
Staggered Consistent Checkpointing�yNitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112Phone: 409-845-0512Fax: 409-847-8578E-mail: vaidya@cs.tamu.eduWeb: http://www.cs.tamu.edu/faculty/vaidyaSeptember 17, 1996AbstractA consistent checkpointing algorithm saves a consistent view of a distributed application'sstate on stable storage. The traditional consistent checkpointing algorithms require di�erentprocesses to save their state at about the same time. This causes contention for the stablestorage, potentially resulting in large overheads. Staggering the checkpoints taken by vari-ous processes can reduce checkpoint overhead [13]. This paper presents a simple approachto arbitrarily stagger the checkpoints. Our approach requires that the processes take consis-tent logical checkpoints, as compared to consistent physical checkpoints enforced by existingalgorithms. Experimental results on nCube-2 are presented.Key words: Staggered checkpoints, consistent recovery line, rollback recovery,stable storage contention, fault tolerance.�This research is supported in part by National Science Foundation grant MIP-9502563 and Texas Ad-vanced Technology Program grant 009741-052-C.yTo be presented in part at the IEEE Symposiumon Parallel and Distributed Processing (SPDP), October1996, New Orleans. 1

1 IntroductionApplications executed on a large number of processors, either in a distributed environment,or on multicomputers such as nCube, are subject to processor failures. Consistent check-pointing is a commonly used technique to prevent complete loss of computation upon afailure [1, 2, 4, 5, 8, 11, 13, 17]. A consistent checkpointing algorithm saves a consistentview of a distributed application's state on a stable storage (often, a disk is used as a stablestorage). The loss of computation upon a failure is bounded by taking consistent checkpointswith adequate frequency.The traditional consistent checkpointing algorithms require di�erent application pro-cesses to save their state at about the same time. This causes contention for the stablestorage when multiple processors share a stable storage, potentially resulting in signi�cantperformance degradation. Clearly, if each processor has access to a separate stable stor-age, such contention will not occur.1 However, many installations of multicomputers anddistributed systems require multiple processors to share a stable storage.Staggering the checkpoints taken by various processes can reduce the overhead ofconsistent checkpointing by reducing stable storage contention, as observed by Plank [13].Plank proposed some techniques for staggering the checkpoints [13], however, these tech-niques result in \limited" staggering in that not all processes' checkpoints can be staggered.Moreover, the previous algorithms do not have much control on which checkpoints are stag-gered. Ideally, one would like to be able to stagger the checkpoints in a manner mostappropriate for a given system.In systems where processors are able to make an \in-memory" copy of entire processstate, checkpoint staggering is trivial. In this case, the checkpoints can be �rst taken in-memory, and then written to the stable storage one at a time. This paper considers systemswhere it is not feasible to make an in-memory copy of entire process state. This situation mayoccur because, either (i) memory size is small, or (ii) the memorymay be shared by processesof multiple applications { making in-memory copy of a process from one application maycause processes from other applications to be swapped out (degrading their performance).This paper presents a simple approach to arbitrarily stagger the checkpoints. Our1If di�erent stable storages are accessed over the same network, network contention can become abottleneck. 2

approach requires that the processes take consistent logical checkpoints, as compared to con-sistent physical checkpoints enforced by existing algorithms for staggering. As elaboratedlater, a physical checkpoint is a copy of a process' state, and a logical checkpoint is obtainedby saving su�cient information (e.g., messages) to recover a process' state. The objectiveof this paper is to show how checkpoints can be staggered in a controlled manner, inde-pendent of the application's communication patterns, and to present di�erent variations ofthe algorithm. To illustrate that our approach can be of interest in practice, experimentalresults for one version of the algorithm on nCube-2 multicomputer are presented.The paper is organized as follows. Section 2 discusses the related work. Section 3discusses the notion of a logical checkpoint. Section 4 presents consistent checkpointing algo-rithms proposed by Chandy and Lamport [2] and Plank [13]. Section 5 presents the proposedalgorithm. Section 6 presents experimental results. Some variations of the proposed schemeare discussed in Section 7. Section 8 summarizes the paper.2 Related WorkPlank [13] was the �rst to observe that stable storage contention can be a problem forconsistent checkpointing, and suggested checkpoint staggering as a solution. The degree ofstaggering with Plank's algorithm (based on the Chandy-Lamport algorithm [2]) is limitedin that checkpoints of many processes are not staggered. In contrast, our algorithm allowsarbitrary and controlled staggering of checkpoints. Plank [13] also presents another approachfor staggering checkpoints, that is applicable to wormhole routed networks. This algorithmalso does not permit arbitrary/controlled staggering.Fowler and Zwaenepoel [6] present an algorithm for determining causal breakpoints(for the purpose of debugging). As a part of the breakpoint algorithm, they establishconsistent recovery lines using an algorithm similar to ours. Our approach can be consideredto be a modi�cation of the algorithm in [6] to facilitate checkpoint staggering. Because thealgorithm in [6] was designed for debugging purposes, various possibilities for checkpointstaggering, and di�erent approaches for establishing checkpoints were not considered.Long et al. [11] discuss an evolutionary checkpointing approach, that is similar tological checkpointing. Our algorithm staggers the checkpoints, while the scheme in [11] doesnot allow staggering. [11] also assumes synchronized communication and an upper bound3

on communication delays; no such assumptions are made in the proposed scheme.Wang et al. [18] introduced the term logical checkpoint. They present an algorithm todetermine a recovery line consisting of consistent logical checkpoints, after a failure occurs.This recovery line is used to recover from the failure. Their goal is to determine the \latest"consistent recovery line using the information saved on the stable storage. Message loggingand independent checkpointing schemes, such as [8], also, e�ectively, determine a recoveryline consisting of consistent logical checkpoints after a failure occurs. In these schemes,during failure-free operation, each process is allowed to independently take checkpoints andlog messages. On the other hand, our scheme coordinates logical checkpoints before a failureoccurs. These logical checkpoints are used to recover from a future failure. One consequenceof this approach is that our scheme does not log all messages; only those messages whichmake the logical checkpoints consistent are logged.Staggering the checkpoints taken by various processes tends to increase the elapsedtime (sometimes called checkpoint \latency" [15]) while the checkpointing algorithm is inprogress. Our previous work [15] shows that a large increase in checkpoint latency is ac-ceptable if it is accompanied by even a small decrease in checkpoint overhead. Therefore,techniques such as staggering are of interest even though they may result in greater check-point latency.3 A Logical CheckpointA process is said to be deterministic if its state depends only on its initial state and themessages delivered to it [8, 14]. A deterministic process can take two types of checkpoints:a physical checkpoint or a logical checkpoint. A process is said to have taken a physicalcheckpoint at some time t1, if the process state at time t1 is available on the stable storage.A process is said to have taken a logical checkpoint at time t1, if adequate information issaved on the stable storage to allow the process state at time t1 to be recovered. A physicalcheckpoint is trivially a logical checkpoint, however, the converse is not true.Physical checkpoint itself can be taken in two di�erent ways: One possibility is tosave the entire process state on the stable storage. The second possibility is to take anincremental checkpoint [12]. (That is, only the di�erence between the current state and thestate at the previous physical checkpoint needs to be saved.) We will return to incremental4

physical
checkpoint

logical
checkpoint

M1

M2

M3
process

P

t0 t1 timeFigure 1: Physical checkpoint + message log = logical checkpointcheckpointing soon again.Now we summarize three approaches for taking a logical checkpoint at time t1. Al-though the three approaches are equivalent, each approach may be more attractive for someapplications than the other approaches. Not all approaches will be feasible on all systems.Approach 1: One approach for establishing a logical checkpoint at time t1 is to take aphysical checkpoint at some time t0 � t1 and log (on stable storage) all messages delivered tothe process between time t0 and t1. This approach is essentially identical to that presentedby Wang et al. [18]. Figure 1 presents an example wherein process P takes a physicalcheckpoint at time t0. Messages M1, M2 and M3 are delivered to process P by time t1. Toestablish a logical checkpoint of process P at time t1, messages M1, M2 and M3 are loggedon the stable storage. We summarize this approach as:physical checkpoint + message log = logical checkpointApproach 2: The essential purpose behind saving the messages above is to be able torecreate the state at time t1. This may also be achieved by taking a physical checkpointat time t0 and taking an incremental checkpoint at time t1. The incremental checkpoint istaken by saving (on the stable storage) the changes made to process state between time t0and t1. We summarize this approach as:physical checkpoint + incremental checkpoint = logical checkpointAs noted earlier, the physical checkpoint itself may be taken using the incremental check-pointing method. Therefore, it is possible to completely eliminate the physical checkpoint.However, it is not necessarily desirable. Figure 2 illustrates this. Assume that physicalcheckpoint P2 at time t0 is taken as the incremental change from the state at the previousphysical checkpoint P1. Also, the logical checkpoint at time t1 is taken as the incrementalchange from the state at time t0 until time t1. The time interval between P1 and P2 is5

P1 P2

t0 t1Figure 2: Incremental checkpointing in approach 2 for logical checkpointingmuch larger than time interval t1 � t0. Therefore, the size of incremental state saved toestablish the physical checkpoint P2 is likely to be much larger than that saved to estab-lish the logical checkpoint at t1. Our algorithm staggers the physical checkpoints, whereasthe logical checkpoints contend for the stable storage. Now consider the situation wherephysical checkpoint P2 is not taken at all. In this case, the incremental state saved at t1will consist of the modi�cations made to the state, from the time when checkpoint P1 istaken, until time t1. Therefore, the size of this incremental state will be at least as large asthat saved above to establish P2. As will be apparent later, this would defeat the stagger-ing algorithm by introducing signi�cant stable storage contention when taking the logicalcheckpoints. Therefore, it will often be desirable to take a physical checkpoint �rst (possiblyan incremental checkpoint), followed by an incremental logical checkpoint.The evolutionary checkpointing scheme by Long et al. [11] also takes incrementalcheckpoints similar to the above procedure.Approach 3: The above two approaches take a physical checkpoint prior to the desiredlogical checkpoint, followed by logging of additional information (either messages or incre-mental state change). The third approach is the converse of the above two approaches.Here, the physical checkpoint is taken at a time t2, where t2 > t1. In addition, enoughinformation is saved to un-do the e�ect of messages received between time t1 and t2. Foreach relevant message (whose e�ect must be undone), an anti-message is saved on the stablestorage. The notion of an anti-message here is similar to that used in time warp mechanism[7] or that of UNDO records [3] in database systems. Anti-message M� corresponding to amessage M can be used to undo the state change caused by message M.Figure 3 illustrate this approach. A logical checkpoint of process P is to be establishedat time t1. Process P delivers messages M4 and M5 between time t1 and t2. A physicalcheckpoint is taken at time t2, and anti-messages corresponding to messages M4 and M5 arelogged on the stable storage. The anti-messages are named M4� and M5�, respectively.6

anti-message

message
application

time

process

 P

M4*

M5*

M5

M4

to stable storage

t1 t2

state S1NOTATION

Figure 3: Anti-message log + physical checkpoint = logical checkpoint
M4*M5*

M5

M4

state S1 state S1
process
 PFigure 4: Recovering a logical checkpoint using anti-messagesTo recover the state, say S1, of process P at time t1, the process is initialized to thephysical checkpoint taken at time t2 and then anti-messages M5� and M4� are sent to theprocess. The order in which the anti-messages are delivered is reverse the order in whichthe messages were delivered. As shown in Figure 4, the �nal state of process P is identicalto the state (or logical checkpoint) at time t1. We summarize this approach as:anti-message log + physical checkpoint = logical checkpointThe anti-messages can possibly be formed by the application itself, or they mayconsist of a copy of the (old) process state modi�ed by the message (similar to copy-on-write[10]).4 Chandy-Lamport Algorithm [2]Chandy and Lamport [2] presented an algorithm for taking a consistent checkpoint of adistributed system. Assume that the processes communicate with each other using �rst-in-�rst-out (FIFO) unidirectional communication channels; a bidirectional channel can bemodeled as two unidirectional channels. For simplicity, we assume that the communica-tion graph is fully connected.2 The algorithm presented next is essentially identical to2Note that Chandy-Lamport algorithm is applicable to any strongly connected graph. Our algorithmcan also be generalized to strongly connected graphs.7

Chandy-Lamport [2, 13] and assumes that a certain process (named P0) is designated as thecheckpoint coordinator.Algorithm: The coordinator process P0 initiates the consistent checkpointing algorithmby sending marker messages on each channel, incident on, and directed away from P0 andimmediately takes a checkpoint. (This is a physical checkpoint.)A process, say Q, on receiving a marker message along a channel c takes the followingsteps:if Q has not taken a checkpoint thenbeginQ sends a marker on each channel, incident on, and directed away from Q.Q takes a checkpoint.Q records the state of channel c as being empty.endelse Q records the state of channel c as the sequence of messages received along c,after Q had taken a checkpoint and before Q received the marker along c.4.1 Plank's Staggering SchemePlank [13] suggested that the processes should send markers after taking their checkpoints,rather than before taking the checkpoint (unlike the algorithm above). This simple mod-i�cation introduces some staggering of checkpoints. However, not all checkpoints can bestaggered.In our experiments, we use the Chandy-Lamport algorithm that incorporates Plank'smodi�cation. In the rest of this paper, this modi�ed algorithm will be referred to as Chandy-Lamport/Plank algorithm, or CL/P for brevity.Observations: Plank [13] observed that his staggering scheme works better than theoriginal \non-staggered" algorithm when (i) degree of synchronization (or communication)amongst the processes is relatively small, and (ii) the message volume is relatively small(message volume is the amount of information communicated by messages). In Figure 5,the horizontal axis indicates degree of synchronization in an application, and the vertical8

axis indicates the message volume. As shown in the �gure, when synchronization is veryfrequent and/or message volume is large, it is better to avoid staggering checkpoints [13].Extrapolating Plank's results, it follows that, the region where a given staggering algorithmworks best shrinks with the degree of staggering. Greater staggering is bene�cial for appli-cations with less synchronization and small message volume. This paper does not alter theabove conclusions. Our work provides an user the ability to choose the degree of staggering.Our approach can achieve completely controlled staggering of checkpoints, unlike Plank [13].
no staggering

works best

more staggering

works best

large
message
volume

small
message
volume

synchronization
frequent
synchronization

infrequent

less staggering
works best

Figure 5: Checkpoint staggering and performance: Qualitative observations5 Staggered Consistent CheckpointingThe extent of checkpoint staggering using CL/P algorithm is dependent on the application'scommunication pattern, and also on how the algorithm is implemented (e.g., whether themarkers are sent asynchronously or not). On the other hand, the proposed algorithm canstagger the checkpoints in any manner desired. Many variations are possible, dependingon which checkpoints are desired to be staggered [16]. As an illustration, we assume thatthe objective is to stagger all checkpoints, i.e., no two checkpoints should overlap in time.Later, we will illustrate a situation where some overlap in checkpointing is desired. Theproposed algorithm (named STAGGER) can be summarized as follows:staggered physical checkpoints + consistent logical checkpoints = staggered consistent checkpointsThe proposed algorithm coordinates logical checkpoints rather than physical check-points. In this section, we assume that the �rst approach, described in Section 3, for taking9

logical checkpoints is being used. Thus, a logical checkpoint is taken by logging all messagesdelivered to a process since its most recent physical checkpoint.For the purpose of this discussion, assume that the checkpoint coordinator is namedP0, and other processes are named P1 through Pn�1. (n is the number of processes.)We now present the proposed algorithm (consisting of two phases), followed by anillustration. Presently, we assume that all processors share a single stable storage; Section 7considers the situation where multiple stable storages are available.Algorithm STAGGER1. Physical checkpointing phase: Checkpoint coordinator P0 takes a physical checkpointand then sends a take checkpoint message to process P1.When a process Pi, i > 0, receives a take checkpoint message, it takes a physicalcheckpoint and then sends a take checkpoint message to process Pj, where j = (i+1)mod n.When process P0 receives a take checkpoint message from process Pn�1, it initiates thesecond phase of the algorithm (named consistent logical checkpointing phase).After a process takes the physical checkpoint, it continues execution. Each messagedelivered to the process, after taking the physical checkpoint (but before the completionof the next phase), is logged in the stable storage.The above procedure ensures that physical checkpoints taken by the processes arestaggered because only one process takes a physical checkpoint at any time. Thephysical checkpoints taken by the processes are not necessarily consistent.2. Consistent logical checkpointing phase: This phase is very similar to the Chandy-Lamport algorithm. The di�erence between Chandy-Lamport algorithm and thisphase is that when the original Chandy-Lamport algorithm requires a process to takea \checkpoint", our processes take a logical checkpoint (not a physical checkpoint asin the Chandy-Lamport algorithm). A logical checkpoint is taken by ensuring thatthe messages delivered since the physical checkpoint (taken in the previous phase) arelogged on stable storage. The exact algorithm for this phase is provided below:Initiation: The coordinator P0 initiates this phase on receipt of the take checkpointmessage from process Pn�1. Process P0 sends marker message on each channel, inci-10

dent on, and directed away from P0. Also, P0 takes a logical checkpoint by ensuringthat all messages delivered to it since its physical checkpoint are logged. (The numberof messages logged can be somewhat reduced, as discussed later.)A process, say Q, on receiving a marker message along a channel c takes the followingsteps:if Q has not taken a logical checkpoint thenbeginQ sends a marker on each channel, incident on, and directed away from Q.Q takes a logical checkpoint by ensuring that all messages delivered to it(on any channel) after Q's recent physical checkpoint have been logged.endelse Q ensures that all messages received on channel c since its recentlogical checkpoint are logged.Messages received on channel c after a marker is received on that channel are notlogged. Similar to the Chandy-Lamport algorithm, messages sent by a process before itslogical checkpoint, but not received before the receiver's logical checkpoint are logged aspart of the channel state. Note that a message M that is logged to establish a logicalcheckpoint may be logged any time from the instant it is received until the time when thelogical checkpoint is to be established. In our implementation, due to insu�cient memoryon nCube-2, such messages were logged immediately on receipt.The above algorithm establishes a consistent recovery line consisting of one logicalcheckpoint per process. This algorithm reduces the contention for the stable storage bycompletely staggering the physical checkpoints. However, contention is now introduced inthe second phase of the algorithm when the processes log messages.3 Our scheme willperform well if message volume is relatively small compared to checkpoint sizes.Figure 6 illustrates the algorithm assuming that the system consists of three processes.Process P0 acts as the coordinator and initiates the physical checkpointing phase by takinga physical checkpoint and sending a take checkpoint message to P1. Processes P0, P1 and P2take staggered checkpoints during the �rst phase. When process P0 receives take checkpointmessage from process P2, it initiates the consistent logical checkpointing phase. Process P03This contention can potentially be reduced by taking a logical checkpoint before sending markers in theconsistent logical checkpointing phase. 11

physical checkpoint

logical checkpoint

application message

take_checkpoint message

marker messages

NOTATION

M6

M2

M5

M4

M1

M3

physical checkpointing phase consistent logical checkpointing phase

process
P0

(coordinator)

process
P1

P2

consistent recovery line

M0

processFigure 6: An examplesends marker messages to P1 and P2 and then takes a logical checkpoint by logging messagesM0 and M2 on the stable storage. When process P1 receives the marker message fromprocess P0, it sends markers to P0 and P2 and then takes a logical checkpoint by loggingmessage M1 on the stable storage. Similarly, process P2 takes a logical checkpoint by loggingmessage M3 on the stable storage. Messages M4 and M5 are also logged during the secondphase (as they represent the channel state). Message M6 is not logged.Proof of correctness: The correctness follows directly from the proof of correctness of theChandy-Lamport algorithm [2].Recovery: After a failure, each process rolls back to its recent physical checkpoint andre-executes (using the logged messages) to restore the process state to the logical checkpointthat belongs to the most recent consistent recovery line.Note that, the above STAGGER algorithm was designed assuming that it is desirableto stagger all checkpoints. If some other pattern of staggering is more desirable, the abovealgorithm can be easily modi�ed to achieve that pattern. Section 7 illustrates this with anexample.
12

6 Performance EvaluationWe implemented the proposed algorithm STAGGER and the Chandy-Lamport/Plank (CL/P)algorithm on a nCube-2 multicomputer with a single disk (stable storage). It should benoted that performance of each scheme is closely dependent on underlying hardware, soft-ware implementation of the scheme, and nature of the application program. Clearly, nosingle scheme can perform well for all applications. Our objective here is to demonstratethat the proposed scheme can perform well under certain circumstances.In our implementation of CL/P and STAGGER, the markers sent by process 0 aresent asynchronously using interrupts (or signals) { su�cient care is taken to ensure that themarkers appear in �rst-in-�rst-out (FIFO) order with respect to other messages even thoughthe markers are sent asynchronously. Markers sent by other processes are sent without usinginterrupts. If no markers are sent asynchronously, the checkpointing algorithmmay not makeprogress in the cases where synchronization (or communication) is infrequent. As staggeringis most bene�cial under these circumstances, it is necessary to ensure that the algorithmprogresses without any explicit communication by application processes. Therefore, process0 sends asynchronous markers. We will return to the issue of using asynchronous markerslater in Section 7.The �rst application used for evaluation of STAGGER is a synthetic program, namedsync-loop, similar to a program used by Plank [13]. The pseudo-code for the program ispresented below using a C-like syntax.sync-loop(iter, size, M) {char state[size];initialize (state);repeat (iter) times {perform M floating-point multiplications;synchronize with all other processes;}} Process state size (and checkpoint size) is controlled by the size parameter. For thesize chosen for our experiments, checkpoint size for each process of sync-loop is approxi-13

mately 2.1 Mbyte. Each process repeats a loop in which it performs some computation (theamount of computation being controlled by the M parameter). The loop is repeated itertimes. Synchronization is achieved by means of an all-to-all message exchange. By choosinga very large value for M the degree of synchronization in the program is minimized. A smallM, on the other hand, implies that processes synchronize very frequently.Figure 7 presents experimental results for STAGGER and CL/P schemes. Synchro-nization interval in this �gure is the time between two consecutive synchronizations of theprocesses { thus, synchronization interval is approximately equal to the time required toperform the computation (i.e., the M multiplications) in each iteration of the loop. Thesynchronization interval on the horizontal axis in Figure 7 is determined by dividing byiter the execution time of sync-loopwithout taking any checkpoints. Checkpoint overheadis obtained as:execution time with S consistent checkpoints � execution time without any checkpointsS :For our measurements, S = 5 (that is, �ve checkpoints per execution of the program). Eachinstance of the sync-loop application was executed �ve times, and checkpoint overhead wasaveraged over these �ve executions.Figure 7 presents overhead measurements for experiments on a cube of dimension1, 2, 3 and 4. Curve labeled d = N in the �gure is for experiments on N -dimensionalcube consisting of 2N processors. (Labels (a) through (h) in Figure 7 can be used to matchthe curves with the corresponding legend in top right corner of the �gure.) In Figure 7,observe that, for a �xed dimension, as the synchronization interval becomes smaller, thecheckpoint overhead grows for both schemes. For very small synchronization intervals, theSTAGGER scheme does not perform much better than the Chandy-Lamport/Plank scheme.However, when synchronization interval is large, the proposed scheme achieves signi�cantimprovements for d > 1. For dimension d = 1 (that is, 2 processors), the two schemesachieve essentially identical performance.Observe in Figure 7 that, for a given instance of the application, as the dimension isincreased the overhead for STAGGER as well as CL/P increases. However, the increase inthe overhead of CL/P is much greater than that of STAGGER.14

0

20

40

60

80

100

120

1 10 100 1000

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

synchronization interval (second)

sync-loop

(a) CL/P d=4
(b) Stagger d=4
(c) CL/P d=3

(a)

(b)

(c)

(d) Stagger d=3
(e) CL/P d=2
(f) Stagger d=2
(g) CL/P d=1
(h) Stagger d=1

(d)

(e)

(f)

(g)

(h)Figure 7: Checkpoint overhead for sync-loop. Labels (a) through (h) can be used to matchthe curves with the corresponding legend in top right corner of the �gure.15

The measurements presented above imply that when the parallel application has alarge granularity (thus, requiring infrequent communication or synchronization), the pro-posed STAGGER algorithm can perform well. As an example of an application with coarse-grain parallelism, Figure 8 presents measurements for a simulation program (SIM). Simu-lation program SIM evaluates the expected execution time of a task when using rollbackrecovery. State size for each process in SIM is approximately 34 Kbyte. The simulationprogram is completely parallelized, and the processes synchronize only at the beginning andat the completion of the simulation. This synchronization pattern represents the best pos-sible scenario for staggered checkpointing. As seen from Figure 8, the checkpoint overheadfor STAGGER remains constant independent of the dimension, as synchronization is veryinfrequent. On the other hand, the overhead for CL/P increases with the dimension.
0

1

2

3

4

5

6

7

1 2 3 4

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

dimension d

SIM

CL/P
Stagger

Figure 8: Measurements for SIM applicationTo be fair, we should note that STAGGER does not always outperform CL/P. Asnoted in Figure 5, an algorithm that staggers more tends to perform poorly when degreeof synchronization and/or message volume is large. To illustrate this, Figure 9(a) presentsmeasurements for a program named FFT-15 that repeatedly evaluates fast Fourier transformof 215 data points, and has frequent interaction between processes. Checkpoint size for eachprocess is approximately 1.85 Mbyte. For this application, the overhead of STAGGER islarger than that of CL/P.The performance of STAGGER can be improved by reducing the amount of informa-tion logged, using an optimization similar to that in [6]. Unlike in the original STAGGERalgorithm, it is not necessary to log a message's data content if it was sent by a process after16

0

20

40

60

80

100

120

1 2 3 4

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

dimension d

FFT-15

CL/P
STAGGER

(a) Using STAGGER algorithm 0

20

40

60

80

100

120

1 2 3 4

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

dimension d

FFT-15

CL/P
modified STAGGER

(b) Using modi�ed STAGGER algorithmFigure 9: Measurements for FFT-15 applicationtaking its physical checkpoint { for such a message, it is su�cient to log its order informa-tion (i.e., send and receive sequence numbers, and sender and receiver identi�ers). Duringrecovery, such a message is always reproduced by the sender process. Therefore, loggingof order information is su�cient. Figure 9(b) plots overhead of the STAGGER algorithmmodi�ed to implement the above optimization. The overhead of the modi�ed algorithm islower than the original STAGGER algorithm (see Figure 9(a)), however, the overhead is stillnot much better than CL/P. As the FFT-15 application performs frequent communication,it is hard to achieve overhead better than CL/P.7 Variations on the Theme(a) Process clustering to exploit multiple stable storages:The algorithm STAGGER presented above assumes that all processes share a single stablestorage. However, in some systems, the processes may share multiple stable storages. Forinstance, number of processes may be 16 and the number of stable storages may be 4.For such systems, we modify the proposed STAGGER algorithm to make use of all stablestorages while minimizing contention for each stable storage. To achieve this we partitionthe processes into clusters, the number of clusters being identical to the number of stablestorages. Each cluster is associated with a unique stable storage; processes within a clusteraccess only the associated stable storage [9].17

The algorithm STAGGER, modi�ed to use multiple stable storages, di�ers from theoriginal STAGGER algorithm only in the �rst phase (i.e., staggered checkpointing phase).We illustrate the modi�ed staggered checkpointing phase with an example. Consider asystem consisting of 6 processes, and 2 stable storages. The processes are now named Pij ,where i denotes cluster number and j denotes process number within the cluster. As 2 stablestorages are available, the processes are divided into 2 clusters containing 3 processes each.Cluster i (i = 0; 1) contains processes Pi0, Pi1 and Pi2. Process Pi0 in cluster i is identi�edas the checkpoint coordinator for cluster i, and process P00 is also identi�ed as the globalcheckpoint coordinator. Figure 10 depicts the �rst phase of the modi�ed algorithm.
process P00
(coordinator)

process P01

process P02

(coordinator)
process P10

process P11

process P12

message
denotes take_checkpoint consistent logical

checkpointing phase
(not shown here)staggered physical checkpointing phase

Figure 10: Process clustering to utilize multiple stable storagesThe global checkpoint coordinator P00 initiates phase 1 of the algorithm (i.e., stag-gered physical checkpointing phase) by sending take checkpoint messages to the checkpointcoordinators in all other clusters. Process P00 then takes a physical checkpoint and sends atake checkpoint message to process P01.When a process Pij (ij 6= 00) receives a take checkpoint message, it takes a physicalcheckpoint and sends a take checkpoint message to process Pkm wherem = (j + 1) modulo (cluster size)k = (0 if m = 0i otherwiseWhen the global coordinator P00 receives one take checkpoint message from a process18

in each cluster, it initiates the consistent logical checkpointing phase (this phase is identicalto the second phase of the original STAGGER algorithm).Essentially, the above procedure guarantees that at most one process accesses eachstable storage at any time during the �rst phase, and that all stable storages are used forsaving physical checkpoints.(b) Approach for taking a logical checkpoint:The discussion so far assumed that a logical checkpoint is taken by taking a physical check-point and logging subsequently received messages. The proposed algorithm can be easilymodi�ed to allow a process to use any of the three approaches presented earlier (in Sec-tion 3) for establishing a logical checkpoint. In fact, di�erent processes may simultaneouslyuse di�erent approaches for establishing a logical checkpoint.(c) Asynchronous Markers:Arrival of an asynchronous marker is informed to the destination process by means of aninterrupt (or signal). In spite of the asynchronous nature, a marker should appear in itsappropriate position on the FIFO channel on which it is sent. We call a marker that is notsent with an interrupt a \synchronous" marker (for the lack of a better terminology). Whilean asynchronous marker can be processed as soon as it arrives, a synchronous marker maynot be processed for a long time { particularly, if the destination process does not need anymessages on the corresponding channel.Which markers (if any) are sent asynchronously can a�ect performance of STAGGERand CL/P algorithms. As noted previously, in our implementation, markers sent by process0 are asynchronous, other markers are synchronous.Plank [13] does not address the distinction between asynchronous and synchronousmarkers. One variation that can make CL/P imitate STAGGER, particularly for applica-tions with infrequent synchronization (communication), is as follows: In CL/P algorithm,ensure that the marker sent by process i to process j is asynchronous if and only if j = i+1(modulo number of processes). Thus, each process will take checkpoint, and the algorithmwill make progress, even if the processes are not communicating with each other. Also, aseach process sends only one asynchronous marker, the algorithm would tend to reduce con-tention for the stable storage. With infrequent synchronization (communication), the above19

rule will tend to stagger checkpoints by di�erent processes (i.e., the algorithm becomessimilar to STAGGER).The above variation could also be used to reduce stable storage contention duringthe consistent logical checkpointing phase of STAGGER algorithm.8 SummaryThis paper presents an algorithm for taking consistent logical checkpoints. The proposedalgorithm can ensure that physical checkpoints taken by various processes are staggeredto minimize contention in accessing the stable storage. Experimental results on nCube-2suggest that the proposed scheme can improve performance as compared to an existing stag-gering technique, particularly when processes synchronize infrequently and message sizes arenot very large. The paper also suggests a few variations of the proposed scheme, includingan approach for staggering checkpoints when multiple stable storages are available.AcknowledgementsWe thank the referees of the conference version of this paper, and James Plank andYi-Min Wang, for their comments on an earlier draft of this paper. The FFT program usedfor experiments was written by Akhilesh Kumar. Vidya Iyer wrote parts of the checkpointinglayer used for experiments. This research is supported in part by National Science Founda-tion grant MIP-9502563 and Texas Advanced Technology Program grant 009741-052-C.References[1] G. Cabillic, G. Muller, and I. Puaut, \The performance of consistent checkpointing indistributed shared memory systems," in Int. Symp. Reliable Distr. Systems (SRDS),pp. 96{105, September 1995.[2] K. M. Chandy and L. Lamport, \Distributed snapshots: Determining global states indistributed systems," ACM Trans. Comp. Syst., vol. 3, pp. 63{75, February 1985.[3] C. J. Date, An Introduction to Database Systems. Addison-Wesley, 1986.[4] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, \The performance of consistentcheckpointing," in Symposium on Reliable Distributed Systems, 1992.20

[5] E. N. Elnozahy and W. Zwaenepoel, \Manetho: Transparent rollback-recovery with lowoverhead, limited rollback, and fast output commit," IEEE Trans. Computers, vol. 41,May 1992.[6] J. Fowler and W. Zwaenepoel, \Causal distributed breakpoints," in International Conf.Distributed Computing Systems, pp. 134{141, May 1990.[7] D. Je�erson, \Virtual time," ACM Trans. Prog. Lang. Syst., vol. 3, pp. 404{425, July1985.[8] D. B. Johnson, Distributed System Fault Tolerance Using Message Logging and Check-pointing. PhD thesis, Computer Science, Rice University, December 1989.[9] S. Kaul, \Evaluation of consistent logical checkpointing." M.S. Thesis, Dept. of Com-puter Science, Texas A&M University, May 1995.[10] K. Li, J. F. Naughton, and J. S. Plank, \Low-latency, concurrent checkpointing forparallel programs," IEEE Trans. Par. Distr. Syst., vol. 5, pp. 874{879, August 1994.[11] J. Long, B. Janssens, and W. K. Fuchs, \An evolutionary approach to concurrentcheckpointing," manuscript, 1994.[12] J. S. Plank, M. Beck, G. Kingsley, and K. Li, \Libckpt: Transparent checkpointingunder Unix," in Usenix Winter 1995 Technical Conference, New Orleans, January 1995.[13] J. S. Plank, E�cient Checkpointing on MIMD Architectures. PhD thesis, Dept. ofComputer Science, Princeton University, June 1993.[14] R. E. Strom and S. A. Yemini, \Optimistic recovery: An asynchronous approach tofault-tolerance in distributed systems," Digest of papers: The 14th Int. Symp. Fault-Tolerant Comp., pp. 374{379, 1984.[15] N. H. Vaidya, \On checkpoint letency," in Paci�c Rim International Conference onFault-Tolerant Systems, December 1995.[16] N. H. Vaidya, \On staggered checkpointing," in Eighth IEEE Symposium on Paralleland Distributed Processing (SPDP), October 1996.[17] Y. M. Wang and W. K. Fuchs, \Lazy checkpoint coordination for bounding rollbackpropagation," in Symposium on Reliable Distributed Systems, pp. 78{85, October 1993.[18] Y. M. Wang, Y. Huang, and W. K. Fuchs, \Progressive retry for software error recoveryin distributed systems," in Digest of papers: The 23rd Int. Symp. Fault-Tolerant Comp.,pp. 138{144, 1993. 21

