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Abstract

We consider the problem of data-communication from the perimeter to the center of a circle. We present a class of transmission
schedules that allow for greater energy-efficiency (as compared to direct communication) without degradation in throughput by
exploiting the non-linear relationship between transmisson power and achievable rate. Some analytical results regarding the same
are stated and proved. Besides, some observed trends for which we currently do not have a proof are also discussed.

INTRODUCTION

The many-to-one communication paradigm is extremely relevant in the emerging contexts of hybrid wireless networks as
well as data gathering sensor networks. In this model of communication the point of data-convergence (base-station) becomes
a bottleneck, thereby imposing a trivial upper bound of W on achievable aggregate capacity [1] where W is the maximum
transmission rate possible. Some earlier work on many-to-one communication has considered hierarchical schemes wherein
nodes are organized into clusters and intra-cluster communication occurs over a different channel than cluster-head to base-
station (BS) communication [1], [2]. However we observe that even within the constraint of a single channel, it is possible to
harness the potential for spatial re-use available in the network to obtain greater energy-efficiency while maintaining the same
aggregate rate. We envisage a mechanism that exploits the non-linearity inherent in Shannon’s equation: W = B log(1+SINR),
and improves on energy consumption by replacing a single high rate transmission with many spatially spread out low rate ones.

We present a class of transmission schedules operating on a single channel that allow for more energy-efficient data-
communication from the perimeter to the center of a circle (as compared to direct communication) without degradation in
throughput. Some analytical results regarding the same are stated and proved. We also discuss some observed numerical
trends.

RELATED WORK

Upper bounds on the capacity of wireless networks have been proved first in [3] for ad-hoc networks, and thereafter in [4]
and [5] for hybrid networks. In the context of networks where data converges at a single point, some analytical results based
on the Protocol Model [3] have been reported in [1]. The trivial upper bound of W on aggregate capacity in a many-to-one
network, where W is the maximum transmission rate possible, has been stated and proved. It has been shown that while W
may be achievable in an arbitrary network with controlled node placement (when certain conditions on guard zone size are
met), it is not achievable with high probability in a random network. However, Θ(W ) aggregate capacity is proved to be
achievable with high probability in a random network.

Work on energy-efficient communication, as in [6], has explored the energy gains obtainable by communicating via
relays rather than directly. They develop a mathematical formulation for the relay region (if the receiver is located within
this region relaying is certain to yield energy gains) while attempting to transmit information from one point to another.
However, this work does not address the impact of relaying on capacity. It is a generally known fact that in the case
of one-to-one communication between two points using a fixed rate, introduction of relays i.e. multiple hops reduces the
attainable throughput for this single communication, as all links may not be simultaneously active. It is therefore relevant to
consider capacity and energy in conjunction.

This research is supported in part by Motorola, Inc.
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Fig. 1. Direct Communication Scheme

This paper proposes a mechanism that allows for greater energy-efficiency in many-to-one communication without any
corresponding degradation in throughput.

COMMUNICATION MODEL

We consider a circular network of radius R. A BS is located at the center, and data is to be transferred from the perimeter
of the circle to the BS. We seek to achieve a certain aggregate rate of W . Let us assume there is a very high linear
density of nodes along the perimeter. Given a bandwidth B, and the desired aggregate throughput W , if the perimeter
nodes were to communicate directly with the BS, we can visualize a TDMA schedule where in each slot exactly one
perimeter node transmits (Fig. 1). We use the Physical Model [3] and assume that for successful communication at a
rate W , the SINR at the receiver needs to be above a certain threshold βW . To establish an upper bound, we obtain
the value of βW from Shannon’s equation. We assume that transmitted and received power are related by the following
expression: Prx = CPtx

dα where Ptx is the transmitted power, Prx is the received power, d is the distance between
transmitter and receiver, and C is a constant. We assume that a source and destination are either separated by at least a
minimum distance dmin such that C

dmin
α < 1, else they are co-located (i.e. there is effectively no data communication

happening). We assume R > C
1

α so that the minimum separation issue does not apply to the direct communication case, else it
would not be of interest. Within this model, the SINR criterion for direct communication from perimeter to BS is formulated as:

CPdirect
Rα

Nt
≥ βW

Thus the minimum power needed is given by:

Pdirect = βW NtR
α

C

where βW = 2W/B − 1, B is the available spectral bandwidth, α is path-loss exponent, Nt is the ambient thermal
noise, and C is a constant depending on wavelength, antenna gain etc.

Another relation obtained from Shannon’s equation that shall be extensively used in our analysis is the following:

βW/k = (1 + βW )1/k − 1

where βW/k is the SINR threshold required for rate W/k.

TWO-HOP COMMUNICATION

We consider alternatives to the direct communication schedule. We analyze three different classes of transmission schedules
that operate over 2 hops i.e. use relay nodes located at intermediate locations (radial distance xR) between the perimeter and
BS. x varies within the range allowable by the minimum separation criterion stated earlier, else lapses to 0 or 1 respectively.
The angular position θ of concurrent outer-ring transmissions is also a variable parameter in these schedule classes. We observe
that in each case the throughput per ring is W and that gives us the required aggregate throughput of W. We formulate equations
for required SINR at each receiver and obtain expressions for total power consumed. We obtain the ratio P min

total

Pdirect
= ι for each

schedule, where we term ι as the best-possible improvement factor. ι > 1 implies degradation in energy-efficiency.
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1-Relay 1-Rate Schedules

Fig. 2 illustrates a schedule in which each slot has two simultaneous transmissions ongoing viz. a perimeter node
transmitting to a relay and a relay diametrically opposite transmitting to the BS. All transmissions are at rate W . The powers
used by these two transmitting nodes are Pin and Pout respectively.

The SINR equations are:

At the BS:
CPin

xαRα

Nt + CPout

Rα

≥ βW

Pin ≥
βW NtR

α

C
xα + βW xαPout (1)

At the receiving relay:
CPout

(1−x)αRα

Nt + CPin

2αxαRα

≥ βW

Pout ≥
βW NtR

α

C
(1 − x)

α
+ βW

(1 − x)
α

2αxα
Pin (2)

Back-substituting in Eqn. 1:

Pin ≥
βW NtR

α

C
xα +

βW xαβW NtR
α

C
(1 − x)

α
+ βW

2 (1 − x)
α

2α
Pin

Pin

[

1 − βW
2 (1 − x)

α

2α

]

≥
βW NtR

α

C
xα [1 + βW (1 − x)

α
]

Since R.H.S of the above equation is positive and so will Pin be, we obtain the following feasibility condition:

1 − βW
2 (1 − x)

α

2α
> 0 (3)

The following expression is thus obtained for Pin:

Pin ≥
βW NtR

α

C
xα2α 1 + βW (1 − x)

α

2α − βW
2(1 − x)

α (4)

Substituting in Eqn. 2, we obtain:

Pout ≥
βW NtR

α

C

[

(1 − x)
α

+ βW (1 − x)
α 1 + βW (1 − x)

α

2α − βW
2(1 − x)

α

]

(5)
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Fig. 3. 2-Relay 2-Rate Schedules

Thus the total power consumed in this schedule is:

Ptotal = Pin + Pout ≥
βW NtR

α

C

[

(1 − x)
α

+
([1 + βW (1 − x)

α
][2αxα + βW (1 − x)

α
]

2α − βW
2(1 − x)

α

]

= Pdirect

[

(1 − x)
α

+
([1 + βW (1 − x)

α
][2αxα + βW (1 − x)

α
]

2α − βW
2(1 − x)

α

]

(6)

ι =

[

(1 − x)
α

+
([1 + βW (1 − x)

α
][2αxα + βW (1 − x)

α
]

2α − βW
2(1 − x)

α

]

(7)

2-Relay 2-Rate Schedules

Fig. 3 depicts a schedule in which the single communication in the outer ring is replaced by two transmissions at rate W/2.
We denote the transmission power used by each perimeter node as Pout and that used by the transmitting relay as Pin.

Using the cosine formula, we obtain the values of d1 and d2 (see figure) as:

d1 = 2xRcos
θ

2
(8)

d2 = R
√

(x2 − 2xcos(2θ) + 1) (9)

The SINR equations are:

At the BS:
CPin

xαRα

Nt + 2CPout

Rα

≥ βW (10)

Pin ≥
βW NtR

α

C
xα + 2βW xαPout (11)

At the receiving relays:
CPout

(1−x)αRα

Nt + CPin

d1
α + CPout

d2
α

≥ βW/2 (12)

This simplifies to:

Pout ≥
βW/2NtR

α

C
(1 − x)

α
+

βW/2R
α(1 − x)

α

d1
α Pin +

βW/2R
α(1 − x)

α

d2
α Pout (13)

which may be re-written as:

Pout

E1

︷ ︸︸ ︷
[

1 −
βW/2R

α(1 − x)
α

d2
α

]

≥
βW/2NtR

α

C
(1 − x)

α
+

βW/2R
α(1 − x)

α

d1
α Pin (14)



Since the R.H.S. of the above equation is positive and Pout is also always positive, we thus obtain a feasibility condition:

E1 > 0 (15)

Therefore:

Pout ≥
βW/2NtR

α

C·E1
(1 − x)

α
+

βW/2R
α(1 − x)

α

d1
αE1

Pin (16)

Back-substituting in the earlier expression for Pin (Eqn. 11):

Pin ≥
βW NtR

α

C
xα + 2xαβW

[
βW/2NtR

α

C·E1
(1 − x)

α
+

βW/2R
α(1 − x)

α

d1
αE1

Pin

]

Pin

E2

︷ ︸︸ ︷
[

1 − 2
βW/2βW Rαxα(1 − x)α

d1
α
·E1

]

≥
βW NtR

α

C
xα + 2

βW/2βW NtR
α

C·E1
(1 − x)

α
xα

This yields another feasibility condition:
E2 > 0 (17)

Pin·E2 ≥
βW NtR

α

C

[

xα +
2βW/2(1 − x)

α
xα

E1

]

= Pdirect

[

xα +
2βW/2(1 − x)

α
xα

E1

]

We thus obtain the expression:

Pin ≥ Pdirect

1 +
2βW/2(1−x)α

E1

E2
xα (18)

We now substitute in Eqn. 16 to obtain:

Pout ≥
βW/2NtR

α

C·E1
(1 − x)

α
+

(
βW/2R

α(1 − x)
α

d1
α
·E1

)



1 +

2βW/2(1−x)α

E1

E2



xαPdirect (19)

This simplifies further to:

Pout ≥ Pdirect




βW/2(1 − x)

α

βW E1
+

βW/2R
α(1 − x)

α

d1
α
·E1

1 +
2βW/2(1−x)α

E1

E2
xα



 (20)

The total power consumed by this schedule is give by:

Ptotal = Pin + 2Pout ≥ Pdirect








1 +

2βW/2(1−x)α

E1

E2





(

1 +
2βW/2R

α(1 − x)
α

d1
α
·E1

)

xα +

(
2βW/2

βW ·E1

)

(1 − x)
α



 (21)

ι =








1 +

2βW/2(1−x)α

E1

E2





(

1 +
2βW/2R

α(1 − x)
α

d1
α
·E1

)

xα +

(
2βW/2

βW ·E1

)

(1 − x)
α



 (22)

3-Relay 2-Rate Schedules

Fig. 4 depicts yet another schedule wherein there are three simultaneous transmissions occurring at rate W/3 in the outer
ring. We denote the power used by the transmitting relay as Pin, while the perimeter node communicating with relay C uses
P1 and nodes communicating with relays B and D use power P2.

Using the cosine formula, we obtain expressions for distances d1, d2, d3 and d4 (see figure):

d1 = 2xRcos
θ

2
(23)

d2 = d3 = R
√

(x2 − 2xcosθ + 1) (24)

d4 = R
√

(x2 − 2xcos(2θ) + 1) (25)
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Fig. 4. 3-Relay 2-Rate Schedules

The SINR equations are:

At the BS:
CPin

xαRα

Nt + CP1

Rα + 2CP2

Rα

≥ βW (26)

Pin ≥
βW NtR

α

C
xα + βW xαP1 + 2βW xαP2 (27)

At the relay C:
CP1

(1−x)αRα

Nt + CPin

2xαRα + 2CP2

d2
α

≥ βW/3 (28)

P1 ≥
βW/3NtR

α

C
(1 − x)

α
+

βW/3(1 − x)
α

2αxα
Pin + 2

βW/3(1 − x)
α
Rα

d2
α P2 (29)

At relays B and D:
CP2

(1−x)αRα

Nt + CPin

d1
α + CP1

d3
α + CP2

d4
α

≥ βW/3 (30)

P2 ≥
βW/3NtR

α

C
(1 − x)

α
+

βW/3(1 − x)
α

dα
1

Pin +
βW/3(1 − x)

α

dα
3

P1 +
βW/3(1 − x)

α

dα
4

P2 (31)

P2

E1

︷ ︸︸ ︷
[

1 −
βW/3(1 − x)

α
Rα

dα
4

]

≥
βW/3NtR

α

C
(1 − x)

α
+

βW/3(1 − x)
α
Rα

dα
1

Pin +
βW/3(1 − x)

α
Rα

dα
3

P1

This yields the feasibility condition:
E1 > 0 (32)

Continuing:

P2 ≥
βW/3NtR

α

C·E1
(1 − x)

α
+

βW/3(1 − x)
α
Rα

dα
1 ·E1

Pin +
βW/3(1 − x)

α
Rα

d3
α
·E1

P1 (33)

Substituting in Eqn. 29 :

P1 ≥
βW/3NtR

α

C
(1 − x)

α
+

βW/3(1 − x)
α

2αxα
Pin + 2

βW/3(1 − x)
α
Rα

d2
α

[
βW/3NtR

α

C·E1
(1 − x)

α

]

(34)

+
2βW/3

2(1 − x)
2α

R2α

d1
α
· d2

α
·E1

Pin +
2βW/3

2(1 − x)
2α

R2α

d2
α
· d3

α
·E1

P1 (35)



P1

E2

︷ ︸︸ ︷
[

1 −
2βW/3

2(1 − x)
2α

R2α

d2
α
· d3

α
·E1

]

≥
βW/3NtR

α

C
(1 − x)

α
+

2βW/3
2Nt(1 − x)

2α
R2α

C· d2
α
·E1

(36)

+

C1

︷ ︸︸ ︷
[

βW/3(1 − x)
α

2αxα
+

2βW/3
2(1 − x)

2α
R2α

d1
α
· d2

α
·E1

]

Pin (37)

This yields another feasibility condition:
E2 > 0 (38)

Proceeding further:

Pin ≥
βW NtR

α

C
xα + βW xαP1 + 2βW xα

[
βW/3NtR

α

C·E1
(1 − x)

α
+

βW/3(1 − x)
α
Rα

d1
α
·E1

Pin +
βW/3(1 − x)

α
Rα

d3
α
·E1

P1

]

=
βW NtR

α

C
xα +

2βW xαβW/3NtR
α

C·E1
(1 − x)

α
+

2βW xαβW/3(1 − x)
α
Rα

d1
α
·E1

Pin

+

C2

︷ ︸︸ ︷
[

βW + 2βW

βW/3(1 − x)
α
Rα

d3
α
·E1

]

xαP1

Pin ≥
βW NtR

α

C
xα

[

1 +
2βW/3(1 − x)

α

E1

]

+ 2βW xα βW/3(1 − x)
α
Rα

d1
α
·E1

Pin

+ C2·

C3

︷ ︸︸ ︷
[

βW/3NtR
α

C·E2
(1 − x)

α
+

2β2
W/3Nt(1 − x)

2α
R2α

C· d2
α
·E1·E2

]

+
C1·C2

E2
Pin

Pin

E3

︷ ︸︸ ︷
[

1 −
2βW xαβW/3(1 − x)

α
Rα

d1
α
·E1

−
C1·C2

E2

]

≥
βW NtR

α

C
xα

[

1 +
2βW/3(1 − x)

α

E1

]

+ C2·C3

Pin ≥
Pdirect

E3
xα

[

1 +
2βW/3(1 − x)

α

E1

]

+
C2·C3

E3

=
Pdirect

E3

[

xα

(

1 +
2βW/3(1 − x)

α

E1

)

+ C2·

[

βW/3(1 − x)
α

βW ·E2
+

2β2
W/3R

α(1 − x)
2α

d2
α
·E1·E2

]]

We also obtain a third feasibility condition:
E3 > 0 (39)

Back-substitution yields values of P1 and P2, and then we can obtain Ptotal as:

Ptotal = Pin + P1 + 2P2 (40)

We do not reproduce the entire expression here.

Some observations on lim
W→0

xopt(W )

We define xopt(W ) as the lowest value of x in which an optimal (minimum) power consumption is obtained while obtaining
rate W . The stipulation of lowest value is required since we have no means of claiming that the optimal power consumption
shall be achieved at a unique value of X .

We now observe that in all the three schedules discussed above, the following can be shown to hold:

lim
W→0

Ptotal ≥ Pdirect [xα + (1 − x)
α
] (41)
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This is minimized at x = 0.5. Thus it proceeds that:

lim
W→0

xopt(W ) = 0.5 (42)

where xopt(W ) is the optimal radial relay placement position. This is intuitive, as at very low W , path loss becomes the
dominant controllable factor (mutual interference is very low and plays a negligible role). Hence midway relays are the best
option.

GENERALIZED n-RELAY 2-RATE SCHEDULES

We consider the general case in which one relay transmits to the BS at rate W while n perimeter nodes transmit to their
respective relays concurrently ( n ≥ 1 ) at rate W/n. We do not impose any constraints on the transmission power or angular
position of the concurrently transmitting nodes, other than the SINR requirement which is to be met. We obtain some lower
bounds on feasible relay positions using an upper bound argument for achievable SINR.

Prior to that we present proofs for certain trends.

Claim 1: x1 < x2 and W feasible at x1 −→ W feasible at x2

Proof: Suppose x1 < x2, W feasible at x1. Now consider a configuration C with x = x1 that achieves rate W . Such a
C exists by definition. Then in this configuration C:

SINR at BS ≥ βW

SINR at each receiving relay ≥ βW/n

Let us denote the power used by the transmitting relay as Pin and the total power used by all perimeter nodes as
Pout. Now consider configuration C

′

which is otherwise identical to C (in terms of position of transmitting nodes on

perimeter) except that the relays are shifted from x1 to x2 > x1. Now consider increasing Pin to Pin·

(
x2

x1

)α

while keeping
all other transmit powers the same.

We observe here (Fig. 5) that the distance of the transmitting relay to any receiving relay (at angular position θ w.r.t.
the transmitting relay) is given by:
din(x) = 2xRsin(θ/2) where θ = angle subtended by the sector they make on the circle of radius xR

We also observe (Fig. 6)that the distance between a receiving relay and any transmitting perimeter node is governed
by the formula:

d(x) = R
√

(x2 − 2xcosθ + 1) where θ = angle subtended between them at the center

Consider D = d2. Then:



D(x) = R2(x2 − 2xcosθ + 1)

D(x2)

D(x1)
=

x2
2 − 2x2cos(θ) + 1

x1
2 − 2x1cos(θ) + 1

=
(1 − x2)

2 + 2x2(1 − cos(θ))

(1 − x1)2 + 2x1(1 − cos(θ))

x2 > x1 −→ x2 >

(
1 − x2

1 − x1

)2

x1

−→
D(x2)

D(x1)
=

(1 − x2)
2 + 2x2(1 − cos(θ))

(1 − x1)2 + 2x1(1 − cos(θ))

>
(1 − x2)

2 + 2x1

(
1−x2

1−x1

)2

(1 − cos(θ))

(1 − x1)2 + 2x1(1 − cos(θ))

=
(1 − x2)

2(1 − x1)
2 + 2x1(1 − x2)

2(1 − cos(θ))

(1 − x1)2(1 − x1)2 + 2x1(1 − x1)2(1 − cos(θ))

=
(1 − x2)

2
(
(1 − x1)

2 + 2x1(1 − cos(θ))
)

(1 − x1)2 ((1 − x1)2 + 2x1(1 − cos(θ)))

=
(1 − x2)

2

(1 − x1)2

−→
d(x2)

d(x1)
>

1 − x2

1 − x1

Hence the maximum decrease in interferer distance possible is by a multiplicative factor of 1−x2

1−x1

. It follows that in the
configurations under consideration:
SINR at BS:

SINRold =
CPin

x1
αRα

Nt+
CPout

Rα

SINRnew = SINRold ∗

(
x2

x1

)α

∗

(
x1

x2

)α

= SINRold = βW

SINR at each receiving relay:

SINRold = Signalold

Nt+Iin+Iperimeter

where Iin denotes interference posed by the transmitting relay, and Iperimeter denotes interference posed by the transmitting
perimeter nodes.

SINRnew ≥
Signalold∗

(
1−x1

1−x2

)α

Nt+
(

Iin∗

(
x2

x1

)α( x1

x2

)α)

+
(

Iperimeter∗

(
1−x1

1−x2

)α) ≥
Signalold∗

(
1−x1

1−x2

)α

(Nt+Iin+Iperimeter)∗
(

1−x1

1−x2

)α ≥ SINRold

Intuitively, the distance of the interfering relay increases by the same factor as its transmit power increases (
(

x2

x1

)α

),



while the interference from other transmitting perimeter nodes increases by less than a factor of
(

1−x1

1−x2

)α

(in fact, it might

even decrease for some nodes) and this increase gets more than compensated by the increase in signal by a factor of
(

1−x1

1−x2

)

due to decrease in source-destination distance.

Thus W is also feasible at x = x2. The claim thus stands proven.

Claim 2: Let xmin(W ) = minimum value of x at which an aggregate rate of W is feasible. Then:

W1 < W2 −→ xmin(W1) ≤ xmin(W2)

Proof:

Consider W1,W2 s.t. W1 < W2 and xmin(W2) = x2

W1 < W2 → βW1 < βW2

Now consider a configuration C that achieves rate W2 at x = xmin(W2). Such a C exists by definition. Then in this
configuration C:

SINR at BS ≥ βW2

SINR at each receiving relay ≥ βW2/n

→ SINR at BS ≥ βW1

SINR at each receiving relay ≥ βW1/n

→ configuration C can also support aggregate rate W1

→ xmin(W1) ≤ xmin(W2)

Therefore, the minimum feasible x is a monotonic non-decreasing function of W .

Claim 3: lim
W−→∞

xmin(W ) −→ 1

Proof: To prove this claim, we formulate some upper bound equations on SINR in the general case.

Let the power consumed by the relay transmitting to the BS be Pin. Let the total power consumed by the transmitting
perimeter nodes be Pout. Then ∃ at least one perimeter node (call it A) such that A transmits at a power PA ≤ Pout

n . Besides,
we shall continue to enforce the minimum separation criterion introduced earlier.

The SINR criterion at the BS:
CPin

xαRα

Nt + CPout

Rα

≥ βW

Pin ≥
βW NtR

α

C
xα + βW xαPout (43)

We formulate a similar equation for the destination relay of the perimeter node A which is transmitting at PA ≤ Pout

n :

CPA

(1−x)αRα

Nt + CPin

din
α +

n−1∑

i=1

CPi

di
α

≥ βW/n

where din = distance between A’s destination and the transmitting relay, and di is the distance between A’s destination and the

ith transmitting perimeter node. We observe that din ≤ 2xR and
n−1∑

i=1

CPi

di
α ≥ 0. A better bound may be obtained by observing



that di ≤ 2R,∀i. However, as of now, we shall keep matters simple by using the former. Therefore:

CPout

n(1−x)αRα

Nt + CPin

2αxαRα

≥

CPA

(1−x)αRα

Nt + CPin

din
α +

n−1∑

i=1

CPi

di
α

≥ βW/n

Pout ≥
(nβW/n)NtR

α

C
(1 − x)

α
+

(nβW/n)(1 − x)
α

2αxα
Pin (44)

Substituting in Eqn. 43 we obtain:

Pin

[

1 −
βW (nβW/n)(1 − x)

α

2α

]

≥
βW NtR

α

C
xα
[
1 + (nβW/n)(1 − x)

α]

This yields the following feasibility condition:

1 −
βW (nβW/n)(1 − x)

α

2α
> 0 (45)

and may be re-stated as :

x > 1 −
2

βW
1

α (nβW/n)
1

α

(46)

it proceeds that xmin(W ) is bound by the above feasibility condition where the R.H.S. of the above equation is an increasing
function of W . We shall use the above condition to get a lenient estimate of the feasible relay placement region for a given
W . We observe that:

lim
W→∞

1 −
2

βW
1

α (nβW/n)
1

α

= 1

Thus, it proceeds that:

lim
W→∞

xmin(W ) = 1 (47)

We explicitly note here that xmin(W ) shall take the value 1 much earlier than indicated by the above limit since by our
minimum separation criterion, once (1 − x)R < dmin, x lapses to 1.

Some observations on lim
n→∞

xmin(W )

We observe that nβW/n is a decreasing function of n for n ≥ 1. Besides:

lim
n→∞

nβW/n = ln(1 + βW ) (48)

Thus we can conclude that for a given W, the derived feasibility condition becomes less strict as n increases. However, when
n → ∞:

x ≥ 1 −
2

βW
1

α [ln(1 + βW )]
1

α

(49)

The existence of this limit indicates an intrinsic limitation on feasible relay placement for a given W i.e. the size of the feasible
x-region is upper-bounded by the above limit, regardless of the value of n and the schedule employed.

A Loose Bound on Power Consumption

By solving the above presented upper-bound formulation, we can get a loose lower bound on total power consumed in the
generalized n-relay 2-rate schedules. This bound is a decreasing function of n and hence attains its lower bound when n tends
to infinity. Thus the limiting value represents the lowest (and unachievable) bound on total power consumption over all n. The
expression obtained is:

lim
n→∞

Ptotal

Pdirect
=

(

xα +
ln(1 + βW )

2α
(1 − x)

α

)(

1 + ln(1 + βW )(1 − x)
α

1 −
βW ln(1+βW )(1−x)α

2α

)

+
ln(1 + βW )

βW
(1 − x)

α (50)

A somewhat tighter bound would be possible using the earlier made observation on mutual interference of perimeter nodes.
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DISCUSSION OF PROVABLE TRENDS VIS-A-VIS NUMERICAL PLOTS

While the equations presented earlier do not lend themselves to simple closed-form solutions, we have obtained some
numerical plots to determine trends in power consumption and optimal relay placement. When we use the term optimal in
this context, we mean the optimal as determined by a search over the (x, θ) spatial configuration space for a given class of
schedules. The value of the path-loss exponent α has been set to 4 in these plots. Lower values of α typically yield lower
improvement in power consumption due to reduction in possible spatial re-use. Fig. 7 depicts the optimal power consumption
for various aggregate rates obtained using the various schedule classes under consideration. We observe that as W increases,
the minimum required power tends towards Pdirect. This is to be expected, since at higher W , the feasible relay placement
region shrinks towards the periphery and in the limit the relays and perimeter nodes are co-located, corresponding to direct
communication. The noteworthy fact is that there is significant improvement to be achieved using 2-hop communication for a
certain range of W . It is to be noted that the improvement obtained by increasing the number n of simultaneous transmissions
in the outer ring diminishes rapidly. In fact most of the improvement is obtained within n = 2, 3 as compared to the lower
bound on minimum power when n increases to infinity. This seems to indicate that it might be useful to design protocols that
perform limited rate control (i.e. use a small value of n) to get the major part of the advantage in terms of energy-efficiency.
Fig. 8 depicts the variation in optimal radial placement of relays for various aggregate rates. There is a clear trend indicating
that optimal radial placement is a monotonically increasing function of W . In the absence of an analytical proof, we currently
state this as a conjecture:

Conjecture 1: Let xopt(W ) = minimum value of x at which an optimal power consumption for aggregate rate of W is
achieved. Then:

W1 < W2 −→ xopt(W1) ≤ xopt(W2)

We also plot the special case of midway relays i.e. x = 0.5 in Fig. 9. As may be seen, the power consumption with midway
relays increases steeply with increase in aggregate rate and even exceeds that of direct communication at some point. In fact,
very high rates are not feasible/achievable with this placement.
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A NOTE ON THE IMPACT OF BASE COMMUNICATION COSTS

The immediate applicability of this analysis to the design of a protocol is dependent on how the base (rate-independent)
costs of sending and receiving data compare with the power of the transmitted signal (rate-dependent). We present a simple
formulation.

We assume that while transmitting, a certain fixed power Psend is always consumed. Similarly, while receiving a
fixed power Prcv is consumed. Then for an n-relay 2-rate schedule:

Pactual = Ptotal + (1 + n)(Psend + Prcv) where Ptotal is as used elsewhere (51)

Therefore, for a schedule to yield improvement over direct communication:

Psend + Prcv < Pdirect

(
1 − ι

1 + n

)

(52)

Since the R.H.S. is a decreasing function of n, this indicates that increasing n would make the constraint on the base costs
increasingly stringent, and accentuates the earlier observation that a very large n may not be of practical value.

Fig. 10 is a numerical plot that indicates the maximum value
(

1−ι
1+n

)

for n = 1, 2 and 3 over all spatial configurations
belonging to these respective classes. As is to be expected, the practical utility of any protocol based on the proposed
mechanism is dependent on the magnitude of Pdirect which depends on the size of the network. For large values of R
(network radius), Pdirect is expected to be large, and hence the condition in Eqn. 52 is more likely to be satisfied. For small
values of R, direct communication might often prove to be the better option, as the benefits of reduced propagation distance
are far outweighed by the increased number of senders and receivers who also consume a a certain base power (apart from
the actual transmission power).
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We also note that for low rates, the constraints on the base costs seem to be significantly less stringent for the 1-
relay 1-rate schedules. However at somewhat higher rates, the maximum permissible base cost value dips sharply for this
schedule class, and n = 2 seems to be a good practical choice. To further investigate this, we plot Pactual as in Eqn. 51 for
the 1-relay 1-rate and 2-relay 2-rate schedules, while varying the base costs and W (Fig. 11). As may be seen, for very low
rates the 1-relay 1-rate schedules perform better, but at somewhat higher rates, 2-relay 2-rate schedules can possibly yield
better power consumption.

FUTURE WORK

As part of future work we intend to attempt obtaining analytical proofs of trends that are evident from the numerical plots
but have not been proved as yet, and also possibly obtain some interesting bounds for the general k-hop case. As a culmination
of the analysis, we intend to utilize the insights obtained from it to design a suitable rate-and-power control protocol for
energy-efficient many-to-one communication.
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