorithm STAGGER, modified to use multiple stable storages, differs from the
original STAGGER algorithm only in the first phase (i.e., staggered checkpointing phase).
We illustrate the modified staggered checkpointing phase with an example. Consider a
system consisting of 6 processes, and 2 stable storages. The processes are now named F;;,
where ¢ denotes cluster number and j denotes process number within the cluster. As 2 stable
storages are available, the processes are divided into 2 clusters containing 3 processes each.
Cluster ¢ (¢ = 0,1) contains processes P, P;1 and Pjy. Process Py in cluster 7 is identified
as the checkpoint coordinator for cluster 7, and process Py is also identified as the global

checkpoint coordinator. Figure 10 depicts the first phase of the modified algorithm.

——& denotestake_checkpoint consistent logical
message checkpointing phase
staggered physical checkpointingphase | (not shown here)
N

(coordinator)
process P00 F

process PO1 \ - / f
process P02 \ \‘ _ / /
(coordinator) /
process P10

s \ /
p _\ - /

process P12

Figure 10: Process clustering to utilize multiple stable storages

The global checkpoint coordinator Py initiates phase 1 of the algorithm (i.e., stag-
gered physical checkpointing phase) by sending take_checkpoint messages to the checkpoint

coordinators in all other clusters. Process Fyy then takes a physical checkpoint and sends a

take_checkpoint message to process ;.

When a process P;; (ij # 00) receives a take_checkpoint message, it takes a physical

checkpoint and sends a take_checkpoint message to process P, where

m = (j + 1) modulo (cluster size)

k:{() if m=0

¢ otherwise

When the global coordinator Fyg receives one take_checkpoint message from a process

18

in each cluster, it initiates the consistent logical checkpointing phase (this phase is identical

to the second phase of the original STAGGER algorithm).

Essentially, the above procedure guarantees that at most one process accesses each
stable storage at any time during the first phase, and that all stable storages are used for

saving physical checkpoints.

(b) Approach for taking a logical checkpoint:

The discussion so far assumed that a logical checkpoint is taken by taking a physical check-
point and logging subsequently received messages. The proposed algorithm can be easily
modified to allow a process to use any of the three approaches presented earlier (in Sec-
tion 3) for establishing a logical checkpoint. In fact, different processes may simultaneously

use different approaches for establishing a logical checkpoint.

(c¢) Asynchronous Markers:

Arrival of an asynchronous marker is informed to the destination process by means of an
interrupt (or signal). In spite of the asynchronous nature, a marker should appear in its
appropriate position on the FIFO channel on which it is sent. We call a marker that is not
sent with an interrupt a “synchronous” marker (for the lack of a better terminology). While
an asynchronous marker can be processed as soon as it arrives, a synchronous marker may
not be processed for a long time — particularly, if the destination process does not need any

messages on the corresponding channel.

Which markers (if any) are sent asynchronously can affect performance of STAGGER
and CL/P algorithms. As noted previously, in our implementation, markers sent by process

0 are asynchronous, other markers are synchronous.

Plank [13] does not address the distinction between asynchronous and synchronous
markers. One variation that can make CL/P imitate STAGGER, particularly for applica-
tions with infrequent synchronization (communication), is as follows: In CL/P algorithm,
ensure that the marker sent by process ¢ to process j is asynchronous if and only if 7 =¢+1
(modulo number of processes). Thus, each process will take checkpoint, and the algorithm
will make progress, even if the processes are not communicating with each other. Also, as
each process sends only one asynchronous marker, the algorithm would tend to reduce con-

tention for the stable storage. With infrequent synchronization (communication), the above

19

rule will tend to stagger checkpoints by different processes (i.e., the algorithm becomes

similar to STAGGER).

The above variation could also be used to reduce stable storage contention during

the consistent logical checkpointing phase of STAGGER algorithm.

8 Summary

This paper presents an algorithm for taking consistent logical checkpoints. The proposed
algorithm can ensure that physical checkpoints taken by various processes are staggered
to minimize contention in accessing the stable storage. Experimental results on nCube-2
suggest that the proposed scheme can improve performance as compared to an existing stag-
gering technique, particularly when processes synchronize infrequently and message sizes are
not very large. The paper also suggests a few variations of the proposed scheme, including

an approach for staggering checkpoints when multiple stable storages are available.

Acknowledgements

We thank the referees of the conference version of this paper, and James Plank and
Yi-Min Wang, for their comments on an earlier draft of this paper. The FFT program used
for experiments was written by Akhilesh Kumar. Vidya [yer wrote parts of the checkpointing
layer used for experiments. This research is supported in part by National Science Founda-

tion grant MIP-9502563 and Texas Advanced Technology Program grant 009741-052-C.

References

[1] G. Cabillic, G. Muller, and I. Puaut, “The performance of consistent checkpointing in
distributed shared memory systems,” in Int. Symp. Reliable Distr. Systems (SRDS),
pp. 96-105, September 1995.

[2] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states in
distributed systems,” ACM Trans. Comp. Syst., vol. 3, pp. 63-75, February 1985.

[3] C.J. Date, An Introduction to Database Systems. Addison-Wesley, 1986.

[4] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance of consistent
checkpointing,” in Symposium on Reliable Distributed Systems, 1992.

20

[5]

[6]

7]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. N. Elnozahy and W. Zwaenepoel, “Manetho: Transparent rollback-recovery with low
overhead, limited rollback, and fast output commit,” IEEFE Trans. Computers, vol. 41,
May 1992.

J. Fowler and W. Zwaenepoel, “Causal distributed breakpoints,” in International Conf.
Distributed Computing Systems, pp. 134-141, May 1990.

D. Jefterson, “Virtual time,” ACM Trans. Prog. Lang. Syst., vol. 3, pp. 404-425, July
1985.

D. B. Johnson, Distributed System Fault Tolerance Using Message Logging and Check-
pointing. PhD thesis, Computer Science, Rice University, December 1989.

S. Kaul, “Evaluation of consistent logical checkpointing.” M.S. Thesis, Dept. of Com-
puter Science, Texas A&M University, May 1995.

K. Li, J. F. Naughton, and J. S. Plank, “Low-latency, concurrent checkpointing for
parallel programs,” IEEE Trans. Par. Distr. Syst., vol. 5, pp. 874-879, August 1994.

J. Long, B. Janssens, and W. K. Fuchs, “An evolutionary approach to concurrent
checkpointing,” manuscript, 1994.

J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent checkpointing
under Unix,” in Useniz Winter 1995 Technical Conference, New Orleans, January 1995.

J. S. Plank, Efficient Checkpointing on MIMD Architectures. PhD thesis, Dept. of

Computer Science, Princeton University, June 1993.

R. E. Strom and S. A. Yemini, “Optimistic recovery: An asynchronous approach to

fault-tolerance in distributed systems,” Digest of papers: The 14" Int. Symp. Faull-
Tolerant Comp., pp. 374-379, 1984.

N. H. Vaidya, “On checkpoint letency,” in Pacific Rim International Conference on
Fault-Tolerant Systems, December 1995.

N. H. Vaidya, “On staggered checkpointing,” in Fighth [EEE Symposium on Parallel
and Distributed Processing (SPDP), October 1996.

Y. M. Wang and W. K. Fuchs, “Lazy checkpoint coordination for bounding rollback
propagation,” in Symposium on Reliable Distributed Systems, pp. 18-85, October 1993.

Y. M. Wang, Y. Huang, and W. K. Fuchs, “Progressive retry for software error recovery

in distributed systems,” in Digest of papers: The 23" Int. Symp. Fault-Tolerant Comp.,
pp. 138-144, 1993.

21

