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Abstract. Many of the existing multichannel wireless network implementations rely on channel switching
capability of the wireless radios to ensure network connectivity. However, due to both software and hardware
restrictions switching channels incur a significant delay, which can be prohibitive for many delay sensitive, real
time applications, such as VoIP and interactive gaming. The situation can be worse in the case of a multihop
network, as every node along the traffic path may require a channel switch that adds up to the overall end-to-end
delay. This motivates the need for efficient routing strategies that can make use of the flexibilities of a multi-
channel network while favoring delay sensitive applications by routing them on low delay paths. In this paper,
we propose SHORT, a Static-Hybrid approach for rOuting Real Time applications over multichannel, multihop
wireless networks, which ensures low delay paths for delay sensitive applications. Using measurements on a
real multichannel testbed, we show that our protocol can provide significantly low delay multihop paths for
delay sensitive applications (eg., VoIP) without degrading the throughput performance of non-delay sensitive,
best effort traffic, such as TCP that may co-exist in a network.
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1 Introduction

Multichannel wireless networks are gaining popularity due to the variety of flexibilities that they can offer [1, 2].
For instance, when nodes in a network are tuned to different channels, the amount of contention on any single
channel is reduced. Moreover, when we use orthogonal channels, the overall interference in the network can
also be reduced. Additionally, most of the multichannel deployments propose to use multiple radios on each
nodes [3, 4, 5, 6, 7]. By ensuring that the radios within a node are always operated on different, orthogonal
channels, a node can effectively transmit and receive simultaneously.

Three popular channel and interface allocation strategies exist in the literature, namely common control chan-
nel approach [8] (where nodes decide on communication channel prior to a transmission using control messages
on a common channel), static channel approach [9, 10] (in which the channels for all the radios of a node are
fixed), and hybrid channel approach [11] (in which the channels for only a subset of radios are fixed apriori and
that for the remaining radios are varied dynamically during communication). Among these three approaches, the
hybrid multichannel protocol has been shown to be efficient in providing higher system throughput [11]. However,
the hybrid channel allocation approach are not optimized for providing low delays for real time applications, such
as VoIP. This is because, while a static channel allocation achieves network connectivity by a careful topology
preserving channel selection [9], a hybrid channel allocation relies on the radios of a node to switch across chan-
nels to maintain network connectivity. Even with a fast hardware, the latencies associated with channel switching
(as explained later) is prohibitive for delay sensitive application such as VoIP or interactive gaming, especially in
the case of a multihop operation. Because no such channel switch delays exist in a static channel approach, such
a scheme may be beneficial for delay sensitive applications. However, a purely static channel-based approach is
not suitable for providing higher throughput values for non-delay sensitive applications. Moreover, a pure-static
channel approach is not suitable in a network where the link characteristics keep varying that can make the net-
work topology change with time (as in a mobile network). Therefore, we need a newer scheme that can exploit the
advantages of both the static and the hybrid channel allocation schemes.

Routing real time applications over multichannel wireless networks has been handled in several different
ways in literature. Most of the existing approaches concentrate on provisioning QoS in multichannel wireless net-
works [12, 13]. The authors in [13], for instance, propose a topology control and QoS routing approach with a goal
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for providing bandwidth aware routing for real time flows. However, the approach requires significant topology
information for its execution, and hence not wholly suitable for an unmanaged network. In [12], the authors pro-
vide a QoS-aware multichannel scheduling algorithm for providing higher priorities for VoIP packets, by which
they are scheduled more often than non-real time packets. A similar approach for scheduling delay sensitive flows
more often than non-delay sensitive flows is proposed in [14]. In [15], the authors propose a gateway controlled
channel allocation scheme, where the channel allocation to the nodes are determined by the gateway based on the
flows in the network. However, the scheme does not differentiate between real time and non-real time flows. In this
paper, we propose a mechanism that can provide low delay routes for real time applications and high throughput
routes for non-real time applications, which can complement any of the existing QoS mechanisms. The goal is to
consider practical difficulties (such as hardware delays) that may exist in a network, which many of the existing
QoS mechanisms overlook.

We propose a mechanism called SHORT that exploits the benefits of a static channel approach for providing
lower delay paths for real time applications, while at the same time utilizes the flexibilities of a hybrid channel
approach for providing higher throughputs for non-delay sensitive applications. According to this approach, we
design a protocol that can, depending on the type of traffic being routed, control the channel allocation strategy of
the nodes. More specifically, when routing a delay sensitive flow, the routing protocol, after determining the route
to be taken for the flow, forces the nodes on the path to behave as in a static channel approach. In other words, the
radios in the nodes are controlled in such a way to prevent them from switching across channels for the duration
of the real time flow. A hybrid channel allocation scheme is used for routing non delay-sensitive flows. We modify
the multichannel AODV routing protocol proposed in [11] for this purpose. Note that, while our protocol enables
the nodes on a real time flow’s path to behave as in the static channel mechanism, the actual path is not determined
by our approach and is taken care by the multichannel routing protocol [11], discussed briefly in the Section 2 that
is complemented by the hybrid channel allocation protocol (hence the name static-hybrid approach).

Using actual implementations on a multichannel mesh testbed, called Net-X [5] we show that the end-to-end
delays of real time applications is significantly lower in SHORT when compared to a purely hybrid approach.
Furthermore, we show that the throughput of non-delay sensitive applications is also not degraded.

2 Background

In this section, we provide a brief overview of the hybrid channel allocation protocol, called HMCP and the
multichannel routing protocol [11] that are used in the testbed on which we carry out our experiments. In the
discussion that follows, we assume that every node is equipped with two radios or interfaces (the terms interfaces
and radios are used interchangeably in this paper and both mean a wireless radio).

2.1 Hybrid Multichannel Protocol Operation

The main challenge in a multichannel network implementation lies in ensuring that nodes operating on different
channels can coordinate and communicate with other without much overhead. The hybrid multichannel protocol
(HMCP) [11] ensures connectivity between nodes by allowing one of the two wireless interfaces to switch across
channels as required. The other interface remains fixed on a channel as long as the channel is perceived to be
good. We call the interface that may switch often across channels as the switchable interface and the interface that
operates on a fixed channel as the fixed interface. Only the fixed interface is used for data reception. However, a
data transmission can be from any of the two interfaces, fixed or switchable; this depends on the channel of the
fixed interface on the neighboring node to which a multi-hop flow is directed. In general, if a neighboring node is
operating on the same fixed channel as the current node, then the transmission can be through the fixed interface,
otherwise the switchable interface is used for transmission after switching its channel to the fixed channel of the
neighboring node. Thus, a node can potentially transmit and receive simultaneously, if the channels on which they
transmit and receive are different. The necessary control messages that are exchanged to communicate the channel
information between the nodes is discussed later in this section. Once a node switches to a channel, it stays on
that channel for a pre-determined amount of time before switching to the next channel. The amount of time spent
by the switchable interface may vary depending on the availability of packets to be sent on that channel. Because
the channel on which a switchable interface operates depends on the channel allocated to the fixed interface of a
neighboring node, it is clear that we need to allocate channels only to the fixed interface of a node. Figure 1 shows
an example of our protocol operation for a bidirectional data transmission from node A to node C, with node B
as an intermediate node. (Solid lines indicate transmission form A to C and dotted lines indicate the transmission
from C to A. The switchable radio in B switches between the two directions.)
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Fig. 1. Example multichannel protocol operation

The HMCP protocol operation requires that every node be aware of the (fixed) channels on which their neigh-
boring nodes are listening. In other words, two neighboring nodes cannot communicate with each other even if
one of them is not aware of the channel of the other. The nodes are made aware of the neighbor channels by
the exchange of a broadcast hello message that contains the channel information. Any broadcast message sent
by a node is transmitted on all the channels so that all of a node’s neighbor that may be listening on any of the
channels may receive the broadcast message. To help in load-balancing among the channels that are used within
a neighborhood, the hello messages are propagated over two-hops. This allows every node to be aware of the
channel information of all the neighbors that are up to two hops away.

The HMCP protocol also defines a channel allocation mechanism for allocating channels to the fixed interface.
Briefly, the channel allocation algorithm works by using the two hop channel information exchanged using the
broadcast hello messages for choosing a channel that is used by the least number of nodes in its (two hop)
neighborhood. This helps in fairly balancing the number of nodes that are on each of the channels. Due to space
restrictions we skip the details of the channel allocation mechanism. However, interested readers can refer to [5]
for more information on the channel allocation algorithm.

2.2 Multichannel Routing Protocol

The routing mechanism used currently in our testbed is an AODV protocol, modified for multichannel opera-
tion. The modifications to the original AODV protocol include incorporating a mechanism for finding a channel
diverse route, avoiding bottlenecks, and reducing the overall expected transmission time in addition to reducing
the number of hops. More specifically, to utilize the benefit of using multiple channels, it is necessary to make
sure that a flow experiences minimum intra-flow interference (interference due to transmissions of the same flow
on adjacent hops). This requires that the route taken by the flows is such that the adjacent hops are on different
channels as much as possible. Furthermore, it is preferable to avoid routing multiple flows through a single node,
as this may result in the node requiring to switch its transmission channel frequently for routing the flows, which
may possibly be targeted at neighbors on different channels. These requirements are incorporated in the form of
a routing metric, called the MCR metric [5], as the traditional routing metric based on hop count is not suitable.
The MCR metric, in brief, uses the statistics of channel usage from the interface drivers and uses it to calculate the
cost for switching the channels for routing a flow. Additionally, the cost of a link per channel is estimated using
the popular ETT metric [16] on every channel, which when coupled with the switching costs and summed up over
the entire path results in the MCR routing metric. If SC(ci) is the channel switching cost of channel ci used in
the ith hop of transmission, and ETTi is the estimated transmission time in the ith hop, then the MCR metric is
given by,

MCR = (1− β) ∗
h∑

i=1

(ETTi + SC(ci)) + β ∗ max
1≤j≤c

Xj

where, β is a weight between 0 and 1, h is the number of hops on the path, and c is the total number of channels.
Xj is the total ETT cost on channel j and is given by,

Xj =
∑

∀i such that ci=j

ETTi.

The ETT of a link is given by, ETT = ETX ∗ S
B , where ETX is the expected number of transmission attempts

(including re-transmissions) required to transmit a packet, S is the average packet size and B is the data rate of
the link. The expected number of transmissions is estimated based on the loss in the link.

The multichannel protocol also incorporates few other modifications. For instance, when a routing entry is
created for a node, it is also necessary now to indicate the channel and the actual interface to use for reaching the
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next hop. The multichannel routing protocol incorporates the appropriate mechanism for creating the route entries.
Furthermore, optimizations such as route caching, available in the original AODV protocol, is not performed as the
channel allocations and the corresponding costs may change frequently, which can be estimated accurately only
at the destination. Finally, the multichannel routing protocol incorporates a procedure called “Route Refresh”, by
which a source node initiates a route discovery periodically (currently every 30 seconds in our testbed) for learning
routes with better costs or for updating the costs of the current route.

3 Problem Statement

A pure-hybrid channel allocation approach (such as HMCP [11]) is optimized for providing higher system through-
puts for non-delay sensitive applications. However, a main drawback with the hybrid channel allocation approach
is the channel switching delays associated with the wireless radio hardware and software. For instance, the chan-
nel switching delay currently in our hardware, Ts is 5 ms. This includes several components such as, delays due
to stopping interrupt service routines of the driver, tuning to the new frequency, re-starting the interrupt service
routines and sensing the medium. To compensate for the higher switching delays, it is advisable to spend at least
a minimum amount of time in a channel, before switching to another channel for amortizing the switching costs.
Additionally, consider a scenario where there are multiple packets to be sent by a node, each on a different chan-
nel. In this case, while sufficient time has to be spent transmitting packets on the current channel before switching
to the next channel, there has to be a limit on the time spent on any single channel. In the network used for our
experiments, the minimum time spent on a channel, Tmin is 20 ms, and the maximum time spent, Tmax on a
channel before switching to another channel that has packets waiting to be spent is 60 ms. The relevance of these
parameters and the procedure used for choosing these values are discussed in more detail in [17]. Thus, the channel
switching delay, Ts along with Tmin and Tmax together may add to the overall transmission time of a packet.

To illustrate more on the switching delays, we discuss the following simple experiment.

Fig. 2. Topology used for ping experiments Fig. 3. Results for pinging the nodes in flooding mode

3.1 Ping Experiment

In this experiment, we use up to five wireless nodes that are placed across different offices in our lab and arranged
linearly as shown in the Figure 2, each of which are one hop apart from their neighbors, and we initiate one
hop, two hop, three hop, and four hop pings in flooding mode with 1500 byte packets. (A node is said to be one
hop away from another node if they can have a direct communication between them. If two nodes require k one
hop communications between them, through other intermediate nodes, then they are said to be k hops away from
each other.) We plot in Figure 3, the resulting average round trip time (RTT) returned by ping when all the nodes
use the same fixed channel (labeled as ‘Fixed’ in the plot), when the nodes are assigned channels using a static
channel allocation (labeled as ‘Static’), and when the hybrid multichannel protocol with five channels (labeled as
‘HMCP5’) and two channels (labeled as ‘HMCP2’) is used for allocation. Note that in the case of HMCP2, the
switchable radio do not switch channels as they always operate on only channel (the other channel is allocated
to the fixed radio). In the case of ‘Fixed’, the switchable radios are free to switch across the remaining channels.
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We can readily observe from the plot that the average RTT in the case of HMCP5 is significantly higher than the
other channel allocations. Furthermore, we observe that the RTTs become worse as the number of hops increase.
Finally, we also observe that the RTTs in the case of HMCP2 is much lower than HMCP5 and the same fixed
channel allocations, though the actual values are higher than a static allocation. The reason for the increased RTTs
in the case of HMCP5 is because of the following factors:

1. A transmission from one node to another that are on different fixed channels requires a channel switching.
This can take place at every single hop of the path taken by the flow.

2. Because a periodic broadcast message, such as hello or a route refresh has to be sent on every channel,
the associated switching delay adds up, at every hop, to the end-to-end delay.

Thus, by assuming a channel switching delay of 5 ms, and by assuming that only a Tmin amount of time is
spent on each of the channel and observing the fact that a message broadcast on the fixed interface do not incur any
channel switching delay, a message broadcast on five channels incur a delay of ((5−1)×5+(5−1)×20 = 100ms)
and that broadcast on 2 channels incur ((2− 1)× 5 + (2− 1)× 20 = 25ms). Thus, the broadcast messages alone
can cause round trip delays of up to 200ms and 50ms, respectively. This is the reason for HMCP2 to have a lower
delay when compared to HMCP5. The reason for higher RTTs in the case of ‘Fixed’ channel allocation is due
to two reasons. The first reason is that the adjacent hops of a flow has to contend for channel access as they are
both transmitted on the same channel. The second reason is due to hardware restrictions. Specifically, the wireless
driver can schedule a transmission from only one of the two radios at a time. Consequently, a packet queued up
on a fixed radio has to share its transmission opportunities with that in the switchable radio, resulting in a higher
RTT.

The resulting delays, mainly in the case of HMCP5, are prohibitive for real time, delay sensitive applications
such as VoIP or interactive gaming, and therefore alternate mechanisms has to be formulated for routing such
applications. However, we should also ensure sufficient throughput for non-delay sensitive applications that may
co-exist in the network. This motivates a routing approach that can improve both the delay and throughput per-
formance depending on the type of application. From Figure 3, we see that a static channel allocation may be
advantageous for real time applications, as it results in the least RTTs among the four mechanisms compared. Our
proposed protocol exploits the advantages of this allocation. In this paper, we assume a dense network scenario
that has a predominantly non-delay sensitive traffic with fewer delay sensitive applications. In fact, this mimics a
real network scenario, as most of the flows in the present day internet are HTTP or FTP-type best effort traffic.

4 Proposed Approach

Motivated by our initial ping experiments, we develop a new routing strategy, called SHORT for controlling the
wireless radios and the underlying channel allocation mechanism. The idea is to make the wireless radios behave
as in a static channel allocation mechanism for real time applications and to follow the hybrid channel allocation
mechanism for non-real time applications. Accordingly, the nodes in the network operate on one of two modes,
namely normal mode and static mode. The normal mode of operation is exactly as explained in Section 2.1 and
shown in Figure 1, wherein only the ‘fixed’ radio is used for receiving data and the ‘switchable’ radio is used only
for transmitting data, after switching to the corresponding channel. This mode of operation is used for non-delay
sensitive traffic. For delay sensitive flows, the static mode of operation is used. In this mode, the ‘switchable’
interface is not allowed to switch channels for the duration of the delay sensitive flow. Rather, after the route for
the flow is determined, it remains fixed on the channel of the previous hop’s1 fixed interface. Furthermore, both the
fixed and the switchable radios are allowed to receive and transmit. In other words, the switchable interface also
behaves like a ‘fixed’ interface for the duration of the delay sensitive flow. Note that only those nodes that lie in the
path of a delay sensitive flow operate in static mode. The remaining nodes in the network continue to behave as in
the normal mode. Furthermore, the nodes that are in static mode revert back to normal mode of operation once the
delay sensitive flow ends. The associated protocol steps for getting back to normal mode is trivial and not discussed
in this paper. While the channel allocations in our protocol are based on HMCP to simplify implementation, any
existing dynamic channel allocation can be used, in general.

We wish to explain this concept more clearly using the illustration in Figure 4. The figure shows a traffic flow
from node A to C via node B. Let the channels allocated to the fixed radios of the nodes A, B. and C be labeled 1,
2, and 3, respectively. Accordingly, during the static mode of operation, the switchable radio of node C is fixed to
channel 2, which is the fixed channel of node B. Similarly, the switchable radio of node B is fixed to the channel

1 The terms ‘previous hop’ and ‘next hop’ imply the appropriate nodes in the path as seen by a node in the ‘source to
destination’ direction of the flow.
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Fig. 4. SHORT protocol operation

1, which is the fixed channel of node A. Thus, traffic from A to B flows on channel 1, and that from B to C flows
on channel 2. Moreover, the switchable radios on nodes B and C receive the traffic on these channels transmitted
by the fixed radios of nodes A and B, respectively. Observe that any traffic from C to A can be routed using the
same configuration, except that the switchable radios will be sending traffic that will now be received by the fixed
interface of the nodes B and A. Thus, this setting enables a bi-directional flow without requiring any channel
switching. We would like to point out that the switchable interface of node A is not required to be fixed on any
channel in this example, and is free to switch across channels as in the normal mode. Because in this example, the
nodes B and C behave as in a static channel allocation (both the radios are non-switchable and every node on the
path shares a channel with the adjacent hop nodes), we call this as static mode.

In the static mode of operation, a node does not send a broadcast message on all the channels (unlike the
normal mode of operation, see Section 2.1). Instead, it simply forwards them on the channels to which the two
radios are fixed. Note that this may result in few nodes not being aware of the channel used by their neighboring
nodes. Because we require in our protocol that two nodes involved in a direct communication be aware of each
other channels (as otherwise the nodes cannot decide on which channel to transmit), this may result in a node
losing connectivity with the nodes that are on a channel different from those on which the broadcast messages are
sent. When several such nodes lose connectivity with each other, this can eventually result in a network partition.
To avoid such a scenario, we propose a channel re-selection mechanism that works in tandem with the routing
protocol. More details of the channel re-selection mechanism is explained later in this section.

4.1 SHORT Protocol Operation

We now discuss the details of the SHORT protocol. We assume that the information whether the flow being routed
is delay-sensitive or not is available at the routing layer of the source node. Such an information can be passed
on from the upper layers by, for instance by setting the ToS (type of service) field in the IP header. The actual
mechanism on how this information is passed on from the application to the routing layer is beyond the scope of
this paper. We just present the protocol sequence executed for a delay sensitive flow. The sequence of procedures
carried out for a non-delay sensitive flow is as done in the multichannel routing protocol, explained in [18] and is
not reproduced here. The protocol mechanisms described for delay sensitive flows, however, is a modification of
the multichannel routing protocol and to avoid duplication of work, we present only the relevant modifications to
the multichannel routing protocol.

Once the source node determines that it is a delay sensitive flow, the following is performed:

1. The source node checks if a route is already available for the destination. If not, it initiates a route request
message (RREQ) along with a special flag, isRealTime to indicate that the request is for a real time flow and
broadcasts it on all channels.

2. Any intermediate node, that is not the destination, simply re-broadcasts the RREQ message on all channels.

3. The destination, upon receiving the RREQ, creates a route response (RREP) message and unicasts the RREP
along with the isRealTime flag (copied from RREQ) to the node from which the corresponding RREQ was
received. Additionally, it takes the following actions only if the channel on which the RREP is unicast (which is
the fixed channel of the previous hop node in this path) is different from its own fixed channel:

a. The node sends a broadcast hello message as described in Section 2.1 on all the channels. However, in
this case, the node includes the flag isRealTime along with two channel information. One is the fixed channel
that it has been operating on, and the other is the channel over which the RREP is unicast. (Note that the original
hello message described in Section 2.1 contains only the fixed channel information.) The cost associated with
this broadcast is one time and shall be considered as part of the route setup cost, which does not affect the delay
experienced by the delay sensitive packets.
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b. The node fixes its switchable interface on the channel over which the RREP message is unicast (which is
the fixed channel of the previous hop node in this path). The routing entry created for the previous hop node is
informed to use the switchable interface in this (reverse) direction.

c. The switchable interface is also informed to start receiving packets on this channel.

4. Any intermediate, upon receiving the RREP along with the isRealTime flag, also forwards the RREP mes-
sage to the node from which it received the corresponding RREQ message. Furthermore, the intermediate node, in
addition to performing the set of operations described in Step (3) when the RREP is unicast on a channel different
from its own fixed channel, also performs the following:

d. The node creates a routing entry for the next hop node and is informed to use the fixed interface in this
direction of flow (forward direction).

5. The source node, upon receiving the RREP starts sending the packets, after creating the routing entry for the
next hop node through its fixed interface.

Once the radios of the corresponding nodes in the real time flows path are fixed based on the above steps,
any transmission by these nodes (including broadcasts) are restricted to the two fixed channels. Observe that any
non-real time flow that has been existing in the chosen real time path prior to the arrival of the real time flow may
be affected because of this protocol. In particular, an existing non-real time flow may be dropped during the above
process as the radios on the corresponding path will no longer be allowed to switch across channels. We handle
this situation by initiating a RERR message, which gets forwarded to the source. The source can then re-initiate
a new RREQ message to find a new route. Because of the channel re-selection mechanism (described in the next
sub-section), finding a new route will not be difficult and we did not see a significant throughput loss, as a result,
during our experimentation.

4.2 Channel Re-selection Mechanism

The channel re-selection mechanism is introduced to maintain network connectivity in spite of nodes in static
mode restricting their broadcast to only the two channels that their interfaces are fixed on. The channel re-selection
mechanism is only executed by those nodes that lie adjacent to the path chosen for the real time applications and are
in the normal mode. For this purpose, the nodes make use of the broadcast hello message with a isRealTime
flag broadcast by a node in the path of a real time flow before switching to the static mode (see Section 4.1 step
3a.). Upon receiving the broadcast message with a isRealTime flag, the nodes performing channel re-selection
perform the following steps:

1. The node first checks if both of the channels contained in the hellomessage is different from its fixed channel.
If its fixed channel is same as one of the channels in the hello message, the node discards the message and takes
no further steps.

2. If both the channels in the hello message are different from the node’s fixed channel, then the node selects
one of the two channels, chosen uniformly at random, as its new fixed channel.

3. If more than one hello message with a isRealTime flag is received (which may happen when a node
is adjoining two nodes that lie in the path of a real time flow), then the node first tries to choose the channel
that is common to a majority of the hello messages. Thus, the channel re-selection mechanism is designed to
maintain connectivity with a majority of the nodes in the network. If none of the channel is common to the hello
messages, then the node just selects one of the channels contained in the hello messages, uniformly at random,
as its fixed channel.

When the majority of flows in the network are real time, the channel re-selection mechanism will tend to
make the overall network behave as in a pure-static approach, while when the majority of flows in the network are
non-real time, the network behaves as in a pure-hybrid approach, as required.

4.3 Implementation Specific Details

The architecture of our multichannel protocol along with the SHORT implementation is shown in Figure 5. The
SHORT protocol consists of two main components, namely the SHORT controller or C-SHORT and the SHORT
executor or E-SHORT. The C-SHORT is implemented in the user level and interacts with the multichannel routing
protocol for creating routing entries compatible with the static mode of operation whenever a real time flow is to
be routed. Furthermore, it is also responsible for setting the isRealTime flag when a new route discovery for a real
time flow is initiated. Finally, C-SHORT indicates to the E-SHORT component, through a special IOCTL control
message, whether to transition to static mode or revert back to normal mode. (IOCTL messages are used standardly
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Fig. 5. System architecture with SHORT-specific components in gray

in linux for any interaction between the user space and kernel space code.) If the message is for transitioning to
static mode, then the channel to which the switchable radio has to be fixed from now on is also specified.

The E-SHORT component, on the other hand, is implemented as a kernel module and resides as part of the
linux ‘bonding’ module2. The E-SHORT component is responsible for fixing the switchable radio to the channel
supplied by the C-SHORT component and for restoring the switchable radio back to normal mode, depending on
the message from the C-SHORT component.

In addition to the two main components, SHORT protocol also consists of a smaller third component, called
SHORT-NET, which interacts with the linux netfilter hooks for making the switchable interface behave like a fixed
interface for real time flows. In normal mode, the netfilter hook is designed to drop any incoming packets on the
switchable radio. The SHORT-NET overrides this and lets the switchable radio to accept the packets while in static
mode. The relevant control messages are passed on from the C-SHORT as an IOCTL message.

5 Experimental Results

In this section, we present the experimental results to illustrate the performance benefits of the SHORT protocol.
Before proceeding further, we first present an overview of our testbed and the associated hardware.

5.1 Testbed Overview

We use a multi-channel, multi-interface, and multi-hop wireless testbed called Net-X, developed by the Wireless
Networking Group at the University of Illinois at Urbana-Champaign (UIUC). The testbed consists of 20+ Soekris
net4521 boxes distributed across various offices on the fourth floor of the Coordinated Science Lab (CSL) in
UIUC. Each of the testbed node has a 133 MHz microprocessor, a compact flash (CF) card slot, two PCMCIA
slots, and one mini-PCI slot. We run Linux kernel 2.4.26-based operating system on each of these boards. For our
experiments, we equip the test nodes with one mini-PCI and one PCMCIA wireless card. These wireless cards are
based on Atheros chipsets and are driven by madwifi drivers. The cards operate in the IEEE 802.11a mode. The
mini-PCI cards make use of a pair of external antennas, and the PCMCIA card has its own internal antenna for
communication.

5.2 Experimental Methodology
Traffic Details: For evaluating our protocol, we used different traffic sources for generating real time and non-
real time traffic. For real time traffic, we used a tool called D-ITG [19] for generating G.711 codec type VoIP
packets for 50 seconds. The tool generates about 100 byte VoIP packets every 20 ms. The same D-ITG tools is
used generating non-delay sensitive TCP and UDP type packets. The UDP flows are always generated at a rate of
6 Mbps and the packet sizes are fixed at 512 bytes. The size of the TCP packets on the other hand are uniformly
distributed between 500 and 1000 bytes, and are generated at the rate of 1000 packets per second. Both UDP and
TCP packets are generated for a duration of 50 seconds. Every wireless radio transmits at the maximum power
and the physical rate of transmission are fixed at 6 Mbps. For all the experiments we use five orthogonal 802.11a
channels, namely 36, 48, 64, 149, and 161 for allocation.

2 The bonding module has been modified in our system to enable multi-radio operation and the details can be found in [5]
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Protocols Compared: We compare the performance of our SHORT protocol with HMCP and two other protocols
as described below:

Static channel allocation: For this case, we allocate channels to the radios using a centralized static channel
allocation methodology. In other words, knowing the connectivity graph among the nodes, we allocated channels
to the two radios in a node such that every node having an edge in the connectivity graph has at least one channel
in common. The channel allocation technique is based on the scheme proposed in [9].

Fixed channel for real time traffic: This is a protocol similar, but simpler than SHORT. In this protocol, while
generating a route discovery for a real time flow, the source node also includes its current fixed channel in the
RREQ message. Every intermediate node re-broadcasts the RREQ message, as usual. However, while forwarding
the RREP message the corresponding node changes its fixed channel to that of the source node (which is embedded
in the RREP message). Thus, all the nodes in the path of a real time flow use their fixed interface for routing. The
advantage of this scheme is that the switchable radios in the nodes need not be fixed and can remain switchable as
in normal mode. As a result, unlike SHORT there will be no loss of connectivity. We call this as ‘fixed’ mode of
operation. Figure 6 illustrates this protocol.

Fig. 6. Fixed mode operation

Performance Metrics: The D-ITG tool is capable of generating per flow statistics on the minimum, maximum,
and average delays, average jitter, and throughput achieved. Because throughput is not of concern for real time
flows, and delays are not important for non-real time flows, we measure the average and maximum delays, and
jitters (which is the variance in time of arrivals of adjacent packets at the destination) for real time traffic and the
throughput values for the non-real time traffic. However, due to space restrictions, we only present the average
delay values for real time applications. The maximum delay and jitter values can be referred from [20].

Time Synchronization: For measuring delays it is important to have a common notion of clock between the
traffic sources and destinations. However, the wireless nodes used have imperfect clocks and proper time synchro-
nization is necessary for measuring time delay values between the sender and receiver. We therefore use ntpdate
periodically on these nodes for synchronizing their time values. Because the nodes are not connected to the inter-
net, we use a desktop computer as the ntp server and synchronize all the nodes relative to this server. We use the
local wired LAN connectivity for time synchronization between the nodes and the desktop ntp server.

Fig. 7. Average delay for unidirectional flows Fig. 8. Average delay for bidirectional flows
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5.3 Performance Results

We now discuss in detail the experimental setup and the performance results.

Multihop Experiments: For each of the experiments in this section, we generate flows between a pair of nodes
that are separated by one, two, three, and four hops away. Owing to the size of our network, we cannot realize a
route that is farther than 4 hops. For each of the scenarios, we chose 10 different source and destination pairs, each
of which are picked from different locations in the network, and are separated by different distances.

Unidirectional flows
For this experiment we generate a VoIP flow between a source and a destination that is located one hop away from
the source. We then repeat this for destinations that are two hops, three hops, and four hops away from the source
node. In each case, we measure the average delay experienced by the packets, and the results averaged over the
10 different source-destinations pairs are plotted in Figure 7. In all the figures presented in this section, the plots
corresponding to the static channel allocation are labeled as ‘Static’ and those obtained for the case where we use
the fixed channel for real time flows are labeled as ‘Fixed’.

From Figure 7, we first observe that the average delays experienced by the VoIP packets in the case of SHORT
and Static are always lower than 5 ms, irrespective of the number of hops. We also observe that the delays in
the case of Fixed and HMCP allocations are much higher than SHORT or Static allocation, and the difference
increases significantly as the number of hops increase. As mentioned in Section 3, the main reason for higher
delays in the case of HMCP is the need to switch the channels at every hop along the multihop path. In the case
of Fixed channel allocation, the delays are comparatively lower than HMCP owing to the fact that the fixed radios
are used for transmitting the VoIP packets. However, the delays are still high when compared to SHORT or Static.
One reason for this is that the fixed radio has to share its transmission opportunity with that of the packets in the
switchable radio, as explained in Section 3. Though the average delay of about 38 ms in the case of HMCP for the
4 hop case is acceptable for VoIP packets, the rate at which the delay grows with the number of hops is significant
and the delays may become unacceptable in the case of real multichannel deployments, where more than 4 hops
may be common. Even in the case of 4 hops, we observed that there were packets that experience more than 200
ms delays (not shown here), which is, certainly unacceptable for VoIP.

Fig. 9. Average delay of VoIP packets sent with a UDP flow Fig. 10. Throughput of UDP flow went with a VoIP flow

Bidirectional flows
In this case, we generate two VoIP flows, one from a source to the destination and the other from the destination
to the source. The delay values averaged over all the flows and over 10 different pairs of nodes, chosen from
different location in the network for each scenario, are plotted in Figure 8. We first observe that the delays in the
case of SHORT and Static mechanisms are similar to that in the unidirectional case. This is because, in the case
of SHORT protocol, once a route is established between two nodes, the same route is used both for the forward
and reverse traffic. The same is true in the case of Static mechanism. The delays in the case of HMCP is higher
than that in the unidirectional case. This is because a significant time is spent by the switchable radio in switching
between the forward and reverse traffic.
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Fig. 11. Average delay of VoIP packets sent with a TCP flow Fig. 12. Throughput of TCP flow went with a VoIP flow

VoIP with UDP and TCP (non-delay sensitive)
For this experiment, we first generate a VoIP flow along with a UDP flow, both from the same source and targeted
at the same destination. Figure 9 shows the average delay experienced by the VoIP packets, and Figure 10 when the
throughput achieved by the UDP packets, all averaged over 10 different source-destination pairs. Next we generate
a VoIP flow along with a TCP flow as before, and the delay and throughput values of the VoIP and TCP packets,
respectively are plotted in Figures 11 and 12. We observe from the plots that the throughputs for both UDP and
TCP flows remain almost the same, irrespective of the number of hops, in the case of SHORT and Static protocols.
However, we observe that the throughputs reduce with the number of hops in the case of Fixed and HMCP. In the
case of TCP flows, this is because of the increased RTTs between the source and destination, which in turn affects
the packet generation rate at the source. In the case of UDP, this is due to loss of packets during channel switching.
Furthermore, in the case of fixed mode, adjacent hops of the same flow contend for transmission as they are on the
same channel. This, in turn affects the throughput achieved.

Fig. 13. Average delays for multiple one hop flows from a node Fig. 14. Average jitters for multiple one hop flows from a node

Single hop experiments: We now evaluate the capability of the protocols in supporting multiple flows from the
same source node, as such a scenario may usually involve several channel switches when each flow is sent on a
different channel. For this purpose, we choose a source node and four other nodes that are within one hop from each
other and generate multiple VoIP flows (varied from one to four) between them. Once gain, we choose 10 different
sets of nodes situated at different locations in our network and present the average values. The average delay
values per flow are plotted in Figures 13. For this case, we also present the average jitter values in Figure 14. We
observe from the delay plots that the average and maximum delay values do not vary much with number of flows
in the case of SHORT, Static, and Fixed mechanisms, while it increases significantly for HMCP. (The improper
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variations in throughputs with the number of hops in the case of SHORT and Static are due to averaging.) This
shows that HMCP is not capable of multiple real time flows all from the same source, as it requires significant
channel switching. From the jitter values, we observe that HMCP performs poorly while handling multiple flows.
Higher jitter values mean that the amount of jitter buffer at the receiving side should also be higher, so as to prevent
packet losses. The jitter performance for SHORT and Static are fairly stable irrespective of the number of flows
and allows for better codec design.

We also performed some measurements to evaluate if the number of hops taken by a non-delay sensitive
application is higher than that taken by HMCP. However, we found that there were no significant throughput losses
because of SHORT protocol. We do not provide those results in this paper due to space restrictions. Moreover, our
main goal in this paper is to demonstrate the delay performance of SHORT.

6 Conclusion

In this paper, we proposed SHORT, a routing approach that exploits the benefits of both static and hybrid chan-
nel allocation strategies. We have implemented the protocol on a real multichannel testbed and using extensive
experimental data we have demonstrated the performance benefits of the SHORT protocol over a hybrid channel
allocation protocol, called HMCP. All our experimental results illustrate the abilities of SHORT protocol in pro-
viding low delay multihop paths for real time traffic, while not affecting the throughputs of non-real time traffic.
Our results show that the performance of SHORT protocol is comparable to that of a static channel allocation
method. As a future work, we wish to demonstrate the benefits of SHORT using real voice traffic, which has not
been possible right now due to hardware restrictions.
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