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Abstract
The availability of multiple orthogonal channels in a wireless network can potentially lead to substantial perfor-

mance improvement by alleviating contention and interference. However, this also gives rise to non-trivial channel

coordination issues. The situation is exacerbated by variability in the achievable data-rates across channels and

links. Thus, scheduling in such networks may require substantial information-exchange and lead to non-negligible

overhead. This provides a strong motivation for the study ofscheduling algorithms that can operate with limited

information, while still providing acceptable worst-caseperformance guarantees. In this paper, we make an effort

in this direction, by examining the scheduling implications of multiple channels, and heterogeneity in channel-

rates. We establish lower bounds on performance of a class ofmaximalschedulers, and describe a scheduler that

require limited information-exchange between nodes. We first demonstrate that when the underlying scheduling

mechanism is “imperfect”, the presence of multiple orthogonal channels can help alleviate the detrimental impact

of the imperfect scheduler, and yield a significantly betterefficiency-ratio in a wide range of network topologies.

We then establish performance bounds for a scheduler than can achieve good efficiency-ratios in the presence of

channels with heterogeneous rates without requiring explicit exchange of queue-information. Our results indicate

that it may be possible to achieve a desirable trade-off between performance and information.

I. I NTRODUCTION

Appropriate scheduling policies are of utmost importance in achieving good throughput characteristics in a

wireless network. The seminal work of Tassiulas and Ephremides yielded athroughput-optimalscheduler, which

can schedule all “feasible” traffic flows without resulting in unbounded queues [1]. However, such an optimal

scheduler is difficult to implement in practice. Thus various imperfect scheduling strategies that trade-off throughput

for simplicity have been proposed [2], [3], [4], [5] amongstothers.

The availability of multiple orthogonal channels in a wireless network can potentially lead to substantial perfor-

mance improvement by alleviating contention and interference. However, this also gives rise to non-trivial channel

coordination issues. The situation is exacerbated by variability in the achievable data-rates across channels and

links. Computing an optimal schedule, even in a single-channel network, is almost always intractable both due to

need for global information, and computational complexity. However, imperfect schedulers requiring limitedlocal

information can typically be designed, which provide acceptable worst-case (and typically much better average
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case) performance degradation compared to the optimal. In amulti-channel network, the local information exchange

required by even an imperfect scheduler can be quite prohibitive, as information may be needed on a per-channel

basis. For instance, Lin and Rasool [6] have described a scheduling algorithm for multi-channel multi-radio wireless

networks that requires information aboutper-channelqueues at all interfering links.

This provides a strong motivation for the study of scheduling algorithms that can operate with limited information,

while still providing acceptable worst-case performance guarantees. In this paper, we make an effort in this direction,

by examining the scheduling implications of multiple channels, and heterogeneity in channel-rates. We establish

lower bounds on performance of a class ofmaximalschedulers, and describe some schedulers that require limited

information-exchange between nodes. Some of the bounds presented here improve on bounds developed in past

work [6].

We begin by analyzing the performance of a centralized greedy maximal scheduler. A lower bound for this

scheduler was established in [6], which is tight in the sensethat there exists a network topology in which the upper

bound matches this lower bound. However, in a large variety of network topologies, the lower bound can be quite

loose. Thus is particularly true for networks with single interface nodes. We establish an alternative bound that is

tighter in a range of topologies.Our results indicate that when the underlying scheduling mechanism is imperfect,

the presence of multiple orthogonal channels can help alleviate the impact of the imperfect scheduler, and yield a

significantly better efficiency-ratio in a wide range of scenarios..

We then consider the possibility of achieving efficiency-ratio comparable to the centralized greedy maximal

scheduler using a simpler scheduler that works with limitedinformation. We establish results for a class of maximal

schedulers coupled with local queue-loading rules that do not require queue-information from interfering nodes.

On a related note, cross-layer resource allocation in multi-channel wireless networks has been considered in [7].

II. PRELIMINARIES

We consider a multi-hop wireless network. For simplicity, we will limit much of our discussion to nodes equipped

with a single interface (or single radio) capable of tuning to any one available channel at any given time. The interface

may switch between channels if desired. The results presented in the paper can also be used to obtain results for

the case when each node is equipped with multiple interfaces: we briefly discuss this issue.

The wireless network is viewed as a directed graph, with eachdirected link in the graph representing an available

communication link. We model interference using aconflictrelation between links. Two links are said to conflict with

each other if only one of the links can be scheduled reliably on a certain channel simultaneously. (As we will discuss

later, conflicts can also occur between a pair of links when those links need to share the same wireless interface).

The conflict relation is assumed to be symmetric. The conflict-based interference model is an approximation of the

reality – while it does not capture the wireless channel precisely, it is more amenable to analysis, which in turn

provides useful insights on performance of wireless networks, as well as insights useful in protocol design. Such

conflict-based interference models have been used frequently in the past work as well (e.g., [6]).

Time is assumed to be slotted, with the slot duration being 1 unit time (that is, we use slot duration as the time

unit ). In each time slot, the scheduler used in the network determines which links should transmit in that time slots,

as well as the channel to be used for each such transmission. We now introduce some notation and terminology.

The network is viewed as a collection of directed links, where each link is a pair of nodes capable of direct

communication with non-zero rate.

• L denote the set of directed links in the network.

• C is the set of all available orthogonal channels. Thus,|C| is the number of available channels.

• We say that a scheduler schedules link-channel pair(l ,c) if it schedules linkl for transmission on channelc.

• rc
l denotes rate achievable on linkl by operating linkl on channelc, provided that no conflicting link is also



scheduled on channelc. We assume thatrc
l > 0 for all l ∈ L andc∈ C 1. We also deifne the following terms:

rmax= max
l∈L ,c∈C

rc
l , and rmin = min

l∈L ,c∈C
rc
l When two conflicting links are scheduled simultaneously on the same

channel, both achieve rate 0.

• βs denotes the “self-skew-ratio”, defined as the minimum ratiobetween rates supportable overdifferentchannels

on asinglelink. Therefore, for any two channelsc andd, and any linkl , we have
rd
l

rc
l
≥ βs. Note that 0< βs≤ 1.

• βc denotes the “cross-skew-ratio”, defined as the minimum ratio between rates supportable over thesamechannel

on different links. Therefore, for any channelc, and any two linksl and l ′, we have that
rc
l ′

rc
l
≥ βc. Note that

0 < βc ≤ 1.

Let r l = max
c∈C

rc
l . Let σs = min

l∈L

∑
c∈C

rc
l

r l
. Note thatσs≥ 1+βs(σs−1). Moreover, typicallyσs will be much larger

than this worst-case bound.σs is largest whenβs = 1, and thenσs = |C |.

• b(l) ande(l), respectively, denotes the nodes at the two endpoints of a link. In particular, linkl is directed from

nodeb(l) to nodee(l).

• E(b(l))and E(e(l))denote the set of links incident on nodesb(l) and e(l), respectively. Thus, the links in

E(b(l))andE(e(l))share a node with linkl . Since we are focusing on single-interface nodes, this implies that

if link l is scheduled in a certain time slot, no other link inE(b(l))or E(e(l))can be scheduled at the same

time. This is referred to as an interface conflict. As noted previously, our results (and the notion of interface

conflict) can also be extended to the multi-interface case, but the space limitations prevent discussion of this

case.

• I(l) denotes the set of links that conflict with linkl when scheduled on the same channel.I(l) may include

links that also have an interface-conflict with linkl . By convention,l is considered included inI(l). Let

A(l) = A(l). Note that l ∈ A(l). Links that have an interface conflict with linkl are those that belong to

E(b(l))∪E(e(l))−{l}; they are also said to be adjacentto link l . The subset ofI(l) comprising interfering

links that are not adjacent tol is denoted byI′(l). Let Imax= max
l
|I′(l)|, and letAmax= max

l
|A(l)|.

• K denotes the maximum number of non-adjacent links inI′(l) that can be scheduled on a given channel

simultaneously ifl is not scheduled on that channel.Kl (|C |) denotes the maximum number of non-adjacent

links in I′(l) that can be scheduled simultaneously on any of the|C | channels (without conflicts) ifl is not

scheduled for transmission. Note that here we exclude linksthat have an interface conflict withl .

• K|C | is the largest value ofKl (|C |) over all links l . That is,K|C | = max
l

Kl (|C |). Let Imax= max
l
|I′(l)|. It is not

hard to see that for single-interface nodes:

K ≤ K|C | ≤ min{K|C |, Imax} (1)

We remark that the termK as used by us is similar, but not exactly the same asK in [6]. In [6], K denotes

the largest number of links that may be scheduled simultaneously if some link l is not scheduled, including

links adjacent tol . We exclude the adjacent links. For future reference, we will refer to the quantity defined

in [6] as κ instead ofK.

• Let γl be 0 if there are no other links adjacent tol at either endpoint ofl , 1 if there are adjacent links at only

one endpoint, and 2 if there are adjacent links at both endpoints.

• γ is the largest value ofγl over all links l . That is,γ = max
l

γl .

• Load vector: We consider single-hop traffic flows. That is, each flow originates at one node and ends at an

adjacent node, using the link between the two nodes to transmit the traffic (all traffic on a link is clubbed

together as one flow). The traffic arrival process for linkl is denoted by{λ(t)}.The arrivals in each slott are

1Though we assume thatrc
l > 0 for all l ,c, the results can be easily generalized to handle the case where rc

l = 0 for some link-channel pairs



i.i.d. with averageλl . The average load on the network is denoted byload vector
−→
λ = [λ1,λ2, ...,λ|L |], where

λl denotes the arrival rate for the flow on linkl . The load on some links may possibly be 0.

• Queues: The packets generated by each flow are first added to a queue maintained at the source node (depending

on the algorithm, there could be a single queue for each link,or a queue for each (link, channel) queue).

• Feasible load vector: In each time slot, the scheduler used in the network determines which links should transmit

and on which channel (recall that each link is a directed link, with a transmitter and a receiver). In different

time slots, the scheduler may schedule a different set of links for transmission. A load vector is said to be

feasible, if there exists a scheduler that can schedule transmissions such that each of the queues in the network

remains stable (or, bounded in size) when using that load vector.

• Link rate vector: Depending on the schedule chosen in a given slot by the scheduler, each linkl will have a

certain transmission rate. For instance, using our notation above, if link l is scheduled to transmit on channel

c, it will have raterc
l (here we assume that, if the scheduler schedules linkl on channelc, it does not schedule

another conflicting link on that channel). Thus, theschedulechosen for a time-slot yields alink rate vector

for that time slot. Note thatlink rate vectorspecifies rate of transmission used on each link in a certain time

slot. On the other hand,load vectorspecifies the rate at which traffic is generated for each link.

• Feasible rate region: The set of all feasible load vectors constitutes the feasible rate-region of the network, and

is denoted byΛ. A throughput-optimalscheduler is one that is capable of maintaining stable queues for any

load vector
−→
λ ∈ Λ.

• TO-scheduler: It has been previously shown [1] that a scheduler that maintains a queueql for each link l , and

then chooses the schedule given by argmax−→r ∑ql r l , where the max is taken over all possible link rate vectors
−→r is throughput-optimal. We will refer to this particular scheduler asTO-scheduler.Note thatql is a function

of time, and queue sizes at the start of a time slot are used above for computing the schedule (or link-rate

vector) for that slot.

• Imperfect scheduler: It is usually difficult to determine the throughput-optimal link-rate allocations above since the

problem is typically computationally intractable. Thus, there has been significant recent interest in “imperfect”

scheduling policies that can be implemented efficiently. In[2], cross-layer rate-control was studied for an

imperfect scheduler that chooses (in each time slot) link-rate vector−→s such that∑ql sl ≥ δ argmax−→r ∑ql r l ,

for some constantδ (0 < δ ≤ 1).

It was shown [2] that any scheduler with this property can stabilize any load-vector
−→
λ ∈ δΛ – note that if a

rate vector
−→
λ is in Λ, then the rate vectorδ

−→
λ is in δΛ. δΛ is also referred to as theδ-reduced rate-region. If

a scheduler can stabilize all
−→
λ ∈ δΛ, its efficiency-ratiois said to beδ.

• Maximal scheduler: Under our interference model, a schedule is said to be maximal if (a) no two links in the

schedule conflict with each other, and (b) it is not possible to add any link to the schedule without creating a

conflict (either conflict due to interference, or an interface-conflict). The performance of maximal schedulers

under various assumptions has been studied in much recent work, e.g., [6], [4], [5], [8]. However, the focus has

largely been on single-channel wireless networks. Scheduling in multi-channel networks has been examined

in [6], and a queue-loading algorithm has been proposed, using which a maximal scheduler can stabilize any

vector in 1
κ+2Λ, for arbitraryβc andβs values. This paper improve on the prior result, in addition to presenting

a new scheduler.

III. SCHEDULING IN MULTI -CHANNEL WIRELESSNETWORKS

As has been stated in the previous section, throughput-optimal scheduling is often an intractable problem even in

a single-channel network, though imperfect schedulers that achieve a fraction of the stability-region can potentially

be implemented in a reasonably efficient manner. When there are multiple channels, but each node has one or few

interfaces, an additional degree of complexity is added, interms of channel coordination. In particular, when the
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Fig. 1. 2-D visualization of channel heterogeneity

link-channel ratesrc
l can be different for different linksl , and channelsc, the scheduling complexity is exacerbated

by the fact that it is not enough to assign different channelsto interfering links; for good performance, the channels

must be assigned taking achievable rates into account, i.e., individual channel identities are important. In [6], it was

argued that if a simple maximal scheduler is used in such a network, there could possibly be an arbitrary degradation

in efficiency-ratio (assuming arbitrary variability in rates) compared to the efficiency-ratio of a maximal scheduler

with identical channels. Thus, they proposed a queue-loading rule to control the channels on which a link competes.

This rule requires knowledge of of the length of queues at allinterfering links, and achieves an efficiency-ratio
1

κ+2.

Variability in channel gains over different links is very much a characteristic of real-world wireless networks,

and must indeed be handled by protocols and algorithms. However, if the solutions require extensive information-

exchange, the resultant good performance may be offset by the increased overhead. Thus, it is crucial to consider

various points of trade-off between information and performance. In this context, the quantitiesβs,βc andσs defined

in Section II prove to be useful. The quantitiesβs and βc can be viewed as two orthogonal axes for worst-case

channel heterogeneity (Fig. 1). The quantityσs provides an aggregate (and thus averaged-out) view of heterogeneity

along theβs axis.βs = 1 corresponds to a scenario where all channels have identical characteristics, viz., bandwidth,

modulation/transmission-rate, etc., and the link-gain isa function solely of the path-loss.βc = 1 corresponds to a

scenario where all links have the same gain, but the channelsmay have different characteristics, e.g., an 802.11b

channel with a maximum supported data-rate of 11 Mbps, and an802.11a channel with a maximum supported data-

rate of 54 Mbps. In this paper, we show that in a single-interface network, a simple maximal scheduler augmented

with local traffic-distribution and threshold rules achieves an efficiency-ratio σs
K|C |+max{1,γ}|C | . The noteworthy features

of this result are:

1) This scheduler does not require information about queuesat interfering links.

2) The performance degradation (compared to the scheduler of [6]) when rates are variable, i.e.,βs,βc 6= 1 is

not arbitrary, and is at worstσs
|C | ≥

1+βs(|C |−1)
|C | ≥ 1

|C | . Thus, even with a purely local information based queue-

loading rule, we are able to avoid arbitrary performance degradation even in the worst case. On average, the

performance would be much better.

3) In many network scenarios, σs
K|C |+max{1,γ}|C | may actually be better than1

κ+2. This is particularly likely to

happen in networks with single-interface nodes, e.g., suppose we have three channelsa,b,c with ra
l = 1, rb

l =

1, rc
l = 0.5 for all links l . Then, in the network in Fig. 2 (where the link-interferencegraph is a star withx

radial vertices, and there are no interface-conflicts), we obtain a bound of 1
0.4x+1.2, whereas the bound of Lin

and Rasool is 1
x+2.
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Fig. 2. Example of improved bound on efficiency ratio: link-interference topology is a star with a center link andx radial links

The multi-channel scheduling problem is further complicated if the ratesrc
l are time-varying, i.e.,rc

l = rc
l (t).

However, handling such time-varying rates is beyond the scope of this paper, and we address only the case where

rates do not exhibit time-variation.

IV. SUMMARY OF RESULTS

For multi-channel wireless networks with single-interface (or single-radio) nodes, we present lower bounds on

the efficiency-ratio of a class of maximal schedulers (including both centralized and distributed schedulers), which

indicate that the worst-case efficiency-ratio can be higherwhen there are multiple channels (as compared to the

single-channel case). More specifically, we show that:

• The number of links scheduled by any maximal scheduler are within at least a max{ |C |
K|C |+max{1,γ}|C | ,

1
max{1,K+γ}}

fraction of the maximum number of links activated by any feasible schedule.

• A centralized greedy maximal (CGM) scheduler achieves an efficiency-ratio at least

max{ σs
K|C |+max{1,γ}|C | ,

1
max{1,K+γ}} This constitutes an improvement over the lower bound for theCGM scheduler

proved in [6]. SinceK|C | ≤ K|C | ≤ κ|C |, this new bound on efficiency-ratio can often be substantially tighter.

• We show that any maximal scheduler, in conjunction with a simple local queue-loading rule, and a threshold-

based link-participation rule, achieves an efficiency-ratio of at least σs
K|C |+max{1,γ}|C | . This scheduler is of

significant interest as it does not require information about queues at all interfering links.

In the rest of the paper, we elaborate on the results. Most of the proofs are presented in theAppendix.

Note that the text below makes the natural assumption that two links that conflict with each other (due to

interference or interface-conflict) arenot scheduled in the same timeslot by any scheduler discussed inthe rest of

the paper.

V. M AXIMAL SCHEDULERS

We begin the presentation of the results with a result that applies toall maximal schedulers.

Theorem 1:Let Sopt denote the set of links scheduled by a scheduler that seeks tomaximize thenumberof

links scheduled for transmission, and letSmax denote the set of links activated byany maximal scheduler. Then the

following is true:

|Smax| ≥ max{
|C |

K|C | +max{1,γ}|C |
,

1
max{1,K + γ}

}|Sopt| (2)



Although we do not use this result directly to prove any of theremaining results, this result makes the interesting

point that the availability of multiple channels can potentially improve the ratio of number of scheduled links

compared with the optimal scheduler.

VI. CENTRALIZED GREEDY MAXIMAL SCHEDULER

A centralized greedy maximal (CGM) scheduler operates as follows in each timeslot: (i) Calculate link weights

wc
l for all links l and channelsc. (ii) Sort the link-channel pairs(l ,c) in non-increasing order ofwc

l . (iii) Add the

first link-channel pair in the list (with highest weight) to the schedule for the timeslot, and remove from the list

all link-channel pairs that are no longer feasible (either due to interface or interference conflicts). (iv) Repeat step

(iii) until the list is exhausted (thus no more links can be added to the schedule).

In [6], it was shown that this centralized greedy maximal (CGM) scheduler can achieve an approximation-ratio

at least 1
κ+2 in a multi-channel network, whereκ is the maximum number of links that may possibly be scheduled

concurrently as a result of removing another link from the schedule. This bound holds for arbitrary values ofβs

and βc, and variable number of interfaces per node. Though it is tight in that there exists at least one network in

which the efficiency-ratio does not exceed the bound, it can be quite loose on average, particularly in networks

where there are multiple channels but single-interface nodes. In this section, we prove an improved bound on the

efficiency-ratio achievable with the CGM scheduler. Recallthat wc
l = ql rc

l .

Theorem 2:Let Sopt denote the set of links activated by an “optimal” scheduler that maximizes∑wc
l by choosing

appropriate link-channel pairs (l ,c) for transmission.2 Let c∗(l) denote the channel assigned to linkl ∈ Sopt by this

optimal scheduler. LetSg denote the set of links activated by the centralized greedy maximal (CGM) scheduler,

and letcg(l) denote the channel assigned to a linkl ∈ Sg. Then the following is true:

∑
l∈Sg

wcg(l)
l ≥ max

{
σs

K|C | +max{1,γ}|C |
,

1
max{1,K + γ}

}
∑

l∈Sopt

wc∗(l)
l (3)

The appendix present the proof. The above theorem implies the next result:

Theorem 3:The centralized greedy maximal (CGM) scheduler can stabilize theδ-reduced rate-region, where:

δ = max

{
σs

K|C | +max{1,γ}|C |
,

1
max{1,K + γ}

}

Proof: We earlier discussed a result from [2] that any scheduler, which chooses rate-allocation−→s such that

∑ql sl ≥ δ argmax ∑ql r l , can stabilize theδ-reduced rate-region. Invoking this result, and Theorem 2,we obtain

the above result.

Interestingly, the above bound is independent ofβc.

A. Extension to multiple interfaces per-node

We now describe how the result can be extended to networks where each node may have more than one interface.

Given the original networknode-graph G= (V,E), construct the following transformed graphG′ = (V ′,E′):

For each nodev∈V, if v hasmv interfaces, createmv nodesv1,v2, ...vmv in V ′. For each edge(u,v) ∈ E, where

u,v havemu,mv interfaces respectively, create edges(ui ,v j),1≤ i ≤ mu,1≤ j ≤ mv, and setq(ui ,v j ) = q(u,v). Set the

achievable channel rate appropriately for each edge inE′ and each channel. For example, if channel-rate is solely

a function ofu,v andc, then: for each channelc, setrc
(ui ,v j )

= rc
(u,v).

The transformed graphG′ comprises only single-interface links, and thus Theorem 2 applies to it. Moreover, it

is not hard to see that a schedule that maximizes∑ql r l in G′ also maximizes∑ql r l in G. Thus the efficiency-ratio

from Theorem 2 for network graphG′ yields an efficiency-ratio for the performance of the centralized GM scheduler

in the multi-interface network.

2This optimal scheduler is, in fact, the same as the TO-scheduler discussed earlier, applied to our network model.



Let us briefly touch upon how one would expect the ratio to varyas the number of interfaces at each node

increases. Note that the efficiency-ratio depends onβs, |C |,K|C |,γ. Of theseβs and |C | are always the same for both

G andG′. γ is also always the same for anyG′ derived from a given node-graphG, as it depends only on the number

of other node-links incident on either endpoint of a node-link in G (which is a property of the node topology, and

not the number of interfaces each node has). However,K|C | might potentially increase inG′ as there are many

more non-adjacent interferinglinks when each interface is viewed as a distinct node. Thus, for a given number of

channels|C |, one would expect the provable efficiency-ratio to initially decrease as we add more interfaces, and

then become static.

While this may initially seem counter-intuitive, this is explained by the observation that multiple orthogonal

channels yielded a better efficiency-ratio in the single-interface case since there was more spectral resource, but

limited hardware (interfaces) to utilize it. Thus, the additional channels could be effectively used to alleviate the

impact of sub-optimal scheduling. When the hardware is commensurate with the number of channels, the situation

(compared to an optimal scheduler) increasingly starts to resemble a single-channel single-interface network.

B. The special case of|C | interfaces per node

Let us consider the special case where each node in the network has|C | interfaces, and achievable rate on a link

between nodesu,v and all channelsc∈ C is solely a function ofu,v andc (and not of the interfaces used). In this

case, it is possible to obtain a simpler transformation. Given the original network node-graphG = (V,E), construct

|C | copies of this graph, viz.,G1,G2, ...,G|C |, and view each node in each graph as having a single-interface, and

each network having access to a single channel. Then each network graphGi can be viewed in isolation, and

the throughput obtained in the original graph is the sum of the throughputs in each graph. From Theorem 2, in

each graph we can show that the CGM scheduler is within max{1, 1
K+γ} of the optimal. Thus, even in the overall

network, the CGM scheduler is within max{1, 1
K+γ} of the optimal.

VII. A S IMPLE MAXIMAL SCHEDULER WITH THRESHOLDS

In this section we present a simple extension to multiple channels of the result of [4] for a maximal scheduler

with threshold-based participation. This serves as a precursor for the results of the next section.

The set of all links in denoted byL . The arrival process of each linkl is denoted by{λl (t)}. For a given link

l , the arrivalsλl (t) are i.i.d., andE[λl (t)] = λl . However, we make no assumptions about independence of arrival

processes of two different links. Moreover,E[λl (t)λk(t)] is bounded, i.e.,E[λl (t)λk(t)] ≤ η for all l ,k∈ L , where

η is a suitable constant.

Theorem 4:If βs = 1, i.e., rc
l = r l for all l ∈ L , then the following scheduling policy stabilizes the network

whenever ∑
k∈A(l)

λk
rk

+ 1
|C | ∑

k∈I′(l)

λk
rk

< 1, for all l ∈ L :

In time-slot t, only links l with ql (t) ≥ r l participate, and a maximal schedule is computed.

The proof is presented in the Appendix.

VIII. A R ATE-PROPORTIONALMAXIMAL MULTI -CHANNEL (RPMMC) SCHEDULER

The set of all links in denoted byL . The arrival process for linkl is i.i.d. over all time-slotst, and is denoted

by {λl (t)}, with E[λl (t)] = λl . We make no assumption about independence of arrival processes for two linksl ,k.

However, we consider only the class of arrival processes forwhich E[λl (t)λk(t)] is bounded, i.e.,E[λl (t)λk(t)]≤ η
for all l ,k∈ L , whereη is a suitable constant.



Consider the following scheduler:

Rate-Proportional Maximal Multi-Channel (RPMMC) Scheduler

Each link maintains a queue for each channel. The length of the queue for linkl and channelc at timet is denoted

by qc
l (t). In time-slot t: only those link-channel pairs withqc

l (t) ≥ rc
l participate, and the scheduler computes a

maximal schedule. The new arrivals during this slot, i.e.λl (t) are assigned to channel-queues in proportion to the

rates, i.e.,λc
l (t) =

λl r
c
l

∑
b∈C

rb
l

Theorem 5:The RPMMC scheduler stabilizes the network for any load-vector within the σs
K|C |+max{1,γ}|C | -reduced

rate-region.

The proof is presented in the Appendix.

Corollary 1: Whenβs = 1, the RPMMC scheduler achieves an efficiency ratio of |C |
K|C |+max{1,γ}|C | .

IX. CONCLUSION

We have presented bounds on the efficiency-ratio achieved bycertain maximal multi-channel schedulers. In par-

ticular, we have proposed a scheduler that can achieve acceptable performance with limited information. Promising

directions for future research include designing low-overhead algorithms for computing maximal schedules in multi-

channel networks, and further exploring the trade-off between information-exchange and performance.
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APPENDIX

Recall thatSmax is defined in the statement of Theorem 1 as the set of links scheduled by any maximal scheduler.

Also recall thatSg is defined in the statement of Theorem 2 as the set of links scheduled by the CGM scheduler.

Also, Sopt is defined as the set of links scheduled by the optimal scheduler, where the notion of optimality is as

defined in each of Theorem 1 and Theorem 2. In the following proofs, we may use the termSboth, which is a

concise way to refer to eitherSg∩Sopt or Smax∩Sopt, depending on the context of that particular proof.



Proof: (Proof of Theorem 1) Considerl ∈ Sopt∩Smax. Denote bycm(l) the channel on whichl is scheduled

in Smax. Sincel was not scheduled by the maximal scheduler, this implies that at least one of the following events

must be true:

1) Condition 1:Smax∩Sopt∩ (E(b(l))∪E(e(l))) 6= φ.

2) Condition 2: For each channelc∈ C , there exists some linkl ′c ∈ Smax∩ I′(l), such thatcm(l ′c) = c.

Now, define setsAi f andAin as follows:

Ai f = {l : l ∈ Sopt∩Smax and Condition 1 holds}. Ain = (Sopt∩Smax)−Ai f

ThusAi f comprises the set of links inSopt∩Smax that are blocked in the maximal-schedule by interface-conflicts,

while Ain comprises the set of links inSopt∩ Smax that are blocked in the maximal-schedule purely by channel-

interference conflicts. For eachl ∈ Ain, let Yl =
S

c∈C
{l ′c : l ′c ∈ Smax∩ I′(l),cm(l ′c) = c}. Any link l ′ ∈ Smax can occur

in theYl of at mostK|C | non-adjacent linksl ∈ Sopt. Thus, it follows that:

|C ||Ain| ≤ K|C ||Smax| (4)

Any interface-conflicts experienced by links inSopt∩Smax must necessarily be caused by links inSmax∩Sopt. Since

a link can only cause up toγ interface-conflicts, we obtain that:

|Ai f | ≤ γ |Smax∩Sopt| (5)

Thus we obtain the following:

|Sopt|

|Smax|
=

|Smax∩Sopt|+ |Smax∩Sopt|

|Smax|
=

|Smax∩Sopt|+ |Ai f |+ |Ain|

|Smax|

≤
|Smax∩Sopt|+ γ|Smax∩Sopt|+

K|C |

|C | |Smax|

|Smax|
from (5), (4)

=
|Smax∩Sopt|+ |Smax∩Sopt|+(γ−1)|Smax∩Sopt|+

K|C |

c |Smax|

|Smax|

=
|Smax|+(γ−1)|Smax∩Sopt|+

K|C |

|C | |Smax|

|Smax|
≤

|Smax|+max{0,γ−1}|Smax|+
K|C |

|C | |Smax|

|Smax|

= 1+max{0,γ−1}+
K|C |

|C |
= max{1,γ}+

K|C |

|C |

(6)

We now prove another bound, viz.|Smax| ≥
1

K+max{1,γ} |Sopt|.

Consider a linkl that is scheduled on some channelc in Smax. Either l is scheduled on channelc even inSopt,

or if l is not scheduled inSopt, at mostK links in I′(l), and γ links in A(l)−{l} could have been scheduled on

channelc in Sopt. Thus:
|Sopt|

|Smax|
≤ max{1,K + γ} (7)

Thus: |Smax| ≥ max{ |C |
K|C |+max{1,γ}|C | ,

1
max{1,K+γ}}|Sopt|.

Proof: (Proof of Theorem 2)

Denote byc∗(l) the channel on whichl ∈ Sopt is activated by the optimal scheduler.cg(l) is the channel on

which l ∈ Sg is activated by the CGM scheduler.

Considerl ∈ Sopt∩ Sg. Since l was not scheduled by the CGM scheduler, this implies that at least one of the

following two conditions must be true:

1) Condition 1: There exists a linkl ′ ∈ Sg∩ Sopt ∩ (E(b(l))∪E(e(l))) such thatwcg(l ′)
l ′ ≥ wc

l for at least one

channelc∈ C .



2) Condition 2: For each channelc∈ C , there exists some linkl ′c ∈ Sg∩ I′(l) such thatwc
l ′c
≥ wc

l .

Now, define setsAi f andAin as follows:

Ai f = {l : l ∈ Sopt∩Sg and Condition 1 holds}.

Ain = (Sopt∩Sg)−Ai f

Let Sboth,more= {l : l ∈ Sg∩Sopt,w
cg(l)
l ≥ wc∗(l)

l }

Let Sboth,less= {l : l ∈ Sg∩Sopt,w
cg(l)
l < wc∗(l)

l }

ThenSboth,more andSboth,less constitute a partition ofSg∩Sopt.

LetAi f ,1 = {l : l ∈Ai f ,c∗(l) was not available tol when l ’s first interface got used up during CGM scheduling}

LetAi f ,2 = {l : l ∈Ai f ,c∗(l) was still available tol when l ’s first interface got used up during CGM scheduling}

From the greedy nature of the scheduler, if a linkl ′ ∈ I′(l) was scheduled on somec∈ C in Sg while l was still

schedulable on some subset of channelsDl ⊆ C , this implies thatwc
l ′ ≥ wd

l for all d ∈Dl .

Note that for alll ∈ Ai f ,1, andSboth,less, it must be true that some linkl ′ ∈ I′(l) was assignedc∗(l) in Sg while

l was still schedulable onc∗(l), i.e., c∗(l) ∈Dl , whereDl is the set of channels on whichl was still schedulable

whenc∗(l) was first assigned to some link inI′(l).
Moreover, it is true that at the time whenl ∈ Sboth,less was assignedcg(l), all otherc∈ C with rc

l > rcg(l)
l were

already assigned to some otherl ′ ∈ I′(l), with wcg(l ′)
l ′ = wc

l ′ ≥ wc
l . Thus, for alld ∈Dl , rd

l ≤ rcg(l)
l , and|Dl | ≤ |C |−1

sincec∗(l) /∈Dl . Therefore for eachl ∈ Sboth,less: ∑
c∈C−Dl

∑
l ′∈I′(l)
cg(l ′)=c

wcg(l ′)
l ′ ≥ ∑

c∈C

wc
l − ∑

d∈Dl

wd
l ≥ ∑

c∈C

wc
l − (|C |−1)wcg(l)

l .

Thus: ∑
l∈Sboth,less


 ∑

c∈C−Dl

∑
l ′∈I′(l)
cg(l ′)=c

wcg(l ′)
l ′


≥ ∑

l∈Sboth,less

∑
c∈C

wc
l − (|C |−1) ∑

l∈Sboth,less

wcg(l)
l .

Similarly, it is true that if l ′ ∈ A(l)∩ (Sg∩Sopt) was assigned a channelcg(l ′) in Sg∩Sopt while l ∈ Ai f ,1 was

still schedulable on some subset of channelsDl ⊆ C −{c∗(l)} thenwcg(l ′)
l ′ ≥ wd

l for all d ∈Dl , and |Dl | ≤ |C |−1

sincec∗(l) /∈ Dl . Let us denote byf (l) the link l ′ in Sg∩Sopt that is the cause of blocking the first interface of

link l ∈ Ai f .

Let B = ∑
l∈A i f ,1

wcg( f (l))
f (l) . Then, it is evident thatB≤ γ ∑

l∈Sg∩Sopt

wcg(l)
l . Furthermore, ∑

c∈C−Dl

∑
l ′∈I′(l)
cg(l ′)=c

wcg(l ′)
l ′ ≥ ∑

c∈C

wc
l −

∑
d∈Dl

wd
l ≥ ∑

c∈C

wc
l − (|C |−1)wcg( f (l))

f (l) , and resultantly∑
l∈A i f ,1


 ∑

c∈C−Dl

∑
l ′∈I′(l)
cg(l ′)=c

wcg(l ′)
l ′


≥ ∑

l∈A i f ,1
∑
c∈C

wc
l − (|C |−1)B.

In light of this, and the definition ofAin andσs:

∑
l∈Sboth,less

∑
c∈C

wc
l − (|C |−1) ∑

l∈Sboth,less

wcg(l)
l + ∑

l∈A i f ,1
∑
c∈C

wc
l − (|C |−1)B+ ∑

l∈A in
∑
c∈C

wc
l ≤ K|C | ∑

l∈Sg

wcg(l)
l

∴ σs( ∑
l∈Sboth,less

wc∗(l)
l + ∑

l∈A i f ,1

wc∗(l)
l + ∑

l∈A in

wc∗(l)
l ) ≤ K|C | ∑

l∈Sg

wcg(l)
l +(|C |−1)( ∑

l∈Sboth,less

wcg(l)
l +B)

∴ ∑
l∈Sboth,less

wc∗(l)
l + ∑

l∈A i f ,1

wc∗(l)
l + ∑

l∈A in

wc∗(l)
l ≤

K|C |

σs
∑

l∈Sg

wcg(l)
l +

|C |−1
σs

( ∑
l∈Sboth,less

wcg(l)
l +B)

(8)

Furthermore, if a linkl ′ adjacent tol was scheduled inSg∩Sopt at a time whenl was still schedulable onc∗(l),

as is the case for links inAi f ,2, then it implies thatwcg(l ′)
l ′ ≥ wc∗(l)

l . Let E = ∑
l∈A i f ,2

wcg( f (l))
f (l) . Thus we obtain:

B+ ∑
l∈A i f ,2

wc∗(l)
l ≤ B+E ≤ γ ∑

l∈Sg∩Sopt

wcg(l)
l

∴ ∑
l∈A i f ,2

wc∗(l)
l ≤ γ ∑

l∈Sg∩Sopt

wcg(l)
l −B

(9)



This yields the following:

∑
l∈Sopt

wc∗(l)
l

∑
l∈Sg

wcg(l)
l

=

∑
l∈Sboth

wc∗(l)
l + ∑

l∈Sopt∩Sg

wc∗(l)
l

∑
l∈Sg

wcg(l)
l

=

∑
l∈Sboth,more

wc∗(l)
l + ∑

l∈Sboth,less

wc∗(l)
l + ∑

l∈A i f ,1

wc∗(l)
l + ∑

l∈A i f ,2

wc∗(l)
l + ∑

l∈A in

wc∗(l)
l

∑
l∈Sg

wcg(l)
l

=

∑
l∈Sboth,more

wc∗(l)
l +( ∑

l∈Sboth,less

wc∗(l)
l + ∑

l∈A i f ,1

wc∗(l)
l + ∑

l∈A in

wc∗(l)
l )+ ∑

l∈A i f ,2

wc∗(l)
l

∑
l∈Sg

wcg(l)
l

≤
1

∑
l∈Sg

wcg(l)
l


 ∑

l∈Sboth,more

wcg(l)
l +

K|C | ∑
l∈Sg

wcg(l)
l +(|C |−1)( ∑

l∈Sboth,less

wcg(l)
l +B)

σs
+ γ ∑

l∈Sg∩Sopt

wcg(l)
l −B




from (8), (9)

≤
1

∑
l∈Sg

wcg(l)
l


 ∑

l∈Sboth,more

wcg(l)
l +

K|C | ∑
l∈Sg

wcg(l)
l +(|C |−1)( ∑

l∈Sboth,less

wcg(l)
l +B)

σs
+ γ ∑

l∈Sg∩Sopt

wcg(l)
l −B




≤
1

∑
l∈Sg

wcg(l)
l


 ∑

l∈Sboth,more

wcg(l)
l +

K|C | ∑
l∈Sg

wcg(l)
l +(|C |−1)( ∑

l∈Sg

wcg(l)
l − ∑

l∈Sboth,more

wcg(l)
l − ∑

l∈Sg∩Sopt

wcg(l)
l +B)

σs

+

σs(γ ∑
l∈Sg∩Sopt

wcg(l)
l −B)

σs




≤
1

∑
l∈Sg

wcg(l)
l



|C |

σs
∑

l∈Sboth,more

wcg(l)
l +

K|C | ∑
l∈Sg

wcg(l)
l +(|C |−1)( ∑

l∈Sg

wcg(l)
l − ∑

l∈Sboth,more

wcg(l)
l − ∑

l∈Sg∩Sopt

wcg(l)
l +B)

σs

+

|C |γ ∑
l∈Sg∩Sopt

wcg(l)
l − (|C |−1)B

σs


 noting thatγ ∑

l∈Sg∩Sopt

wcg(l)
l −B≥ 0

≤
1

∑
l∈Sg

wcg(l)
l




(|C |−1) ∑
l∈Sboth,more

wcg(l)
l + ∑

l∈Sboth,more

wcg(l)
l +K|C | ∑

l∈Sg

wcg(l)
l

σs

+

(|C |−1)( ∑
l∈Sg

wcg(l)
l − ∑

l∈Sboth,more

wcg(l)
l − ∑

l∈Sg∩Sopt

wcg(l)
l +B+ γ ∑

l∈Sg∩Sopt

wcg(l)
l −B)+ γ ∑

l∈Sg∩Sopt

wcg(l)
l

σs




≤
1

∑
l∈Sg

wcg(l)
l




K|C |

σs
∑

l∈Sg

wcg(l)
l +

(|C |−1)( ∑
l∈Sg

wcg(l)
l +(γ−1) ∑

l∈Sg∩Sopt

wcg(l)
l )+( ∑

l∈Sboth,more

wcg(l)
l + γ ∑

l∈Sg∩Sopt

wcg(l)
l )

σs




≤
K|C | +(|C |−1)(1+max{0,γ−1})+max{1,γ}

σs

=
K|C | +max{1,γ}|C |

σs
(10)



Thus ∑
l∈Sg

wcg(l)
l ≥ σs

K|C |+max{1,γ}|C | ∑
l∈Sopt

wc∗(l)
l . Whenβs = 1, this reduces to a ratio of |C |

K|C |+max{1,γ}|C | .

We now prove another bound by showing that:

∑
l∈Sg

wcg(l)
l ≥

1
max{1,K + γ} ∑

l∈Sopt

wc∗(l)
l (11)

This is obtained via an argument very similar to that used in [6] to prove a bound of 1
κ+2 for the CGM scheduler,

except that we refine the analysis based on a more precise characterization of the interference topology:

Consider any linkl in Sg. Either l is scheduled oncg(l) even inSopt, or if l is not scheduled oncg(l), at most

K links in I′(l), andγ links in A(l)−{l} could have been scheduled oncg(l) in Sopt, and each would have weight

less than or equal towcg(l)
l . Thus:

∑
l∈Sopt

wc∗(l)
l

∑
l∈Sg

wcg(l)
l

≤ max{1,K + γ} (12)

Proof: (Proof of Theorem 4) We describe a proof of stability based on Lyapunov drift analysis.

We adopt the following convention: at the beginning of each time-slot, the scheduling decisions are taken, and

transmissions occur. Then new arrivals occur at the end of the slot (thus new arrivals cannot be transmitted in the

same slot, even if there is spare bandwidth).

Let the queue-length of linkl at slot t be denoted byql (t). Let the rate-allocated to linkl in slot t over channel

c be denoted byxc
l (t). Since we are considering single-interface nodes, andβs = 1, and a link only participates in

a slot if ql (t) ≥ r l , it follows that ∑
c∈C

xc
l (t) ∈ {0, r l} and at most one of thexc

l (t)’s is non-zero for a linkl .

We assume thatr l > 0 for all l ∈ L , since any feasible load-vector must haveλl = 0 for any link l with r l = 0,

and thus such links can be ignored/eliminated from consideration.

The following is trivially true for any feasible set of arrival processes:

λl ≤ r l ∀l ∈ L (13)

The queue dynamics are as follows:

ql (t +1) = ql (t)+λl − ∑
c∈C

xc
l (t) (14)

We define the following Lyapunov function:

Vq(
−→q ) = ∑

l∈L

ql (t)
r l

(

∑
k∈A(l)

qk(t)
rk

+
1
|C | ∑

k∈I′(l)

qk(t)
rk

)
(15)

This Lyapunov function is similar in form to that used in [4].



Then, it can be seen that:

Vq(
−→q (t +1))−Vq(

−→q (t)) = ∑
l∈L

ql (t +1)

r l

(

∑
k∈A(l)

qk(t +1)

rk
+

1
|C | ∑

k∈I′(l)

qk(t +1)

rk

)

− ∑
l∈L

ql (t)
r l

(

∑
k∈A(l)

qk(t)
rk

+
1
|C | ∑

k∈I′(l)

qk(t)
rk

)

= ∑
l∈L

(ql (t)+ql (t +1)−ql (t))
r l

(

∑
k∈A(l)

(qk(t)+qk(t +1)−qk(t))
rk

+
1
|C | ∑

k∈I′(l)

(qk(t)+qk(t +1)−qk(t))
rk

)

− ∑
l∈L

ql (t)
r l

(

∑
k∈A(l)

qk(t)
rk

+
1
|C | ∑

k∈I′(l)

qk(t)
rk

)

= ∑
l∈L

ql (t)
r l

(

∑
k∈A(l)

qk(t)
rk

+
1
|C | ∑

k∈I′(l)

qk(t)
rk

)
+ ∑

l∈L

ql (t)
r l

(

∑
k∈A(l)

(qk(t +1)−qk(t))
rk

+
1
|C | ∑

k∈I′(l)

(qk(t +1)−qk(t))
rk

)

+ ∑
l∈L

(ql (t +1)−ql (t))
r l

(

∑
k∈A(l)

qk(t)
rk

+
1
|C | ∑

k∈I′(l)

qk(t)
rk

)

+ ∑
l∈L

(ql (t +1)−ql (t))
r l

(

∑
k∈A(l)

(qk(t +1)−qk(t))
rk

+
1
|C | ∑

k∈I′(l)

(qk(t +1)−qk(t))
rk

)
− ∑

l∈L

ql (t)
r l

(

∑
k∈A(l)

qk(t)
rk

+
1
|C | ∑

k∈I′(l)

qk(t)
rk

)

= ∑
l∈L

ql (t)
r l

(

∑
k∈A(l)

(qk(t +1)−qk(t))
rk

+
1
|C | ∑

k∈I′(l)

(qk(t +1)−qk(t))
rk

)
+ ∑

l∈L

(ql (t +1)−ql (t))
r l

(

∑
k∈A(l)

qk(t)
rk

+
1
|C | ∑

k∈I′(l)

qk(t)
rk

)

+ ∑
l∈L

(ql (t +1)−ql (t))
r l

(

∑
k∈A(l)

(qk(t +1)−qk(t))
rk

+
1
|C | ∑

k∈I′(l)

(qk(t +1)−qk(t))
rk

)

= 2∑
l∈L

ql (t)
r l

(

∑
k∈A(l)

(qk(t +1)−qk(t))
rk

+
1
|C | ∑

k∈I′(l)

(qk(t +1)−qk(t))
rk

)

+ ∑
l∈L

(ql (t +1)−ql (t))
r l

(

∑
k∈A(l)

(qk(t +1)−qk(t))
rk

+
1
|C | ∑

k∈I′(l)

(qk(t +1)−qk(t))
rk

)

(16)

Denote byL ′(t) the set of linksl for which ql (t) ≥ r l and which therefore participate in the scheduling process

during slot t. Since the computed schedule is always maximal, it follows that for eachl ∈ L ′(t), either (1) l is

activated in slott, or (2) some linkk∈ (A(l)−{l})∩L ′(t) (i.e., adjacent tol ) is activated on some channel, thereby

blocking l through interface-conflict, or (3) for each channelc∈ C , at least one linkkc ∈ L
′(t)∩ I′(l) is activated

in slot t on channelc, thereby blockingl through interference-conflict.



E[Vq(
−→q (t +1))−Vq(

−→q (t))|−→q (t)]

≤ 2∑
l∈L

ql (t)
r l

(
E[ ∑

k∈A(l)

qk(t +1)−qk(t)
rk

+
1
|C | ∑

k∈I′(l)

qk(t +1)−qk(t)
rk

)

+ ∑
l∈L

E

[
(ql (t +1)−ql (t))

r l

(

∑
k∈A(l)

E[
qk(t +1)−qk(t)

rk
]+

1
|C | ∑

k∈I′(l)

(qk(t +1)−qk(t))
rk

)]

≤ 2∑
l∈L

ql (t)
r l


 ∑

k∈A(l)

E




λk(t)− ∑
c∈C

xc
k(t)

rk


+

1
|C | ∑

k∈I′(l)

E




λk(t)− ∑
c∈C

xc
k(t)

rk







+ ∑
l∈L

E

[
λl (t)

r l

(

∑
k∈A(l)

λk(t)
rk

+
1
|C | ∑

k∈I′(l)

λk(t)
rk

)]

≤ 2∑
l∈L

ql (t)
r l


 ∑

k∈A(l)

λk

rk
+

1
|C | ∑

k∈I′(l)

λk

rk
−E


 ∑

k∈A(l)

∑
c∈C

xc
k(t)

rk
+

1
|C | ∑

k∈I′(l)

∑
c∈C

xc
k(t)

rk





+C1

≤ 2 ∑
l∈L ′(t)

ql (t)
r l


 ∑

k∈A(l)

λk

rk
+

1
|C | ∑

k∈I′(l)

λk

rk
−E


 ∑

k∈A(l)

∑
c∈C

xc
k(t)

rk
+

1
|C | ∑

k∈I′(l)

∑
c∈C

xc
k(t)

rk







+2 ∑
l∈L−L ′(t)

ql (t)
r l

(

∑
k∈A(l)

λk

rk
+

1
|C | ∑

k∈I′(l)

λk

rk

)
+C1

≤ 2 ∑
l∈L ′(t)

ql (t)
r l

(1− ε−1)−2 ∑
l∈L−L ′(t)

ql (t)
r l

ε+2 ∑
l∈L−L ′(t)

ql (t)
r l

ε+2 ∑
l∈L−L ′(t)

ql (t)
r l

( ∑
k∈A(l)

λk

rk
+ ∑

k∈I′(l)

λk

rk
)+C1

(substracting and adding back 2∑
l∈L−L ′(t)

ql (t)
r l

ε)

≤ 2∑
l∈L

ql (t)
r l

(1− ε−1)+C2

=
−2ε
rmax

∑
l∈L

ql (t)+C2

(17)

whereC1 =
2|L |η(Amax+

Imax
|C |

)

rmin
, andC2 = C1 +2ε|L |+2|L |(Amax+

Imax
|C | ).

Invoking Lemma 2 from [9], this proves stability.

Proof: (Proof of Theorem 5)We describe a proof of stability based on Lyapunov drift analysis.

We adopt the following convention: at the beginning of each time-slot, the scheduling decisions are taken, and

transmissions occur. Then new arrivals occur at the end of the slot (thus new arrivals cannot be transmitted in the

same slot, even if there is spare bandwidth).

Let the queue-length of the queue for linkl and channelc at the start of time-slott be denoted byqc
l (t). Let the

rate-allocated to linkl in slot t over channelc be denoted byxc
l (t). Since we are considering single-interface nodes,

at most one of thexc
l (t)’s is non-zero for a linkl . Furthermorexc

l (t) = 0 if link l is not scheduled over channelc

in slot t, andxc
l (t) = rc

l else.

Recall thatr l = max
c∈C

rc
l . By assumptionrc

l > 0 for all l ∈ L ,c∈ C . However, as noted earlier, the result can be

easily generalized to allow some of these to be 0.



The queue dynamics are as follows:

qc
l (t +1) = qc

l (t)+λc
l (t)−xc

l (t) whereλc
l (t) =

λl (t)rc
l

∑
b∈C

rb
l

(18)

We define the following Lyapunov function:

Vq(
−→q ) = ∑

l∈L
∑
c∈C

[
qc

l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

qd
k(t)

rd
k

+ ∑
k∈I′(l)

qc
k(t)

rc
k

)]
(19)

This Lyapunov function is somewhat similar in form to that used in [4], but now uses per-channel queue-lengths.

Then, it can be seen that:

Vq(
−→q (t +1))−Vq(

−→q (t)) = ∑
l∈L

∑
c∈C

[
qc

l (t +1)

rc
l

(

∑
k∈A(l)

∑
d∈C

qd
k(t +1)

rd
k

+ ∑
k∈I′(l)

qc
k(t +1)

rc
k

)]

− ∑
l∈L

∑
c∈C

[
qc

l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

qd
k(t)

rd
k

+ ∑
k∈I′(l)

qc
k(t)

rc
k

)]

= ∑
l∈L

∑
c∈C

[
(qc

l (t)+qc
l (t +1)−qc

l (t))

rc
l

(

∑
k∈A(l)

∑
d∈C

(qd
k(t)+qd

k(t +1)−qd
k(t))

rd
k

+ ∑
k∈I′(l)

(qc
k(t)+qc

k(t +1)−qc
k(t))

rc
k

)]

− ∑
l∈L

∑
c∈C

[
qc

l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

qd
k(t)

rd
k

+ ∑
k∈I′(l)

qc
k(t)

rc
k

)]

= ∑
l∈L

∑
c∈C

qc
l (t)

rc
l

[(

∑
k∈A(l)

∑
d∈C

qd
k(t)

rd
k

+ ∑
k∈I′(l)

qc
k(t)

rc
k

)
+ ∑

l∈L
∑
c∈C

qc
l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

(qc
k(t +1)−qc

k(t))

rc
k

+ ∑
k∈I′(l)

(qc
k(t +1)−qc

k(t))

rc
k

)]

+ ∑
l∈L

∑
c∈C

[
(qc

l (t +1)−qc
l (t))

rc
l

(

∑
k∈A(l)

∑
d∈C

qd
k(t)

rd
k

+ ∑
k∈I′(l)

qc
k(t)

rc
k

)]

+ ∑
l∈L

∑
c∈C

[
(qc

l (t +1)−qc
l (t))

rc
l

(

∑
k∈A(l)

∑
d∈C

(qd
k(t +1)−qd

k(t))

rd
k

+ ∑
k∈I′(l)

(qc
k(t +1)−qc

k(t))

rc
k

)]

− ∑
l∈L

∑
c∈C

qc
l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

qd
k(t)

rd
k

+ ∑
k∈I′(l)

qc
k(t)

rc
k

)

= ∑
l∈L

∑
c∈C

[
qc

l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

(qd
k(t +1)−qd

k(t))

rd
k

+ ∑
k∈I′(l)

(qc
k(t +1)−qc

k(t))

rc
k

)]

+ ∑
l∈L

∑
c∈C

[
(qc

l (t +1)−qc
l (t))

rc
l

(

∑
k∈A(l)

∑
d∈C

qd
k(t)

rd
k

+ ∑
k∈I′(l)

qc
k(t)

rc
k

)]

+ ∑
l∈L

∑
c∈C

[
(qc

l (t +1)−qc
l (t))

rc
l

(

∑
k∈A(l)

∑
d∈C

(qd
k(t +1)−qd

k(t))

rd
k

+ ∑
k∈I′(l)

(qc
k(t +1)−qc

k(t))

rc
k

)]

= 2∑
l∈L

∑
c∈C

[
qc

l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

(qd
k(t +1)−qd

k(t))

rd
k

+ ∑
k∈I′(l)

(qc
k(t +1)−qc

k(t))

rc
k

)]

+ ∑
l∈L

∑
c∈C

[
(qc

l (t +1)−qc
l (t))

rc
l

(

∑
k∈A(l)

∑
d∈C

(qd
k(t +1)−qd

k(t))

rd
k

+ ∑
k∈I′(l)

(qc
k(t +1)−qc

k(t))

rc
k

)]

(20)

Denote byL ′(t) the set of link-channel pairs(l ,c) for which qc
l (t)≥ rc

l . This set of link-channel pairs participates

in the scheduling process for slott. By assumption, the scheduler computes a maximal schedule over all participating



links. Thus, for alll ∈ L andc∈ C , wheneverqc
l (t) ≥ rc

l :

∑
k∈A(l)

∑
d∈C

xd
k(t)

rd
k

+ ∑
k∈I′(l)

xc
k(t)

rc
k

≥ 1 (21)

If
−→
λ lies within the σs

K|C |+max{1,γ}|C | -reduced rate-region, then, by assumption, there exists some scheduling

algorithm that achieves stability with load vector(
K|C |+max{1,γ}|C |

σs
)
−→
λ . Similar to [6], we can argue that this implies

existence of an average service-rate vectorx̃c
l for all l ,c satisfying the following, for someε > 0:

(1+ ε)2
(

K|C | +max{1,γ}|C |
σs

)
λl ≤ ∑

c∈C

x̃c
l for all links l (22)

∑
k∈I′(l)

∑
c∈C

x̃c
k

rc
k
≤ K|C | for all links l (23)

∑
k∈A(l)

∑
c∈C

x̃c
k

rc
k
≤ max{1,γ} for all links l (24)

Setxc
l =

x̃c
l σs

(1+ε)(K|C |+max{1,γ}|C |) . Then from (22), (23) and (24), we obtain that:

(1+ ε)λl ≤ ∑
c∈C

xc
l for all links l (25)

∑
c∈C

∑
k∈I′(l)

xc
k

rc
k
≤

K|C |σs

(1+ ε)(K|C | +max{1,γ}|C |)
for all links l (26)

∑
k∈A(l)

∑
d∈C

xd
k

rd
k

≤
max{1,γ}σs

(1+ ε)(K|C | +max{1,γ}|C |)
for all links l (27)

This yields that for all linksl :

∑
b∈C

(

∑
k∈A(l)

∑
d∈C

xd
k

rd
k

+ ∑
k∈I′(l)

xb
k

rb
k

)
=

(
|C | ∑

k∈A(l)
∑
d∈C

xd
k

rd
k

+ ∑
k∈I′(l)

∑
b∈C

xb
k

rb
k

)

≤
max{1,γ}σs|C |

(1+ ε)(K|C | +max{1,γ}|C |)
+

K|C |σs

(1+ ε)(K|C | +max{1,γ}|C |)
< σs

(28)

Sincerc
k ≤ rk for all channelsc, ∑

b∈C

rb
k ≥ σsrk ≥ σsrc

k for all c∈ C . Thus, we obtain that for all linksl :


 ∑

k∈A(l)
∑
d∈C

∑
b∈C

xb
k

∑
b∈C

rb
l

+ ∑
k∈I′(l)

∑
b∈C

xb
k

∑
b∈C

rb
k


≤

(

∑
k∈A(l)

∑
d∈C

∑
b∈C

xb
k

σsrk
+ ∑

k∈I′(l)
∑
b∈C

xb
k

σsrk

)
=

1
σs

∑
b∈C

(

∑
k∈A(l)

∑
d∈C

xd
k

rd
k

+ ∑
k∈I′(l)

xb
k

rb
k

)
< 1

using (28))
(29)

When λl = 0 for all l , the queue-lengths are trivially stable. Hence, let us onlyconsider the case whereλl > 0

for at least one linkl ∈ L . Let ymin = min
l∈L , λl >0

λl
r l

. Let Qinit = max
l∈L

qc
l (0)

rc
l

, i.e., Qinit is the maximum of the initial

normalized queue-lengths. Note that ifλl = 0 for some linkl , then
qc

l (t)
rc
l

≤
qc

l (0)

rc
l

≤ Qinit for all channelsc.



E[Vq(
−→q (t +1))−Vq(

−→q (t))|−→q (t)]

≤ 2∑
l∈L

∑
c∈C

qc
l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

E[
qd

k(t +1)−qd
k(t)

rd
k

]+ ∑
k∈I′(l)

E[
qc

k(t +1)−qc
k(t)

rc
k

]

)

+ ∑
l∈L

∑
c∈C

E

[
(qc

l (t +1)−qc
l (t))

rc
l

(

∑
k∈A(l)

∑
d∈C

qd
k(t +1)−qd

k(t)

rd
k

+ ∑
k∈I′(l)

(qc
k(t +1)−qc

k(t))

rc
k

)]

≤ 2∑
l∈L

∑
c∈C

qc
l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

E

[
λd

k(t)−xd
k(t)

rd
k

]
+ ∑

k∈I′(l)

E

[
λc

k(t)−xc
k(t)

rc
k

])

+2∑
l∈L

∑
c∈C

E

[
λc

l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

λd
k(t)

rd
k

+ ∑
k∈I′(l)

λc
k(t)

rc
k

)]

≤ 2∑
l∈L

∑
c∈C

qc
l (t)

rc
l


E


 ∑

k∈A(l)
∑
d∈C

λk(t)

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk(t)

∑
b∈C

rb
k


−E

[

∑
k∈A(l)

∑
d∈C

xd
k(t)

rd
k

+ ∑
k∈I′(l)

xc
k(t)

rc
k

]


+2∑
l∈L

∑
c∈C

E




λl (t)

∑
b∈C

rb
l


 ∑

k∈A(l)
∑
d∈C

λk(t)

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk(t)

∑
b∈C

rb
k







≤ 2∑
l∈L

∑
c∈C

qc
l (t)

rc
l


E


 ∑

k∈A(l)
∑
d∈C

λk(t)

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk(t)

∑
b∈C

rb
k


−E

[

∑
k∈A(l)

∑
d∈C

xd
k(t)

rd
k

+ ∑
k∈I′(l)

xc
k(t)

rc
k

]
+C1

≤ 2∑
l∈L

∑
c∈C

qc
l (t)

rc
l


 ∑

k∈A(l)
∑
d∈C

λk

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk

∑
b∈C

rb
k

−E

[

∑
k∈A(l)

∑
d∈C

xd
k(t)

rd
k

+ ∑
k∈I′(l)

xc
k(t)

rc
k

]
+C1

= 2 ∑
(l ,c)∈L ′(t)

qc
l (t)

rc
l


 ∑

k∈A(l)
∑
d∈C

λk

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk

∑
b∈C

rb
k

−E

[(

∑
k∈A(l)

∑
d∈C

xd
k(t)

rd
k

+ ∑
k∈I′(l)

xc
k(t)

rc
k

)]


+2 ∑
(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l


 ∑

k∈A(l)
∑
d∈C

λk

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk

∑
b∈C

rb
k

−E

[(

∑
k∈A(l)

∑
d∈C

xd
k(t)

rd
k

+ ∑
k∈I′(l)

xc
k(t)

rc
k

)]
+C1

≤ 2 ∑
(l ,c)∈L ′(t)

qc
l (t)

rc
l





 ∑

k∈A(l)
∑
d∈C

λk

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk

∑
b∈C

rb
k


−


 ∑

k∈A(l)
∑
d∈C

∑
b∈C

xc
k

∑
b∈C

rb
k

+ ∑
k∈I′(l)

∑
b∈C

xc
k

∑
b∈C

rb
k




+


 ∑

k∈A(l)
∑
d∈C

∑
b∈C

xb
k

∑
b∈C

rb
k

+ ∑
k∈I′(l)

∑
b∈C

xb
k

∑
b∈C

rb
k


−E

[(

∑
k∈A(l)

∑
d∈C

xd
k(t)

rd
k

+ ∑
k∈I′(l)

xc
k(t)

rc
k

)]

+2 ∑
(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l


 ∑

k∈A(l)
∑
d∈C

λk

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk

∑
b∈C

rb
k





+C1

≤ 2 ∑
(l ,c)∈L ′(t)

qc
l (t)

rc
l


−ε


 ∑

k∈A(l)
∑
d∈C

λk

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk

∑
b∈C

rb
k





+2 ∑

(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l


 ∑

k∈A(l)
∑
d∈C

λk

∑
b∈C

rb
k

+ ∑
k∈I′(l)

λk

∑
b∈C

rb
k


+C1

using (25), (21) and (29)
(30)



≤ 2 ∑
(l ,c)∈L ′(t)

qc
l (t)

rc
l

[
−ε

(

∑
k∈A(l)

∑
d∈C

λk

rk
+ ∑

k∈I′(l)

λk

rk

)]
−2 ∑

(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l

εymin+2 ∑
(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l

εymin

+2 ∑
(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

λk

rk
+ ∑

k∈I′(l)

λk

rk

)
+C1 (subtracting and adding back 2 ∑

(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l

εymin)

≤ 2∑
l∈L

∑
c∈C

qc
l (t)

rc
l

(−εymin)+2εymin ∑
l∈L
λl =0

∑
c∈C

Qinit +2εymin ∑
(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l

+2 ∑
(l ,c)∈(L×C )−L ′(t)

qc
l (t)

rc
l

(

∑
k∈A(l)

∑
d∈C

λk

rk
+ ∑

k∈I′(l)

λk

rk

)
+C1

(where the second term compensates for including linksl havingλl = 0 in the first term)

≤−2ε
ymin

rmax
∑
l∈L

ql (t)+C3

(31)

whereC1 = 2|L ||C |η(Amax|C |+Imax)
(min

l∈L
r l )2 , andC3 = C1 +2εymin|L ||C |Qinit +2εymin|L ||C |+2|L ||C |(Amax|C |+ Imax). 3

Invoking Lemma 2 from [9], this proves stability.

3Note that
qc

l (t)
rc
l

< 1 for all (l ,c) ∈ (L×C )−L ′(t), and for any feasible load-vector
−→
λ : λl

rl
≤ 1 for all l ∈ L


