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Abstract

Proposed here is a novel architecture for a fault-tolerant multiprocessor environment. It
is assumed that the multiprocessor organization consists of a pool of active processing modules
and either a small number of spare modules or active modules with some spare processing
capacity. A fault-tolerance scheme is developed for duplex systems using checkpoints. Our
scheme, unlike traditional checkpointing schemes, requires no rollbacks for recovering from
single faults. The objective here is to achieve performance of a Triple Modular Redundant
system using duplex system redundancy.

In the proposed scheme, at each checkpoint, the state of the two modules executing the
task is compared for detection of faults. If a disagreement occurs, indicating a fault, the two
differing states are both stored. Instead of performing usual rollback and retry, the following
mechanism is used. The state at the preceding checkpoint, where both processing modules
had agreed, is loaded into a spare module. The checkpoint interval in which the failure is
detected is then “retried” on the spare module. Concurrently, the task continues forward
on the two active modules, beyond the checkpoint where the disagreement occurred. At the
next checkpoint the state of the spare is compared with the stored states of the two active
modules (stored states correspond to where the disagreement occurred). The active module
which disagrees with the spare is identified to be faulty. Once the faulty module is identified,
the state of the faulty module is restored to the correct state by copying the state from the
other active module, which is fault-free. The spare is released to the pool after recovery is
completed. Tt is important to note that the spare is shared among many processor pairs and
is used temporarily when faults occur.

Since the above mechanism achieves forward recovery, the proposed scheme is termed
Roll-Forward Checkpointing Scheme (RFCS). The RFCS scheme allows recovery from single
failures without the overhead of rollback. The advantage of the proposed scheme is that it
achieves a lower average execution time with a lower variance as compared to the rollback
scheme. This can be crucial for real-time systems with hard deadlines since lower variance
enhances the predictability of the task completion time.



I. Introduction

An important aspect of a fault tolerant system is the mechanism used for fault detection
and recovery from detected failures. This paper presents a novel roll-forward mechanism
for achieving performance comparable to forward error recovery schemes such as TMR using
significantly less redundancy. The scheme proposed here is applicable to all modular redun-
dant systems in general. Because duplex systems are the most widely used and cost-effective
modular redundant systems, our discussion correspondingly focuses on duplex systems. In a
duplex system, whenever a fault is detected, the task is halted and retried. This results in
performance degradation. In this paper a novel scheme is proposed where the task continues
execution while the fault diagnosis and recovery functions are performed concurrently. The
concept developed here has its roots in our earlier work [9]. A roll-forward scheme proposed
independently in [8] requires more redundancy than our scheme. It is important to note that
in many environments the amount of redundancy can be a concern because of power, weight

and volume considerations.

Proposed here is a novel architecture for a fault-tolerant multiprocessor environment. It
is assumed that the multiprocessor organization consists of a pool of active processing modules
and either a small number of spare modules or active modules with some spare processing
capacity. A fault-tolerance scheme is developed for duplex systems using checkpoints. Our
scheme, unlike traditional checkpointing schemes, requires no rollbacks for recovering from
single faults. The objective here is to achieve performance of a Triple Modular Redundant

system using duplex system redundancy.

In the proposed scheme, at each checkpoint, the state of the two modules executing the
task is compared for detection of faults. If a disagreement occurs, indicating a fault, the two
differing states are both stored. Instead of the usual rollback and retry, the following mecha-
nism is used for identification of the faulty processing module and recovery without rollback.
The state at the preceding checkpoint, where both processing modules had agreed, is loaded
into a spare module. The checkpoint interval in which the failure is detected is then “retried”
on the spare module (this procedure is named “concurrent retry”). Concurrently, the task
continues forward on the two active modules, beyond the checkpoint where the disagreement
occurred. At the next checkpoint the state of the spare is compared with the stored states of

the two active modules (stored states correspond to where the disagreement occurred). The



active module which disagrees with the spare is identified to be faulty. Once the faulty mod-
ule is identified, the state of the faulty module is restored to the correct state by copying the
state from the other active module, which is fault-free. The spare is released to the pool after
recovery is completed. It is important to note that the spare is shared among many processor

pairs and is used temporarily when fault occurs.

Since the above mechanism achieves forward recovery, the proposed scheme is termed
the Roll-Forward Checkpointing Scheme (RFCS). The RFCS scheme allows recovery from most
common failures without the overhead of rollback. It is demonstrated here that the proposed
scheme has potential performance advantages over conventional duplex systems which use
rollback. Specifically, the advantage of the proposed scheme is that it achieves a lower average
execution time with a lower variance as compared to the rollback scheme. This can be crucial
for real-time systems with hard deadlines since lower variance enhances the predictability of

the task completion time.

The proposed scheme requires process duplication and checkpointing. Many commer-
cially available fault tolerant systems also employ duplication and checkpointing and architec-
tures similar to that required for the proposed recovery scheme. For example, Sequoia Series
400 [10] system consists of multiple processing elements with large caches. Each processing el-
ement consists of two processors performing the same task. Failures are detected by comparing
the output of the two processors. The main memory is assumed to be reliable and the cache is
made recoverable by checkpointing (flushing) it periodically into the main memory. When a
fault is detected, the processors restart execution from the last checkpointed state. Similarly,
Tandem Non Stop Cyclone/R system [11] is a parallel architecture that provides greater avail-
ability by ensuring that if a processor fails its workload is automatically distributed to some
other processor. The state of each process is backed up (checkpointed) periodically on another
processor. This corresponds to passive duplication of processes. In the event of a failure, the
process starts executing from the last backed up state. The above two commercial system
examples illustrate that the approach proposed in this paper can be of practical significance.
In particular the hardware overhead will be similar to the existing commercial systems that
use duplication. However, the proposed approach differs in a fundamental way in that it uses
checkpointing for fault detection as well as recovery, the above systems use it for recovery

alone.

The rest of the paper is organized as follows. The system architecture under consid-



eration is discussed in Section II. The basic approach is described in Section III. Section IV
introduces some of the terminology used in our discussion. The proposed scheme is presented
in Sections V and analyzed in Sections VI and VII. Section VIII elaborates on some imple-
mentation issues. Section IX discusses application of the proposed scheme to communicating
processes. Section X discusses further work on the roll-forward checkpointing scheme pre-
sented in the paper. The paper concludes with Section XI. Derivations of results presented

here are omitted due to lack of space; the interested reader is referred to [12].

II. System Architecture

The multiprocessor environment to be considered relies on task duplication to achieve fault
tolerance. Such an environment has been used in many systems [1, 3, 4]. Figure 1 illustrates
an example multiprocessor system organization that can implement the proposed roll-forward
checkpointing scheme. Each processing module (PM) is assumed to consist of a processor and
a private volatile storage (VS). All the processing modules are assumed identical. It is further
assumed that each PM can access a stable storage (SS). The stable storage associated with
each PM is accessible by the other modules in the presence of PM failure. A reliable Checkpoint
Processor (CP) is assumed accessible from all the processing modules in the system. The CP
can be centralized or distributed and orchestrates the fault detection and recovery functions.
The CP detects module failures by comparing the state of each pair of processing modules
(PMs) which perform the same task. The state of a process is an image of all the variable
memory and registers associated with the process [6]. One can either compare the complete

checkpoints or just signatures of the checkpoints for efficiency.

Apart from the processing modules executing duplicated tasks, it is assumed that a
small number of modules are available as spares to be utilized for performing diagnosis and
recovery when a duplex system experiences a failure. These modules may be non-dedicated
spares to be used temporarily for fault recovery. If spares are not available, it is assumed that

active modules with spare capacity can be interrupted and used temporarily as spares.

The architecture of Figure 1 is used as an example to guide the discussion in the paper.
Figure 1 illustrates only the connectivity between the modules, the stable storage and the

Checkpoint Processor (CP) as required by the proposed scheme. Actual implementation may
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Figure 1: Logical system architecture

be quite different. Each PM, for example, may not have independent stable storage and the
PMs may share a stable storage. The physical interconnection structure can be different from

that shown in Figure 1.

The procedure for state or checkpoint comparison is as follows. Whenever a task
checkpoints its state in the stable storage, the state is sent to the checkpoint processor (CP).
When the CP receives the state from both of the modules executing a task, it compares the
two states. If the two states match, the new checkpoint is considered correct and the previous
checkpoint is replaced by the new one. If a mismatch occurs, then the previous checkpoint is

not discarded and the recovery mechanism discussed in this paper is initiated.

When a write-back cache memory represents the volatile state and the main memory is
stable (e.g., as in the Sequoia architecture [3]), the volatile storage (VS) block in a processing
module in Figure 1 represents the write-back cache and the stable storage (SS) block represents
the stable main memory. In this case, apart from periodic checkpointing, checkpoints need to
be taken whenever the cache overflows. The contents of the stable memory locations should
not be overwritten at a checkpoint until the comparison of the caches in the two modules in a
duplex is completed by the CP. The cache contents may need to be buffered in a separate area

in the SS modules (in this case, the stable main memory) until the comparison is complete.

Although our discussion of the RFCS scheme and analysis assumes that processes
executed on different duplex systems do not communicate, the RFCS approach is also useful to

the environment of communicating processes (see Section IX). In the presence of single faults,



RFCS scheme can be used to avoid rollback, even when processes communicate by message

passing.

The following discussion and performance analysis implicitly assumes that two faulty
modules will always produce different checkpoints. The likelihood that failure will produce
exactly identical erroneous checkpoints in both processors can be seen to be small. For further

discussion of this issue and analysis the reader is referred to [12].

II1. Basic Scheme

This section presents the basic concept behind the proposed approach using the most common
fault scenario; a complete description is presented in Section V. Figure 2 depicts execution of
two processing modules, named A and B, executing the same task. Assume that B fails in
a checkpoint interval and other modules are fault-free. In Figure 2 this interval is named I;.

Then, the checkpoints of A and B will mismatch at the end of interval [;. This mismatch will

activate “concurrent retry” of checkpoint interval I; on a spare, as follows.

1. The mismatching checkpoints of the two modules are saved. The previous checkpoint
is then loaded into a spare module, say module S. The executable code for the task is
also loaded into the spare module. The checkpoint interval in which the fault occurred
is then retried on the spare module. Concurrently, A and B continue execution of the

next checkpoint interval 7;,;.

2. After the spare completes interval I;, the checkpoint of spare S is compared with the
mismatching checkpoints of modules A and B. The checkpoint of S will mismatch with
the checkpoint of B at the end of interval [;, and match with A.

3. When this mismatch and match is detected, B is known to be faulty and A fault-free.
Therefore, the state of B is made identical to the checkpoint of A. Now, A and B will

both be in the correct state (provided module A did not fail in the second checkpoint

interval named [;41).

4. Concurrent retry mechanism then proceeds to determine whether module A failed in

interval I;41. A complete discussion of how this is done is presented in Section V.
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Figure 2: Roll-forward checkpointing scheme: basic concept

The proposed scheme avoids rollback in single fault scenarios. Multiple faults in two
consecutive checkpoint intervals would require rollback. However, multiiple faults are much

less likely than single faults.

IV. Preliminaries

The analysis is developed in two steps. First, we analyze a configuration consisting of a
single duplex system and a spare module available when needed. This is then generalized to
an environment where a spare is shared among many duplex systems. The two processing
modules in the duplex system are named A and B. The spare module is named S. The replicas
of the task executed on modules A and B are also called A and B. We use the terms state of
task A(B) and state of module A(B) interchangeably.

The state of a processing module is assumed to be checkpointed under program control
7]. Checkpointing under program control enables two replicas of a task executed on two PMs
p g prog p

to checkpoint at the same points during their execution.

The following introduces certain terminology to be used later. The computation re-



quired by the task is referred to as the useful computation. Other operations such as check-
pointing are not considered a part of the useful computation. An interval consists of a period
of useful computation followed and possibly preceded by other operations such as checkpoint-
ing and initiation of concurrent retry. An interval is identified by the useful computation
performed in that interval. If module () takes a checkpoint at the end of interval [, this
checkpoint (or state of ()) is denoted as C'Pyg. If the states of the processing modules A
and B at the end of interval [, are identical, then C' P,y and C Pyp are identical and both
are denoted simply as C'P,. When a processing module () is rolled back to a state saved
in checkpoint C'P,, we say that state of module @) is made consistent with C'P,. It module
A or B fails in interval [; then this interval is said to be a faulty interval. In the diagrams
illustrating various fault scenarios, we use a box notation illustrated in Figure 3 below. The
different operations listed in Figure 3 will be described later as they are used. Boxes shaded

with the same pattern represent the same operation and require the same amounts of time.

t
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Figure 3: Box notation

Figure 4 illustrates the ROLLBACK scheme for a duplex system. The horizontal axes
marked A and B represent execution of the two replicas of the task. Whenever a mismatch is

detected in the state of modules A and B, the system is rolled back to the previous checkpoint.

The length of useful computations between two consecutive checkpoints is denoted by
ty. The time taken for checkpointing is denoted by t.;, which also includes the time required
for comparing the checkpoints of processing modules A and B. We define T' = ¢, + t.,. The
time required to make the state of the two modules consistent with a previous checkpoint is

named ¢,. If the failure occurs in the first interval of execution of the task, then the task is
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Figure 4: ROLLBACK scheme for duplex systems

restarted instead of rolling back. The time required for initiating a restart is t;. The time
required for making the state of the modules in the duplex consistent with the state saved by

one of the modules is named ¢.,.

V. Roll-Forward Checkpointing Scheme

Section [T introduced the basic concept behind the proposed roll-forward checkpointing scheme
(RFCS). This section describes the RFCS scheme in detail. As shown below, after a fault is
detected, the spare module performs at most two successive intervals of concurrent retry to
complete the recovery. Therefore, the spare module has three possible states — (i) spare not
performing concurrent retry, (ii) spare in the first interval of concurrent retry, and (iii) spare
in the second interval of concurrent retry. Depending on how the faults occur, there are four
possible fault situations in RFCS. We now discuss each of these. Let t; denote the beginning
of an interval denoted as I;. Let the previous interval completed at ¢, be denoted as [;_;.
C P—1ya and C'P;_1)B, checkpoints of A and B at the end of I;_;, are assumed to be identi-
cal. The intervals following [; are named [,y and I;4,. It is assumed that the spare is not
permanently faulty. The concurrent retry scheme cannot be used if no spares are available.

The following discusses the four possible fault situations denoted as (A) through (D).

(A) No failure: Both processing modules A and B are fault-free in interval I; (see Figure 5).
If neither A nor B fails in interval [; then at time ¢;, the checkpoints of modules A and B will

be identical. The execution continues on to the following interval.
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Figure 5: Situation (A) — No failure

(B) Single failure: As seen below, unlike conventional duplex systems, our scheme requires
no rollback in this case. This situation occurs when a single module fails in interval I;.

Furthermore, no other module fails in intervals I; and I;1;.

Without loss of generality, assume that processing module B has a failure during interval
I; and modules A and S remain fault-free in intervals I; and [;44. This case is illustrated in

Figure 6.

When a fault occurs in interval [;, the checkpoints C'P;4 and C'P;p of A and B are
not identical, and the fault is detected at time t; (see Figure 6). When a fault is detected,
checkpoint C'P;_; is retained in the respective stable storages attached to modules A and B.
In addition, both checkpoints C'P;4 and C'P;p are saved. The following steps are then carried
out to recover from the failure. At the beginning of the recovery process, identity of the faulty

module B is not known to the Checkpoint Processor.

Step 1: Make the state of spare module S consistent with the state C'P;_; of modules A and
B. Copy the task’s executable code to S. The time required for this step, ¢,,, can be minimized

as discussed later. At time ¢;, spare module S is ready to perform the computation in interval

I;. Concurrently, A and B continue execution of next interval [;44.

Step 2: When S completes the computation in interval [, its state C'Pjg is compared with
CPj4 and CP;g. CP;g is found identical to C'Pj4, as A and S are both fault-free in interval

I;. Therefore, module A is considered fault-free in interval I;. The time required for this state
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Figure 6: Situation (B) — Concurrent retry without rollback

comparison step is {.,.. The state C'P;s of spare module 5 need not be saved on the stable

storage as it is used only for the comparison operation.

While S completes interval [;, A and B complete interval [;;; and take a checkpoint.
Note that A and B were in different states at the start of /;1;. A and B wait for state C'P;g
to be compared with C'P;4 and C'P;g. The length of the wait is denoted by ¢,. Once it is
determined that C'P;4 and C'P;g are identical, the states of A and B both are made consistent
with checkpoint C'P(;41)4. The time required for this operation is termed #.,. Note that A
and B did not rollback to the start of interval I; though processing module B failed during I;.
In the traditional rollback scheme, A and B would have rolled back.

Step 3: The concurrent retry is not complete yet. In the above step, the state of modules A
and B was made consistent with C'FP;;1)4. However, as yet it is not known whether A failed
during interval I;;, and whether C'F;11y4 was erroneous or correct. We only know that C'P;4
was correct.

After completing the state comparison in step 2, processing module S executes interval
I;41. In the meanwhile, modules A and B execute interval [;1,. When S completes [;44, its

state C'P;11)s is compared with C'F;41)4. As A and S are both assumed fault-free during
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I;11, CPginya and CPiqys will be found identical. C' P 1)4 and CF;41)s being identical
implies that A was fault-free until the end of interval 7;;,. This state comparison is completed

at time tg (see Figure 6).

As the computation performed by B in interval Iy, is irrelevant, the concurrent retry
scheme will tolerate a transient failure of module B in interval /;;; without additional overhead.
This is advantageous in situations where consecutive transient failures of a module are not
independent of each other and a module affected by a failure is more likely to fail soon again.
In our analysis of the concurrent retry scheme, however, we assume independence between any

two failures.

Step 4: In the previous step, it is determined that processing modules A and B were in
correct state at the start of interval I;4,. With this, the concurrent retry initiated by failure
of module B in interval I; is completed. Any failures in interval I;1, can be treated similarly

to the failures in interval I;. At time Zg, the spare is free to perform any other computation.

As seen above, concurrent retry avoided rollback in spite of a fault in B. The overhead

incurred is only (%, + ts,). In the traditional rollback scheme the overhead is much larger, at

least (t, + ten + 1,).

(C) Rollback after one interval of concurrent retry: In this situation, concurrent retry
does not succeed and the system is rolled back to the state at time tq. This situation occurs
when one of the duplexed modules has a failure in [; and another module also fails in I;.
There are three scenarios possible as listed in Table 1. For the sake of illustration, consider

scenario C.1 (see Table 1) illustrated in Figure 7.

As shown in Figure 7, concurrent retry begins when C'P;4 and C'P;p are found to be
different. The concurrent retry mechanism attempts to perform the same steps as in situation
(B). The procedure as detailed above for situation (B) is carried out through step 1. As S fails
in interval [;, in step 2, the comparison of C'P;g with C'P;4 and with C' P;p will not result in a
match. Therefore, the checkpoint processor cannot determine which of A and B is fault-free,
if any. Hence, the duplex system must be rolled back to the last known correct checkpoint,

C'P;_;. In this case, modules A and B rollback by two intervals and the rollback occurs after

11
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Figure 7: Situation (C) — Rollback after one interval of concurrent retry

the spare has completed one interval of concurrent retry. After the rollback is completed at

time t5, modules A and B are in a state identical to their state at ¢q.

(D) Rollback after two intervals of concurrent retry: In this situation also, concurrent
retry does not succeed and the system is rolled back. This case covers the four scenarios listed
in Table 2. The four scenarios may be summarized as follows: Module B (A) has a failure in
interval [; and processing modules A (B) and S are fault-free in intervals I; but A (B) fails in

interval [;11 and/or S fails in interval [;4.

Table 1: Fault scenarios possible in situation (C)

X = don’t care

Status in interval [;
Scenario A ‘ B ‘ S
C.1 fault-free | faulty | faulty
C.2 faulty | fault-free | faulty
C.3 faulty faulty X

12



Table 2: Fault scenarios possible in situation (D)

X = don’t care

Status in interval [; Status in interval ;44
Scenario A ‘ B ‘ S A ‘ B ‘ S
D.1 fault-free | faulty | fault-free || fault-free X faulty
D.2 fault-free | faulty | fault-free faulty X X
D.3 faulty | fault-free | fault-free X fault-free | faulty
D.4 faulty | fault-free | fault-free X faulty X

For the sake of illustration, consider fault scenario D.1 (see Table 2) illustrated in
Figure 8. As shown in Figure 8, concurrent retry begins when C'P;4 and C'P;p are found to be
different. The concurrent retry mechanism attempts to perform the same steps as in situation

(B). The procedure as detailed earlier for situation (B) is carried out through step 2. The

th = 2T+, +t vt +

tep |
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Figure 8: Situation (D) — Rollback after two intervals of concurrent retry

state comparison in step 2 will indicate that C'P;4 and C' P;g are identical, implying that state
C P;4 was the correct state at #;. As explained in step 2 of (B), at time ¢, the state of A and

B is made consistent with C'FP41)a.
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As S fails in interval I;11, the comparison of C'F;11y4 and C'P(;41)s performed in step
3 will result in a mismatch. Now, there is no way to determine whether C'F; 1y4 (state of
A at the end of [;11) was correct. Therefore, the state of the duplex system at the start of
interval I;1, cannot be guaranteed to be correct. Hence the duplex system rolls back to the
last known correct checkpoint, C'P;4. In this case, processing modules A and B rollback by
two intervals and the rollback occurs after the spare has completed two intervals of concurrent
retry. The time required for this rollback is ¢.,. Note that we have two parameters associated
with rollback — ¢, and {.,. The difference is that ¢, is the time required when both the modules
are restored to the state saved by the modules in their respective stable storage, while ¢, is
the time required when the state of the two modules is made consistent with the checkpoint
saved by one of the two modules. In some implementations, ¢, and t., could very well be
equal.

Table 3 summarizes the actions taken in the above four situations. As shown in Sec-
tion VI, concurrent retry can achieve lower average task completion time with lower variance

by avoiding rollback for the most likely fault scenarios.

Table 3: Actions required in various situations

Situation | Concurrent retry | Rollback
(A) No No
(B) Yes No
(C) Yes Yes
(D) Yes Yes

It may be noted that, although the above discussion pertains to a duplex system and a
spare module, this spare may not be used to convert the duplex system into a triple-modular
redundant (TMR) system, as the spare is shared by many duplex systems. When a spare is
shared, a duplex system utilizes the spare only when one of its modules fails, unlike a TMR

system where three modules are used at all times.
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A. Optimizations

To reduce t,,, the time required for initiating concurrent retry, a spare should be designated
for each task. Once the spare is designated, the executable code for the task can be sent to
the spare when the task starts executing rather than when a fault is detected. Similarly, the
checkpointed state may also be sent to the spare immediately after the duplex system takes
a checkpoint rather than sending the state after a fault is detected. (This is analogous to the

backup process approach used in Tandem systems [3]).

In step 1 of concurrent retry, instead of storing the entire checkpoints, just the signatures
of checkpoints C'P;4 and C'P;p may be saved on the stable storage. This scheme requires fewer
checkpoints to be stored simultaneously. However, with this modification, in situation (D),

the system will have to rollback to checkpoint C'P;_;.

If the number of spares available is more than one, then concurrent retry can be at-
tempted simultaneously on multiple spare modules. This can significantly increase the likeli-
hood of success of concurrent retry by tolerating multiple failures. The proposed mechanism

can be extended to tolerate multiple simultaneous failures without the overhead of retry.

B. Permanent Faults

The scheme described above can also locate permanent faults. Observe that in each of sit-
uations (B) through (D) above, it is either possible to locate the faulty module or one can
determine the modules that may be suspected to be faulty. For instance, in situation (B) a
faulty module can be correctly identified, while in situation (C) any of the three modules (A,
B and S) may be faulty. If any particular module is determined faulty or suspected to be
faulty too many times within a short interval of time, then the module may be assumed to be

permanently faulty and replaced.

For example, Figure 9 shows a scenario in which module B has developed a permanent
fault. Module B is determined as faulty in two consecutive concurrent retries. In this case, B

may be assumed to be permanently faulty and replaced.

15
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Figure 9: Tolerating a permanent fault: An example

V1. Performance of the RFCS Scheme

As seen above, both transient and permanent as well as single and multiple faults are con-
sidered. The proposed recovery technique considers all possible fault scenarios; however, the
analysis given here is for transient faults. For the analytical model developed here it is as-
sumed that failures of any two modules are independent. Occurrence of a transient failure
of a module is assumed to be a Poisson process with failure rate A\. The processing modules
are assumed to be prone to transient faults during all operations including checkpointing and
retry. Only the operation of making the state of a processing module consistent with a previ-
ously saved checkpoint is assumed to be performed reliably as in any checkpointing scheme.
This operation can be made robust in practice by detecting failures by comparing the restored
checkpoint and the restored module state after state restoration. If an error is detected then

this process is repeated and the state is restored again from the checkpoint.

In our analysis, we make a simplifying assumption that the time required to rollback (¢,)
is equal to the time required for initiating a restart (¢,). The analysis without the simplifying
assumption is very similar to the analysis presented here, only somewhat more tedious. The

notations used here are summarized below. Some of the notations were introduced in earlier

sections.

T, = total useful execution time of a task

16



Tk

T./n, where
number of equidistant checkpoints
time required to execute last & checkpoint intervals

T, 1s the time required to complete the task. After the task completes
the first interval of execution, time required to complete the remaining

task is 7,_1. For other k& > 1, 74 is defined similarly. Also, 79 = 0.
expected (average) value of

expected completion time of a task given that at least one failure occurred
during task execution.

variance of 7, = 7'_k2 — (7)?

Cumulative Distribution Function (CDF) of 7, = Prob(m, <)

time required to checkpoint the two modules in a duplex system. %,

includes the time required to compare the two checkpoints.

ty + ten. With no failures, task completion time is n1'.

time required to rollback.

time required to rollback to a previous state of one of the modules.

time required for comparing state of the spare with checkpoints of the

processing modules in a duplex system. We assume that ¢.. <., + ..
time required to initiate a concurrent retry.

max (tp + tee — ten, 0). Idle time.

The quantities of interest are:

o 7,7 In the absence of failures, RFCS and ROLLBACK schemes perform identically;

Tl 18 & good measure of how a scheme performs when failures occur.

e Average task completion time (7).

e Variance (v,) of the task completion time.

e CDF (F,(1)) of the task completion time.
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When only one interval remains to be executed after a fault is detected by check-
point comparison (as in situations (B) through (D)), concurrent retry does not result in early
task completion compared to the ROLLBACK scheme. Therefore, our analysis assumes that
concurrent retry is initiated only when the number of checkpoint intervals remaining to be
executed after fault detection is at least two. If the number of intervals remaining is 0 or
1 then the duplex system is rolled back to the previous checkpoint (no concurrent retry is

attempted).

Let pa through pp be the likelihood of occurrence of situations (A) through (D), re-
spectively, enumerated in Section V. From the discussion in Section V and the fault model

presented earlier, the following expressions are obtained.

pa = Prob(A and B are fault-free in interval I;) = e 2"

ps = Prob(B faulty in [;, A and S fault-free in [; and [;11)
+ Prob(A faulty in [;, B and S fault-free in [; and [;41)

= 2 (1 — M) o NIt 2t 2te)

pc = Prob(A and B faulty in ;) + Prob(A or B (not both) faulty in I; and S faulty in I;)
— (1 _ e—/\T)2 + 2 (1 _ e—/\T) e—/\T(l _ e—/\(tpr-l—tu-l—tcc))

pp = Prob(B faulty in I;, A and S fault-free in [;, A and/or S faulty in [;41)

+ Prob(A faulty in [;, B and S fault-free in [;, B and/or S faulty in [;11)

= 2(1— e—/\T) e~ o= AMiprttutice) (1-— e—/\(T-I—tu-HCC))

Also, let pyoy = 1 —py = 1 — e~ Note that ps + pg + pc +pp = 1 (as should be expected).
Let t4 = T, tg = 2T + ty + tey, to = 2T + ty + by, tp = 2T + ty + ty + te + Loy and
tron = T + .. Now, we obtain recursions for 75 and Fj(?). Recall that if a fault occurs in the

last two intervals, the system is rolled back. Therefore,

T = pala +pron (7T +ton) and 75 =27 (1)

If a fault occurs in any interval other than the last two, then concurrent retry is performed.

Therefore, when k > 3, from Figures 5 through 8, the following recursions are obtained.

Tr = pa (Tt +ta) +pe(Te2 +t8) +pc(T+tc) + po(Tir +tp) (2)

18



and

Fi(t) = palbh_i(t —ta)+ ppFia(t —tg) + pcli(t —tc) + ppFr_a(t —tp)  (3)

Starting with the above recursions, the following expressions can be obtained for n > 2

[12, 13]. !

_ qB (QAtA + g5l + qclc + thD) ((n _ 2){]51 + %)

Tt an (4)
+ 7 (95" + (=¢8)"™") + (72— qup Tz + (—q8)"*)

2 o to Tieg (7 05"+ (—a8)"~])

+2 (ga ta+qp tp) Y15 (?i [q; + (_QB)H_I_i])

= T | et T [ ) -

Hlaath + asth + gty + ap th) ((n—2)g5" + )

1+g9p

+51(g5" + (—gB)"™") + (S2—qapS1) (45" + (—gB)" %)

(5)

where

qx = px/(1 —pc), for X = A, B,C, D, q4ap = g4+ qp,

= % —t, ™= 27,

v = (T +1,) 2 vy =2 vy,

Si = v+ (m)?* and Sy = vy + (72)*.
Also,

n y T
g = At (6)
1—]9,4

Analysis of the ROLLBACK scheme

"When n < 2, the RFCS scheme is identical to the ROLLBACK scheme.
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Table 4: Parameters for task 1

‘ Tu ‘ tch ‘ tr ‘ ts ‘ tcc ‘ tcp ‘ tpr ‘
| 50 [ 0.50 [ 0.30 [ 0.30 | 0.70 [ 0.30 | 0.40 |

To compare the performance of the RFCS scheme with the performance of the ROLL-
BACK scheme, the following expressions for the mean completion time and its variance for

the ROLLBACK scheme are obtained [12, 13].

B _— | _ =207
Tn =N (e—zAT _tr) and v = n (T4 1) e T )

A. Performance Comparison

Performance of RFCS scheme is compared with the ROLLBACK scheme.? Parameters for a
hypothetical task named task 1 are listed in Table 4. Task 1 is used to compare performance

of RFCS and ROLLBACK schemes. The results presented here for task 1 are also valid over a

wide range of task parameters. For brevity, we have chosen only one set of parameter values.

Comparison of 7;

Recall that 7,7 is the expected task completion time given that at least one failure occurs
during the execution of the task. Figure 10 compares 7,7 for the RFCS and ROLLBACK
schemes. Observe that for the RFCS scheme, 7,5 is closer to nT" as compared to the ROLL-
BACK scheme. This is essentially because the RFCS scheme tries to avoid rollback even in

the presence of a fault, and therefore completes the task in about the same time as a fault-free

execution. Define

Talf (ROLLBACK) — 7,7 (RFCS)

(Tufn)
g is called the “relative gain” in 7,7 achieved by the RFCS scheme with respect to the
ROLLBACK scheme. In Table 5 relative gains for the RFCS scheme are listed for various

?The ROLLBACK scheme was presented in Section IV.

g(RFCS) =
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values of n and A. Observe that the performance of the RFCS scheme remains better over

a wide range of failure rate A. Table 5 lists the relative gain for A = 1072,107¢,107%, 1072,
However, to minimize the number of graphs in the paper, in most of the following discussion,

X is assumed to be 1072, Similar results can be obtained for other values of A as well.

Table 5: Relative gain achieved by the RFCS scheme

1073 | .325 | .488 | .590 | .660 | .710 | .747 | .800 | .834 | .858
1075 | .331 | .495 | .594 | .658 | .704 | .738 | .784 | .813 | .833
1072 | .331 | .496 | .594 | .658 | .704 | .738 | .784 | .813 | .833
10712 | .331 | 496 | .594 | .658 | .704 | .738 | .784 | .813 | .833

30
75 1 _
..o RFCS
70 |- ik 4. ROLLBACK .
65 F & |
++ N
e RO NI I o
B " O
@ ... evenrepren e ld PO e To O

% l l : ' | |

Figure 10: 7,7 for task 1 with A = 107°
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Mean and variance comparison

In Figure 11 variance v, is plotted versus the mean completion time 7, for the example task.
Each point on the mean-variance plot corresponds to a specific number of checkpoints. By
varying the number of checkpoints, different means and variances can be achieved. Observe
that for any mean and variance pair achieved using the ROLLBACK scheme, a pair with
lower mean and variance can be achieved using the RFCS scheme. For example, in Figure 11,
observe that if ROLLBACK scheme with n = 6 is used, then one may use the RFCS scheme
with n = 5, 6 or 7 and achieve lower mean completion time with lower variance. Also, in

general, the RFCS scheme can achieve a lower minimum average task completion time as

compared to the ROLLBACK scheme.

58 3
% ¥
5T - i i3 |
S
56 - 0 "F -
¢ 3
Mean Completion wn =10 %n=09
Time 7, 55 <> + | i
"'0.8 _|_n =7
& .
6 2
0.... [ o
53 ... RFCS <> _ 5 -
..+. ROLLBACK iyl =
52 ' |
0.1 1 10 100

variance v,

Figure 11: Mean completion time versus variance for task 1 with A = 1072

When the failure rate is low, the mean completion time is very close to the minimum
possible completion time n1', as failures occur infrequently. In such a situation one may still
use a larger number of checkpoints than the number that minimizes the average completion

time so as to reduce its variance. In Figure 11 for instance, for ROLLBACK scheme, 7, is
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minimized with n = 3. One may still use 10 checkpoints as the variance achieved with 10
checkpoints is lower (specifically, the variance is 3.76 with the mean being 55.64). In such a
situation, the concurrent retry scheme is useful to further reduce the variance while keeping the
mean low. RFCS scheme with 10 checkpoints achieves variance 1.06 with the mean being 55.22

— lower mean with lower variance as compared to the ROLLBACK scheme (see Figure 11).

Comparison of the CDF

The cumulative distribution function (CDF) of the completion time 7, is useful to determine
the percentage of jobs that finish by a given deadline. If the deadline requires that the task
be completed within #; time units after it starts execution, then (1 — F},(#4)) is the probability
that the deadline is missed. Figure 12 plots (1 — F,,(¢)) for task 1. Comparison of the plots
for RFCS and ROLLBACK schemes indicates that the likelihood that a job will miss a tight
deadline is lower with the RFCS scheme as compared to the ROLLBACK scheme.

1 ?
I e— i
b
01 i
0.0 _
L=Fu(t)  g.001 |- 1
0.0001 - i
L-e..._._......_:
le=05+-" & Rrcs i
.+ ROLLBACK =
o]
le — 06 ' | | I
55 60 65 70 75

time ¢

Figure 12: (1 — F,(t)) versus ¢ for task 1 with n = 10 and A = 1075.

In Figure 12, observe that the ROLLBACK scheme performs better than the RFCS
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scheme when t; is in a small interval around ¢ = 67. The reason is that when a rollback occurs
in the concurrent retry scheme, the overhead is larger compared to the ROLLBACK scheme.
In spite of this, the mean and variance achieved with the RFCS scheme are lower because the
RFCS scheme results in a rollback only when multiple modules fail within a short interval of

time; the likelihood of such multiple faults is much smaller than a single fault.

VI1I. Spare Utilization

The analysis in Section VI assumed that a spare is available for concurrent retry whenever
needed. When many duplex systems share a small number of spares for concurrent retry, a
spare may not be available for concurrent retry if it is busy performing a retry for some other
duplex system. When a failure occurs, if a spare is not available, the duplex system rolls back.
When more than one duplex system shares a spare, spare availability perceived by any duplex
systems is less than 1. The earlier analysis for 7, and v,, is valid if average spare utilization U
is small. Table 6 enumerates the length of time for which the spare is used in various situations

described in earlier sections.

Table 6: Length of spare use in various situations

‘ Situation ‘ Spare Use

(A) SqA = 0

(B) Sp = tpr + 20y + 2t
(C) S¢ = lpr +tu + lee
(D) Sp = tpr + 20y + 24c

The following closed form expressions for utilization U of a spare by a single duplex

system can be obtained for n > 2 [12, 13].

po_ (i) (entacse tapsn) ((n -2 + R 5)

Tn

Table 7 lists spare utilization U for the RFCS scheme. Observe that the average

spare utilization is quite low and decreases as the number of checkpoints (n) increases or
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as A decreases. If the failure rate is very high and the checkpoint interval is large, then the
likelihood that a module fails in any checkpoint interval would be high, resulting in a high

spare utilization. Such a situation may be avoided by taking checkpoints more frequently.

Table 7: Spare utilization by a single duplex system with task 1

| A | n | Urrcs) | | A | n| Urrcs) |
1072 | 4 | 0.02549 1076 | 4 2.6 x107°
8 | 0.02085 8 |21x107°
10 | 0.01844 10 [ 1.8 x 107°
16 | 0.01386 16 | 1.4 x 107¢

A. Multiple duplex systems

A multiprocessor system with a single spare module shared by up to six duplex systems was
simulated. The simulation assumed that all the duplex systems execute task 1 repeatedly. A

was chosen to be 1073,

The system is simulated for 101° time units with an event-driven simulator developed
in language C. Table 8 lists the mean completion time 7, variance v,, and spare utilization

obtained by simulation. D is the number of duplex systems that share a single spare.

Table 8: Simulation results for n = 10 and A = 107 : D duplexes sharing a single spare

D

115522 ] 1.06 | 0.0184
2 155.23 | 1.10 | 0.0362
3 [ 55.23 | 1.15 | 0.0533
4 1 55.24 | 1.20 | 0.0699
5 | 55.25 | 1.24 | 0.0859
6 | 55.25 | 1.28 | 0.1013

Observe that even when many duplex systems share a single spare, the spare utilization

is quite low. Also, when D > 1, mean task completion time 7, and variance v, achieved by
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the RFCS scheme remain better compared to the mean (55.64) and variance (3.76) achieved
by the ROLLBACK scheme.

VIII. Implementation Issues

Stable Storage The performance of the RFSC scheme depends on the ability to take check-
points efficiently. The checkpointing operation requires that the state of the two replicas be
compared and the state saved on a stable storage. Although the conventional mirrored-disk
stable storage may serve the purpose, special purpose hardware can improve the performance
significantly. For instance, the architecture of Figure 1 facilitates fast checkpointing if the
stable storage is implemented similar to the “fast stable storage” proposed by Banatre et al.
[2]. The architecture in Figure 1 is similar to an architecture presented in [2]. The check-
pointing operation with this architecture can be performed as follows: (a) the two modules in
the duplex system store their state in the respective fast stable storages, (b) The fast stable
storage sends the signature of the checkpoints to the checkpoint processor, (¢) the checkpoint
processor compares the signatures to detect any failures. Thus, this architecture can reduce
the checkpointing time by minimizing the time required to save the state in stable storage
and also the time required to compare the two states (only signatures need be sent over the

network).

Another possibility is to make each of the SS modules in Figure 1 self-checking, instead
of stable. It is cheaper and easier to make a memory module self-checking (as compared
to stable). This organization is a subject of future research. If the SS modules are self-
checking, then the SS modules can be used as a fast temporary storage for the checkpoints. In
this organization, the processors would save their state in the SS modules which would then
asynchronously download the checkpoints into a stable storage such as a mirrored disk. A
failure of an SS module, before the state is downloaded into the stable storage, will result in

a rollback of the duplex system.

Stable Storage Size The proposed scheme requires five process images to be stored on a
stable storage when a failure occurs. This requirement is larger than in traditional duplex

and triple modular redundant systems. The proposed RFCS approach achieves improved
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performance at a higher stable storage cost. When the checkpoint size is very large, the

increase in the stable storage cost may be a constraint in implementing the proposed approach.

As pointed out earlier, when a write-back cache memory represents the volatile state
and the main memory is stable (e.g., similar to Sequoia architecture [3]), the volatile storage
(VS) block in a processing module in Figure 1 represents the write-back cache and the stable
storage (SS) block represents the stable main memory. In this case, the size of the checkpoint
is determined by the number of dirty cache blocks. The checkpoint size in this system is likely
to be much smaller (than a system where entire memory needs to be checkpointed), making

it more practical to use the roll-forward checkpoiting scheme.

Equidistant Checkpointing The discussion in the paper assumed that all the checkpoint
intervals are of identical length. There are two aspects of this issue. (a) The proposed scheme
can also be used when the checkpoints are not equidistant. An adaptive scheme suggests itself
— concurrent retry should be performed only if the length of the interval in which the failure
is detected is at least ¢; for a given ¢;, otherwise the system should be rolled back. Essentially,
when the overhead of performing a concurrent retry is not small compared to the length of
the faulty checkpoint interval, concurrent retry should not be performed. (b) Although it may
not be possible to make all checkpoint interval lengths exactly identical, it is possible to insert
checkpoints in the executable code such that the interval lengths are approximately equal.
For example, [7] presents a compiler-driven approach for this purpose. Such an approach is

adequate for achieving performance improvements using the proposed scheme.

Checkpoint Processor The existence of a reliable checkpoint processor is necessary to co-
ordinate the proposed scheme. Two approaches may be used to achieve this. One approach is
to implement a reliable checkpoint processor using masking redundancy and ensure that the
likelihood of failure of the checkpoint processor is much smaller as compared to other compo-
nents in the system. The other approach is to distribute the functionality of the checkpoint
processor into multiple checkpoint processors, each being self-checking. These checkpoint pro-
cessors must collectively coordinate the RFCS scheme. As the function of the checkpoint
processor is quite simple, it should be possible to make it self-checking without exorbitant

overhead.
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IX. Communicating Processes

The discussion in the paper assumed that the processes executing on different duplex sys-
tems do not communicate with each other. In this section we argue that if the processes
communicate via message passing, then the roll-forward recovery scheme may result in better
or comparable performance as a rollback scheme. However, in this case, the RFCS scheme
must be combined with message logging. (For event-driven processes, input events should be
logged.) With single faults, no rollback is necessary even if processes communicate by mes-
sage passing. This itself can be quite useful in an environment of communicating processes
because recovery using coordinated checkpoints may need to be invoked rarely. Rollback to

coordinated checkpoints is only required when there are multiple failures.

When processes communicate with each other via message passing and each process is
duplicated, to protect from an arbitrary failure of a process, it is necessary to use a Byzantine
agreement algorithm with authenticated messages. Provided at most one sender or receiver
replicais faulty, it is possible to design an agreement protocol whereby each replica of a receiver
process will either obtain the correct message or detect failure of a sender process replica [14].
Additionally, it is possible to ensure that the fault-free replica of a process will detect the
failure of the other replica before the effect of the failure is propagated to other processes [14].
We consider single fault situations only. In the following we omit the details of the agreement

protocol. It is assumed that messages are being logged for the purpose of recovery.

When using RFCS scheme for communicating processes, when a spare re-executes a
checkpoint interval, appropriate messages logged on the stable storage should be sent to the
spare, to allow it to reach the correct state. Other than this modification, the RFCS scheme

described earlier can be used as such for communicating processes.

Figure 13 illustrates a scenario where concurrent retry can successfully identify the
failure of a process and other processes continue execution without any performance penalty.
Py and P are replicas of process P (they form a duplex system) and @1 and ()5 are replicas
of process (). P; failed at time ¢#; but sent the correct message M to process ), and then
sent an incorrect message R’. Failure of P; is not detected until message R’ is sent. Process
() assumes that message M received from P is error-free, this assumption is correct provided

at most one of P, and P, is faulty (or the probability of two faulty replicas sending same
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Figure 13: RFCS scheme and communicating processes

erroneous message is small). Failure of Py is detected when it sends message R” and P, sends
message R. However, it is not known which of P; and P; has failed. Concurrent retry can be

used to determine which of P, and P, is faulty. Two cases arise:

e During concurrent retry, no process blocks waiting for a message from process P: In this
case, there will be no loss of performance in spite of failure. If a rollback scheme were

used, there would be performance penalty (for process P) due to the single failure.

e Some processes block waiting for a message from process P: In this case, the performance
penalty is no worse that that for the rollback scheme. When the rollback scheme is
used, each process blocked on P must wait for P to recover from the failure. For both
rollback and roll-forward schemes, the duration for which such processes are blocked
is approximately equal to the duration from the previous checkpoint of P till the time

when failure of P, was detected.

When multiple failures occur, the performance penalty could be larger than the rollback
scheme. From the analysis in Section VI it is apparent that the impact of multiple failures on
the average performance is much smaller than single failures. Therefore, we conjecture that
roll-forward scheme will perform well in the environment of communicating processes also.

Further research is needed to verify this conjecture.

X. Further Work

The discussion in this paper implicitly assumed that a module fault is detected only by com-

paring the state of the two modules in a duplex system. However, in reality, some of the faults
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in a module can be detected by the error detection mechanisms built into a processing module.
The fault coverage, say ¢, of such mechanisms is typically non-zero but less than perfect. The
faults that escape detection by the built-in detection mechanism are detected by comparing
the state of the two modules in a duplex system at each checkpoint. For the sake of simplicity,
the discussion here assumed that coverage ¢ is 0. However, when 0 < ¢ < 1, two roll-forward
checkpointing schemes can be obtained (similar to the RFCS scheme presented here). The two
schemes differ primarily in their treatment of a fault situation where, in a checkpoint interval,
one of the modules has a fault that is detected by the error detection mechanism built into the
module. Two actions are possible in such a scenario which leads to two different roll-forward

schemes [12]:

e One option is to assume that the other module is fault-free, and copy the state of this

module to the faulty module (which had a detected failure).

e The other option is to not assume that the other module is fault-free. Instead, a con-

current retry is performed to achieve recovery.

Note that the first of the above two schemes results in an unreliable outcome, if in a check-
point interval, one module has a failure detected by its built-in detection mechanism and the
other module has an undetected failure. Therefore, in general, the first scheme achieves a
lower reliability as compared to the second scheme. However, the first scheme has a better
performance as compared to the second scheme. Also, note that both the schemes perform
better than rollback schemes with comparable reliabilities. A detailed analysis of these two

schemes can be found in [12].

XI. Conclusion

In this paper, a fault-tolerant multiprocessor environment wherein each task is executed simul-
taneously on two processing modules is considered. A pool of a small number of nondedicated
spares is assumed available. A pair of processing modules performing the same task forms a
duplex system. A scheme is proposed to improve the performance of such duplex systems. In
the proposed scheme, at each checkpoint the states of the two processing modules executing

the task are compared for detection of faults. If a fault is detected, instead of usual rollback,
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the proposed concurrent retry mechanism is used for identification of the faulty module. The
concurrent retry mechanism uses a nondedicated spare to perform recovery. The scheme is

named Roll-Forward Checkpointing Scheme (RFCS).

RFCS scheme provides a mechanism for identifying the faulty module and recovering,
in most likely cases, without the overhead of rollback. For this purpose, a small number
of spares is shared by many duplex systems in the multiprocessor. The proposed scheme
achieves a lower average execution time with a lower variance as compared to the rollback
scheme. It is demonstrated that the proposed scheme increases the likelihood that a task
will complete within a tight deadline in spite of transient failures. Analytical and simulation

results are obtained to demonstrate the performance improvement achieved by the proposed

RFCS scheme.
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