
On Staggered Checkpointing�Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112E-mail: vaidya@cs.tamu.eduAbstractA consistent checkpointing algorithm saves a con-sistent view of a distributed application's state on sta-ble storage. The traditional consistent checkpoint-ing algorithms require di�erent processes to save theirstate at about the same time. This causes contentionfor the stable storage, potentially resulting in largeoverheads. Staggering the checkpoints taken by var-ious processes can reduce checkpoint overhead [10].This paper presents a simple approach to arbitrar-ily stagger the checkpoints. Our approach requiresthat the processes take consistent logical checkpoints,as compared to consistent physical checkpoints en-forced by existing algorithms. Experimental results onnCube-2 are presented.1 IntroductionApplications executed on a large number of pro-cessors, either in a distributed environment, or onmulticomputers such as nCube, are subject to proces-sor failures. Consistent checkpointing is a commonlyused technique to prevent complete loss of computa-tion upon a failure [1, 3, 5, 9, 10]. A consistent check-pointing algorithm saves a consistent view of a dis-tributed application's state on a stable storage. Theloss of computation upon a failure is bounded by tak-ing consistent checkpoints with adequate frequency.The traditional consistent checkpointing algorithmsrequire di�erent application processes to save theirstate at about the same time. This causes contentionfor the stable storage, potentially resulting in signif-icant performance degradation [10]. Staggering thecheckpoints taken by various processes can reduce the�This research is supported in part by National Science Foun-dation grant MIP-9502563 and Texas Advanced TechnologyProgram grant 009741-052-C.

overhead of consistent checkpointing by reducing sta-ble storage contention. Some techniques for staggeringthe checkpoints have been previously proposed [10],however, these techniques result in \limited" stagger-ing in that not all processes' checkpoints can be stag-gered. Ideally, one would like to stagger the check-points arbitrarily. If processors are able to make an\in-memory" copy of entire process state, then check-point staggering is trivial. This paper considers sys-tems where it is not feasible to make an in-memorycopy of entire process state. This situation may occurbecause: (i) memory size is small, or (ii) the memorymay be shared by processes of multiple applications {making in-memory copy of a process from one appli-cation may cause processes from other applications tobe swapped out (degrading their performance).This paper presents a simple approach to arbitrarilystagger the checkpoints. Our approach requires thatthe processes take consistent logical checkpoints, ascompared to consistent physical checkpoints enforcedby existing algorithms for staggering. The paper dis-cusses the proposed approach and presents experimen-tal results on nCube-2 multicomputer.2 Related WorkPlank [10] was the �rst to observe that stable stor-age contention can be serious problem for consistentcheckpointing, and suggested checkpoint staggering asa solution. The degree of staggering with Plank's algo-rithm (based on the Chandy-Lamport algorithm [1])is completely dependent on the application's commu-nication pattern. In contrast, our algorithm allowsarbitrary staggering of the checkpoints, independentof the application. Plank [10] also presents anotherapproach for staggering checkpoints, that is applica-ble to wormhole routed networks. This algorithm alsodoes not permit arbitrary/controlled staggering.Long et al. [9] discuss an evolutionary checkpoint-

ing approach, that is similar to logical checkpoint-ing. Our algorithm staggers the checkpoints, whilethe scheme in [9] does not allow staggering. [9] alsoassumes synchronized communication and an upperbound on communication delays; no such assumptionsare made in the proposed scheme.Wang et al. [13] introduced the term logical check-point. They present an algorithm to determine a re-covery line consisting of consistent logical checkpoints,after a failure occurs. This recovery line is used torecover from the failure. Their goal is to determinethe \latest" consistent recovery line using the infor-mation saved on the stable storage. Message loggingand independent checkpointing schemes, such as [5],also, e�ectively, determine a recovery line consistingof consistent logical checkpoints after a failure occurs.In these schemes, during failure-free operation eachprocess is allowed to independently take checkpointsand log messages. On the other hand, our scheme co-ordinates logical checkpoints before a failure occurs.These logical checkpoints are used to recover from afuture failure. One consequence of this is that ourscheme does not log all messages; only those mes-sages which make the logical checkpoints consistentare logged.3 A Logical CheckpointA process is said to be deterministic if its state de-pends only on its initial state and the messages deliv-ered to it [5, 11]. A deterministic process can take twotypes of checkpoints: a physical checkpoint or a logicalcheckpoint. A process is said to have taken a physi-cal checkpoint at some time t1, if the process stateat time t1 is saved on the stable storage. A processis said to have taken a logical checkpoint at time t1,if adequate information is saved on the stable storageto allow the process state at time t1 to be recovered.A physical checkpoint is trivially a logical checkpoint,however, the converse is not true. Now we summa-rize three approaches for taking a logical checkpointat time t1. Each approach may be more attractive forsome applications than the other approaches. Not allapproaches will be feasible on all systems.Approach 1: One approach for establishing a logi-cal checkpoint at time t1 is to take a physical check-point at some time t0 � t1 and log (on stable storage)all messages delivered to the process between time t0and t1. (For each message, the message log containsthe receive sequence number for the message as well

M1

M2

M3
process

P

t0 t1 time

physical
checkpoint

logical
checkpointFigure 1: Physical checkpoint + message log = logicalcheckpointas the entire message.) This approach is essentiallyidentical to that presented by Wang et al. [13].Figure 1 presents an example wherein process Ptakes a physical checkpoint at time t0. Messages M1,M2 and M3 are delivered to process P by time t1. Toestablish a logical checkpoint of process P at time t1,messages M1, M2 and M3 are logged on the stablestorage. As process P is deterministic, the state ofprocess P at time t1 can be recovered using the infor-mation on the stable storage (i.e., physical checkpointat t0 and messages M1, M2 and M3).We summarize this approach as:physical checkpoint + message log = logicalcheckpointApproach 2: The essential purpose behind savingthe messages above is to be able to recreate the stateat time t1, or to be able to \re-perform" the incre-mental changes made in process state by each of thesemessages. This may be achieved simply by taking aphysical checkpoint at time t0 and taking an incremen-tal checkpoint at time t1. The incremental checkpointis taken by logging1 the changes made to process statebetween time t0 and t1. We summarize this approachas:physical checkpoint + incremental check-point = logical checkpointThe evolutionary checkpointing scheme by Long etal. [9] takes checkpoints similar to above procedure,although they do not use the term logical checkpoint.Approach 3: The above two approaches take aphysical checkpoint prior to the desired logical check-point, followed by logging of additional information(either messages or incremental state change).The third approach is the converse of the above twoapproaches. Here, the physical checkpoint is taken ata time t2, where t2 > t1. In addition, enough informa-tion is saved to un-do the e�ect of messages receivedbetween time t1 and t2. For each relevant message(whose e�ect must be undone), an anti-message is1The term logging is used to mean \saving on the stablestorage".

time

process

 P

M4*

M5*

M5

M4

to stable storage

t1 t2

state S1

anti-message

message
application

Figure 2: Anti-message log + physical checkpoint =logical checkpoint
M4*M5*

M5

M4

state S1 state S1
process
 PFigure 3: Recovering a logical checkpoint using anti-messagessaved on the stable storage. The notion of an anti-message here is similar to that used in time warpmechanism [4] or that of UNDO records [2] in databasesystems. Anti-message M� corresponding to a mes-sage M can be used to undo the state change causedby message M.Figure 2 illustrate this approach. A logical check-point of process P is to be established at time t1. Pro-cess P delivers messages M4 and M5 between time t1and t2. A physical checkpoint is taken at time t2, andanti-messages corresponding to messages M4 and M5are logged on the stable storage. The anti-messagesare named M4� and M5�, respectively.To recover the state, say S1, of process P at timet1, the process is initialized to the physical checkpointtaken at time t2 and then anti-messages M5� and M4�are sent to the process. The order in which the anti-messages are delivered is reverse the order in whichthe messages were delivered. As shown in Figure 3,the �nal state of process P is identical to the state (orlogical checkpoint) at time t1.We summarize this approach as:anti-message log + physical checkpoint = log-ical checkpointAn important issue is that of forming the anti-messages. The anti-messages can possibly be formedby the application itself, or they may consist of a copyof the (old) process statemodi�ed by the message (sim-

ilar to copy-on-write [8]).4 Chandy-Lamport Algorithm [1]Chandy and Lamport [1] presented an algorithmfor taking a consistent checkpoint of a distributed sys-tem. Assume that the processes communicate witheach other using unidirectional communication chan-nels; a bidirectional channel can be modeled as twounidirectional channels. For simplicity, we assumethat the communication graph is fully connected.2The algorithm presented next is essentially identicalto Chandy-Lamport [1, 10] and assumes that a certainprocess (named P0) is designated as the checkpoint co-ordinator.Algorithm: The coordinator process P0 initiatesthe consistent checkpointing algorithm by sendingmarker messages on each channel, incident on, anddirected away from P0 and immediately takes a check-point. (This is a physical checkpoint.)A process, say Q, on receiving a marker messagealong a channel c takes the following steps:if Q has not taken a checkpoint thenbeginQ sends a marker on each channel, incidenton, and directed away from Q.Q takes a checkpoint.Q records the state of channel c as beingempty.endelse Q records the state of channel c as thesequence of messages received along c, afterQ had taken a checkpoint and beforeQ received the marker along c.4.1 Plank's Staggering Scheme [10]Plank [10] suggested that the processes should sendmarkers after taking their checkpoints, rather thanbefore taking the checkpoint (unlike the algorithmabove). This simple modi�cation introduces somestaggering of checkpoints. However, not all check-points can be staggered.In our experiments, we use the Chandy-Lamportalgorithm that incorporates Plank's modi�cation. Inthe rest of this paper, this modi�ed algorithm will bereferred to as Chandy-Lamport/Plank algorithm, orCL/P for brevity.2Note that Chandy-Lamport algorithm is applicable tostrongly connected graphs. Our algorithm can also be gener-alized to strongly connected graphs.

Observations: Plank [10] observed that his stag-gering schemes work better than the original \non-staggered" algorithm when (i) degree of synchroniza-tion amongst the processes is relatively small, and (ii)the message volume is relatively small.5 Staggered Consistent CheckpointingThe extent of checkpoint staggering using CL/Palgorithm is dependent on the application's commu-nication pattern, and also on how the algorithm isimplemented (e.g., whether the markers are sent syn-chronously or asynchronously). On the other hand,the proposed algorithm can stagger the checkpointsin any manner desired. Many variations are possi-ble, depending on which checkpoints are desired tobe staggered [12]. As an illustration, we assume thatthe objective is to stagger all checkpoints, i.e., no twocheckpoints should overlap in time. Later, we will il-lustrate a situation where some overlap in checkpoint-ing is desired.The proposed algorithm (named STAGGER) canbe summarized as follows:staggered physical checkpoints + consistent logicalcheckpoints = staggered consistent checkpointsThe basic idea is to coordinate logical checkpointsrather than physical checkpoints. In this section, weassume that the �rst approach, described in Section 3,for taking logical checkpoints is being used. Thus,a logical checkpoint is taken by logging all messagesdelivered to a process since its most recent physicalcheckpoint.For the purpose of this discussion, assume that thecheckpoint coordinator is named P0, and other pro-cesses are named P1 through Pn�1. (n is the numberof processes.)We now present the proposed algorithm (consistingof two phases), followed by an illustration. Presently,we assume that all processors share a single stablestorage; Section 7 considers the situation where mul-tiple stable storages are available.Algorithm STAGGER1. Physical checkpointing phase: Checkpoint coor-dinator P0 takes a physical checkpoint and thensends a take checkpoint message to process P1.When a process Pi, i > 0, receives atake checkpoint message, it takes a physical check-point and then sends a take checkpoint messageto process Pj , where j = (i + 1) mod n.When process P0 receives a take checkpoint mes-sage from process Pn�1, it initiates the second

phase of the algorithm (named consistent logicalcheckpointing phase).After a process takes the physical checkpoint, itcontinues execution. Each message delivered tothe process, after taking the physical checkpoint(but before the completion of the next phase), islogged in the stable storage.The above procedure ensures that physical check-points taken by the processes are staggered be-cause only one process takes a physical checkpointat any time. The physical checkpoints taken bythe processes are not, in general, necessarily con-sistent. (No attempt is made to ensure consis-tency of physical checkpoints.)2. Consistent logical checkpointing phase: Thisphase is very similar to the Chandy-Lamportalgorithm. The di�erence between Chandy-Lamport algorithm and this phase is that whenthe original Chandy-Lamport algorithm requiresa process to take a \checkpoint", our processestake a logical checkpoint (not a physical check-point as in the Chandy-Lamport algorithm). Alogical checkpoint is taken by ensuring that themessages delivered since the physical checkpoint(taken in the previous phase) are logged on sta-ble storage. The exact algorithm for this phase isprovided below:Initiation: The coordinator P0 initiates this phaseon receipt of the take checkpoint message fromprocess Pn�1. Process P0 sends marker messageon each channel, incident on, and directed awayfrom P0. Also, P0 takes a logical checkpoint byensuring that all messages delivered to it since itsphysical checkpoint are logged.A process, say Q, on receiving a marker messagealong a channel c takes the following steps:if Q has not taken a logical checkpoint thenbeginQ sends a marker on each channel,incident on, and directed away from Q.Q takes a logical checkpoint by ensuringthat all messages delivered to it(on any channel) after Q's recentphysical checkpoint have been logged.endelse Q ensures that all messages receivedon channel c since its recentlogical checkpoint are logged.Messages received on channel c after a marker isreceived on that channel are not logged. Similar to

the Chandy-Lamport algorithm, messages sent by aprocess before its logical checkpoint, but not receivedbefore the receiver's logical checkpoint are logged aspart of the channel state. Note that a message Mthat is logged to establish a logical checkpoint may belogged any time from the instant it is received until thetime when the logical checkpoint is to be established.In our implementation, due to insu�cient memory onnCube-2, such messages were logged immediately onreceipt.The above algorithm establishes a consistent recov-ery line consisting of one logical checkpoint per pro-cess. This algorithm reduces the contention for thestable storage by completely staggering the physicalcheckpoints. However, contention is now introducedin the second phase of the algorithm when the pro-cesses log messages. Our scheme will perform well ifmessage volume is relatively small compared to check-point sizes. As suggested by a referee, if markers aresent after logging message (in the second phase), thenstable storage contention may potentially be smaller.A few other variations of the above algorithm are pos-sible, as discussed in Section 7.Figure 4 illustrates the algorithm assuming thatthe system consists of three processes. Process P0acts as the coordinator and initiates the checkpoint-ing phase by taking a physical checkpoint and send-ing a take checkpoint message to P1. Processes P0,P1 and P2 take staggered checkpoints during the �rstphase. When process P0 receives take checkpoint mes-sage from process P2, it initiates the consistent logicalcheckpointing phase. Process P0 sends marker mes-sages to P1 and P2 and then takes a logical checkpointby logging messages M0 and M2 on the stable storage.When process P1 receives the marker message fromprocess P0, it sends markers to P0 and P2 and thentakes a logical checkpoint by logging message M1 onthe stable storage. Similarly, process P2 takes a logicalcheckpoint by logging message M3 on the stable stor-age. Messages M4 and M5 are also logged during thesecond phase (as they represent the channel state).Recovery: After a failure, each process rolls back toits recent physical checkpoint and re-executes (usingthe logged messages) to restore the process state tothe logical checkpoint that belongs to the most recentconsistent recovery line.Proof of correctness: The correctness follows di-rectly from the proof of correctness for the Chandy-Lamport algorithm [1].

physical checkpoint

logical checkpoint

application message

take_checkpoint message

marker messages

M2

M5M0

M4

M1

M3

physical checkpointing phase consistent logical checkpointing phase

process
P0

(coordinator)

process
P1

process
P2

consistent recovery lineFigure 4: An example6 Performance EvaluationWe implemented the proposed algorithm STAG-GER and the Chandy-Lamport/Plank scheme (abbre-viated as CL/P) on a nCube-2 multicomputer. Itshould be noted that performance of each scheme isclosely dependent on the underlying hardware and be-havior of the application program. Clearly, no singlescheme can perform well on all applications. Our ob-jective here is to demonstrate that the proposed algo-rithm can perform well under certain circumstances.In our implementation of CL/P and STAGGER,the markers sent by node 0 are sent asynchronouslyusing interrupts { su�cient care is taken to ensurethat the markers appear in FIFO order with respectto other messages even though they are sent asyn-chronously. Markers sent by other processes are sentwithout using interrupts. If no markers are sent asyn-chronously, the checkpointing algorithm may not makeprogress in the cases where synchronization (or com-munication) is very infrequent. As staggering can beuseful primarily under these circumstances, it is nec-essary to ensure that the algorithm progresses withoutany explicit communication by application processes.We will return to the issue of using asynchronousmarkers later in Section 7.The application used for evaluation is a syntheticprogram, named sync-loop, similar to a programused by Plank [10]. The pseudo-code for the pro-gram is presented below.sync-loop(iter, size, M) {state = malloc(size); // create stateinitialize (state);

repeat (iter) times {perform M floating-point multiplications;synchronize with all other processes;}} Process state size (and checkpoint size) is controlledby the size parameter. Each process repeats a loopin which it performs some computation (the amountof computation controlled by the M parameter). Theloop is repeated iter times.By choosing a very large value for M the degree ofsynchronization in the program is minimized. A smallM, on the other hand, implies that processes synchro-nize very frequently. Synchronization is achieved bymeans of an all-to-all message exchange.Figure 5 presents experimental results for STAG-GER and CL/P schemes. Synchronization interval isthe time between two consecutive synchronizations ofthe processes { thus, synchronization interval is ap-proximately equal to the time required to perform thecomputation (i.e., the M multiplications) in each itera-tion of the loop. The checkpoint size for each processis approximately 2.1 Mbyte. Checkpoint overhead isobtained as: (execution time with S consistent check-points � execution time without any checkpoints)/S.For our measurements, S = 5 (that is, �ve checkpointsper execution of the program). Each instance of theapplication was executed �ve times, and checkpointoverhead was averaged over these �ve executions.Figure 5 presents overhead measurements for ex-periments on a cube of dimension 1, 2, 3 and 4. Curvelabeled d = N in the �gure is for experiments onN -dimensional cube. (Labels (a) through (h) can beused to match the curves with the corresponding la-bels in top right corner of the �gure.) All processesshared a single disk to store the checkpoints. Wechoose to plot absolute values of checkpoint overhead,instead of percentage overhead, as absolute overheadis independent of the checkpoint interval, unlike per-centage overhead. In Figure 5, observe that, for a�xed dimension, as the synchronization interval be-comes smaller, the checkpoint overhead grows for bothschemes. For very small synchronization intervals,the STAGGER scheme does not perform much betterthan the Chandy-Lamport/Plank scheme. However,when synchronization interval is large, the proposedscheme achieves signi�cant improvements. (For di-mension d = 1, the two schemes achieve essentiallyidentical performance.)Observe in Figure 5 that, for a given instance of theapplication, as the dimension is increased the overheadfor STAGGER as well as CL/P increases. However,

0

20

40

60

80

100

120

1 10 100 1000

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

synchronization interval (second)

sync-loop

(a) CL/P d=4
(b) Stagger d=4
(c) CL/P d=3
(d) Stagger d=3
(e) CL/P d=2
(f) Stagger d=2
(g) CL/P d=1
(h) Stagger d=1

Figure 5: Checkpoint overhead for sync-loopthe increase in the overhead of CL/P is much greaterthan that of STAGGER.The stable storage contention tends to increase withan increase in the number of application processes. Tobetter understand the impact of stable storage con-tention, in Figure 6, we plot the ratio (checkpoint over-head/number of nodes). Observe that, for a given in-stance of the application, the ratio is higher for largerdimension when using the CL/P scheme { on the otherhand, the ratio is smaller for larger dimension whenusing the STAGGER scheme. The reason being thatthe increase in the overhead of STAGGER, with in-creasing dimension, is relatively small as compared toCL/P.The measurements presented above imply thatwhen the parallel application has a large granular-ity (thus, requiring infrequent communication or syn-chronization), the proposed STAGGER algorithm canperform well. As an example of an application withcoarse-grain parallelism we present measurements fora simulation program (SIM), in Figure 7. The simu-

0

1

2

3

4

5

6

7

1 10 100 1000

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

/

n
u
m
b
e
r

o
f

n
o
d
e
s

synchronization interval (second)

sync-loop

(a) CL/P d=4
(b) Stagger d=4
(c) CL/P d=3
(d) Stagger d=3
(e) CL/P d=2
(f) Stagger d=2
(g) CL/P d=1
(h) Stagger d=1

Figure 6: (Checkpoint overhead/number of nodes) forsync-loop programlation program evaluates the expected execution timeof a task when using rollback recovery. State size foreach process in SIM is approximately 34 Kbyte. Thesimulation program is completely parallelized, and theprocesses synchronize only at the beginning and atthe completion of the simulation. This synchroniza-tion pattern represents the best possible scenario forstaggered checkpointing. As seen from Figure 7, thecheckpoint overhead for STAGGER remains constantindependent of the dimension, as synchronization isvery infrequent. On the other hand, the overhead forCL/P increases with the dimension.Impact of message size on performance: Plank[10] observed that his staggered checkpointing schemeslog more messages than non-staggered checkpointingschemes. Therefore, his schemes do not perform wellcompared to non-staggering schemes, when messagesizes are large. Similarly, as the STAGGER algo-rithm staggers checkpoints more than Plank's algo-

0

1

2

3

4

5

6

7

1 2 3 4

c
h
e
c
k
p
o
i
n
t

o
v
e
r
h
e
a
d

(
s
e
c
o
n
d
)

dimension d

SIM

CL/P
Stagger

Figure 7: Measurements for SIM applicationrithm, it tends to log more messages than Plank's al-gorithm. Therefore, STAGGER will not perform wellwhen message sizes are large. This conclusion followsdirectly from that made previously by Plank.7 Variations on the ThemeMany variations of the algorithm presented earlierare possible. Utility of these variations depends on thenature of the application and the execution environ-ment. In the following, we discuss some variations.(a) Process clustering to exploit multiple sta-ble storages: The algorithm STAGGER presentedabove assumes that all processes share a single stablestorage. However, in some systems, the processes mayshare multiple stable storages. For instance, numberof processes may be 16 and the number of stable stor-ages may be 4. For such systems, we modify the pro-posed STAGGER algorithm to make use of all stablestorages while minimizing contention for each stablestorage. To achieve this we partition the processesinto clusters, the number of clusters being identical tothe number of stable storages. Each cluster is associ-ated with a unique stable storage; processes within acluster access only the associated stable storage [7].The algorithm STAGGER,modi�ed to use multiplestable storages, di�ers from the original STAGGER al-gorithm only in the �rst phase (i.e., staggered check-pointing phase). We illustrate the modi�ed staggeredcheckpointing phase with an example. Consider a sys-tem consisting of 6 processes, and 2 stable storages.The processes are now named Pij, where i denotesthe cluster number and j denotes the process number

within the cluster. As 2 stable storages are available,the processes are divided into 2 clusters containing 3processes each. Cluster i (i = 0; 1) contains processesPi0, Pi1 and Pi2. Process Pi0 in cluster i is identi�edas the checkpoint coordinator for cluster i, and processP00 is also identi�ed as the global checkpoint coordi-nator. Figure 8 depicts the �rst phase of the modi�edalgorithm.
staggered checkpointing phase checkpointing phase

consistent logical

process P00
(coordinator)

process P01

process P02

(coordinator)
process P10

process P11

process P12

take_checkpoint messageFigure 8: Process clustering to utilize multiple stablestoragesThe global checkpoint coordinator P00 initiatesphase 1 of the algorithm by sending take checkpointmessages to the checkpoint coordinators in all otherclusters. Process P00 then takes a physical checkpointand sends a take checkpoint message to process P01.When a process Pij (ij 6= 00) receives atake checkpoint message, it takes a physical check-point and sends a take checkpoint message to processPkm wherem = (j + 1) modulo (cluster size)k = � 0 if m = 0i otherwiseWhen the global coordinator P00 receives onetake checkpoint message from a process in each clus-ter, it initiates the second phase of the algorithm(this phase is identical to the original STAGGER al-gorithm).Essentially, the above procedure guarantees that atmost one process accesses each stable storage at anytime during the �rst phase, and that all stable stor-ages are used for saving physical checkpoints.(b) Approach for taking a logical checkpoint:The discussion so far assumed that a logical checkpointis taken by taking a physical checkpoint and loggingsubsequently received messages. The proposed algo-rithm can be easily modi�ed to allow a process to use

any of the three approaches presented earlier (in Sec-tion 3) for establishing a logical checkpoint. In fact,di�erent processes may simultaneously use di�erentapproaches for establishing a logical checkpoint.(c) Checkpointing versus message logging: Asstaggering tends to increase the number of messageslogged, the following variations will be bene�cial forsome applications.� A process may decide to not take a physical check-point in the �rst phase, if it a priori knows thatits message log will be large. In this case, theprocess would take a physical checkpoint in thesecond phase.3� If a process receives too many messages aftertaking the physical checkpoint in the �rst phaseof the algorithm, then it may decide to take aphysical checkpoint in the second phase (ratherthan logging messages). This makes the physicalcheckpoint taken by the process in the �rst phaseredundant. However, this modi�cation may re-duce the overhead when checkpoint size is smallerthan what the message log would be.(d) Asynchronous Markers:An asynchronous marker is one which is detected bythe destination process soon after it is received. Ar-rival of an asynchronous marker is informed to thedestination process by means of an interrupt (or sig-nal). In spite of the asynchronous nature, the markerappears in its appropriate position on the FIFO chan-nel on which it is sent. We call a marker that is notsent with an interrupt a \synchronous" marker (for thelack of a better terminology). While an asynchronousmarker can be processed as soon as it arrives, a syn-chronous marker may not be processed for a long time{ particularly, if the destination process does not needany messages on the corresponding channel.Which markers (if any) are sent asynchronouslycan a�ect performance of STAGGER and CL/P al-gorithms signi�cantly. As noted previously, in ourimplementation, markers sent by process 0 are asyn-chronous, other markers are synchronous.One variation on Plank's scheme [10] for appli-cations with infrequent synchronization (communica-tion) is as follows: Ensure that the marker sent byprocess i to process j is asynchronous if and onlyif j = i + 1 (modulo number of processes). Thus,each process will take checkpoint, and the algorithm3Johnson [6] suggested a scheme where each process uses asimilar heuristic to decide whether to log messages or not.

will make progress, even if the processes are not com-municating with each other. Also, as each processsends only one asynchronous marker, the algorithmwould tend to reduce contention for the stable storage.With infrequent synchronization (communication) theabove rule will completely stagger checkpoints by thedi�erent processes (i.e., the algorithm becomes similarto STAGGER).(e) Initiation of Logical Checkpointing Phase:In our description of the STAGGER algorithm, we as-sume that only process 0 initiates the second phase(consistent logical checkpointing) of the algorithm.Note that the second phase of the algorithm is iden-tical to the original Chandy-Lamport algorithm, withthe exception that physical checkpoints are replacedby logical checkpoints. The Chandy-Lamport algo-rithm can be implemented correctly with multiple ini-tiators also. Therefore, the STAGGER algorithm canbe modi�ed to allow any process to initiate the sec-ond phase at any time. Di�erent heuristics for decid-ing who starts the second phase and when can yielddi�erent performance. One heuristic, similar to onementioned earlier, is to allow a process to initiate thesecond phase immediately after taking physical check-point in the �rst phase, if it is known that the processwill need to log too many large messages.Clearly, there are many variations possible basedon the STAGGER algorithm. Also, staggering is notalways bene�cial. (In general, no single checkpoint-ing scheme works well for all possible applications.) Afuture goal of our research is to design an adaptive al-gorithm that can, at run-time, determine if staggeringis bene�cial or not (and which staggering scheme isbest).8 SummaryThis paper presents an algorithm for taking con-sistent logical checkpoints. The proposed algorithmensures that physical checkpoints taken by variousprocesses are completely staggered to minimize con-tention in accessing the stable storage. Experimen-tal results on nCube-2 suggest that the proposedscheme can improve performance as compared to ex-isting staggering techniques, particularly when pro-cesses synchronize infrequently and message sizes arenot very large. The paper also suggests a few varia-tions of the proposed scheme, including an approachfor staggering checkpoints when multiple stable stor-ages are available.

AcknowledgementsWe thank the referees for their suggestions, and JamesPlank and Yi-Min Wang for their comments on an earlierdraft of this paper. Vidya Iyer wrote parts of the check-pointing layer used for experiments. Surbhi Kaul imple-mented the STAGGER algorithm on a workstation clus-ter. This research is supported in part by National Sci-ence Foundation grant MIP-9502563 and Texas AdvancedTechnology Program grant 009741-052-C.References[1] K. M. Chandy and L. Lamport, \Distributed snap-shots: Determining global states in distributed sys-tems," ACM Trans. Comp. Syst., vol. 3, pp. 63{75,February 1985.[2] C. J. Date, An Introduction to Database Systems.Addison-Wesley, 1986.[3] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel,\The performance of consistent checkpointing," inSymposium on Reliable Distributed Systems, 1992.[4] D. Je�erson, \Virtual time," ACM Trans. Prog. Lang.Syst., vol. 3, pp. 404{425, July 1985.[5] D. B. Johnson, Distributed System Fault ToleranceUsing Message Logging and Checkpointing. PhD the-sis, Computer Science, Rice University, December1989.[6] D. B. Johnson, \E�cient transparent optimisticrollback recovery for distributed application pro-grams," in Symposium on Reliable Distributed Sys-tems, pp. 86{95, October 1993.[7] S. Kaul, \Evaluation of consistent logical checkpoint-ing." M.S. Thesis, Dept. of Computer Science, TexasA&M University, May 1995.[8] K. Li, J. F. Naughton, and J. S. Plank, \Low-latency, concurrent checkpointing for parallel pro-grams," IEEE Trans. Par. Distr. Syst., vol. 5,pp. 874{879, August 1994.[9] J. Long, B. Janssens, and W. K. Fuchs, \An evo-lutionary approach to concurrent checkpointing,"manuscript submitted for publication, 1994.[10] J. S. Plank, E�cient Checkpointing on MIMD Ar-chitectures. PhD thesis, Dept. of Computer Science,Princeton University, June 1993.[11] R. E. Strom and S. A. Yemini, \Optimistic recov-ery: An asynchronous approach to fault-tolerance indistributed systems," 14th Int. Symp. Fault-TolerantComp., pp. 374{379, 1984.[12] N. H. Vaidya, \Consistent logical checkpointing,"Tech. Rep. 94-051, Computer Science Department,Texas A&M University, College Station, July 1994.[13] Y. M. Wang, Y. Huang, and W. K. Fuchs, \Progres-sive retry for software error recovery in distributedsystems," in 23rd Int. Symp. Fault-Tolerant Comp.,pp. 138{144, 1993.

