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AbstractProposed here is a novel architecture for a fault-tolerant multiprocessor environment. Itis assumed that the multiprocessor organization consists of a pool of active processing modulesand either a small number of spare modules or active modules with some spare processingcapacity. A fault-tolerance scheme is developed for duplex systems using checkpoints. Ourscheme, unlike traditional checkpointing schemes, requires no rollbacks for recovering fromsingle faults. The objective here is to achieve performance of a Triple Modular Redundantsystem using duplex system redundancy.In the proposed scheme, at each checkpoint, the state of the two modules executing thetask is compared for detection of faults. If a disagreement occurs, indicating a fault, the twodi�ering states are both stored. Instead of performing usual rollback and retry, the followingmechanism is used. The state at the preceding checkpoint, where both processing moduleshad agreed, is loaded into a spare module. The checkpoint interval in which the failure isdetected is then \retried" on the spare module. Concurrently, the task continues forwardon the two active modules, beyond the checkpoint where the disagreement occurred. At thenext checkpoint the state of the spare is compared with the stored states of the two activemodules (stored states correspond to where the disagreement occurred). The active modulewhich disagrees with the spare is identi�ed to be faulty. Once the faulty module is identi�ed,the state of the faulty module is restored to the correct state by copying the state from theother active module, which is fault-free. The spare is released to the pool after recovery iscompleted. It is important to note that the spare is shared among many processor pairs andis used temporarily when faults occur.Since the above mechanism achieves forward recovery, the proposed scheme is termedRoll-Forward Checkpointing Scheme (RFCS). The RFCS scheme allows recovery from singlefailures without the overhead of rollback. The advantage of the proposed scheme is that itachieves a lower average execution time with a lower variance as compared to the rollbackscheme. This can be crucial for real-time systems with hard deadlines since lower varianceenhances the predictability of the task completion time.



I. IntroductionAn important aspect of a fault tolerant system is the mechanism used for fault detectionand recovery from detected failures. This paper presents a novel roll-forward mechanismfor achieving performance comparable to forward error recovery schemes such as TMR usingsigni�cantly less redundancy. The scheme proposed here is applicable to all modular redun-dant systems in general. Because duplex systems are the most widely used and cost-e�ectivemodular redundant systems, our discussion correspondingly focuses on duplex systems. In aduplex system, whenever a fault is detected, the task is halted and retried. This results inperformance degradation. In this paper a novel scheme is proposed where the task continuesexecution while the fault diagnosis and recovery functions are performed concurrently. Theconcept developed here has its roots in our earlier work [9]. A roll-forward scheme proposedindependently in [8] requires more redundancy than our scheme. It is important to note thatin many environments the amount of redundancy can be a concern because of power, weightand volume considerations.Proposed here is a novel architecture for a fault-tolerant multiprocessor environment. Itis assumed that the multiprocessor organization consists of a pool of active processing modulesand either a small number of spare modules or active modules with some spare processingcapacity. A fault-tolerance scheme is developed for duplex systems using checkpoints. Ourscheme, unlike traditional checkpointing schemes, requires no rollbacks for recovering fromsingle faults. The objective here is to achieve performance of a Triple Modular Redundantsystem using duplex system redundancy.In the proposed scheme, at each checkpoint, the state of the two modules executing thetask is compared for detection of faults. If a disagreement occurs, indicating a fault, the twodi�ering states are both stored. Instead of the usual rollback and retry, the following mecha-nism is used for identi�cation of the faulty processing module and recovery without rollback.The state at the preceding checkpoint, where both processing modules had agreed, is loadedinto a spare module. The checkpoint interval in which the failure is detected is then \retried"on the spare module (this procedure is named \concurrent retry"). Concurrently, the taskcontinues forward on the two active modules, beyond the checkpoint where the disagreementoccurred. At the next checkpoint the state of the spare is compared with the stored states ofthe two active modules (stored states correspond to where the disagreement occurred). The1



active module which disagrees with the spare is identi�ed to be faulty. Once the faulty mod-ule is identi�ed, the state of the faulty module is restored to the correct state by copying thestate from the other active module, which is fault-free. The spare is released to the pool afterrecovery is completed. It is important to note that the spare is shared among many processorpairs and is used temporarily when fault occurs.Since the above mechanism achieves forward recovery, the proposed scheme is termedthe Roll-Forward Checkpointing Scheme (RFCS). The RFCS scheme allows recovery frommostcommon failures without the overhead of rollback. It is demonstrated here that the proposedscheme has potential performance advantages over conventional duplex systems which userollback. Speci�cally, the advantage of the proposed scheme is that it achieves a lower averageexecution time with a lower variance as compared to the rollback scheme. This can be crucialfor real-time systems with hard deadlines since lower variance enhances the predictability ofthe task completion time.The proposed scheme requires process duplication and checkpointing. Many commer-cially available fault tolerant systems also employ duplication and checkpointing and architec-tures similar to that required for the proposed recovery scheme. For example, Sequoia Series400 [10] system consists of multiple processing elements with large caches. Each processing el-ement consists of two processors performing the same task. Failures are detected by comparingthe output of the two processors. The main memory is assumed to be reliable and the cache ismade recoverable by checkpointing (ushing) it periodically into the main memory. When afault is detected, the processors restart execution from the last checkpointed state. Similarly,Tandem Non Stop Cyclone/R system [11] is a parallel architecture that provides greater avail-ability by ensuring that if a processor fails its workload is automatically distributed to someother processor. The state of each process is backed up (checkpointed) periodically on anotherprocessor. This corresponds to passive duplication of processes. In the event of a failure, theprocess starts executing from the last backed up state. The above two commercial systemexamples illustrate that the approach proposed in this paper can be of practical signi�cance.In particular the hardware overhead will be similar to the existing commercial systems thatuse duplication. However, the proposed approach di�ers in a fundamental way in that it usescheckpointing for fault detection as well as recovery, the above systems use it for recoveryalone. The rest of the paper is organized as follows. The system architecture under consid-2



eration is discussed in Section II. The basic approach is described in Section III. Section IVintroduces some of the terminology used in our discussion. The proposed scheme is presentedin Sections V and analyzed in Sections VI and VII. Section VIII elaborates on some imple-mentation issues. Section IX discusses application of the proposed scheme to communicatingprocesses. Section X discusses further work on the roll-forward checkpointing scheme pre-sented in the paper. The paper concludes with Section XI. Derivations of results presentedhere are omitted due to lack of space; the interested reader is referred to [12].II. System ArchitectureThe multiprocessor environment to be considered relies on task duplication to achieve faulttolerance. Such an environment has been used in many systems [1, 3, 4]. Figure 1 illustratesan example multiprocessor system organization that can implement the proposed roll-forwardcheckpointing scheme. Each processing module (PM) is assumed to consist of a processor anda private volatile storage (VS). All the processing modules are assumed identical. It is furtherassumed that each PM can access a stable storage (SS). The stable storage associated witheach PM is accessible by the other modules in the presence of PM failure. A reliable CheckpointProcessor (CP) is assumed accessible from all the processing modules in the system. The CPcan be centralized or distributed and orchestrates the fault detection and recovery functions.The CP detects module failures by comparing the state of each pair of processing modules(PMs) which perform the same task. The state of a process is an image of all the variablememory and registers associated with the process [6]. One can either compare the completecheckpoints or just signatures of the checkpoints for e�ciency.Apart from the processing modules executing duplicated tasks, it is assumed that asmall number of modules are available as spares to be utilized for performing diagnosis andrecovery when a duplex system experiences a failure. These modules may be non-dedicatedspares to be used temporarily for fault recovery. If spares are not available, it is assumed thatactive modules with spare capacity can be interrupted and used temporarily as spares.The architecture of Figure 1 is used as an example to guide the discussion in the paper.Figure 1 illustrates only the connectivity between the modules, the stable storage and theCheckpoint Processor (CP) as required by the proposed scheme. Actual implementation may3
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VSVS Figure 1: Logical system architecturebe quite di�erent. Each PM, for example, may not have independent stable storage and thePMs may share a stable storage. The physical interconnection structure can be di�erent fromthat shown in Figure 1.The procedure for state or checkpoint comparison is as follows. Whenever a taskcheckpoints its state in the stable storage, the state is sent to the checkpoint processor (CP).When the CP receives the state from both of the modules executing a task, it compares thetwo states. If the two states match, the new checkpoint is considered correct and the previouscheckpoint is replaced by the new one. If a mismatch occurs, then the previous checkpoint isnot discarded and the recovery mechanism discussed in this paper is initiated.When a write-back cache memory represents the volatile state and the main memory isstable (e.g., as in the Sequoia architecture [3]), the volatile storage (VS) block in a processingmodule in Figure 1 represents the write-back cache and the stable storage (SS) block representsthe stable main memory. In this case, apart from periodic checkpointing, checkpoints need tobe taken whenever the cache overows. The contents of the stable memory locations shouldnot be overwritten at a checkpoint until the comparison of the caches in the two modules in aduplex is completed by the CP. The cache contents may need to be bu�ered in a separate areain the SS modules (in this case, the stable main memory) until the comparison is complete.Although our discussion of the RFCS scheme and analysis assumes that processesexecuted on di�erent duplex systems do not communicate, the RFCS approach is also useful tothe environment of communicating processes (see Section IX). In the presence of single faults,4



RFCS scheme can be used to avoid rollback, even when processes communicate by messagepassing.The following discussion and performance analysis implicitly assumes that two faultymodules will always produce di�erent checkpoints. The likelihood that failure will produceexactly identical erroneous checkpoints in both processors can be seen to be small. For furtherdiscussion of this issue and analysis the reader is referred to [12].III. Basic SchemeThis section presents the basic concept behind the proposed approach using the most commonfault scenario; a complete description is presented in Section V. Figure 2 depicts execution oftwo processing modules, named A and B, executing the same task. Assume that B fails ina checkpoint interval and other modules are fault-free. In Figure 2 this interval is named Ij.Then, the checkpoints of A and B will mismatch at the end of interval Ij. This mismatch willactivate \concurrent retry" of checkpoint interval Ij on a spare, as follows.1. The mismatching checkpoints of the two modules are saved. The previous checkpointis then loaded into a spare module, say module S. The executable code for the task isalso loaded into the spare module. The checkpoint interval in which the fault occurredis then retried on the spare module. Concurrently, A and B continue execution of thenext checkpoint interval Ij+1.2. After the spare completes interval Ij, the checkpoint of spare S is compared with themismatching checkpoints of modules A and B. The checkpoint of S will mismatch withthe checkpoint of B at the end of interval Ij, and match with A.3. When this mismatch and match is detected, B is known to be faulty and A fault-free.Therefore, the state of B is made identical to the checkpoint of A. Now, A and B willboth be in the correct state (provided module A did not fail in the second checkpointinterval named Ij+1).4. Concurrent retry mechanism then proceeds to determine whether module A failed ininterval Ij+1. A complete discussion of how this is done is presented in Section V.5
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Figure 2: Roll-forward checkpointing scheme: basic conceptThe proposed scheme avoids rollback in single fault scenarios. Multiple faults in twoconsecutive checkpoint intervals would require rollback. However, multiiple faults are muchless likely than single faults.IV. PreliminariesThe analysis is developed in two steps. First, we analyze a con�guration consisting of asingle duplex system and a spare module available when needed. This is then generalized toan environment where a spare is shared among many duplex systems. The two processingmodules in the duplex system are named A and B. The spare module is named S. The replicasof the task executed on modules A and B are also called A and B. We use the terms state oftask A(B) and state of module A(B) interchangeably.The state of a processing module is assumed to be checkpointed under program control[7]. Checkpointing under program control enables two replicas of a task executed on two PMsto checkpoint at the same points during their execution.The following introduces certain terminology to be used later. The computation re-6



quired by the task is referred to as the useful computation. Other operations such as check-pointing are not considered a part of the useful computation. An interval consists of a periodof useful computation followed and possibly preceded by other operations such as checkpoint-ing and initiation of concurrent retry. An interval is identi�ed by the useful computationperformed in that interval. If module Q takes a checkpoint at the end of interval Ik, thischeckpoint (or state of Q) is denoted as CPkQ. If the states of the processing modules Aand B at the end of interval Ik are identical, then CPkA and CPkB are identical and bothare denoted simply as CPk. When a processing module Q is rolled back to a state savedin checkpoint CPx, we say that state of module Q is made consistent with CPx. If moduleA or B fails in interval Ik then this interval is said to be a faulty interval. In the diagramsillustrating various fault scenarios, we use a box notation illustrated in Figure 3 below. Thedi�erent operations listed in Figure 3 will be described later as they are used. Boxes shadedwith the same pattern represent the same operation and require the same amounts of time.
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Figure 4: ROLLBACK scheme for duplex systemsrestarted instead of rolling back. The time required for initiating a restart is ts. The timerequired for making the state of the modules in the duplex consistent with the state saved byone of the modules is named tcp.V. Roll-Forward Checkpointing SchemeSection III introduced the basic concept behind the proposed roll-forward checkpointing scheme(RFCS). This section describes the RFCS scheme in detail. As shown below, after a fault isdetected, the spare module performs at most two successive intervals of concurrent retry tocomplete the recovery. Therefore, the spare module has three possible states { (i) spare notperforming concurrent retry, (ii) spare in the �rst interval of concurrent retry, and (iii) sparein the second interval of concurrent retry. Depending on how the faults occur, there are fourpossible fault situations in RFCS. We now discuss each of these. Let t0 denote the beginningof an interval denoted as Ij. Let the previous interval completed at t0 be denoted as Ij�1.CP(j�1)A and CP(j�1)B, checkpoints of A and B at the end of Ij�1, are assumed to be identi-cal. The intervals following Ij are named Ij+1 and Ij+2. It is assumed that the spare is notpermanently faulty. The concurrent retry scheme cannot be used if no spares are available.The following discusses the four possible fault situations denoted as (A) through (D).(A) No failure: Both processing modules A and B are fault-free in interval Ij (see Figure 5).If neither A nor B fails in interval Ij then at time t1, the checkpoints of modules A and B willbe identical. The execution continues on to the following interval.8
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Figure 5: Situation (A) { No failure(B) Single failure: As seen below, unlike conventional duplex systems, our scheme requiresno rollback in this case. This situation occurs when a single module fails in interval Ij.Furthermore, no other module fails in intervals Ij and Ij+1.Without loss of generality, assume that processing module B has a failure during intervalIj and modules A and S remain fault-free in intervals Ij and Ij+1. This case is illustrated inFigure 6.When a fault occurs in interval Ij, the checkpoints CPjA and CPjB of A and B arenot identical, and the fault is detected at time t1 (see Figure 6). When a fault is detected,checkpoint CPj�1 is retained in the respective stable storages attached to modules A and B.In addition, both checkpoints CPjA and CPjB are saved. The following steps are then carriedout to recover from the failure. At the beginning of the recovery process, identity of the faultymodule B is not known to the Checkpoint Processor.Step 1: Make the state of spare module S consistent with the state CPj�1 of modules A andB. Copy the task's executable code to S. The time required for this step, tpr, can be minimizedas discussed later. At time t7, spare module S is ready to perform the computation in intervalIj. Concurrently, A and B continue execution of next interval Ij+1.Step 2: When S completes the computation in interval Ij, its state CPjS is compared withCPjA and CPjB. CPjS is found identical to CPjA, as A and S are both fault-free in intervalIj. Therefore, module A is considered fault-free in interval Ij. The time required for this state9
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Figure 6: Situation (B) { Concurrent retry without rollbackcomparison step is tcc. The state CPjS of spare module S need not be saved on the stablestorage as it is used only for the comparison operation.While S completes interval Ij, A and B complete interval Ij+1 and take a checkpoint.Note that A and B were in di�erent states at the start of Ij+1. A and B wait for state CPjSto be compared with CPjA and CPjB. The length of the wait is denoted by tw. Once it isdetermined that CPjA and CPjS are identical, the states of A and B both are made consistentwith checkpoint CP(j+1)A. The time required for this operation is termed tcp. Note that Aand B did not rollback to the start of interval Ij though processing module B failed during Ij.In the traditional rollback scheme, A and B would have rolled back.Step 3: The concurrent retry is not complete yet. In the above step, the state of modules Aand B was made consistent with CP(j+1)A. However, as yet it is not known whether A failedduring interval Ij+1 and whether CP(j+1)A was erroneous or correct. We only know that CPjAwas correct.After completing the state comparison in step 2, processing module S executes intervalIj+1. In the meanwhile, modules A and B execute interval Ij+2. When S completes Ij+1, itsstate CP(j+1)S is compared with CP(j+1)A. As A and S are both assumed fault-free during10



Ij+1, CP(j+1)A and CP(j+1)S will be found identical. CP(j+1)A and CP(j+1)S being identicalimplies that A was fault-free until the end of interval Ij+1. This state comparison is completedat time t6 (see Figure 6).As the computation performed by B in interval Ij+1 is irrelevant, the concurrent retryschemewill tolerate a transient failure of module B in interval Ij+1 without additional overhead.This is advantageous in situations where consecutive transient failures of a module are notindependent of each other and a module a�ected by a failure is more likely to fail soon again.In our analysis of the concurrent retry scheme, however, we assume independence between anytwo failures.Step 4: In the previous step, it is determined that processing modules A and B were incorrect state at the start of interval Ij+2. With this, the concurrent retry initiated by failureof module B in interval Ij is completed. Any failures in interval Ij+2 can be treated similarlyto the failures in interval Ij. At time t6, the spare is free to perform any other computation.As seen above, concurrent retry avoided rollback in spite of a fault in B. The overheadincurred is only (tw + tcp). In the traditional rollback scheme the overhead is much larger, atleast (tu + tch + tr).(C) Rollback after one interval of concurrent retry: In this situation, concurrent retrydoes not succeed and the system is rolled back to the state at time t0. This situation occurswhen one of the duplexed modules has a failure in Ij and another module also fails in Ij.There are three scenarios possible as listed in Table 1. For the sake of illustration, considerscenario C.1 (see Table 1) illustrated in Figure 7.As shown in Figure 7, concurrent retry begins when CPjA and CPjB are found to bedi�erent. The concurrent retry mechanism attempts to perform the same steps as in situation(B). The procedure as detailed above for situation (B) is carried out through step 1. As S failsin interval Ij, in step 2, the comparison of CPjS with CPjA and with CPjB will not result in amatch. Therefore, the checkpoint processor cannot determine which of A and B is fault-free,if any. Hence, the duplex system must be rolled back to the last known correct checkpoint,CPj�1. In this case, modules A and B rollback by two intervals and the rollback occurs after11
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Figure 7: Situation (C) { Rollback after one interval of concurrent retrythe spare has completed one interval of concurrent retry. After the rollback is completed attime t2, modules A and B are in a state identical to their state at t0.(D) Rollback after two intervals of concurrent retry: In this situation also, concurrentretry does not succeed and the system is rolled back. This case covers the four scenarios listedin Table 2. The four scenarios may be summarized as follows: Module B (A) has a failure ininterval Ij and processing modules A (B) and S are fault-free in intervals Ij but A (B) fails ininterval Ij+1 and/or S fails in interval Ij+1.Table 1: Fault scenarios possible in situation (C)X � don't careStatus in interval IjScenario A B SC.1 fault-free faulty faultyC.2 faulty fault-free faultyC.3 faulty faulty X12



Table 2: Fault scenarios possible in situation (D)X � don't careStatus in interval Ij Status in interval Ij+1Scenario A B S A B SD.1 fault-free faulty fault-free fault-free X faultyD.2 fault-free faulty fault-free faulty X XD.3 faulty fault-free fault-free X fault-free faultyD.4 faulty fault-free fault-free X faulty XFor the sake of illustration, consider fault scenario D.1 (see Table 2) illustrated inFigure 8. As shown in Figure 8, concurrent retry begins when CPjA and CPjB are found to bedi�erent. The concurrent retry mechanism attempts to perform the same steps as in situation(B). The procedure as detailed earlier for situation (B) is carried out through step 2. The
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Figure 8: Situation (D) { Rollback after two intervals of concurrent retrystate comparison in step 2 will indicate that CPjA and CPjS are identical, implying that stateCPjA was the correct state at t1. As explained in step 2 of (B), at time t2, the state of A andB is made consistent with CP(j+1)A. 13



As S fails in interval Ij+1, the comparison of CP(j+1)A and CP(j+1)S performed in step3 will result in a mismatch. Now, there is no way to determine whether CP(j+1)A (state ofA at the end of Ij+1) was correct. Therefore, the state of the duplex system at the start ofinterval Ij+2 cannot be guaranteed to be correct. Hence the duplex system rolls back to thelast known correct checkpoint, CPjA. In this case, processing modules A and B rollback bytwo intervals and the rollback occurs after the spare has completed two intervals of concurrentretry. The time required for this rollback is tcp. Note that we have two parameters associatedwith rollback { tr and tcp. The di�erence is that tr is the time required when both the modulesare restored to the state saved by the modules in their respective stable storage, while tcp isthe time required when the state of the two modules is made consistent with the checkpointsaved by one of the two modules. In some implementations, tr and tcp could very well beequal. Table 3 summarizes the actions taken in the above four situations. As shown in Sec-tion VI, concurrent retry can achieve lower average task completion time with lower varianceby avoiding rollback for the most likely fault scenarios.Table 3: Actions required in various situationsSituation Concurrent retry Rollback(A) No No(B) Yes No(C) Yes Yes(D) Yes YesIt may be noted that, although the above discussion pertains to a duplex system and aspare module, this spare may not be used to convert the duplex system into a triple-modularredundant (TMR) system, as the spare is shared by many duplex systems. When a spare isshared, a duplex system utilizes the spare only when one of its modules fails, unlike a TMRsystem where three modules are used at all times.14



A. OptimizationsTo reduce tpr, the time required for initiating concurrent retry, a spare should be designatedfor each task. Once the spare is designated, the executable code for the task can be sent tothe spare when the task starts executing rather than when a fault is detected. Similarly, thecheckpointed state may also be sent to the spare immediately after the duplex system takesa checkpoint rather than sending the state after a fault is detected. (This is analogous to thebackup process approach used in Tandem systems [5]).In step 1 of concurrent retry, instead of storing the entire checkpoints, just the signaturesof checkpoints CPjA and CPjB may be saved on the stable storage. This scheme requires fewercheckpoints to be stored simultaneously. However, with this modi�cation, in situation (D),the system will have to rollback to checkpoint CPj�1.If the number of spares available is more than one, then concurrent retry can be at-tempted simultaneously on multiple spare modules. This can signi�cantly increase the likeli-hood of success of concurrent retry by tolerating multiple failures. The proposed mechanismcan be extended to tolerate multiple simultaneous failures without the overhead of retry.B. Permanent FaultsThe scheme described above can also locate permanent faults. Observe that in each of sit-uations (B) through (D) above, it is either possible to locate the faulty module or one candetermine the modules that may be suspected to be faulty. For instance, in situation (B) afaulty module can be correctly identi�ed, while in situation (C) any of the three modules (A,B and S) may be faulty. If any particular module is determined faulty or suspected to befaulty too many times within a short interval of time, then the module may be assumed to bepermanently faulty and replaced.For example, Figure 9 shows a scenario in which module B has developed a permanentfault. Module B is determined as faulty in two consecutive concurrent retries. In this case, Bmay be assumed to be permanently faulty and replaced.15
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Figure 9: Tolerating a permanent fault: An exampleVI. Performance of the RFCS SchemeAs seen above, both transient and permanent as well as single and multiple faults are con-sidered. The proposed recovery technique considers all possible fault scenarios; however, theanalysis given here is for transient faults. For the analytical model developed here it is as-sumed that failures of any two modules are independent. Occurrence of a transient failureof a module is assumed to be a Poisson process with failure rate �. The processing modulesare assumed to be prone to transient faults during all operations including checkpointing andretry. Only the operation of making the state of a processing module consistent with a previ-ously saved checkpoint is assumed to be performed reliably as in any checkpointing scheme.This operation can be made robust in practice by detecting failures by comparing the restoredcheckpoint and the restored module state after state restoration. If an error is detected thenthis process is repeated and the state is restored again from the checkpoint.In our analysis, we make a simplifying assumption that the time required to rollback (tr)is equal to the time required for initiating a restart (ts). The analysis without the simplifyingassumption is very similar to the analysis presented here, only somewhat more tedious. Thenotations used here are summarized below. Some of the notations were introduced in earliersections.Tu = total useful execution time of a task16



tu = Tu=n; wheren = number of equidistant checkpoints�k = time required to execute last k checkpoint intervals�n is the time required to complete the task. After the task completesthe �rst interval of execution, time required to complete the remainingtask is �n�1. For other k � 1, �k is de�ned similarly. Also, �0 = 0.�k = expected (average) value of �k�njf = expected completion time of a task given that at least one failure occurredduring task execution.vk = variance of �k = � 2k � (�k)2Fk(t) = Cumulative Distribution Function (CDF) of �k = Prob(�k � t)tch = time required to checkpoint the two modules in a duplex system. tchincludes the time required to compare the two checkpoints.T = tu + tch: With no failures, task completion time is nT .tr = time required to rollback.tcp = time required to rollback to a previous state of one of the modules.tcc = time required for comparing state of the spare with checkpoints of theprocessing modules in a duplex system. We assume that tcc � tcp + tch.tpr = time required to initiate a concurrent retry.tw = max (tpr + tcc � tch; 0): Idle time.The quantities of interest are:� �njf . In the absence of failures, RFCS and ROLLBACK schemes perform identically;�njf is a good measure of how a scheme performs when failures occur.� Average task completion time (�n).� Variance (vn) of the task completion time.� CDF (Fn(t)) of the task completion time.17



When only one interval remains to be executed after a fault is detected by check-point comparison (as in situations (B) through (D)), concurrent retry does not result in earlytask completion compared to the ROLLBACK scheme. Therefore, our analysis assumes thatconcurrent retry is initiated only when the number of checkpoint intervals remaining to beexecuted after fault detection is at least two. If the number of intervals remaining is 0 or1 then the duplex system is rolled back to the previous checkpoint (no concurrent retry isattempted).Let pA through pD be the likelihood of occurrence of situations (A) through (D), re-spectively, enumerated in Section V. From the discussion in Section V and the fault modelpresented earlier, the following expressions are obtained.pA = Prob(A and B are fault-free in interval Ij) = e�2�TpB = Prob(B faulty in Ij, A and S fault-free in Ij and Ij+1)+ Prob(A faulty in Ij, B and S fault-free in Ij and Ij+1)= 2 (1� e��T ) e��T e��(T+tpr+2tu+2tcc)pC = Prob(A and B faulty in Ij) + Prob(A or B (not both) faulty in Ij and S faulty in Ij)= (1 � e��T )2 + 2 (1 � e��T ) e��T (1 � e��(tpr+tu+tcc))pD = Prob(B faulty in Ij, A and S fault-free in Ij, A and/or S faulty in Ij+1)+ Prob(A faulty in Ij, B and S fault-free in Ij, B and/or S faulty in Ij+1)= 2 (1� e��T ) e��T e��(tpr+tu+tcc) (1� e��(T+tu+tcc))Also, let proll = 1� pA = 1� e�2�T . Note that pA+ pB + pC + pD = 1 (as should be expected).Let tA = T , tB = 2T + tw + tcp, tC = 2T + tw + tr, tD = 2T + tw + tu + tcc + tcp andtroll = T + tr. Now, we obtain recursions for �k and Fk(t). Recall that if a fault occurs in thelast two intervals, the system is rolled back. Therefore,�1 = pA tA + proll (�1 + troll) and �2 = 2 �1 (1)If a fault occurs in any interval other than the last two, then concurrent retry is performed.Therefore, when k � 3, from Figures 5 through 8, the following recursions are obtained.�k = pA (�k�1 + tA) + pB(�k�2 + tB) + pC(�k + tC) + pD(�k�1 + tD) (2)18



andFk(t) = pAFk�1(t� tA) + pBFk�2(t� tB) + pCFk(t� tC) + pDFk�1(t� tD) (3)Starting with the above recursions, the following expressions can be obtained for n > 2[12, 13]. 1�n = qB1 + qB 0BB@ (qAtA + qBtB + qCtC + qDtD) �(n � 2)q�1B + 1�(�qB)n�21+qB �+ �1 (q�1B + (�qB)n�1) + (�2 � qAD �1)(q�1B + (�qB)n�2) 1CCA (4)
vn = qB1 + qB 0BBBBBBBBBBBBBBBBBB@ 2 qC tC Pni=3 ��i hq�1B + (�qB)n�ii�+2 (qA tA + qD tD) Pn�1i=2 ��i hq�1B + (�qB)n�1�ii�+2 qB tB Pn�2i=1 ��i hq�1B + (�qB)n�2�ii�+(qA t2A + qB t2B + qC t2C + qD t2D) �(n � 2)q�1B + 1�(�qB)n�21+qB �+S1(q�1B + (�qB)n�1) + (S2 � qADS1) (q�1B + (�qB)n�2)

1CCCCCCCCCCCCCCCCCCA � (�n)2(5)where qX = pX=(1 � pC); for X = A;B;C;D; qAD = qA + qD;�1 = T+tre�2�T � tr; �2 = 2 �1;v1 = (T + tr)2 1�e�2�Te�4�T ; v2 = 2 v1;S1 = v1 + (�1)2 and S2 = v2 + (�2)2:Also, �njf = �n � pnA n T1� pnA : (6)Analysis of the ROLLBACK scheme1When n � 2, the RFCS scheme is identical to the ROLLBACK scheme.19



Table 4: Parameters for task 1Tu tch tr ts tcc tcp tpr50 0.50 0.30 0.30 0.70 0.30 0.40To compare the performance of the RFCS scheme with the performance of the ROLL-BACK scheme, the following expressions for the mean completion time and its variance forthe ROLLBACK scheme are obtained [12, 13].�n = n �T + tre�2�T � tr� and vn = n (T + tr)2 1� e�2�Te�4�T (7)A. Performance ComparisonPerformance of RFCS scheme is compared with the ROLLBACK scheme.2 Parameters for ahypothetical task named task 1 are listed in Table 4. Task 1 is used to compare performanceof RFCS and ROLLBACK schemes. The results presented here for task 1 are also valid over awide range of task parameters. For brevity, we have chosen only one set of parameter values.Comparison of �njfRecall that �njf is the expected task completion time given that at least one failure occursduring the execution of the task. Figure 10 compares �njf for the RFCS and ROLLBACKschemes. Observe that for the RFCS scheme, �njf is closer to nT as compared to the ROLL-BACK scheme. This is essentially because the RFCS scheme tries to avoid rollback even inthe presence of a fault, and therefore completes the task in about the same time as a fault-freeexecution. De�ne g(rfcs) = �njf (rollback)� �njf (rfcs)(Tu=n) :g is called the \relative gain" in �njf achieved by the RFCS scheme with respect to theROLLBACK scheme. In Table 5 relative gains for the RFCS scheme are listed for various2The ROLLBACK scheme was presented in Section IV.20



values of n and �. Observe that the performance of the RFCS scheme remains better overa wide range of failure rate �. Table 5 lists the relative gain for � = 10�3; 10�6; 10�9; 10�12.However, to minimize the number of graphs in the paper, in most of the following discussion,� is assumed to be 10�3. Similar results can be obtained for other values of � as well.Table 5: Relative gain achieved by the RFCS schemen� 3 4 5 6 7 8 10 12 1410�3 .325 .488 .590 .660 .710 .747 .800 .834 .85810�6 .331 .495 .594 .658 .704 .738 .784 .813 .83310�9 .331 .496 .594 .658 .704 .738 .784 .813 .83310�12 .331 .496 .594 .658 .704 .738 .784 .813 .833
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Mean and variance comparisonIn Figure 11 variance vn is plotted versus the mean completion time �n for the example task.Each point on the mean-variance plot corresponds to a speci�c number of checkpoints. Byvarying the number of checkpoints, di�erent means and variances can be achieved. Observethat for any mean and variance pair achieved using the ROLLBACK scheme, a pair withlower mean and variance can be achieved using the RFCS scheme. For example, in Figure 11,observe that if ROLLBACK scheme with n = 6 is used, then one may use the RFCS schemewith n = 5, 6 or 7 and achieve lower mean completion time with lower variance. Also, ingeneral, the RFCS scheme can achieve a lower minimum average task completion time ascompared to the ROLLBACK scheme.
Mean CompletionTime �n 52

58
53545556
57
0:1 1001 10 �2ppppppppppppppppppppp�n = 3pppppppppppppppp�pppppppppppp�ppppppppp�6pppppppp�ppppppppp�8pppppppppp�ppppppppp�n = 10pppppppppp�pppppppppp�pppppppppp�ppppppppp�pppppppppp� +pppppppppppppppp+ppppppppppp+pppppppp+5ppppppp+ppppppp+n = 7pppppppp+pppppppp+n = 9pppppppppp+pppppppppp+ppppppppp+ppppppppp+pppppppppp+pppppppppp

p p p �p p RFCSp p p +p p ROLLBACKvariance vnFigure 11: Mean completion time versus variance for task 1 with � = 10�3When the failure rate is low, the mean completion time is very close to the minimumpossible completion time nT , as failures occur infrequently. In such a situation one may stilluse a larger number of checkpoints than the number that minimizes the average completiontime so as to reduce its variance. In Figure 11 for instance, for ROLLBACK scheme, �n is22



minimized with n = 3. One may still use 10 checkpoints as the variance achieved with 10checkpoints is lower (speci�cally, the variance is 3.76 with the mean being 55.64). In such asituation, the concurrent retry scheme is useful to further reduce the variance while keeping themean low. RFCS schemewith 10 checkpoints achieves variance 1.06 with the mean being 55.22{ lower mean with lower variance as compared to the ROLLBACK scheme (see Figure 11).Comparison of the CDFThe cumulative distribution function (CDF) of the completion time �n is useful to determinethe percentage of jobs that �nish by a given deadline. If the deadline requires that the taskbe completed within td time units after it starts execution, then (1�Fn(td)) is the probabilitythat the deadline is missed. Figure 12 plots (1 � Fn(t)) for task 1. Comparison of the plotsfor RFCS and ROLLBACK schemes indicates that the likelihood that a job will miss a tightdeadline is lower with the RFCS scheme as compared to the ROLLBACK scheme.
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scheme when td is in a small interval around t = 67. The reason is that when a rollback occursin the concurrent retry scheme, the overhead is larger compared to the ROLLBACK scheme.In spite of this, the mean and variance achieved with the RFCS scheme are lower because theRFCS scheme results in a rollback only when multiple modules fail within a short interval oftime; the likelihood of such multiple faults is much smaller than a single fault.VII. Spare UtilizationThe analysis in Section VI assumed that a spare is available for concurrent retry wheneverneeded. When many duplex systems share a small number of spares for concurrent retry, aspare may not be available for concurrent retry if it is busy performing a retry for some otherduplex system. When a failure occurs, if a spare is not available, the duplex system rolls back.When more than one duplex system shares a spare, spare availability perceived by any duplexsystems is less than 1. The earlier analysis for �n and vn is valid if average spare utilization Uis small. Table 6 enumerates the length of time for which the spare is used in various situationsdescribed in earlier sections.Table 6: Length of spare use in various situationsSituation Spare Use(A) sA = 0(B) sB = tpr + 2tu + 2tcc(C) sC = tpr + tu + tcc(D) sD = tpr + 2tu + 2tccThe following closed form expressions for utilization U of a spare by a single duplexsystem can be obtained for n > 2 [12, 13].U = � qB1+qB � (qB sB + qC sC + qD sD) �(n � 2)q�1B + 1�(�qB)n�21+qB ��n (8)Table 7 lists spare utilization U for the RFCS scheme. Observe that the averagespare utilization is quite low and decreases as the number of checkpoints (n) increases or24



as � decreases. If the failure rate is very high and the checkpoint interval is large, then thelikelihood that a module fails in any checkpoint interval would be high, resulting in a highspare utilization. Such a situation may be avoided by taking checkpoints more frequently.Table 7: Spare utilization by a single duplex system with task 1� n U(rfcs)10�3 4 0.025498 0.0208510 0.0184416 0.01386 � n U(rfcs)10�6 4 2:6� 10�58 2:1� 10�510 1:8� 10�516 1:4� 10�6A. Multiple duplex systemsA multiprocessor system with a single spare module shared by up to six duplex systems wassimulated. The simulation assumed that all the duplex systems execute task 1 repeatedly. �was chosen to be 10�3.The system is simulated for 1010 time units with an event-driven simulator developedin language C. Table 8 lists the mean completion time �n, variance vn, and spare utilizationobtained by simulation. D is the number of duplex systems that share a single spare.Table 8: Simulation results for n = 10 and � = 10�3 : D duplexes sharing a single spareD �n vn U1 55.22 1:06 0.01842 55.23 1:10 0.03623 55.23 1:15 0.05334 55.24 1:20 0.06995 55.25 1:24 0.08596 55.25 1:28 0.1013Observe that even when many duplex systems share a single spare, the spare utilizationis quite low. Also, when D > 1, mean task completion time �n and variance vn achieved by25



the RFCS scheme remain better compared to the mean (55.64) and variance (3.76) achievedby the ROLLBACK scheme.VIII. Implementation IssuesStable Storage The performance of the RFSC scheme depends on the ability to take check-points e�ciently. The checkpointing operation requires that the state of the two replicas becompared and the state saved on a stable storage. Although the conventional mirrored-diskstable storage may serve the purpose, special purpose hardware can improve the performancesigni�cantly. For instance, the architecture of Figure 1 facilitates fast checkpointing if thestable storage is implemented similar to the \fast stable storage" proposed by Banatre et al.[2]. The architecture in Figure 1 is similar to an architecture presented in [2]. The check-pointing operation with this architecture can be performed as follows: (a) the two modules inthe duplex system store their state in the respective fast stable storages, (b) The fast stablestorage sends the signature of the checkpoints to the checkpoint processor, (c) the checkpointprocessor compares the signatures to detect any failures. Thus, this architecture can reducethe checkpointing time by minimizing the time required to save the state in stable storageand also the time required to compare the two states (only signatures need be sent over thenetwork).Another possibility is to make each of the SS modules in Figure 1 self-checking, insteadof stable. It is cheaper and easier to make a memory module self-checking (as comparedto stable). This organization is a subject of future research. If the SS modules are self-checking, then the SS modules can be used as a fast temporary storage for the checkpoints. Inthis organization, the processors would save their state in the SS modules which would thenasynchronously download the checkpoints into a stable storage such as a mirrored disk. Afailure of an SS module, before the state is downloaded into the stable storage, will result ina rollback of the duplex system.Stable Storage Size The proposed scheme requires �ve process images to be stored on astable storage when a failure occurs. This requirement is larger than in traditional duplexand triple modular redundant systems. The proposed RFCS approach achieves improved26



performance at a higher stable storage cost. When the checkpoint size is very large, theincrease in the stable storage cost may be a constraint in implementing the proposed approach.As pointed out earlier, when a write-back cache memory represents the volatile stateand the main memory is stable (e.g., similar to Sequoia architecture [3]), the volatile storage(VS) block in a processing module in Figure 1 represents the write-back cache and the stablestorage (SS) block represents the stable main memory. In this case, the size of the checkpointis determined by the number of dirty cache blocks. The checkpoint size in this system is likelyto be much smaller (than a system where entire memory needs to be checkpointed), makingit more practical to use the roll-forward checkpoiting scheme.Equidistant Checkpointing The discussion in the paper assumed that all the checkpointintervals are of identical length. There are two aspects of this issue. (a) The proposed schemecan also be used when the checkpoints are not equidistant. An adaptive scheme suggests itself{ concurrent retry should be performed only if the length of the interval in which the failureis detected is at least tl for a given tl, otherwise the system should be rolled back. Essentially,when the overhead of performing a concurrent retry is not small compared to the length ofthe faulty checkpoint interval, concurrent retry should not be performed. (b) Although it maynot be possible to make all checkpoint interval lengths exactly identical, it is possible to insertcheckpoints in the executable code such that the interval lengths are approximately equal.For example, [7] presents a compiler-driven approach for this purpose. Such an approach isadequate for achieving performance improvements using the proposed scheme.Checkpoint Processor The existence of a reliable checkpoint processor is necessary to co-ordinate the proposed scheme. Two approaches may be used to achieve this. One approach isto implement a reliable checkpoint processor using masking redundancy and ensure that thelikelihood of failure of the checkpoint processor is much smaller as compared to other compo-nents in the system. The other approach is to distribute the functionality of the checkpointprocessor into multiple checkpoint processors, each being self-checking. These checkpoint pro-cessors must collectively coordinate the RFCS scheme. As the function of the checkpointprocessor is quite simple, it should be possible to make it self-checking without exorbitantoverhead. 27



IX. Communicating ProcessesThe discussion in the paper assumed that the processes executing on di�erent duplex sys-tems do not communicate with each other. In this section we argue that if the processescommunicate via message passing, then the roll-forward recovery scheme may result in betteror comparable performance as a rollback scheme. However, in this case, the RFCS schememust be combined with message logging. (For event-driven processes, input events should belogged.) With single faults, no rollback is necessary even if processes communicate by mes-sage passing. This itself can be quite useful in an environment of communicating processesbecause recovery using coordinated checkpoints may need to be invoked rarely. Rollback tocoordinated checkpoints is only required when there are multiple failures.When processes communicate with each other via message passing and each process isduplicated, to protect from an arbitrary failure of a process, it is necessary to use a Byzantineagreement algorithm with authenticated messages. Provided at most one sender or receiverreplica is faulty, it is possible to design an agreement protocol whereby each replica of a receiverprocess will either obtain the correct message or detect failure of a sender process replica [14].Additionally, it is possible to ensure that the fault-free replica of a process will detect thefailure of the other replica before the e�ect of the failure is propagated to other processes [14].We consider single fault situations only. In the following we omit the details of the agreementprotocol. It is assumed that messages are being logged for the purpose of recovery.When using RFCS scheme for communicating processes, when a spare re-executes acheckpoint interval, appropriate messages logged on the stable storage should be sent to thespare, to allow it to reach the correct state. Other than this modi�cation, the RFCS schemedescribed earlier can be used as such for communicating processes.Figure 13 illustrates a scenario where concurrent retry can successfully identify thefailure of a process and other processes continue execution without any performance penalty.P1 and P2 are replicas of process P (they form a duplex system) and Q1 and Q2 are replicasof process Q. P1 failed at time t1 but sent the correct message M to process Q, and thensent an incorrect message R'. Failure of P1 is not detected until message R' is sent. ProcessQ assumes that message M received from P is error-free, this assumption is correct providedat most one of P1 and P2 is faulty (or the probability of two faulty replicas sending same28
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agreement timeFigure 13: RFCS scheme and communicating processeserroneous message is small). Failure of P1 is detected when it sends message R' and P2 sendsmessage R. However, it is not known which of P1 and P2 has failed. Concurrent retry can beused to determine which of P1 and P2 is faulty. Two cases arise:� During concurrent retry, no process blocks waiting for a message from process P: In thiscase, there will be no loss of performance in spite of failure. If a rollback scheme wereused, there would be performance penalty (for process P) due to the single failure.� Some processes block waiting for a message from process P: In this case, the performancepenalty is no worse that that for the rollback scheme. When the rollback scheme isused, each process blocked on P must wait for P to recover from the failure. For bothrollback and roll-forward schemes, the duration for which such processes are blockedis approximately equal to the duration from the previous checkpoint of P till the timewhen failure of P1 was detected.When multiple failures occur, the performance penalty could be larger than the rollbackscheme. From the analysis in Section VI it is apparent that the impact of multiple failures onthe average performance is much smaller than single failures. Therefore, we conjecture thatroll-forward scheme will perform well in the environment of communicating processes also.Further research is needed to verify this conjecture.X. Further WorkThe discussion in this paper implicitly assumed that a module fault is detected only by com-paring the state of the two modules in a duplex system. However, in reality, some of the faults29



in a module can be detected by the error detection mechanisms built into a processing module.The fault coverage, say c, of such mechanisms is typically non-zero but less than perfect. Thefaults that escape detection by the built-in detection mechanism are detected by comparingthe state of the two modules in a duplex system at each checkpoint. For the sake of simplicity,the discussion here assumed that coverage c is 0. However, when 0 < c < 1, two roll-forwardcheckpointing schemes can be obtained (similar to the RFCS scheme presented here). The twoschemes di�er primarily in their treatment of a fault situation where, in a checkpoint interval,one of the modules has a fault that is detected by the error detection mechanism built into themodule. Two actions are possible in such a scenario which leads to two di�erent roll-forwardschemes [12]:� One option is to assume that the other module is fault-free, and copy the state of thismodule to the faulty module (which had a detected failure).� The other option is to not assume that the other module is fault-free. Instead, a con-current retry is performed to achieve recovery.Note that the �rst of the above two schemes results in an unreliable outcome, if in a check-point interval, one module has a failure detected by its built-in detection mechanism and theother module has an undetected failure. Therefore, in general, the �rst scheme achieves alower reliability as compared to the second scheme. However, the �rst scheme has a betterperformance as compared to the second scheme. Also, note that both the schemes performbetter than rollback schemes with comparable reliabilities. A detailed analysis of these twoschemes can be found in [12].XI. ConclusionIn this paper, a fault-tolerant multiprocessor environment wherein each task is executed simul-taneously on two processing modules is considered. A pool of a small number of nondedicatedspares is assumed available. A pair of processing modules performing the same task forms aduplex system. A scheme is proposed to improve the performance of such duplex systems. Inthe proposed scheme, at each checkpoint the states of the two processing modules executingthe task are compared for detection of faults. If a fault is detected, instead of usual rollback,30
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