On Staggered Checkpointing

*

Nitin H. Vaidya
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112

E-mail: vaidya@cs.tamu.edu

Abstract

A consistent checkpointing algorithm saves a con-
sistent view of a distributed application’s state on sta-
ble storage. The traditional consistent checkpoint-
ing algorithms require different processes to save their
state at about the same time. This causes contention
for the stable storage, potentially resulting in large
overheads. Staggering the checkpoints taken by var-
tous processes can reduce checkpoint overhead [10].
This paper presents a simple approach to arbitrar-
ily stagger the checkpoints. Our approach requires
that the processes take consistent logical checkpoints,
as compared to consistent physical checkpoints en-
forced by existing algorithms. Experimental results on
nCube-2 are presented.

1 Introduction

Applications executed on a large number of pro-
cessors, either in a distributed environment, or on
multicomputers such as nCube, are subject to proces-
sor failures. Consistent checkpointing is a commonly
used technique to prevent complete loss of computa-
tion upon a failure [1, 3, 5, 9, 10]. A consistent check-
pointing algorithm saves a consistent view of a dis-
tributed application’s state on a stable storage. The
loss of computation upon a failure is bounded by tak-
ing consistent checkpoints with adequate frequency.

The traditional consistent checkpointing algorithms
require different application processes to save their
state at about the same time. This causes contention
for the stable storage, potentially resulting in signif-
icant performance degradation [10]. Staggering the
checkpoints taken by various processes can reduce the

*This research is supported in part by National Science Foun-
dation grant MIP-9502563 and Texas Advanced Technology
Program grant 009741-052-C.

overhead of consistent checkpointing by reducing sta-
ble storage contention. Some techniques for staggering
the checkpoints have been previously proposed [10],
however, these techniques result in “limited” stagger-
ing in that not all processes’ checkpoints can be stag-
gered. Ideally, one would like to stagger the check-
points arbitrarily. If processors are able to make an
“in-memory” copy of entire process state, then check-
point staggering is trivial. This paper considers sys-
tems where it is not feasible to make an in-memory
copy of entire process state. This situation may occur
because: (i) memory size is small, or (ii) the memory
may be shared by processes of multiple applications —
making in-memory copy of a process from one appli-
cation may cause processes from other applications to
be swapped out (degrading their performance).

This paper presents a simple approach to arbitrarily
stagger the checkpoints. Our approach requires that
the processes take consistent logical checkpoints, as
compared to consistent physical checkpoints enforced
by existing algorithms for staggering. The paper dis-
cusses the proposed approach and presents experimen-
tal results on nCube-2 multicomputer.

2 Related Work

Plank [10] was the first to observe that stable stor-
age contention can be serious problem for consistent
checkpointing, and suggested checkpoint staggering as
a solution. The degree of staggering with Plank’s algo-
rithm (based on the Chandy-Lamport algorithm [1])
is completely dependent on the application’s commu-
nication pattern. In contrast, our algorithm allows
arbitrary staggering of the checkpoints, independent
of the application. Plank [10] also presents another
approach for staggering checkpoints, that is applica-
ble to wormhole routed networks. This algorithm also
does not permit arbitrary/controlled staggering.

Long et al. [9] discuss an evolutionary checkpoint-

ing approach, that is similar to logical checkpoint-
ing. Our algorithm staggers the checkpoints, while
the scheme in [9] does not allow staggering. [9] also
assumes synchronized communication and an upper
bound on communication delays; no such assumptions
are made in the proposed scheme.

Wang et al. [13] introduced the term logical check-
point. They present an algorithm to determine a re-
covery line consisting of consistent logical checkpoints,
after a failure occurs. This recovery line is used to
recover from the failure. Their goal is to determine
the “latest” consistent recovery line using the infor-
mation saved on the stable storage. Message logging
and independent checkpointing schemes, such as [5],
also, effectively, determine a recovery line consisting
of consistent logical checkpoints after a failure occurs.
In these schemes, during failure-free operation each
process is allowed to independently take checkpoints
and log messages. On the other hand, our scheme co-
ordinates logical checkpoints before a failure occurs.
These logical checkpoints are used to recover from a
future failure. Omne consequence of this is that our
scheme does not log all messages; only those mes-
sages which make the logical checkpoints consistent
are logged.

3 A Logical Checkpoint

A process is said to be deterministic if its state de-
pends only on its initial state and the messages deliv-
ered toit [5, 11]. A deterministic process can take two
types of checkpoints: a physical checkpoint or a logical
checkpoint. A process is said to have taken a physi-
cal checkpoint at some time t¢1, if the process state
at time ¢; is saved on the stable storage. A process
is said to have taken a logical checkpoint at time ¢,
if adequate information is saved on the stable storage
to allow the process state at time ¢; to be recovered.
A physical checkpoint is trivially a logical checkpoint,
however, the converse is not true. Now we summa-
rize three approaches for taking a logical checkpoint
at time ¢1. Each approach may be more attractive for
some applications than the other approaches. Not all
approaches will be feasible on all systems.

Approach 1: One approach for establishing a logi-
cal checkpoint at time ¢; is to take a physical check-
point at some time ¢¢ < ¢; and log (on stable storage)
all messages delivered to the process between time #g
and t;. (For each message, the message log contains
the receive sequence number for the message as well

M1 M3 physical
process \ \ - checkpoint

[
[
= logical
t0 M2 1 time D checkpoint

Figure 1: Physical checkpoint + message log = logical
checkpoint

as the entire message.) This approach is essentially
identical to that presented by Wang et al. [13].

Figure 1 presents an example wherein process P
takes a physical checkpoint at time ¢g. Messages M1,
M2 and M3 are delivered to process P by time ¢;. To
establish a logical checkpoint of process P at time ¢4,
messages M1, M2 and M3 are logged on the stable
storage. As process P is deterministic, the state of
process P at time ¢; can be recovered using the infor-
mation on the stable storage (i.e., physical checkpoint
at to and messages M1, M2 and M3).

We summarize this approach as:

physical checkpoint + message log =
checkpoint

logical

Approach 2: The essential purpose behind saving
the messages above is to be able to recreate the state
at time %1, or to be able to “re-perform” the incre-
mental changes made in process state by each of these
messages. This may be achieved simply by taking a
physical checkpoint at time o and taking an incremen-
tal checkpoint at time ¢;. The incremental checkpoint
is taken by logging® the changes made to process state
between time tg and ¢;. We summarize this approach
as:

physical checkpoint +
point = logical checkpoint

The evolutionary checkpointing scheme by Long et

incremental check-

al. [9] takes checkpoints similar to above procedure,
although they do not use the term logical checkpoint.

Approach 3: The above two approaches take a
physical checkpoint prior to the desired logical check-
point, followed by logging of additional information
(either messages or incremental state change).

The third approach is the converse of the above two
approaches. Here, the physical checkpoint is taken at
a time 5, where ¢ > ¢;. In addition, enough informa-
tion is saved to un-do the effect of messages received
between time ¢; and 3. For each relevant message
(whose effect must be undone), an anti-message is

1The term logging is used to mean “saving on the stable
storage”.

application
message
-7--/-> anti-message

state S1 M5
process M

p LJ R \
Yy 4 o
M4 N VR time
\\M4~x \\\
\\ MS* \\
\ N
to stable storage

Figure 2: Anti-message log + physical checkpoint =
logical checkpoint

M5* M4*
state S1 M5 %, % saesl
process m \ Y
p (] s Iz

M4

Figure 3: Recovering a logical checkpoint using anti-
messages

saved on the stable storage. The notion of an anti-
message here is similar to that used in time warp
mechanism [4] or that of UNDO records [2] in database
systems. Anti-message M* corresponding to a mes-
sage M can be used to undo the state change caused
by message M.

Figure 2 illustrate this approach. A logical check-
point of process P is to be established at time ¢;. Pro-
cess P delivers messages M4 and M5 between time ¢,
and t5. A physical checkpoint is taken at time %5, and
anti-messages corresponding to messages M4 and M5
are logged on the stable storage. The anti-messages
are named M4* and M5*, respectively.

To recover the state, say S1, of process P at time
t1, the process is initialized to the physical checkpoint
taken at time ¢5 and then anti-messages M5* and M4*
are sent to the process. The order in which the anti-
messages are delivered is reverse the order in which
the messages were delivered. As shown in Figure 3,
the final state of process P is identical to the state (or
logical checkpoint) at time #;.

We summarize this approach as:

anti-message log + physical checkpoint = log-
ical checkpoint

An important issue is that of forming the anti-
messages. The anti-messages can possibly be formed
by the application itself, or they may consist of a copy
of the (old) process state modified by the message (sim-

ilar to copy-on-write [8]).

4 Chandy-Lamport Algorithm [1]

Chandy and Lamport [1] presented an algorithm
for taking a consistent checkpoint of a distributed sys-
tem. Assume that the processes communicate with
each other using unidirectional communication chan-
nels; a bidirectional channel can be modeled as two
For simplicity, we assume
that the communication graph is fully connected.?
The algorithm presented next is essentially identical
to Chandy-Lamport [1, 10] and assumes that a certain
process (named Pp) is designated as the checkpoint co-
ordinator.

unidirectional channels.

Algorithm: The coordinator process Py initiates
the consistent checkpointing algorithm by sending
marker messages on each channel, incident on, and
directed away from Py and immediately takes a check-
point. (This is a physical checkpoint.)
A process, say Q, on receiving a marker message
along a channel ¢ takes the following steps:
if Q has not taken a checkpoint then
begin
Q sends a marker on each channel, incident
on, and directed away from Q.
Q takes a checkpoint.
Q records the state of channel ¢ as being
empty.
end
else Q records the state of channel ¢ as the
sequence of messages received along ¢, after
Q had taken a checkpoint and before
Q received the marker along c.

4.1 Plank’s Staggering Scheme [10]

Plank [10] suggested that the processes should send
markers after taking their checkpoints, rather than
before taking the checkpoint (unlike the algorithm
above). This simple modification introduces some
staggering of checkpoints. However, not all check-
points can be staggered.

In our experiments, we use the Chandy-Lamport
algorithm that incorporates Plank’s modification. In
the rest of this paper, this modified algorithm will be
referred to as Chandy-Lamport/Plank algorithm, or
CL/P for brevity.

2Note that Chandy-Lamport algorithm is applicable to
strongly connected graphs. Our algorithm can also be gener-
alized to strongly connected graphs.

Observations: Plank [10] observed that his stag-
gering schemes work better than the original “non-
staggered” algorithm when (i) degree of synchroniza-
tion amongst the processes is relatively small, and (ii)
the message volume is relatively small.

5 Staggered Consistent Checkpointing

The extent of checkpoint staggering using CL/P
algorithm is dependent on the application’s commu-
nication pattern, and also on how the algorithm is
implemented (e.g., whether the markers are sent syn-
chronously or asynchronously). On the other hand,
the proposed algorithm can stagger the checkpoints
in any manner desired. Many variations are possi-
ble, depending on which checkpoints are desired to
be staggered [12]. As an illustration, we assume that
the objective is to stagger all checkpoints, i.e., no two
checkpoints should overlap in time. Later, we will il-
lustrate a situation where some overlap in checkpoint-
ing is desired.

The proposed algorithm (named STAGGER) can
be summarized as follows:

staggered phystical checkpoints + consistent logical
checkpoints = staggered consistent checkpoints

The basic idea is to coordinate logical checkpoints
rather than physical checkpoints. In this section, we
assume that the first approach, described in Section 3,
for taking logical checkpoints is being used. Thus,
a logical checkpoint is taken by logging all messages
delivered to a process since its most recent physical
checkpoint.

For the purpose of this discussion, assume that the
checkpoint coordinator is named Py, and other pro-
cesses are named P; through P, ;. (n is the number
of processes.)

We now present the proposed algorithm (consisting
of two phases), followed by an illustration. Presently,
we assume that all processors share a single stable
storage; Section 7 considers the situation where mul-
tiple stable storages are available.

Algorithm STAGGER

1. Physical checkpointing phase: Checkpoint coor-
dinator Py takes a physical checkpoint and then
sends a take_checkpoint message to process Pj.

When a process P, ¢ > 0, receives a
take_checkpoint message, it takes a physical check-
point and then sends a fake_checkpoint message
to process P;, where j = (¢ + 1) mod n.

When process Py receives a take_checkpoint mes-
sage from process P,_j, it initiates the second

phase of the algorithm (named consistent logical
checkpointing phase).

After a process takes the physical checkpoint, it
continues execution. Each message delivered to
the process, after taking the physical checkpoint
(but before the completion of the next phase), is
logged in the stable storage.

The above procedure ensures that physical check-
points taken by the processes are staggered be-
cause only one process takes a physical checkpoint
at any time. The physical checkpoints taken by
the processes are not, in general, necessarily con-
sistent. (No attempt is made to ensure consis-
tency of physical checkpoints.)

2. Consistent logical checkpointing phase: This
phase is very similar to the Chandy-Lamport
algorithm. The difference between Chandy-
Lamport algorithm and this phase is that when
the original Chandy-Lamport algorithm requires
a process to take a “checkpoint”, our processes
take a logical checkpoint (not a physical check-
point as in the Chandy-Lamport algorithm). A
logical checkpoint is taken by ensuring that the
messages delivered since the physical checkpoint
(taken in the previous phase) are logged on sta-
ble storage. The exact algorithm for this phase is
provided below:

Initiation: The coordinator Py initiates this phase
on receipt of the take_checkpoint message from
process P, _;. Process Py sends marker message
on each channel, incident on, and directed away
from Py. Also, Py takes a logical checkpoint by
ensuring that all messages delivered to it since its
physical checkpoint are logged.

A process, say Q, on receiving a marker message
along a channel ¢ takes the following steps:

if Q has not taken a logical checkpoint then
begin
Q sends a marker on each channel,
incident on, and directed away from Q.
Q takes a logical checkpoint by ensuring
that all messages delivered to it
(on any channel) after Q’s recent
physical checkpoint have been logged.
end
else Q ensures that all messages received
on channel ¢ since its recent
logical checkpoint are logged.

Messages received on channel ¢ after a marker is
received on that channel are not logged. Similar to

the Chandy-Lamport algorithm, messages sent by a
process before its logical checkpoint, but not received
before the receiver’s logical checkpoint are logged as
part of the channel state. Note that a message M
that is logged to establish a logical checkpoint may be
logged any time from the instant it is received until the
time when the logical checkpoint is to be established.
In our implementation, due to insufficient memory on
nCube-2; such messages were logged immediately on
receipt.

The above algorithm establishes a consistent recov-
ery line consisting of one logical checkpoint per pro-
cess. This algorithm reduces the contention for the
stable storage by completely staggering the physical
checkpoints. However, contention is now introduced
in the second phase of the algorithm when the pro-
cesses log messages. Our scheme will perform well if
message volume is relatively small compared to check-
point sizes. As suggested by a referee, if markers are
sent after logging message (in the second phase), then
stable storage contention may potentially be smaller.
A few other variations of the above algorithm are pos-
sible, as discussed in Section 7.

Figure 4 illustrates the algorithm assuming that
the system consists of three processes. Process Pg
acts as the coordinator and initiates the checkpoint-
ing phase by taking a physical checkpoint and send-
ing a take_checkpoint message to P;. Processes Py,
P; and P, take staggered checkpoints during the first
phase. When process P; receives take_checkpoint mes-
sage from process Ps, it initiates the consistent logical
checkpointing phase. Process Py sends marker mes-
sages to P; and P, and then takes a logical checkpoint
by logging messages MO and M2 on the stable storage.
When process P; receives the marker message from
process Py, it sends markers to Py and P> and then
takes a logical checkpoint by logging message M1 on
the stable storage. Similarly, process P takes alogical
checkpoint by logging message M3 on the stable stor-
age. Messages M4 and M5 are also logged during the
second phase (as they represent the channel state).

Recovery: After a failure, each process rolls back to
its recent physical checkpoint and re-executes (using
the logged messages) to restore the process state to
the logical checkpoint that belongs to the most recent
consistent recovery line.

Proof of correctness: The correctness follows di-
rectly from the proof of correctness for the Chandy-
Lamport algorithm [1].

— application message
—& take checkpoint message
------=> marker messages

- physical checkpoint

D logical checkpoint

physical checkpointing phase | consistent logical checkpointing phase

process
PO

(coordinator)

process
P1

process

consistent recovery line

Figure 4: An example

6 Performance Evaluation

We implemented the proposed algorithm STAG-
GER and the Chandy-Lamport/Plank scheme (abbre-
viated as CL/P) on a nCube-2 multicomputer. It
should be noted that performance of each scheme is
closely dependent on the underlying hardware and be-
havior of the application program. Clearly, no single
scheme can perform well on all applications. Our ob-
Jective here is to demonstrate that the proposed algo-
rithm can perform well under certain circumstances.

In our implementation of CL/P and STAGGER,
the markers sent by node 0 are sent asynchronously
using interrupts — sufficient care is taken to ensure
that the markers appear in FIFO order with respect
to other messages even though they are sent asyn-
chronously. Markers sent by other processes are sent
without using interrupts. If no markers are sent asyn-
chronously, the checkpointing algorithm may not make
progress in the cases where synchronization (or com-
munication) is very infrequent. As staggering can be
useful primarily under these circumstances, it is nec-
essary to ensure that the algorithm progresses without
any explicit communication by application processes.
We will return to the issue of using asynchronous
markers later in Section 7.

The application used for evaluation is a synthetic
program, named sync-loop, similar to a program
used by Plank [10]. The pseudo-code for the pro-
gram is presented below.

sync-loop(iter, size, M) {
state = malloc(size); // create state
initialize (state);

repeat (iter) times {
perform M floating-point multiplications;
synchronize with all other processes;

}
}

Process state size (and checkpoint size) is controlled
by the size parameter. Each process repeats a loop
in which it performs some computation (the amount
of computation controlled by the M parameter). The
loop is repeated iter times.

By choosing a very large value for M the degree of
synchronization in the program is minimized. A small
M, on the other hand, implies that processes synchro-
nize very frequently. Synchronization is achieved by
means of an all-to-all message exchange.

Figure 5 presents experimental results for STAG-
GER and CL/P schemes. Synchronization interval is
the time between two consecutive synchronizations of
the processes — thus, synchronization interval is ap-
proximately equal to the time required to perform the
computation (i.e., the M multiplications) in each itera-
tion of the loop. The checkpoint size for each process
is approximately 2.1 Mbyte. Checkpoint overhead is
obtained as: (execution time with S consistent check-
points — execution time without any checkpoints)/S.
For our measurements, S = 5 (that is, five checkpoints
per execution of the program). Each instance of the
application was executed five times, and checkpoint
overhead was averaged over these five executions.

Figure 5 presents overhead measurements for ex-
periments on a cube of dimension 1, 2, 3 and 4. Curve
labeled d = N in the figure is for experiments on
N-dimensional cube. (Labels (a) through (h) can be
used to match the curves with the corresponding la-
bels in top right corner of the figure.) All processes
shared a single disk to store the checkpoints. We
choose to plot absolute values of checkpoint overhead,
instead of percentage overhead, as absolute overhead
is independent of the checkpoint interval, unlike per-
centage overhead. In Figure 5, observe that, for a
fixed dimension, as the synchronization interval be-
comes smaller, the checkpoint overhead grows for both
schemes. For very small synchronization intervals,
the STAGGER scheme does not perform much better
than the Chandy-Lamport/Plank scheme. However,
when synchronization interval is large, the proposed
scheme achieves significant improvements. (For di-
mension d = 1, the two schemes achieve essentially
identical performance.)

Observe in Figure 5 that, for a given instance of the
application, as the dimension is increased the overhead
for STAGGER as well as CL/P increases. However,

sync-1 oop
120 ‘
(a) CL/IP d=4 ——
(b) Stagger d=4 -+--
(c) CL/IP d=3 -o--
(d) Stagger d=3 -x--
(f) Stagger d=2 —x-
al (g) CL/P d=1 -o- 1
(h) Stagger d=1 -+-

©
o
T
L

checkpoi nt overhead (second)
(2]
o

0L \ 1

20 + e N 1

1 10 100 1000
synchroni zation interval (second)

Figure 5: Checkpoint overhead for sync-loop

the increase in the overhead of CL/P is much greater
than that of STAGGER.

The stable storage contention tends to increase with
an increase in the number of application processes. To
better understand the impact of stable storage con-
tention, in Figure 6, we plot the ratio (checkpoint over-
head/number of nodes). Observe that, for a given in-
stance of the application, the ratio is higher for larger
dimension when using the CL/P scheme — on the other
hand, the ratio is smaller for larger dimension when
using the STAGGER scheme. The reason being that
the increase in the overhead of STAGGER, with in-
creasing dimension, is relatively small as compared to
CL/P.

The measurements presented above imply that
when the parallel application has a large granular-
ity (thus, requiring infrequent communication or syn-
chronization), the proposed STAGGER algorithm can
perform well. As an example of an application with
coarse-grain parallelism we present measurements for
a simulation program (SIM), in Figure 7. The simu-

sync- | oop

7 T
(d=4
d=4 -+
(c) =3 o
o (d) Stagger d=3 -x--
- N Ee(e)-CLfP . d=2, -
61 . N (f) Stagger d=2 -x--
0 X N (g) CL/P d=1 -»--
3 & ~._ (h) stagger d=1 -+-
Q \\‘~ B
c Vv Tee—
u— N T
o L L B
= 5 *‘ ¥
] AV
'g AYU
=} \\ \
c i N
- \ \
~ 4r o Ve]
- N D
S W .
o Vo
() NN
(7] i
~ \\ S
B 3r \\g» X |
2 VAN
p N
o Lk
> A e
o N ~.o
\\ .. .
IS 2+ N T~ 4
) . *
o N
X AN
(] N
[} N
< AN
[3) AN
1r 1
e
0 L L
1 10 100 1000

synchroni zation interval (second)

Figure 6: (Checkpoint overhead /number of nodes) for
sync-loop program

lation program evaluates the expected execution time
of a task when using rollback recovery. State size for
each process in SIM is approximately 34 Kbyte. The
simulation program is completely parallelized, and the
processes synchronize only at the beginning and at
the completion of the simulation. This synchroniza-
tion pattern represents the best possible scenario for
staggered checkpointing. As seen from Figure 7, the
checkpoint overhead for STAGGER remains constant
independent of the dimension, as synchronization is
very infrequent. On the other hand, the overhead for
CL/P increases with the dimension.

Impact of message size on performance: Plank
[10] observed that his staggered checkpointing schemes
log more messages than non-staggered checkpointing
schemes. Therefore, his schemes do not perform well
compared to non-staggering schemes, when message
sizes are large. Similarly, as the STAGGER algo-
rithm staggers checkpoints more than Plank’s algo-

SIM

CL/IP ——
6 St agger —+--

checkpoi nt overhead (second)

di mension d

Figure 7: Measurements for SIM application

rithm, it tends to log more messages than Plank’s al-
gorithm. Therefore, STAGGER will not perform well
when message sizes are large. This conclusion follows
directly from that made previously by Plank.

7 Variations on the Theme

Many variations of the algorithm presented earlier
are possible. Utility of these variations depends on the
nature of the application and the execution environ-
ment. In the following, we discuss some variations.

(a) Process clustering to exploit multiple sta-
ble storages: The algorithm STAGGER presented
above assumes that all processes share a single stable
storage. However, in some systems, the processes may
share multiple stable storages. For instance, number
of processes may be 16 and the number of stable stor-
ages may be 4. For such systems, we modify the pro-
posed STAGGER algorithm to make use of all stable
storages while minimizing contention for each stable
storage. To achieve this we partition the processes
into clusters, the number of clusters being identical to
the number of stable storages. Each cluster is associ-
ated with a unique stable storage; processes within a
cluster access only the associated stable storage [7].
The algorithm STAGGER, modified to use multiple
stable storages, differs from the original STAGGER al-
gorithm only in the first phase (i.e., staggered check-
pointing phase). We illustrate the modified staggered
checkpointing phase with an example. Consider a sys-
tem consisting of 6 processes, and 2 stable storages.
The processes are now named P;;, where ¢ denotes
the cluster number and j denotes the process number

within the cluster. As 2 stable storages are available,
the processes are divided into 2 clusters containing 3
processes each. Cluster ¢ (= 0,1) contains processes
P;o, P;1 and P;5. Process Pjp in cluster 7 is identified
as the checkpoint coordinator for cluster i, and process
Poyo 1s also identified as the global checkpoint coordi-
nator. Figure 8 depicts the first phase of the modified
algorithm.
consistent logical

| checkpointing phase
I

staggered checkpointing phase

(coordinator)

‘”"MW_\ - il

—

process POL

process P02

(coordinator)
process P10

¥_\

process P11

/
—\-/

____ o take_checkpoint message

process P12

Figure 8: Process clustering to utilize multiple stable
storages

The global checkpoint coordinator Pyo initiates
phase 1 of the algorithm by sending take_checkpoint
messages to the checkpoint coordinators in all other
clusters. Process Pyo then takes a physical checkpoint
and sends a take_checkpoint message to process Poj.

When a process P;; (ij # 00) receives a
take_checkpoint message, it takes a physical check-
point and sends a take_checkpoint message to process
Py, where

m = (j + 1) modulo (cluster size)

k:{ 0if m=0

1 otherwise

When the global coordinator Pyo receives one
take_checkpoint message from a process in each clus-
ter, it initiates the second phase of the algorithm
(this phase is identical to the original STAGGER al-
gorithm).

Essentially, the above procedure guarantees that at
most one process accesses each stable storage at any
time during the first phase, and that all stable stor-
ages are used for saving physical checkpoints.

(b) Approach for taking a logical checkpoint:
The discussion so far assumed that a logical checkpoint
is taken by taking a physical checkpoint and logging
subsequently received messages. The proposed algo-
rithm can be easily modified to allow a process to use

any of the three approaches presented earlier (in Sec-
tion 3) for establishing a logical checkpoint. In fact,
different processes may simultaneously use different
approaches for establishing a logical checkpoint.

(¢) Checkpointing versus message logging: As
staggering tends to increase the number of messages
logged, the following variations will be beneficial for
some applications.

e A process may decide to not take a physical check-
point in the first phase, if it a priori knows that
its message log will be large. In this case, the
process would take a physical checkpoint in the
second phase.?

e If a process receives too many messages after
taking the physical checkpoint in the first phase
of the algorithm, then it may decide to take a
physical checkpoint in the second phase (rather
than logging messages). This makes the physical
checkpoint taken by the process in the first phase
redundant. However, this modification may re-
duce the overhead when checkpoint size is smaller
than what the message log would be.

(d) Asynchronous Markers:

An asynchronous marker is one which is detected by
the destination process soon after it is received. Ar-
rival of an asynchronous marker is informed to the
destination process by means of an interrupt (or sig-
nal). In spite of the asynchronous nature, the marker
appears in its appropriate position on the FIFO chan-
nel on which it is sent. We call a marker that is not
sent with an interrupt a “synchronous” marker (for the
lack of a better terminology). While an asynchronous
marker can be processed as soon as it arrives, a syn-
chronous marker may not be processed for a long time
— particularly, if the destination process does not need
any messages on the corresponding channel.

Which markers (if any) are sent asynchronously
can affect performance of STAGGER and CL/P al-
gorithms significantly. As noted previously, in our
implementation, markers sent by process 0 are asyn-
chronous, other markers are synchronous.

One variation on Plank’s scheme [10] for appli-
cations with infrequent synchronization (communica-
tion) is as follows: Ensure that the marker sent by
process ¢ to process j is asynchronous if and only
if j = i+ 1 (modulo number of processes). Thus,
each process will take checkpoint, and the algorithm

3Johnson [6] suggested a scheme where each process uses a
similar heuristic to decide whether to log messages or not.

will make progress, even if the processes are not com-
municating with each other. Also, as each process
sends only one asynchronous marker, the algorithm
would tend to reduce contention for the stable storage.
With infrequent synchronization (communication) the
above rule will completely stagger checkpoints by the
different processes (i.e., the algorithm becomes similar
to STAGGER).

(e) Initiation of Logical Checkpointing Phase:
In our description of the STAGGER algorithm, we as-
sume that only process 0 initiates the second phase
(consistent logical checkpointing) of the algorithm.
Note that the second phase of the algorithm is iden-
tical to the original Chandy-Lamport algorithm, with
the exception that physical checkpoints are replaced
by logical checkpoints. The Chandy-Lamport algo-
rithm can be implemented correctly with multiple ini-
tiators also. Therefore, the STAGGER algorithm can
be modified to allow any process to initiate the sec-
ond phase at any time. Different heuristics for decid-
ing who starts the second phase and when can yield
different performance. One heuristic, similar to one
mentioned earlier, is to allow a process to initiate the
second phase immediately after taking physical check-
point in the first phase, if it is known that the process
will need to log too many large messages.

Clearly, there are many variations possible based
on the STAGGER algorithm. Also, staggering is not
always beneficial. (In general, no single checkpoint-
ing scheme works well for all possible applications.) A
future goal of our research is to design an adaptive al-
gorithm that can, at run-time, determine if staggering
is beneficial or not (and which staggering scheme is

best).

8 Summary

This paper presents an algorithm for taking con-
sistent logical checkpoints. The proposed algorithm
ensures that physical checkpoints taken by various
processes are completely staggered to minimize con-
tention in accessing the stable storage. Experimen-
tal results on nCube-2 suggest that the proposed
scheme can improve performance as compared to ex-
isting staggering techniques, particularly when pro-
cesses synchronize infrequently and message sizes are
not very large. The paper also suggests a few varia-
tions of the proposed scheme, including an approach
for staggering checkpoints when multiple stable stor-
ages are available.

Acknowledgements

We thank the referees for their suggestions, and James
Plank and Yi-Min Wang for their comments on an earlier
draft of this paper. Vidya lyer wrote parts of the check-
pointing layer used for experiments. Surbhi Kaul imple-
mented the STAGGER algorithm on a workstation clus-
ter. This research is supported in part by National Sci-
ence Foundation grant MIP-9502563 and Texas Advanced
Technology Program grant 009741-052-C.

References

[1] K. M. Chandy and L. Lamport, “Distributed snap-
shots: Determining global states in distributed sys-
tems,” ACM Trans. Comp. Syst., vol. 3, pp. 63-75,
February 1985.

[2] C. J. Date, An Introduction to Database Systems.
Addison-Wesley, 1986.

[3] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel,
“The performance of consistent checkpointing,” in
Symposium on Reliable Distributed Systems, 1992.

[4] D. Jefferson, “Virtual time,” ACM Trans. Prog. Lang.
Syst., vol. 3, pp. 404-425, July 1985.

[5] D. B. Johnson, Distributed System Fault Tolerance
Using Message Logging and Checkpointing. PhD the-
sis, Computer Science, Rice University, December
1989.

[6] D. B. Johnson, “Efficient transparent optimistic
rollback recovery for distributed application pro-
grams,” in Symposium on Reliable Distributed Sys-
tems, pp. 86-95, October 1993.

[7] S. Kaul, “Evaluation of consistent logical checkpoint-
ing.” M.S. Thesis, Dept. of Computer Science, Texas
A&M University, May 1995.

[8] K. Li, J. F. Naughton, and J. S. Plank, “Low-
latency, concurrent checkpointing for parallel pro-
grams,” IEEE Trans. Par. Distr. Syst., vol. 5,
pp- 874-879, August 1994.

[9] J. Long, B. Janssens, and W. K. Fuchs, “An evo-
lutionary approach to concurrent checkpointing,”
manuscript submitted for publication, 1994.

[10] J. S. Plank, Efficient Checkpointing on MIMD Ar-
chitectures. PhD thesis, Dept. of Computer Science,
Princeton University, June 1993.

[11] R. E. Strom and S. A. Yemini, “Optimistic recov-
ery: An asynchronous approach to fault-tolerance in
distributed systems,” 14'* Int. Symp. Fault- Tolerant
Comp., pp. 374-379, 1984.

[12] N. H. Vaidya, “Consistent logical checkpointing,”
Tech. Rep. 94-051, Computer Science Department,
Texas A&M University, College Station, July 1994.

[13] Y. M. Wang, Y. Huang, and W. K. Fuchs, “Progres-
sive retry for software error recovery in distributed
systems,” in 23"% Int. Symp. Fault-Tolerant Comp.,
pp. 138-144, 1993.

