
Multiparty Equality and Byzantine Broadcast
using Random Linear Codes in Point-to-Point Networks ∗

Guanfeng Liang and Nitin Vaidya
Department of Electrical and Computer Engineering, and

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

gliang2@illinois.edu, nhv@illinois.edu

June 5, 2011

∗This research is supported in part by Army Research Office grant W-911-NF-0710287 and
National Science Foundation award 1059540. Any opinions, findings, and conclusions or recom-
mendations expressed here are those of the authors and do not necessarily reflect the views of the
funding agencies or the U.S. government.

1 Introduction
In this paper, we present a competitive algorithm for multiparty equality computation in a

point-to-point network. We also use this algorithm to obtain a competitive algorithm for Byzantine
broadcast. The design of Byzantine broadcast is facilitated by the use of a simple random coding
strategy in solving the equality problem.

Network model: We consider a point-to-point network, modeled by a simple graph G(V,E).
V = {1, 2, · · · , n} is the set of n nodes. The system is assumed to be synchronous. The n nodes are
connected by a set of directed links E, with li, j denoting the link from node i to node j. Each link
li, j has capacity di, j. t di, j bits may be reliably transmitted on link li, j in duration t (using a suitable
time unit). We assume that di, j is integer for all i, j.

2 Multiparty Equality (MEQ)
The objective of the multiparty equality problem is to determine whether all the n inputs are

identical. We consider the following version of this problem, which we will refer to as MEQ
hereafter.

• Each node i is given an input xi of length L bits.

• Each node sets an outout bit to be 0 or 1. The output bit is initialized at each node as ⊥.

• If all the inputs are equal, then the 1-bit output of all the nodes is 0. Otherwise, at least one
node produces output equal to 1.

The execution time of a protocol for solving MEQ is the duration of time required from the initiation
of the protocol until all the nodes have set their output to 0 or 1. For a given protocol, the execution
time may depend on the input values at the different nodes. For a MEQ protocol P for a graph
G, define t(G, L,P) as its execution time, in the worst case, to solve the MEQ problem with L-bit
inputs. Throughput of protocol P is then defined as

L
t(G, L,P)

Capacity of the MEQ problem is defined as follows, where the supremum is taken over all protocols
that solve the MEQ problem for L bit inputs.

CMEQ(G) � sup
P solves MEQ

lim
L→∞

L
t(G, L,P)

. (1)

In this report, we present an algorithm that solves the multiparty equality (MEQ) problem [5]
in point-to-point networks with throughput at least 1/2 the capacity. Our approach is based on
a simple random linear coding strategy. In particular, in our randimg coding strategy, each node
(party) computes some random linear functions of its own local input (interpreted as symbols
from a suitable field), and transmits the values of the random functions to the other nodes on
its outgoing links. Each node then computes its output using the values received from the other
nodes, and its own input.

1

3 Preliminaries

3.1 Some MinCut Results
In our work, we consider a class of protocols wherein the number of bits transmitted on a

certain link in each “round” or step of the algorithm is constant (depends only on L), independent
of the actual input values provided to the nodes. In our recent work [5], we have shown that,
given a static protocol P for the MEQ problem that transmits α bits on a certain directed link li, j,
and β bits on a directed link l j,i, it is possible to design a static MEQ protocol that transmits α + β
bits on link li, j and 0 bits on link l j,i, and vice-versa. In other words, it is possible to “invert” the
direction of communication by a certain static MEQ protocol, and still obtain another correct static
MEQ protocol.1 This, in turn, implies that it is sufficient to ignore the directions of the links in the
network, and consider a undirected version of the point-to-point network. The undirected version
of graph G replaces directed links li, j and l j,i by a single undirected link with capacity di, j + dj,i. The
undirected cuts below correspond to the undirected graph thus obtained starting from G.

Let W be the minimum of the undirected cuts of the point-to-point network G (that is mincut
in the undirected version of graph G). Thus,

W =MINCUTundirected(G) � min
s⊂V,s�φ

CUTundirected(s,V − s). (2)

It can be shown that the capacity of the MEQ problem in directed graph network G is upper
bounded by W, i.e.,

CMEQ(G) ≤W. (3)

The appendix sketches the proof of the above upper bound.
For throughput and capacity, we will use the units of symbols/unit time, where symbols size and

time unit are defined suitably. Capacity of each link (in units of symbols/unit time) is assumed to
be an integer.

In our discussion below, we will find it convenient to interpret the point-to-point network as a
directed multigraph with unit capacity edges. Thus, the communication link of capacity di, j from
node i to node j will now be modeled using di, j unit capacity directed edges from node i to node
j. Similarly, by ignoring the directions in this multigraph, we obtain an undirected multigraph
representation of the network. The mincut in this undirected multigraph will be W as defined
above. It is known [4] that in such an undirected multigraph with mincut W, there exist at least
W/2 ≤ R ≤ W edge disjoint undirected unit-capacity spanning trees (recall that the edges in the
multigraph are all unit capacity edges). In Section 4, we present a random linear code-based
protocol that solves the MEQ problem at rate R symbols/time unit (where the symbol size and time
unit are chosen suitably).

3.2 Example
We now illustrate the four representations of the point-to-point network, listed below, which

we use in our discussion:

• G: Simple directed graph

1In fact, similar inversion can be performed in a more general class of MEQ protocols as well.

2

• G∗: Directed multigraph with unit capacity edges

• G: Simple undirected graph

• G∗: Undirected multigraph with unit capacity edges

Figure 1(a) shows a directed point-to-point network consisting of four nodes. The numbers
near the various links are the link capacities, in suitable units. We assume that the link capacities
are integers. Figure 1(b) shows an undirected graph representation of the network in figure 1(a).
Note that the capacity of the undirected link between nodes A and B is the sum of the capacities of
the links AB and BA in figure 1(a). Figures 1(c) and 1(d) show directed multigraph, and undirected
multigraph representation, respectively. In our multigraph representations, each edge has unit
capacity. For instance, there are three edges between nodes A and B in the undirected multigraph
(figure 1(d)), since the undirected edge AB in figure 1(b) has capacity 3. Figure 1(e) shows an
unit-capacity edge disjoint spanning tree in the directed multigraph, with the root of the tree
being node A. Figure 1(f) shows two unit-capacity edge disjoint spanning trees for the undirected
multigraph. The edges in each spanning tree are drawn differently.

MINCUTundirected(G), which is equal to MINCUT(G) (Figure 1(b)) is 2 (between node C and
nodes {A,B,D}), whereas MINCUTdirected(G) (Figure 1(a)) is 0 (from node C to nodes {A,B,D}).
3.3 Invertibility of a Matrix with a Random Diagonal

Let A be an arbitrary fixed m-by-m matrix. Consider a random m-by-m diagonal matrix C with
m diagonal elements x1, · · · , xm.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0 0 · · · 0
0 x2 0 · · · 0
0 0 x3 · · · 0
...

. . .
...

0 · · · · · · 0 xm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

For some integer t, 1 ≤ t ≤ m, the diagonal elements of C are partitioned into t sets si =
{xsi,1 , · · · , xsi,|si | }, i = 1, · · · t, such that xsi,1 = · · · = xsi,|si | = Xi for all i ≤ t. Xi’s are random vari-
ables. X1, · · · ,Xt are selected independently and uniformly randomly from GF(2p). Then we
have:

Theorem 1 The probability that the m-by-m matrix C − A is invertible is lower bounded by:

Pr{(C − A) is invertible} ≥ 1 − m
2p . (5)

Proof: Consider the determinant of matrix C − A.

det(C − A) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x1 − a1,1) −a1,2 · · · −a1,m
−a2,1 (x2 − a2,2) · · · −a2,m
...

. . .
...

−am,1 · · · −am,m−1 (xm − am,m)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

= (x1 − a1,1)(x2 − a2,2) · · · (xm − am,m) + other terms (7)

= Πt
i=1X|si|

i + Qm− (8)

3

(a) Directed Simple Graph G (b) Undirected Simple Graph G

(c) Directed Multigraph G∗, every directed link
has capacity 1

(d) Undirected Multigraph G∗, every undi-
rected link has capacity 1

(e) Directed spanning tree in G∗ rooted at node
A

(f) Undirected spanning trees in G∗

Figure 1: Graph representations of the network

4

The last step above is obtained by replacing xi’s in C − A by Xj’s as appropriate. The first term
above, Πt

i=1X|si|
i , is a degree-m polynomial of X1, · · · ,Xt. Qm− is a polynomial of degree at most

m − 1 and it represents the remaining terms in det(C − A). det(C − A) cannot be identically zero
since it contains only one degree m term. Then by the Schwartz-Zippel Theorem, the probability
that det(C − A) = 0 is ≤ m/2p. Since C − A is invertible if and only if det(C − A) � 0, we conclude
that

Pr{(C − A) is invertible} ≥ 1 − m
2p (9)

�

4 MEQ Protocol with Random Linear Code
In this discussion, we consider the undirected multigraph representation of the network, with

each edge being a unit-capacity edge. For an undirected multigraph G∗ with (undirected) mincut
W, as noted previously, R ≥ W/2 undirected unit-capacity edge disjoint spanning trees exist. To
each unit-capacity edge in each undirected spanning tree, we now assign a direction according to
the corresponding link directions in the underlying directed network G. We want to point out that,
after the directions are assigned to the links in a undirected spanning tree, it may not necessarily
become a directed spanning tree. These directed unit capacity edges will be used in the algorithm
below. Note that between each pair of nodes there may be multiple such unit capacity edges.

We represent input xi at each node i as a column vector of R symbols from GF(2p): [xi(1), · · · , xi(R)]T.
So the size of each local input is pR bits. Every node i computes coded symbols as random linear
combinations of the R local input symbols. For example, a coded symbol can be written as

y = c(1)xi(1) + c(2)xi(2) + · · · + c(R)xi(R) = cTxi. (10)

where c above represents the coefficient vector. The coefficients c(1), · · · , c(R) are chosen randomly
from GF(2p). On each of its outgoing unit capacity edges (obtained from the spanning trees), node
i sends 1 randomly coded symbol obtained as a linear function of its R-symbol input xi. The
coefficients, although randomly chosen, can be viewed as a part of the algorithm specification,
and assumed to be known to the nodes. Upon receiving a coded symbol y, node i just checks if
y = cTxi. If any one of the received coded symbol fails this check, node i sets its output bit to 1
(since a mismatch of inputs has been detected), otherwise the output is set to 0. In other words,
on receiving a coded symbol from node j, node i will not detect a mismatch if

c(1)xi(1) + · · · + c(R)xi(R) = c(1)xj(1) + · · · + c(R)xj(R), (11)

which is equivalent to

c(1)(xi(1) − xj(1)) + · · · + c(R)(xi(R) − xj(R)) = 0. (12)

4.1 Representing a spanning tree with a (n − 1)-by-(n − 1) matrix
The coded symbols are transmitted according to the R unit-capacity spanning trees. Let us

label the trees as T1, · · · ,Tk, · · · ,TR. Each tree Tk can be represented by a (n − 1)-by-(n − 1) matrix
Ak that has the following structure:

• Each row corresponds to exactly one edge in tree Tk.

5

• If directed edge (1, i) (i > 1) is in tree Tk, then there is a row in Ak in which the (i − 1)-th
element is 1, and the rest of the entries are 0.

• If directed edge (i, 1) (i > 1) is in tree Tk, then there is a row in Ak in which the (i − 1)-th
element is −1, and the rest of the entries are 0.

• If directed edge (i, j) where 1 < i < j, is in tree Tk, then there is a row in Ak in which the
(i − 1)-th entry is −1, the (j − 1)-th entry is 1, and the rest of the entries are 0.

• If directed edge (i, j) where 1 < j < i, is in tree Tk, then there is a row in Ak in which the
(i − 1)-th entry is 1, the (j − 1)-th entry is −1, and the rest of the entries are 0.

Observe that, for edges incident on nodes 1, the corresponding rows have exactly one non-zero
entry. Also, the row corresponding to an edge that is incident on node i has a non-zero entry in
column i − 1. Example of Ak with Tk = {(1, 2), (2, 3), (2, 5), (5, 4)} is as follows:

Ak =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
−1 1 0 0
−1 0 0 1
0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (13)

Since there must be at least one edge in Tk that is incident on node 1, there must be at least one
row of Ak that has only one non-zero element. Also, since every node is covered by at least one
edge in Tk, every column of Ak has at least one non-zero element(s). Since there is at most one edge
between every pair of nodes in Tk, no two rows are non-zero in identical columns. Therefore, by
row manipulation, we can transform matrix Ak into another matrix in which every row and every
column has exactly one non-zero element. It then follows that Ak must be invertible.

4.1.1 Matrix representation of the MEQ solution
For any positive integer r ≤ R, let us denote the difference in the r-th input symbols at x1

and xi as e(i, r), defined as e(i, r) = x1(r) − xi(r). We define a “difference-vector” of the n inputs,
corresponding to the r-th input symbol, as

er =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e(2, r)
e(3, r)
...

e(n, r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

Note that the differences are defined with respect to the input at node 1. Let ck,r,l be the r-th
coefficient used to compute the coded symbol transmitted on the edge corresponding to the l-th
row of Ak. That is, if this transmission occurs from node i, then the symbol transmitted is computed
as

ck,1,lxi(1) + ck,2,lxi(2) + · · · + ck,R,lxi(R)

Define Ck,r = diag(ck,r,1, · · · , ck,r,n−1) be the diagonal matrix whose diagonal is [ck,r,1, · · · , ck,r,n−1]. Then
the (n− 1) equalities in the form of Equation 12 that hold for the (n− 1) symbols transmitted on the
(n − 1) edges in Tk can be represented using the equation below.

Ck,1Ake1 + Ck,2Ake2 + · · · + Ck,RAkeR = 0. (15)

6

Define (n − 1)k × (n − 1)k matrix Mk as

Mk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,1A1 C1,2A1 · · · C1,kA1
C2,1A2 C2,2A2 · · · C2,kA2
...

Ck,1Ak Ck,2Ak · · · Ck,kAk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16)

Then instances of Equation 15 corresponding to all the R spanning trees can be collectively repre-
sented as follows.

MR ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
e2
...

eR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0. (17)

When MR is invertible (non-singular), for the above equality to hold, e1, · · · , eR must all equal 0,
which is equivalent to x1 = · · · = xn. So the random linear coding protocol solves the MEQ problem
at rate R correctly if MR is invertible. So all we need to show is that when the diagonal elements
of each matrix Ck,r are chosen at random, the matrix MR is invertible with high probability.

Theorem 2 Matrix MR is invertible with probability at least

1 − (n − 1)R
2p . (18)

Proof: We prove that Mk is invertible with high probability for 1 ≤ k ≤ R. The proof is by
induction, with k = 1 being the base case.

Base Case: k = 1

For k = 1,
M1 = C1,1A1 (19)

A1 is a (n− 1) × (n− 1) invertible matrix, and thus has rank (n− 1). Since C1,1 is a (n − 1) × (n− 1)
diagonal matrix, its rank is also (n − 1) provided that all its n − 1 diagonal elements are non-zero.
Thus, the rank of M1 is (n − 1) as well provided that all the diagonal elements of C1,1 are non-zero.
Since each of the diagonal elements is chosen uniformly randomly from GF(2p), this event occurs
with probability (

1 − 1
2p

)n−1
≥ 1 − n − 1

2p

Induction Step: k to k + 1
Now assume that the (n − 1)k × (n − 1)k matrix Mk (1 ≤ k < R) is invertible with probability

≥
(
1 − n−1

2p

)k
. The (n − 1)(k + 1) × (n − 1)(k + 1) matrix Mk+1 can be written as

Mk+1 =

(
Mk Dk
Fk Ck+1,k+1Ak+1

)
, (20)

7

where

Dk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,k+1A1
C2,k+1A2
...

Ck,k+1Ak

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(21)

is a (n − 1)k × (n − 1) matrix, and

Fk =
(
Ck+1,1Ak+1,Ck+1,2Ak+1, · · · ,Ck+1,kAk+1

)
(22)

is a (n − 1) × (n − 1)k matrix. Ck+1,k+1Ak+1 is a (n − 1) × (n − 1) matrix. Recall that elements of all
these matrices are from GF(2p).

Matrix M′k+1 below has the same rank as Mk+1 because the n(k + 1) × n(k + 1) matrix below
formed using identity matrices I(n−1)k and I(n−1) has full rank.

M′k+1 =

(
I(n−1)k 0
−FkM−1

k I(n−1)

)
Mk+1 (23)

=

(
I(n−1)k 0
−FkM−1

k I(n−1)

) (
Mk Dk
Fk Ck+1,k+1Ak+1

)
(24)

=

(
Mk Dk
0 Ck+1,k+1Ak+1 − FkM−1

k Dk

)
. (25)

The matrix below has full rank because Ak+1 is invertible.(
I(n−1)k 0

0 A−1
k+1

)

Then it follows that matrix M′′k+1 below has the same rank as M′k+1, and hence the same rank as
Mk+1.

M′′k+1 = M′k+1

(
I(n−1)k 0

0 A−1
k+1

)
(26)

=

(
Mk Dk
0 Ck+1,k+1Ak+1 − FkM−1

k Dk

) (
I(n−1)k 0

0 A−1
k+1

)
(27)

=

(
Mk DkA−1

k+1
0 Ck+1,k+1 − FkM−1

k DkA−1
k+1

)
(28)

Now we show that the (n− 1) × (n− 1) matrix Ck+1,k+1 − FkM−1
k DkA−1

k+1 above is invertible with
high probability. Note that the values of the diagonal elements of the diagonal matrix Ck+1,k+1 are
chosen independent of FkM−1

k DkA−1
k+1. So by Theorem 1, we can conclude that the probability of

Ck+1,k+1 − FkM−1
k DkA−1

k+1 being invertible is lower bounded by 1 − (n − 1)/2p.

Since Mk is invertible with probability≥
(
1 − n−1

2p

)k
, and Ck+1,k+1−FkM−1

k DkA−1
k+1 is invertible with

probability ≥
(
1 − n−1

2p

)
, it follows that M′′k+1 – and, therefore, Mk+1 – is invertible with probability

≥
(
1 − n − 1

2p

)k (
1 − n − 1

2p

)
=

(
1 − n − 1

2p

)k+1

8

This implies that MR is invertible with probability

≥
(
1 − n − 1

2p

)R
≥

(
1 − (n − 1)R

2p

)

For specific n and R, the above lower bound can be made arbitrarily close to 1 by picking a
large enough value of p. �

4.1.2 Variation on the Random Coding Strategy
Consider a variation on our random coding strategy wherein, for a tree Tk, suppose that we

choose some of the coding coefficients identically, instead of choosing them independently (e.g,
ck,r,l = ck,r,m for some l,m). In particular, with this modified strategy, the coefficients are chosen
such that the diagonal elements of each matrix Ck,r are partitioned such that the elements in each
partition are identical, whereas the values in different partitions are chosen independently. The
coefficient in matrix Ck,r for different k, r are chosen independent of each other. As a special case
of this strategy, for a certain k, r, we may have ck,r,l = ck,r,m ∀l,m. It turns out that Theorem 1
holds even when the diagonal elements of matrix Ck,r are partitioned as above. Therefore, even if
ck,r,l = ck,r,m for some (or all) l,m pairs, Ck,r is still invertible with probability at least 1 − (n − 1)/2p.
Thus, Theorem 2 holds for the modified random coding strategy as well. This fact will be useful
in our construction of a Byzantine broadcast algorithm below.

4.1.3 Sub-Optimality of the Random Linear Coding Protocol
As we mentioned in the beginning of this section, in a point-to-point network G(V,E) with

minimum undirected cut W, at least R ≥ W/2 unit-capacity spanning trees can be found. So the
random linear coding protocol we just described solves the MEQ problem at rate R ≥ W/2 with
high probability. Since the capacity of the MEQ problem CMEQ ≤W, it follows that

R ≥ CMEQ/2. (29)

It is not difficult to construct networks in which R < CMEQ. This implies that, although the
proposed scheme achieve throughput at least 1

2 of the capacity, it does not achieve capacity in
general.

5 Byzantine Broadcast with Random Linear Codes
Using the result from the previous section, we sketch a Byzantine broadcast algorithm using

random linear codes, which achieves at least 1/2 of the capacity of Byzantine broadcast in point-
to-point networks. For the broadcast, one of the nodes, say node 1, acts as the source, and wants
to broadcasts a value to all the other nodes. At the completion of the algorithm, all the fault-free
nodes in the network receive (or “agree on”) an identical value. In addition, the agreed value is
identical to the source node’s value, provided that the source node itself is fault-free. Throughput
and capacity of broadcast in point-to-point networks can be defined analogous to similar quantities
for multicast and unicast. For more details, please refer [6].

The core of the broadcast algorithm designed using the above solution for equality is as follows:

9

• Step 1: Node 1 uses a traditional store-and-forward approach to broadcast a value, containing
R symbols, to all the other nodes in the network.

During the broadcast performed by node 1, it is possible that some nodes in the network may
tamper the packets. The remaining algorithm is designed to detect such tampering, using
our solution to equality.

• Step 2: In the network of n nodes, up to t < n/3 nodes may be faulty, possibly including
the source node 1. After receiving the R-symbol value in step 1, each subset of (n − t) nodes
computes the MEQ function of the received R-symbol values. So there are n-choose-(n − t)
instances of MEQ to be performed.

Due to the manner in which we use the random functions for performing MEQ, all the n-
choose-(n− t) instances of MEQ can be performed simultaneously. In particular, if k instances
of MEQ use a certain unit capacity edge, it suffices to send one packet on that edge (that is,
we do not need to send k packets on that edge). In fact, the packets sent during step 1 are
also useful in performing the equality checks, and if a packet sent on a certain edge in step
1, additional packets needs not be sent on that edge in step 2.

• Step 3: Each node broadcasts a single bit to all the other nodes using a traditional Byzantine
Broadcast algorithm (such as [9, 3, 2]). Bit broadcast by a node N is 0 if its output in all
instances of MEQ that it belongs to in Step 2 is 0; else the bit is 1. In essence, at the end of
step 3, all the nodes will learn if any of the nodes in the network has detected a mismatch of
values received during step 1.

If such a mismatch is announced, it implies that (i) some node(s), possibly including node
1, tampered packets during step 1, or (ii) there was no tampering during step 1, and yet a
faulty node is announcing a mismatch during step 3. In either case, if a node announces a
mismatch in step 3, indeed some node has misbehaved during steps 1 through 3.

• Step 4: If misbehavior is detected as above, then additional steps are performed to learn
(partial) information regarding the identity of the misbehaving node.

The rest of the algorithm is similar to the “dispute control” [1] structure, which was also used in
our our capacity-achieving Byzantine broadcast algorithm for 4-node point-to-point networks [6].

Now let us consider the throughput achieved by the above algorithm in comparison to the
capacity of Byzantine broadcast. Denote {Gi : i = 1, · · · , (n

n−t
)} the set of all

(n
n−t

)
subgraphs of

G, each of which contains n − t nodes and the links between them. For each Gi, define Wi =
MINCUTundirected(Gi). In Appendix B, we show that the capacity of Byzantine broadcast in a
directed point-to-point network G(V,E) with t < n/3 failures is upper bounded by

CBB ≤ W � min
i=1,···,(n

n−t)
Wi. (30)

Also, for each subgraph Gi, denote by Ki the maximum number of edge disjoint unit-capacity
spanning trees in its undirected multigraph representation of G∗i . As we have discussed in Section
3.1, Wi/2 ≤ Ki ≤Wi. Now let

K � min
i=1,···,(n

n−t)
Ki, (31)

10

which is the maximum number of unit-capacity spanning trees that every subgraph Gi can have.
Observer that for two arbitrary sequences of values {x1, ..., xN} and {y1, ..., yN} such that xi ≤ yi for
all i, min{xi} ≤ min{yi} is always true. So given that Wi/2 ≤ Ki ≤ Wi for all Gi, we can conclude
that W/2 ≤ K ≤W.

Let us now view G as a directed multigraph with unit capacity edges. Let −→B be the maximum
number of directed edge-disjoint spanning trees in directed graph G rooted at the source node.
Then −→B is the broadcast capacity in the absence of any failures. Clearly, −→B is an upper bound on
the capacity of Byzantine broadcast (when failures may occur). As a result, we have

CBB ≤ min(W,−→B). (32)

Now select R = min(K,−→B). From the facts that CBB ≤ min(W,−→B) and W/2 ≤ K ≤ W, it follows
that

R ≥ CBB/2. (33)

Our Byzantine broadcast algorithm achieves throughput R = min(K,−→B). The algorithm uses
the “dispute control” [1] structure, also used in our capacity-achieving 4-node Byzantine broadcast
algorithm in [6]. The information to be broadcast by the source (node 1) is divided into generations
of identical size, specifically R symbols. In each generation, source node 1 broadcasts the R packets
(or symbols) to the rest of the network, along R directed unit-capacity edge disjoint spanning
trees rooted at node 1 (similar to the example in Figure 1(f)). Since R ≤ −→B , R such spanning trees
necessarily exist.

Source node 1 sets its input x1 equal to the R packets it has just broadcast, and each node i (� 1)
sets xi equal to the R packets received during the above broadcast.

The MEQ operation is performed on these xi values. In particular, each node i transmits
randomly coded packets generated from xi on those outgoing unit-capacity directed edges that
were not used during the above broadcast. Each node i then checks whether all the received
packets are consistent with xi. It should not be difficult to see that doing this solves the MEQ
problem among every subset of n − t (fault-free) nodes in G, since Theorem 2 holds even when
some of the diagonal elements of the random matrix M are identical. It then follows that either all
fault-free nodes will have identical xi’s, or misbehavior by some faulty node is detected. After the
misbehavior is detected, extra diagnostic operations are perform and then the algorithm proceeds
to the next generation of data. These operations are similar to those in [6] and [8]. For brevity, we
omit the details here.

5.1 Byzantine Consensus using Byzantine Broadcast
The Byzantine broadcast algorithm we describe above can be used to construct Byzantine

consensus algorithm that achieves the same throughput. Throughput and capacity of consensus
in point-to-point networks can be defined analogous to similar quantities for broadcast. For more
details, please refer [7].

In our Byzantine consensus algorithm, the input information at each node is divided into
generations, each of R symbols. An set Pmatch(g) is maintained as the largest set of nodes that
appear to have identical inputs up to the beginning of the g-th generation. Initially, Pmatch(1) = V,
i.e., all nodes are in Pmatch when the algorithm starts. In every generation g, let N∗ be the node
in Pmatch(g) with the smallest index. Then Steps 1 to 3 are performed with N∗ being the source.

11

In addition to step 3, every node in i ∈ Pmatch(g) (� N∗) compares the symbols broadcast by N∗ in
step 1 to its own input of the current generation, denoted as xi(g). Node i then broadcasts a single
bit to all the other nodes using a traditional Byzantine Broadcast algorithm, indicating whether
xi(g) equals to what broadcast by N∗ or not. If some node i ∈ Pmatch(g) claims that xi(g) is different
from what N∗ broadcast, or misbehavior is detected, Step 4 is performed. In particular, in order
to update Pmatch, every node in Pmatch(g) is required to broadcast their input of the g-th generation
using a traditional Byzantine broadcast algorithm. Then we update Pmatch(g + 1) as the largest
subset of Pmatch(g) that broadcast the same input. If |Pmatch(g + 1)| ≥ n − t, continue to the next
generation. Otherwise, |Pmatch(g + 1)| < n − t, which implies that the inputs of fault-free nodes are
not identical. Then the algorithm terminates with a default output.

References
[1] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute

control. In TCC, 2006.

[2] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit optimal distributed consensus. Computer
science: research and applications, 1992.

[3] Brian A. Coan and Jennifer L. Welch. Modular construction of a byzantine agreement protocol
with optimal message bit complexity. Inf. Comput., 97(1):61–85, 1992.

[4] Zongpeng Li and Baochun Li. Network coding in undirected networks. In Conference on
Information Sciences and Systems, 2004.

[5] Guanfeng Liang and Nitin Vaidya. Multiparty equality function computation in networks with
point-to-point links. In SIROCCO, 2010.

[6] Guanfeng Liang and Nitin Vaidya. Capacity of byzantine agreement with finite link capacity.
In INFOCOM 2011. 30th IEEE International Conference on Computer Communications., 2011.

[7] Guanfeng Liang and Nitin Vaidya. Capacity of byzantine consensus with capacity limited
point-to-point links. Technical Report, CSL, UIUC, March 2011.

[8] Guanfeng Liang and Nitin Vaidya. Error-free multi-valued consensus with byzantine failures.
In ACM PODC, 2011.

[9] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JOURNAL
OF THE ACM, 1980.

A Proof of Upper Bound on Capacity of MEQ
The upper bound is presented in Equation (3).
Suppose the cut between a certain set s and V − s is the minimum undirected cut in graph G,

i.e., CUTundirected(s,V − s) = W. Now consider a constrained version of the MEQ problem wherein
all nodes in s are have an identical input, denoted as x, and all nodes in V − s have an identical
input, denoted as y. If we ignore the cost of “internal” communication among the nodes in set s,
and similarly, ignore the cost of internal communication among the nodes in V − s, then solving

12

the MEQ problem with such constrained distribution of inputs is equivalent to solving the 2-party
equality problem: Alice and Bob each is given input x and y, respectively, need to check if x = y
by communicating with each other. It has been proved that at least L bits must be communicated
between Alice and Bob, in the worst case, to solve 2-party equality for L-bit values. It then follows
that even if the inputs at the nodes in G are constrained as described above, the execution time
t(G, L,P) must satisfy W t(G, L,P) ≥ L for any L and P. This implies that CMEQ(G) ≤ W.

B Proof of an Upper Bound on CBB

The upper bound is presented in Equation (30).
Given any subgraph Gi of G with size n− t, let us rename the nodes in Gi as g1, g2, · · · , gn−t, and

the nodes not in Gi as f1, f2, · · · , ft.
We first discuss the case when the source of the Byzantine broadcast problem is not in Gi.

Without loss of generality, we can assume that f1 is the source.
Given any algorithm, namely A, that solves Byzantine broadcast in network G, with node f1 as

the source, with at most t failures, and at some rate R, in the following, we construct a protocol P
that solves MEQ in Gi at rate R as follows. For the MEQ problem, let us assume that xj is the input
value at node gj. Thus, the goal is to determine whether xj is identical at all gj ∈ Gi.

1. Every node gj ∈ Gi creates a local virtual network as follows:

(a) It creates one virtual node gk, j for each gk ∈ Gi, k � j. Similarly, it creates one virtual
node fl, j for each fl � Gi. Node gj also includes itself in the local virtual network.

(b) Every pair of virtual nodes are connected with a pair of links of the same capacity as the
ones that connects the corresponding pair of actual nodes in the original network G. In
other words, link (gk, j, gl, j) has the same capacity as link (gk, gl). Similarly, link (gk, j, fl, j)
has the same capacity as link (gk, fl).

(c) Node gj connects itself with each of the virtual nodes fl, j such that link (gj, fl, j) has the
same capacity as link (gj, fl), and link (fl, j, gj) has the same capacity as link (fl, gj).

(d) Node gj connects itself with each of the virtual nodes gk, j with one link (gj, gk, j) that has
the same capacity as link (gj, gk). There is no link from virtual node gk, j to node gj.

(e) Every virtual node is assigned with the same code that the corresponding actual node
should run in algorithm A. In other words, virtual node fl, j is assigned the execution
code that node fl should run in A. Virtual node gk, j is assigned the execution code that
node gk should run in algorithm A, except that it drops the messages that should be
sent to node gj (since there is no link from virtual node gk, j to node gj).

(f) Node gj execute correctly as specified by algorithm A. When algorithm A specifies that
gj should send a message to an actual node gk ∈ Gi, gj sends the message to both the
actual node gk and the virtual node gk, j. When it should send a message to node fl � Gi
according to algorithm A, gj sends the message only to the virtual node fl, j. When it
receives an message from virtual node fl, j, it pretends that the message is received from
the actual node fl. Since there is no link from virtual node gk, j to node gj, gj will not
receive messages from gk, j.

13

2. Recall that node f1 is the source nodes for the broadcast being performed by algorithm A.
Thus, node f1 has an input value that it will broadcast using algorithm A. Each node gj ∈ Gi
sets the initial input at node f1, j equal to xj (recall that xj is the input for the MEQ operation
at node gj). Thus, algorithm A for node f1, j will have input xj. Then, all the nodes in the
network perform their part of algorithm A, with each node gj simulating the behavior of the
corresponding virtual nodes.

3. As we will see later, algorithm A will eventually terminate (at all nodes, including the virtual
nodes). When algorithm A terminates, every node gj ∈ Gi obtains an output value x′j. Each
node gj sets its output for the MEQ problem to 0 if xj = x′j, and to 1 otherwise.

Figure 2 illustrates the construction of an MEQ protocol P for 3 nodes, g1, g2 and g3, with a
Byzantine broadcast algorithm A for 4 nodes, and at most 1 failure. The gray areas indicate the
virtual networks created by nodes g1, g2 and g3.

Observe that, from the perspective of nodes g1, · · · , gn−t, the above execution is admissible when
using algorithm A, when node fl is faulty (1 ≤ l ≤ t) and behaves like fl, j to node gj. Thus, the
execution above will appear to be that of a network in which t nodes f1, · · · , ft are (possibly) faulty.
Since algorithm A solves Byzantine broadcast with up to t failures, the algorithm will terminate in
the above execution as well, and each node gj ∈ Gi will obtain an identical output value x′j = x for
some value x. The exact value of x will depend on the inputs xj.

Now consider two cases:

• x1 = x2 = · · · = xn−t = z (input to the MEQ problem at each node in Gi is equal to z): In this
case, observe that all the simulated sources nodes fl, j will have identical input, say, equal to z.
It should be easy to see that the behavior of nodes in Gi will then be identical to the behavior
of the actual network wherein node f1 has input z, with all the nodes behaving correctly.
Then the output value x from A must equal to z for all gj ∈ Gi, and hence all the nodes in Gi
will set their outputs for the MEQ problem to 0 correctly (since xj = z).

• ∃gj, gk ∈ Gi s.t. xj � xk (the input for the MEQ problem at the nodes in Gj is not identical):
In this case as well, as noted above, the output x at all the nodes in Gi is identical by the
definition of algorithm A. However, since not all xj’s are equal, it follows that, x must be
different from xj at some node gj ∈ Gi. This node gj will set its output for the MEQ problem
to 1, and inequality of the inputs will be correctly detected.

Now we can conclude that, given any algorithm A that solves Byzantine broadcast in G at some
rate R, we can construct a protocol P that solves the MEQ problem in Gi at the same rate R, when
the source is not in Gi. According to Equation 3, the MEQ problem in Gi cannot be solve at rate
higher than Wi. This implies that CBB(G) ≤Wi.

The discussion when the source, namely g1, is in Gi is almost the same. We can construct the
virtual network for each gj in the same way as described above, with the following modifications:
(1) node g1 sets x1, its input for the MEQ problem, as the value that it will broadcast using algorithm
A; and (2) node gj � g1 sets xj as the initial input at node g1, j, i.e., the virtual node corresponding
to node g1. Then we can prove that CBB(G) ≤Wi when the source is in Gi using the same argument
above. Then Equation 30 immediately follows when all Gi’s are considered.

14

Figure 2: Solving MEQ in 3 nodes with Byzantine broadcast algorithm for 4 nodes.

15

