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Abstract

The issue of transport capacity of a randomly deployed e#®ihetwork under randofe, f) channel assignment
was considered by us in [1]. We showed in [1] that when the remolp available channels is= O(logn), and each

node has a single interface assigned a randmubset of channels, the capacityd§w, / WI)TH) andO(W ﬁpé”ﬁ),

and conjectured that capacity (W ﬁpg%). We now present a lower bound construction that yields dapac
QW ﬁr,’%’n) for all c=0(logn) and 2< f <c. This establishes the capacity under rand@nf) assignment as

oW, /ﬁpé"ﬁ). The surprising implication of this result is that whén= Q(,/c), random(c, f) assignment yields
capacity of the same order as attainable via unconstraimétthéng. Also of interest is the routing/scheduling
procedure we utilize to achieve capacity, which marks aiiggmt point of departure from the construction used to
obtain the previous lower bound Q(W,/m%). This procedure requires synchronized route-constractio all
flows in the network, leading to the open question of whethés possible to achieve capacity using asynchronous
routing/scheduling procedures.

I. INTRODUCTION

In [1], we argued for the need to study the performance of irthiannel networks in situations where there are
constraints on channel switching. We proposed some camisireddels in [1] to capture some expected constraints,
and analyzed two such models, viz., adjadent) assignment and randofu, f) assignment. We studied the impact
of such restricted switching, quantified by the paramdtéwhere f is the number of channels an individual node
may switch to) in the regime = O(logn). One of our proposed models was termed randonfi) assignment. For
this model, we proved in [1] that capacity GW, /Pmd) and Q(W L).

nlogn cnlogn

In this paper, we establish the per-flow capacity under rem¢n f) assignment for the regime= O(logn) as

oW n‘,’g”;n) by presenting a lower bound construction that yie{@&V n‘fggn) per-flow throughput. It can be
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shown thatpyg > 1—e ©. Hence the implication of this result is that whér= Q(,/c), random(c, f) assignment

yields capacity of the same order as attainable via uncainsl switching. Thus, for the randof, f) assignment
model, ,/c-switchability is sufficient to make order-optimal use of alchannels, wher = O(logn).

Interestingly, our capacity achieving routing/schedglprocedure requires that routes/schedules for all flows be
computed in lock-step in a synchronized manner. This leapes the question of whether capacity can be achieved
via asynchronous routing/scheduling procedures.

II. NOTATION AND TERMINOLOGY

Throughout this paper, we use the following standard asgtigphotation [2]:

« f(n)=0(g(n)) means thac,N,, such that
f(n) <cg(n) for n > Ny

« f(n)=o0(g(n)) means that Iiné% =0

« f(n)=w(g(n)) means thag( ) =o0(f(n))

« f(n)=Q(g(n)) means thag(n) = O(f(n))

« f(n)=0(g(n))means thalcy,cy, Ny, such that
c1g(n) < f(n) < czg(n) for n> N

When f(n) = O(g(n)), any functionh(n) = O(f(n)) is also O(g(n)). We often refer to such a situation as
h(n) = O(f(n)) = O(g(n)).

As in [3], we say that the per flow network throughput\) if each flow in the network can be guaranteed a
throughput of at leask(n) with probability 1, asn — oo,

Whenever we use log without explicitly specifying the base,imply thenatural logarithm.

Ill. SOME USEFULRESULTS

Theorem 1:(Vapnik-Chervonenkis Theorem) Let S be a set with finite V@elsion VCdingS). Let {X;} be
i.i.d. random variables with distributioR. Then fore,d > 0:

su | — <g|>1-9
(g Sheo v <o

(SVCdlm(S) L6e 4 2)

whenevemN > max log, — . Iog2 5

Theorem 2:(Chernoff Bound [4]) LetXy,...,Xn be independent Poisson trials, whétgX; = 1] = p;. Let X =
n
Y Xi. Then, for anyp > 0:
i=1

o E[X]
PrixX > (1+B)E[X]] < <m) 1)



Theorem 3:(Chernoff Upper Tail Bound [4]) LeXy, ..., X, be independent Poisson trials, wh&eX; = 1] = p;.
n
Let X = S X;. Then, for 0< B < 1:
i=1

PriX > (1+ BIEIX]] < expl— 2 E[X) @

Theorem 4:(Chernoff Lower Tail Bound [4]) LeKy, ..., Xy be independent Poisson trials, whe&eX; = 1] = p;.
n
Let X = ¥ X;. Then, for 0O<pB < 1:
i=1

2
PriX < (1-B)E[X]] < exp(—EE[X]) (3)

Lemma 1:The chernoff bounds continue to apply if the Poisson triats reot independent, but are negatively
correlated.

This is a well-known, and often-used result, e.g., see [5].

Lemma 2:Suppose we are given a unit toroidal region withodes located uniformly at random, and the region
: o : : 100u(n)!
is sub-divided into axis-parallel square cells of ag¢n) each. Ifa(n) = M,l <a(n) < m, then each
cell has at least1000(n) —50)logn, and at mos{100x(n) + 50) logn nodes, with high probability.

Proof: It is known that the set of axis-parallel squaresRif has VC-dimension 3. In our construction, we

have a set of axis-parallel square ceflsuch that the cells all have araén) = 100udogn - Thep considering the

n
random variable&; denoting node position®r[X; € D(D € §)| = 10mlogn Then, from the VC-theorem (Theorem

1): "

Pr <suq No. of nodes inD 1000((n)logn| < a(n)> - 1-8(n)
Des n n
whenevem > max(%llog2 16e 4 log, g)
€ €€ o
This is satisfied wher(n) = d(n) = &rﬁ’gn. Thus, with probability at least 4 &rﬁ’gn, the populationPop(D) of
cell D satisfies:

(1000 (n) — 50) logn < Pop(D)< (100x(n) +50) logn
n = FopI= n

(4)
u

Lemma 3:Suppose we are given a unit toroidal region wittpoints(or nodes) located uniformly at random,
let us consider the set of all circles of radiRsand areaA(n) = TiR? on the unit toroid. IfA(n) = %ﬁ)'og",l <
a(n) < m, then each circle has at legdtO0o(n) — 50) logn, and at most100ua(n) 4+ 50) logn of these points
(or nodes), with high probability.

Proof: The set of all circles of radiuR in R? has VC-dimension 3 (e.g., see [3]). Thereafter by the same
argument as in the proof of Lemma 2, the result proceeds. [ ]

Lemma 4:If n pairs of points(R,Q;) are chosen uniformly at random in the unit area network, gsultant
set of straight-line formed by each pair = P Q; satisfies the condition that no cell has more tmayfﬁ lines
passing through it w.h.p.



Proof: Given the lined; are i.i.d., the proof of Lemma 3 in [6] can be applied to prolis tresult. ]

Lemma 5:For all 0<x<1:(1-x)<e™X

Theorem 5:(Hall’s Marriage Theorem [7], [8]) Given a sgt let 7 = {71, T2,...In} be a finite system of subsets
of §. ThenT possesses a system of distinct representatives if and ofdy €achk in 1,2,..,n, any selection ok
of the setsZ will contain between them at leaktelements ofS. Alternatively stated: for allz C 7, the following
is true: |UA4| > | 4|

Lemma 6:The number of subsets of sikechosen from a set ah elements is given by™) < (7€)*.

Theorem 6:(Integrality Theorem [2]) If the capacity function of a netik flow graph takes on only integral
values (i.e., each edge has integer capacity), then thermaaxiflow x produced by the Ford-Fulkerson method has
the property thatx| is integer-valued. Moreover, for all verticesandv, the value ofx(u,v) is an integer.

IV. NETWORK MODEL

We consider a network af single-interfacenodes randomly deployed over a unit torus. Each node is theso
of exactly one flow. As in [3], each sour@selects a destination by first fixing on a podit uniformly at random,
and then picking the node (other than itself), that is closest B. The total bandwidth (data-rate) available/s
and it is divided intac channels of equal bandwidtﬁ, wherec = O(logn). We assume that> 2, asc =1 implies
that f = 1 is the only possibility, which yields the degenerate shghhannel case. We also assumg 2 <c. A
justification for not allowingf =1 for ¢ > 2 is given in [1], [9], where we show that for the randdm f) model
(and also the adjacefit, f) model described in [1])f =1 andc > 2 leads to zero capacity, as some flow will get
no throughput w.h.p.

V. SOME RESULTS ABOUT THE TRAFFIC MODEL

In this section we establish that for the traffic model of [@8lh{ch is also used in this paper), a node is the
destination ofO(logn) flows w.h.p. Also, at least one node is the destinatiof2dbgn) flows w.h.p.

Lemma 7:The number of flows for which any node is the destinatio®{fogn) w.h.p.

Proof: Consider a flow’s pseudo-destinatii. Consider a circle of radiu§/ %, and hence areéoogﬂ
centered around this pseudo-destination. From Lemma 3uah circles contai®(logn) nodes, w.h.p. In a rare
scenario, one of these nodes could potentially be the sode for that flow. However, the circle still has more
than one node other than the flow’s source. Thus, the flow wika as its destination, some node within this

circle. Hence a flow can only be assigned a destination wilstanc 10%?9” from its pseudo-destination. Thus it

proceeds that a node can only be the destination for flows evhssudo-destination lies within a distar\g%
from it. From Lemma 3, each circle of this size conta®@ogn) pseudo-destinations w.h.p. Thus no node is the
destination of more tha®(logn flows. ]

Lemma 8:For largen, at least one node is a destination faflogn) flows with a probability at Ieas%(l—
%)(1— 0), whered > 0 is an arbitrarily small constant.
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Proof: The necessary condition for connectivity in [10] (Theorerh @f [10]) is established by proving that
if we considerR(n) such thatriR?(n) = M , where limsugb(n) = b < e, then with positive probability, there
exists at least one nodewhich is |soIated, i.e., there is no other node within dis@R(n) of x. In the context of
[10], this was utilized by interpretinB(n) as transmission range, and thus obtaining a lower boundofumectivity.
However, we now exploit that result in a different manner toye our lemma as follows: Choo&¥n) = \/'09%1,
i.e., b(n) =b= 1. Note that in this proofRR(n) is not the transmission range; it is merely a chosen distance value
Then by invoking Theorem 2.1 from [10], there exists a nodeushsthat there is no other node within a distance
R(n) from it, with probability p where liminfp > e ®(1—e ) = £(1—1). In fact, from the proof of Theorem 2.1

e

in [10], it proceeds thap > (1—8)%(1— %), for any € > 0, and sufficiently large. Call this eventz;.

Thus, given evenE; has occurred and such a node A exists, if we consider the \doteasellation generated by
the n nodes, then the Voronoi polygon of A has area at |m§Q)2 = w = '094—”:1. Note that this tessellation
constitutes a spatial partition of the network area. Alsammediately proceeds from the traffic model, that if a
flow's pseudo-destination falls within the polygon of nodethenx is selected as that flow’s destination, unless
X is itself the source of that flow (since a generator (node)higags the nearest generator to points within its
own polygon). Also recall that pseudo-destinations aresehauniformly at random. LeX;,1 <i < n be indicator
variables such thaX; =1 if A is flow i’s destination, and 0 else. Th&r[X; = 1] =0 if A is the source of flowi
(and there is exactly one suéh For all other values of, Pr[X; = 1|Z] > 'Og”” , since A is selected as floits
destination if either (1) flow's pseudo-destination falls in A's Voronoi polygon (the pability of this event is given
by the area of A's Voronoi polygon, and is thus at Ieﬁ%{%l, or (2) if flow i's pseudo-destination falls within the
polygon of its own source, and A is the next-nearest node gmeri this probability, as we only require a lower
bound). LetX =3 X. ThusE[X|ZEy] > (1— %)'OQT”” > "’% for largen. The X;’s are i.i.d., and thus application of
the Chernoff bound from Theorem 4, wifh= % yields that:

Pr[Xg'oﬁmﬂgpr[x E[]|z]< exp(— E[x])s exp(— loﬂ):i1 (5)
8 32 n3

Denote by, the event that some node indeed is destination to at l%}sﬂows. Then it proceeds from Eqgn. (5)

that Pr[E| 1] > 1— —1— Also, Pr[E;] > Pr[E1]Pr[E,|ZE1]. Hence at least one node is a destination®glogn)
flows with a probab|I|ty atleagtl—€)e P(1-e?)(1— %) > 1(1-1)(1- ) for any choserd > &, and sufficiently

n32 e
largen. [ ]

VI. RANDOM (c, f) ASSIGNMENT

In this section we briefly describe the randdmf) assignment model first described in [9], and summarize some
already proven results that will be useful in proving the éoioound on capacity. In this assignment model, a node
is assigned a subset 6éfchannels uniformly at random from the set of all possiblemiﬂsubsets of sizé. Thus
the probability that two nodes share at least one channévé&dy ping =1— (1 — —)(1— —) (11— ﬁ).

Lemma 9:Forc > 2, and 2< f <, the following holds:
w'T'mgmin{%,Zf} )

Proof: Sincepyng < 1, we obtain tha‘&fnd < %



If f> \/§ then Cpr"d < v/2c < 2f follows from the observation thaprng < 1. Hence, we focus on the case

f<\3

f f f

1=pmg=(1-2)1~ )1~ m)

2

ST B L
c—f+1 c c @)

f2

S Prmd < ~

CPrnd <2t

f

Thus, <Bd < min{$,2f}. [ ]

Lemma 10:min{$,2f} <+/2c

Proof: For a givenc, we have X f <c. Thus, giverc, £ is a monotonically decreasing function bf while
2f is a monotonically increasing function df § =2f =v2cat f = /3. For f < /5, min{$,2f} =2f < V2,
and for f > /S, min{$,2f} = ¢ < v/2c. Thus mif §,2f} < v/2c. [ ]

A. Sufficient Condition for Connectivity

This theorem has been stated and proved by us in [1] (also H@lvever, we repeat it here in the interests of
clarity.

Theorem 7:With random(c, f) assignment, when= O(logn), if Tr?(n) = %{ﬁ?n, then:

Pr[ network is connectefl— 1

Proof: The construction is based on a notion of per-nbdekbonesConsider a subdivision of the toroidal
unit area into square cells of araén) = %. Then by setting(n) = Tlnd in Lemma 2 there are at lea ::3”
nodes in each cell with probability at Ieast—lﬁrfgn. Setr(n) = y/8a(n). Then a node in any given cell has all
nodes in adjacent cells within its range. Within each ceﬁbose% nodes uniformly at random, and set them
apart agransition facilitators(the meaning of this term shall become clear later). Thisdeaat Ieast‘%:% nodes
in each cell that can act dsmckbone candidates

Consider any node in any given cell. The probability thatah communicate to any other random node in its
range ispmg. Then the probability tr|1at in an adjacent cell, there is nockbane candidate node with which it can
48logn

communicate is less thafl — pra) Pnd < kg = 5 (applying Lemma 5).

The probability that a given node cannot communicate with mode in some adjacent cell is thus at mﬁo%t
(as there are upto 8 adjacent cells per node). By applyingittien bound over alh nodes, the probability that at
least one node is unable to communicate with any backbordidzte node in at least one of its adjacent cells is
at most-3;.

We associate with each nodea set of nodesB(x) called the primary backbone fot B(x) is constituted as
follows. Throughout the procedure, cells that are alreaalyeced by the under-construction backbone are referred
to asfilled cells. x is by default a member of3(x), and its cell is the firsfilled cell. From each adjacent cell,
amongst all backbone candidate nodes sharing at least om@@o channel withx, one node is chosen uniformly



at random and added t8(x). Thereafter, from each cell bordering a filled cell, of alldes sharing at least one
common channel with some node alreadyA(x), one is chosen uniformly at random, and is added{a); the

cell containing the chosen node gets added to the set of fidld. This process continues iteratively, till there is
one node from every cell irB(x). From our earlier observation®(x) eventually covers all cells with probability

at least - H%' Now consider any pair of nodesandy. If B(x) N‘B(y) # ¢ the two nodes are obviously connected,
as one can proceed froron B(x) towards one of the intersection nodes, and thengedo B(y), and vice-versa.
Suppose, the two backbones are disjoint. Thamdy are still connected if there is some cell such that the member
of B(x) in that cell (let us call ity,) can communicate with the member8{y) in that cell (let us call ity), either
directly, or through a third nodeg, and gy can communicate directly with probability 1 if they share @renon
channel. Thus the case of interest is one in which no cellhand gy sharing a channel.

If they do not share a common channel, we consider the evanttthre exists a third node amongst tremsition
facilitators in the cell through whom they can communicate. Note thathiar given backbone$(x) and B(y),
the probability that in a network cell, givegy andqy that do not share a channel, they can both communicate with
a third nodez that did not participate in backbone formation and is knowtig in the same cell, is independent
across cells. Therefore, the overall probability can beelebounded by obtaining for one cell the probability of
Ox and gy communicating via a third node given they have no common channel, considering that eathae
at Ieast2'°9” possibilities forz, and treating it as independent across cells. We elabdratdurther.

Let gx have the set of channe®{qgx) = {cy,,...,Cx }, anday have the set of channe®{qy) = {cy,,...,Cy, }, such
thatC(gx) NC(ay) = @. Consider a third node amongst the transition facilitators in the same celbasndqy. We
desirez to have at least one channel common with b@thy) andC(qy). Then let us merely consider the possibility
thatz enumerates it§ channels in some order, and then inspects the first two clareteecking the first one for
membership irC(gx), and checking the second one for membershiﬁ(q,) This probability is(i) (Cél) > %;

Thusgy andgy can communicate throughwith probability p, > Q(Iog ). * There areM possibilities for
z within that cell, and all the possiblenodes have i.i.d. channel assignments. Thus, the protgatblht Ox anday
2logn

cannot communicate through amyn the cell is at most1— p,) Pnd , and the probability they can indeed do so is

2logn

Pxy >1-— (1— pz) Prind

. . . . Prnd”
Thus, the probability that this happens in none of tﬁ% = o305 cells is at most(1 - Pyy) 0000 <

2logn _Prpgh f2 2logn _Prpgh 2n Q( n2 ) i .
(1= pg) Pmd T000T < (1 — ) Pmd 10009 < @ 502 — e l@?n’ (recall thatc = O(logn)). Applying union bound

T)

over all (%) < 22 node pairs, the probability that some pair of nodes are noheoted is at mosfif’g
%eﬁQ('OTzn e g Applying union bound over this probability and the protigpthat some of the cells are

. . . . . e s 50logn . -
not sufficiently populated (as mentioned earlier, this piality is at most=:=-), we obtain that the probability
of a connected network converges to 1. ]

VIl. LOWERBOUND ON CAPACITY

We proved a lower bound €@(W,/ cnlogn) for random(c, f) assignment in [1], [9]. From Lemma 9, it follows

f
that Y2090 — (L

f
B W)' Thus for f < 100, T'Wd” = Q(1), and the construction presented in [1] (details in [9]) is

1As can be seen, this is a very loose boundpgrand can be substantially improved. However, even this lémser bound suffices for our
current purpose.



asymptotically optimal.

We now present a construction that achieGe8V %) when f > 100 (thus necessarily > 100).

Subdivision of network region into celldVe use a square cell construction (similar to that used ind46d
subsequently in [11], [1]). The surface of the unit torus igidkd into square cells of area(n) each, and the
transmission range is set tdf(n), thereby ensuring that any node in a given cell is within mf any other
node in any adjoining cell. Since we utilize tfRrotocol Model[3], a node C can potentially interfere with an
ongoing transmission from node A to node B, onlyBIE < (1+A)r(n). Thus, a transmission in a given cell can
only be affected by transmissions in other cells within gatise(2+ A)r(n) from some point in that cell. Since
A is independent of, the number of cells that interfere with a given cell is onbrge constant (saf).

We choosea(n) = % = @(%) (sincec = O(logn)).

Then the following holds:

__ 200maxlogn,c}
B Prnd

__ 300maxlogn,c}
- Prnd

Lemma 11:Each cell has at Ieaé‘l“g(") and at most6”§<”) nodes w.h.p.

Proof: We have chosen(n) = %ﬁgn’c}. Thusa(n) > %. Then ifc <logn, we can sett = % >1
in Lemma 2, and when > logn, i.e.,c=ylogn(y> 1) (recall thatc= O(logn)), we can sett = %’ > 1, to obtain

that the following holds with probability at Ieast—lﬁr?gn for all cells D:

250maxlogn,c} _50logn < Pop(D) < 250maxlogn,c}

-+ 50logn
Prnd Prnd

Thereafter noting tha 50m;’{':g"’°} —50logn > 200m;>{|:gn,c}, and Zsom‘;){:’g”’c} +50logn < %{fgn’c}, com-
i N ™ ™

pletes the proof. ]
Corollary 1: Each cell has at Ieaﬁw nodes w.h.p.

Many of the intermediate results in the rest of this papeumssthat the high-probability event of Lemma 11
holds.

We also state the following facts:

o=

<pma <1 8)

For largen, sincec = O(logn), and 2< f <c:

na(n) = w _ O(|ng n)
nya(n) 1 [25mmaxlogn,c} .
B E\/ Prnd - Q(\/%) ©)
. f(n) = O(na(n)) — f(n)=0(" a(n))

C



1 PrndN n
va(n) B \/250ma>{|ogn,c} - O(\/|ogn)

nyam) 1 [250nmaxlogn,c} [ n
c E\/ Prnd = m) 4o
1 n\/a(n))

a(n)) — f(n) = O(=

. f(n)=0(

Some properties of SD routing: Recall that we use the traffic model of [3], where each so&fiest chooses
a pseudo-destinatiod’, and then selects the noflenearest to it as the actual destination. In [3], the rdBiBtD
was followed, whereby the flow traversed cells intersectgdhie straight lineSD, and then took an extra last hop
if required. In our case, it may not always suffice to &#&D routing (we elaborate on this later). However, this
is still an important component of our routing procedurej & we state and prove the following lemmas (some
were also stated by us in [9]) f@DD routing:

Lemma 12:Given only straight-lineSD routing (no additional last-hop), the number of flows thateemny cell
5na(n

on theiri-th hop is at mostT)J w.h.p., for anyi.

Proof: Let us consider the straight-line pa8D of an SDD route. Thus all then SO lines are i.i.d. Denote
by )(ik the indicator variable which is 1 if the flok enters a cellD on itsi-th hop. Then, as observed in [6]
(proof of Lemma 3), for i.i.d. straight lines, tkﬁé}k’s are identically distributed, amiik andXJ! are independent for
k # 1. However for a given flonk, at most one of thé(ik’s can be 1 as a flow only traverses a cell once. Then
PI’[Xik _ 1] _ a(n) _ 250ma>{|ogn,c}'

Prndn

n
Let X, = 3 XK. ThenE[X] = na(n). Also, for a giveni, the XX's are independent [6]. Then by application of
k=1

the Chernoff bound from Thereom 3 (wifh= %1):

5E[X E[X
PriX > #] < exp(—%)
1250 maxlogn,c}
4Prnd
_250ma>{|ogn,c}) - 1

48pnd n°

S PriX > (11)

<exp

The maximum value thatcan take is

\/aZW = 2505';)’3”3’9”&} < n. Also the number of cells isé% <n. Then by
application of union bound over aill and all cellsD, the probability thatX; > Lfﬂ is less thann%, and thus the
number of flows that enter any cell on any hop is less tﬁ%ﬂ) = %m'dogn’c} with probability at least + n—13

Resultantly, sinceX is an integer, we can say that it is at m(l;gfjﬂj w.h.p. ]

Lemma 13:The number of flows for which any single node is the destimaisoO(na(n)) w.h.p.

Proof: From Lemma 7, the number of flows for which any node is the dattin isO(logn). We have chosen
a(n) = O — (19N Thys,O(logn) = O(na(n)). This yields the result. ]

Prndn

Lemma 14:If a node is destination of some flow, that flow’s pseudo-aesitbn must lie within either the same
cell, or an adjacent cell w.h.p.



Proof: It was shown in the proof of Lemma 7 that a flow will be assignedtdestination lying within a
circle of radius,/ % centered around the pseudo-destination w.h.p. Conveibalylow is assigned to a node,

then the pseudo-destination must lie within a circle of mfima,/% centered around the node.

It is easy to see that a circle of radibéé% centered at a node will fall completely within the cells adjat
to the node’s cell (by our choice of cell-areén)). Hence if a node is destination of some flow, that flow’s
pseudo-destination must lie within either the same cellroiadjacent cell. ]

Lemma 15:The number ofSDD routes that traverse any cell @(ny/a(n)) w.h.p.

Proof: The proof for this lemma is largely based on a proof in [6]. €ider a cellD. From Lemma 4
(which proceeds from a lemma in [6]) we know that the numbeBDf straight-lines traversing any single cell are
O(ny/a(n)). We must now consider the number of routes whosel¥éBt hop may enter this cetD. If D is in the
same cell a®’, there is no extra hop. Let us now consider the case@héies in one of the 8 adjacent cells, but
D lies in the cellD (from Lemma 14, we know thdD lies in cell D only if D’ lies in D or its adjacent cells). The
number of flows for whictD’ lies in one of the 8 cells adjacent #@ is O(na(n)) w.h.p.(by applying Lemma 2 to the
set ofn pseudo-destinations). Also from Eqn. (9), and the fact ¢hatl, we know thatO(na(n)) = O(n,/a(n)).
Thus the total number of traversing routesOgn,/a(n)). [ |

Having stated and proved these lemmas, we now establish gaperties of the spatial distribution of channels,
and thereafter describe our scheduling/routing proceélutber:

90f max{log n,c}-|
CPrnd ’

Definition 1: We define a ternM, whereM, = [£280)] —

Then the following holds:

Lemma 16:If there are at Ieaslw nodes in every cell, of which we choom nodes
uniformly at random asandidateso examine, then, in each cell, amongst thég%m cand|datenodes at

leastc— LzJ channels have at leabt, nodes capable of switching on them, w.h. p

Proof: Consider any single cell D. Let us denote Bythe set ofw nodes lying in cell D that are

chosen uniformly at random for exam|nat|0n Denotel pythe indicator varlable that is 1 if a nodecan switch
on channei and 0 elsePr[ljj =1] = < andX. Yjezlji is the number of nodes i capable of switching on

channeli. ThenE[X] = fw and we can see that, = [EX].

In light of Lemma 9, this leads to the following equations:
180f max{logn, c}

E[X] = 12
X o (12)
. 180maxlogn,c} _ 90maxlogn,c}
EX] > = e 2 (13)
E[X] > 180f from Eqn. 12 (noting thaping < 1) (14)
180maxlogn,c} 180maxlogn,c} logn
i > > > 90/
E[X] > min(2f, £} > N > 90maX — e ,v/€} > 90+/logn (from Lemma 10) (15)

Note that from the preceding equations, it also proceedshha> [max{w,%f,%\/logn}].
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Let |/ denote an |nd|cator variable WhICh is DAf < X'] , and 0 else. Then from the Chernoff bound in Theorem
4, Pr[l( =1 =PrX < E ] <Prix <& ] < exp(— ) Besides, thd/’s are negatively correlated, as each
node can only havé channels assigned to it, and thus, in the given set of n@jdsaving some channel (say)
assigned to a large number of nodes can only decrease thenpeesf another channel (say).

Then if X =37 ;1 1{, E[X] < cexp(— ) < exp(— +O(Iog logn)) < exp(—32 ]) for largen (sinceE[X] =
Q(y/Togn) from Eqn. 15). Due to the negatlve correlaﬂonlﬁiﬁ we can still apply the Chernoff bound (Lemma 1).
By setting(1+B)E[X] = }1 in Theorem 2 (note thaE[X] < exp(——]) < exp(—2(180f)) < }1, yielding § > 0),

we obtain by appropriate substitutions at each step, tHewolig:

N

1+B)!

(atp) ()

3 <4eexq 3 90ma>{f|ognc})

EX]
PriX > [1] <Prix > 1] < (%)

: ) from Eqn. 13

: _ (16)
B 4eexm_270m;>élfogn,c}) 7 - exp( 270m158g09na0})
- - f
f (36)7
< exp(—2.7maxlogn,c}) < exp(—2.7max{|ogn,c})( since f > 2)

(L) B (%)
< exp(—2.7maxlogn,c}) exp(%)

< exp(—2maxlogn,c}) < n—lz( sincef <c¢)

Applying union bound over alla— < n cells in the network, the probability that this happens iy asll is at
most & L Thus, with probability at Ieast4 , X< [ 1, e, X< L | (sinceX is an integer), and hence each cell
has at least — L | channels withX; > X.t cand|datenodes capable of switching on them. Thus, by our definition
of X, each cell has at least- L4J channels withx; > ( 1 candidatenodes capable of switching on them (since
X; is also an integer). From Eqgn. 12 and the def|n|t|onM1I, we know thatM, = (%]. Thus, the lemma is
proved. ]

Similar to the construction for connectivity from [1] thaevbriefly summarized in Section VI-A, we will construct
a backbone for each noddowever, since our concern is not merely connectivity bsb @bpacity, these backbones
need to be constructed carefully, to ensure that no bottlkemare formed

Conditioning on Lemma 11, there are at Ie&%gn’c} nodes in each cell w.h.p. Initially, from each cell,

we choosew nodes uniformly at random dsackbone candidatehe remaining nodes (which are at

20maxlog n,cfrrl

least in number) are deemedansition facilitators

Prnd

Definition 2: (Proper ChannelA channeli is deemedproper in cell D if it occurs in at leastM, backbone
candidate nodes iD.

Lemma 17:For each cell of the network, the following is true w.h.p.tlile number ofproper channels in the

11



cell is ¢, thencd >c— L%J >c— 5> 7% >

g

Proof: The proof follows from Lemma 11 and Lemma 16. ]
Besides, we can also show the following:
Lemma 18:2

Consider any cellD. Let W be the set of all nodes in the 8 adjacent cdli&k),1 < k < 8, that are capable of
switching on channadl.

For a set of nodes, defineC(B) = {j|j proper inD and3u € B capable of switching onj}. If f > 100, the
following holds w.h.p.:

V channels VB C W such thatB| = [———1: |C(B)| > [—=

fna(n) 3c
4c 8 1

This is true for all cellsD.

Proof: We condition on the node-locations, and their conforminght® high-probability event of Lemma 11.
Consider a cellD. Let ¢’ be the number of proper channelsdn

Having conditioned on (and thus fixed) the node-locatioms! (@ereby node-population in each cell), channel-
presence in each cell is independent of other cells, as ehassignment is done independently for each node.

Then we can show that’ > c— [ 3] >c—[$] > [¥] > %, with probability at least + 3, by following the
proof argument of Lemma 16 up to Eqgn. (16) (just prior to aggtion of the union bound over all cells in the
proof of that lemma).

If ¢ < %C, then we assume that our desired event does not happen f@utpese of obtaining a bound. This
probability is at most.

We now focus on the case where> %C.

Consider a particular channgl

Recall that?/ is the set of nodes in the cells adjacentfothat can switch on channél
We first bound the probability thagt}| > 2400 max{logn,c}.

LetY;; be an indicator variable that is 1 if noden cells adjacent ta@ is capable of switching on chanrigland

0 else. Then we know tha&r[Y;; = 1] = % and for a given, theYjj’s are independent. Lef = 5 Yi;. Then, as
jeD

the node-locations conform to the high probability eventefnma 11,E[Y] < 8(6”;(”)) < 48(25");%"’:;{'09”5} =

%ﬁ;ogn’c}. Setting (1+ B)E[Y;] = 2400¥max{logn,c}, observing from Eqn. (8) thet > % —1>0 and

applying the Chernoff bound from Theorem 2:

2This can be viewed as a special variant of the Coupon Cottegoooblem [4], where there are different types of coupons, and each box
has a random subset d¢fdifferent coupons. Some other somewhat different variatsng multiple coupons per box have been considered in
work on coding, e.g., [12].

12



o E[Y]
Pr[Y; > 2400°max{logn, c}] < (W) < (

e\ (LBEN]
(1+B) )

(1+P)

fe 24002 max{logn,c}
<=
h < €2Cpind >

( f > 24002 max{logn,c}

~ \ecpnd
1 24002 max{logn,c} f
< < ) (. <1)
CPrnd
= exp(—2400% max{logn, c})
< 1
= 24002

(17)

e

Denote byZ; ., the event that, for givenand D: 3B C M| such that 8| = [1%&N) and|c(B)| < [%].

Let pup(x) be an upper-bound oAr [Z})@’|W| =x,c > %C} Note that, having conditioned on (and hence fixed)
the node-locationg | is independent of whether > 3¢ or not.

If pup(X) is an increasing function of, then the following holds:
Pr [ﬂ@‘d > %C
—Pr {|rw.| <bld > %C] Pr {g,@‘wm <bd > %C

+Pr [|rw.| > blc > %C] Pr {g,@‘rmﬂ >b,d > %C

< Prlo] < blPr | 0] 9] < 0.¢ > 5| + el > b
= 5 Prl =Pr [g,gwwzx,dz %C] + P[] > b 18)
< > Pr{| M| =X pun(X) + Pr[| 7] > b]
S:prrﬂ‘”/ﬂ:)(] pun(b) + Pr[| 7] > b]
= pub(b)XZbPrH%ﬂ =X +Pr{| 7] >b]

= Pub(0)Pr{| M| < b] + Pr{| 7] > b]
< pub(b) + Pr{| 1] > b]

Let us now find an upper-bourgl,y(X) that is an increasing function of

Note that we only need to explicitly consider> [f"jé")], else there exist no subseBsC M} satisfying| 3| =
fna(n)

[%]; thus the eventt; ,» cannot occur, and triviallypyp(x) = 0 for 0 < x < [~ 1.

(f”jé”)}, then from Lemma 6, the number of subsets7f of cardinality m= [%1 is thus
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Consider a subseB C M} of specified cardinalityn= (%1. Denote byX; the indicator variable which is 1
if channelj is not a member of"(8) and 0 else.

Recall that each node i has one channel known to lbebut the remainingf — 1 channels assigned to it are
an i.i.d. chosen subset from the remaining 1 available channels. Thus:

Prixe W (j #i)lxe W] = —= > == —(1-2) >~ (- >100) (19)

Then from Eqn. 19Pr[X; = 1] = (1— =)l < (1 2L (%] < ¢ 1o "] (applying Lemma 5). Also, for
j 00

a givenB, the Xj’s are negatively correlated.

fna(n
LetX = ) Xj. ThenE[X] <c'e" o [ setting(1+[3)E[X]:%, one can see thﬁ:%[x]_lz
j proper inD, j#i
99f2na(n) 495 g
4 4002 T6 250maxlogn,c 250z:max logn,c 12
st T, — 12 &7 — 12 &7~ —1>0 (recall thata(n) = arlogne} > doonct > 1252 from

Eemma S)ﬁThus we can apply the Chernoff bound from Theorem @btain that:

B EX] e\ (LHREX]
< <<1+B><l+ﬁ>> “(arm)

N

Pr[X >

:<2eE[X])d <2edexp( 991 [ fnaln )
2 <
d
(- 5
=<e>< fg(l(fnz(:n (1+1n2) )
( noting that—%c(fninﬁ +(1+In2) <0) (20)
(e p(— foggc[fna( 1+ (@1+1In2) )%C
_ (exp(—28907(: (fn:\((:n)] (1+In2)))

297f fna(n), 4f fna(n)
800[ 4c ] 125[ 4c "
250maxlogn,c} S 25cmax{logn,c}  3c(1+log2) <M 4f [fna( )ﬂ)
Prnd - 212 8 125" 4c
265f _fna(n)
g0 ~ac

(- na(n) =

Also note that due to integrality of, X < % — X< L%J — |C(B)| > (%1 > [,

Taking union bound over all possible subsets we obtain that the probability it happens for any such
subsetB is at most(x—nﬁ")mexp( 286055 (f”jé”)}) which is an increasing function of. Thus we obtain:pyp(x) =

(X&) Mexp(— 2850 1Ay for x > (1080 Resultantly,py(X) is an increasing function of.

For b = 24002? max{logn, c}:
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l—fna(n)~|

Pub(b) = Pub(24002 max{logn,c}) - (%W) exp(— 2851 [ fraln) <
2400® max{logn,c} ] 265f - fna(n) 96003c [ 265f - fna(n)
Tﬂ)g ex)— oo [~z 1) < (Tfpmd) expi— 800|— Zc ]) < exp((3 + log Y +

V1) exp(— 2ot [ 12

Since f > 100, the following always holds: f > 8(3 + log40 + log2f). Thus pyp(b) <
2
exq8|—fna ])exq 28605(; "fnjén)}) — exm_18605g "fnjén)}) < exq_é[fnjén)w < exq_f ggén)) < exq 125log1) <
n6 (from Lemma 9 and our choice @i(n)).

g ) 20 xp( 451750 < (3 + g0+ log2r [

]) (using Lemma 9).

Thus from Eqn. (18)Pr[% o|¢’ > %] < pup(b) + Pr{| M| > b] < % + n24j(;°92 <%

Since there arec = O(logn) channelsi to consider, we take a union bound over them to obtain that:
Pr[ o for anyi in D|c > 3] < cPI[% p for a giveni in D|¢’ > X).

Thus: Pr[ 4 for anyiin D | <
C

3

ric < %C] +Pr[c > %](Cpr[ﬂ’@ for a giveni in D|c > %C]) <Pr[c < %c] 4
cPI[Z; p for a giveni in D|c’ > ] I

P
1
S

We then take another union bound over g% =
occurs in any cell is at moq# + H%"

% < 2 cells D to obtain that the probability this

Finally, recall that we conditioned our proof on the nodeations conforming to the high-probability event of
Lemma 11. The probability that this event does not occur imiest =——= 50'09” (as proved in Lemma 11), and we can
obtain a bound by assuming that whenever that event failokdb, hhe event in the statement of this lemma fails
to hold.

This completes the proof thaf(B) > ¢ — Ldj (CJW > [%1 for all speC|f|ed subset® of interest, for all
1

channels, and in all cellsD with probability at least + & — L — 301001 7 2 50logn,

A. Routing and channel assignment

Partial BackbonesAs mentioned earlier, the routing strategy is based on axpde backbone structure similar
to that used to prove the sufficient condition for connettiiidlowever,instead of constructing a full backbone for
each node, only a partial backbor#,(x) is constructed for each node 8,(x) only covers those cells which are
traversed by flows for whiclx is either source or destination. A flow first proceeds alorgyribute on the source
backbone and will then attempt to switch onto the destimatiackbone.

We shall explain the backbone construction procedure iaidkter. First we show how a flow can be routed
along these backbones from its source to its destination.

Lemma 19:Suppose a flow has sourgeand destinatiory. Thus it is initially on‘Bp(x) and finally needs to be
on Bp(y). Then after having traverseé distinct cells (hops) (recall that2 f < c andc= O(logn)) , it will have
found an opportunity to make the transition w.h.p. If thetesuof each of the flows get to traverse at Iea%
distinct cells (note that each individual route needs todrse at least so many distinct cells; two different flows
may share cells on their respective routes), themdlbws are able to transition w.h.p.
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Proof: Consider a flow traversing a sequence of célisD», .... Then if the representative @y(x) (let us
call it gx) in D; can communicate (directly or indirectly) with the repretsgive of By(y) (let us call itgy) in D;,
it is possible to switch fronB,(x) to By(y). If ax and gy share a channel this is trivial. tx andqy do not share
a channel, we consider the probability that the two can conicate via a third node from amongst ttransition
facilitators in Dj, i.e. there exists a transition facilitatarsuch thatz shares at least one channel withand one

channel withgy. In Section VI-A, we summarized a proof from [1] showing tlggtandgy can communicate through
2
a givenz with probability p, > (‘;—2 = Q(Iog%n). Given our choice of cell area(n), and conditioned on the fact that

each cell haw nodes (Lemma 11), of whicﬁ%m;"{%”’c} are deemetackbone candidateand the rest

i
aretransition facilitators there are at least é??xgig""c} > 2%::3“ possibilities forz within that cell. All the possible

z nodes have i.i.d. channel assignments. Thus, the protyathitit g« andgy cannot communicate through amyn
20logn

20logn
the cell is at mosf1— p,) Pmd , and the probability they communicate through sarig pxy < 1—(1—p;) Pmnd .

2 20c2 logn
Hence, the probability that this happens in none of%%ueiistinct cells is at mostl — pyy) ? < (1—p;) PPma <

§2 w _ 20logn
(1- EZ) rmd <@ Pmd < H%U (from Lemma 5). Applying union bound over all flows, the probability that all

flows are able to transition is at Ieast—lﬁ}g. [ |

Therefore, we require each route to have at Ie‘%ésdistinct hops®. Resultantly, we cannot stipulate thait
flows be routed along the (almost) straight-line p&B/D (Fig. 1). If SDD is short, a detour may be required
to ensure the minimum route-length, akin to detour-rouiimghe constructions of [1]. Such flows are said to be
detour-routed

Flow Transition Strategy:As per our strategy, a non-detour-routed flow is initiallyarprogress-on-source-
backbonemode, and keeps to the source backbone till there are éﬂl;&istinct intermediate cells left to the
destination. At this point, it entersraady-for-transitionrmode, and actively seeks opportunities to make a transition
to the destination backbone along the remaining hops. Qr@simade the transition into the destination backbone,
it proceeds towards the destination on that backbone alomgeamaining part of the route, and is thus guaranteed
to reach the destination.

Thus, we stipulate that the (almost) straight-IBED path be followed if the straight-line route comprides %22
distinct intermediate cells (hops). §andD’ (hence alsd) lie close to each other, the hop-length of the straight
line cell-to-cell path can be much smaller. In this caseetour path SPDD is chosen (Fig. 2), using a circle of
radius‘f:—ir(n) in a manner similar to that in the constructions describeflLjn[9] (consider a circle of this radius
centered aroun®, choose a poinP on the circle, and follow the rout8 PDD).

A detour-routed flow is always ineady-for-transitionmode.

The need to perforndetourrouting for some source-destination pairs does not havesahgtantial effect on the
average hop-length of routes or the relaying load on a csllya show further.

Lemma 20:The length of any route increases by at m&$tog?n) hops w.h.p.

Proof: The proof proceeds directly from thdetour routing strategy. Recall that the area of a cell is

%, i.e., the side of each cell i®( l')‘r’n%) (more precisely it is%). The distanceSP in Fig. 2 is

3Note that this does not constitute a tight bound on the mininmumber of hops required for a transition.
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Y
=
S/ S// :
Fig. 1. Routing along a straight line Fig. 2. lllustration of detour routing
at most%zzr(n) (radius of the circle in the figure), yielding at mc@(%zz) hops, whilePD is againat most@(%zz)
hops (diameter of circle). This increases route length bpl(mtO(%zz) — O(log?n) hops (recall that = O(logn)).

Lemma 21:If the number of flows in any cell isx in case of pure straight-line routing, it is at most+
2
O(M) — x+0(log®n) w.h.p. in case of detour routing.

Proof: Recall thatc = O(logn). Since the detour occurs only up to a circle of radﬁés(n), the extra flows
that may pass through a cell (compared to straight-lineimgliare only those whose sources lie within a distance
‘f:—ir(n) from some point in this cell. Thus all such possible sourak\fithin a circle of radius(1+ %)r(n),
and hence areac(n) = @(@). Applying Lemma 3 to the set af node locations (with a suitable choice of
a(n) > 1), with high probability, any circle of this radius will hevD(na:(n)) nodes, and hend®(nac(n)) sources.
Hence the number of extra flows that traverse the cell due toudeouting isO(nac(n)), and each detour-routed
flow can traverse a cell at most twice. Thus, the total numlbdioa/s (even counting repeat traversals separately)

X+ O(%). Sincenr?(n) = O('¥"), and prg > &, the total number of flows i@(cs'f%) — x4+ O(log®n)

Prnd
w.h.p. [ ]

Lemma 22:The number of flows traversing any cell @&n+/a(n)) w.h.p. even with detour routing.

Proof: From Lemma 15, we know that the number of flows passing thr@ugéll with SDD routing (without
detours) isO(ny/a(n)). Thus, from Lemma 21, the number of flows through the cell neafter some flows are
detour-routed, is at mo€(n,/a(n)) + O(log®n) = O(n,/a(n)) (sincea(n) = O('A"y), [ |

Prnd

Lemma 23:The number of flows traversing any cell inady-for-transitionmode isO(log®n) w.h.p.

Proof: First let us account for th&D stretch of each flow, without considering the possible aoidit last
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hop. We account for it explicitly later in this proof.

By our construction, a non-detour routed flow enters tbady-for-transitionmode only when it is% hops
away from its destination. All such flows must have their gsedestinations within a circle of radilﬁ(%r(n))

centered in the cell. The number of pseudo-destinationslighavithin a circle of radius@(‘]f—ir(n)) from the cell

is O(%@) = O(?—Zlogn) w.h.p., (by observing thapyg > % and using suitable choice a@f(n) = O(%)
in Lemma 3). Alsoc = O(logn). Hence there ar®(log®n) non-detour-routed flows imeady-for-transitionmode

traversing the cell w.h.p.

A detour-routed flow is always imeady-for-transitionmode. By Lemma 21, there a®(log®n) such flows
traversing any cell. Each such flow can only traverse a ceitevalong theSD stretch. This yieldsO(log®n)
detour-routed flows (including repeat traversals).

Also, the cell may be re-traversed by some flows on their @it last hop. From Lemma 14, the pseudo-
destinations of such flows must lie in the same cell or one ef&tadjacent cells. Applying Lemma 2 to the set of
n pseudo-destinations, it proceeds that the total numbeisefigo-destinations lying in these 9 cells@sna(n))
w.h.p. Thus, the number of flows entering the cell on theiritimttal last hop isO(na(n)) = O(log?n).

Hence the number of flows transitioning in any celldglog®n) w.h.p.

Backbone ConstructionThe backbone construction procedure is required to taka-b@dancing into account.
Thus we can describe the procedure for constructing thedwaekB,(x) of x as follows:

Given a cellD, the 8 cells adjacent to cefb are denoted a9(j),1 < j <8 (Fig. 3). Bp(x) is constituted as
follows. Let SU Dy be the subset of cells that must be coveredBgyx) wheresS comprises cells traversed by the
flow for which x is the source, and}, comprises the cells traversed by flows for which it may be testidation.

X is by default a member oBp(x).

We consider backbone construction for the route from eacincgoto its pseudo-destination below. Some routes
require an additional last hop to reach the actual destinatode. However, from Lemma 14, the only such last
hop routes that may enter a cell correspond to pseudo-déstis in the 8 adjacent cells. Then applying Lemma
2 to the set of pseudo-destinations, they are @ilga(n)) such pseudo-destinations, and thus ddlya(n)) such
last-hop flows entering the cell. Hence we can account fantkeparately.

a) Expanding backbones t&: We first cover cells inS. Recall that we are only constructing 5 part
and not considering the possible additional last hop atdtage.

This has two sub-stages. In the first stage, we constructioaas for source nodes whose flow does not require
a detour. In the second sub-stage we construct backbonaestioce nodes whose flow requires a detour.

Straight-line backbones:

This step proceeds in a hop-by-hop manner for all non-detowted flows in parallel (each of which has a
unigue SOUrce).

Any cell of § in which there is already a node assignedBg(x) is called a filled cell. Thus initially's cell is
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Fig. 3. Cell D and neighboring cells during backbone construction

filled. We then consider the cell i§ that is traversed next by the flow. We consider all nodes im ¢ed sharing
one or more common channel with This provides a number of alternative channels on whichflidwe can enter
that cell.

Let hnax be the maximum hop-length of any non-detour-rougid route. Then,hmax = O(ﬁ) and the

procedure ha$imax steps. In stefk, for each source node whose flow hask or more hopsB,(x) expands into
the cell entered by’s flow on thek-th hop. Each cellD performs the following procedure:

The backbones are extended by constructing bipartite grépt aid load-balance.

Lemma 24:1f f > 100, then it is possible to devise a backbone constructiocguiure, such that, after step

hmax Of the backbone construction procedure fotfor non-detour-routed flows), each cell h@$n—vca(n)) incoming

backbone links on a single channel, and each node appe@@é@) (source) backbones, w.h.p.

Proof: This proof assumes the high probability events in Lemma Emina 12, Lemma 17, and Lemma 18
occur.

We present an inductive argument. Recall that we are expgristickbones to cover cells if. At each step
of the (inductive) construction, we first have a channebadkion phase, followed by a node-allocation phase
prove that after stek of the backbone construction procedure, the following tmeariants hold forll cells of the
network:

« Invariant 1: Each node is assigned at most 14 new incoming backbone linlsgdstepk. Thus after stefk,
it appears in a total o0©(14k) = O(k) backbones.

« Invariant 2: No more thaanJ new backbone links enter the cell on a single channel dutieyks Thus,
in total O(k”#a(”)) incoming backbones (entering the cell) are assigned (imgriinks) on a single channel
after stepk.

If the above two Invariants hold, then it is easy to see th&drdf,ax steps, cellD will have no more than
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5h’“a’é”a<”) = O(nV :(n)) backbone links assigned to any single channel, and no nagon more than Thax —
o(——) = O(”me)) backbones (from Egn. (10)).

a(n)

We prove that the Invariants hold, by induction, as follows:

If Invariant 1 holds at the end of step k— 1, then Invariant 2 continues to hold after the channel-allocation
phase of step k. If Invariant 2 holds after the channel-allocation phase of step k, then Invariant 1 will
continue to hold after the node-allocation phase of step k, and thus both Invariants 1 and 2 will hold at the
end of step k.

Base Case:

Before the procedure begins, at step 0, each node is asdigrtsdown backbone, for which it is effectively the
origin (and this can be viewed as a single backbone link iragrto this node from an imaginary super-source).
Thus after Step 0, Invariant 1 holds trivially, and Invati@nis irrelevant, and thus trivially true.

Inductive Step:
Suppose Invariants 1 and 2 held at the end of &efl. Consider a particular cefD during stepk.

Let the number ofroper channels inD be ¢’. From Lemma 17, we know that > c— L%J > %C for each cell.
Each flow that enters cefD in stepk has a previous hop-node in one of the 8 adjacent cells. Alse that, from
Lemma 17, each previous hop node has at Ié%%i of cell D's proper channels available to it as choices (since
it has f channels of which at mosﬁj may be non-proper in celD).

Channel-Allocation: Construct a bipartite graph with two sets of vertices (Fig. ahe set (call it£) has a
vertex corresponding to each of the (source) backbonetiiat the cellD in stepk. From Lemma 12, it proceeds
that |£] < | 20| The other set (call itP) has| 221 | < 3140 yertices for each proper chanrieh cell D, ie.,
PEE S

A backbone vertex is connected to all the vertices for thennbs proper inD on which its previous hop node
can switch (and which are therefore valid channel choicesfdaering the cellD). We show that there exists a
matching that pairs each backbone vertex to a unique chaerte, through an argument based on Hall's marriage
theorem (Theorem 5). Thus, we seek to show that forlalC 2, |A (V)| > |V|, where A (V) C P is the union
of the neighbor-sets of all vertices iH.

We first note the following:

3f, 5na(n), _ 3f /5na(n) _ 15fna(n) 3f

T g (T - PR -
f f f

>= 2: - 3183@ >= gca( - (-naln) = 250c)

Consider the following two cases:

Case 1. |'V| < 22180 Consider any set’ of backbone vertices such thel’| < nggf(” Then since there

are at mostuj non- proper channels in a cell, every previous hop node haeaat[ 1 >3t proper channel
choices. For each proper channel there p?!@— S"a 5na) _ 1 associated channel vertlces. Thus we obtain that
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Set P

] %c(n) | vertices

for each proper channel

Fig. 4. Bipartite Graph for CellD in stepk

(V)| = 3 (2 1) > 2080 (from Eqn. 21). ThugA(V)| > |V

Case 2:|V| > %: Now consider setd’ of size at Ieasl%. Note that since Invariant 1 held till end

8
of stepk— 1, no more than 14 backbone links were assigned to any siragle mkglﬂ)(k) in stepk— 1.

Intuitively, in order to show thafA (V)| > || for all such?/, we first state and prove the observation that if a
channel overload condition occurs, resulting|#&(%’)| < || for some ¥/, then the overload must also manifest
itself in somechannel-alignedsubset (i.e. a subset where all flows have s@m@monproper channei available
to them). Thus, to show that no overload condition occursyffices to show that no overload condition occurs in

any of thesecritical channel-aligned subsets, which can be shown using Lemmaheargument is formalized
as follows:
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Let 9} be the set comprising all sed; C £, such that all backbone vertices @ have channel associated
with them (i.e., all backbone vertices itf; havei available to them as a valid proper channel choice for emeri
D).

Claim (a): Vue U ¥:
i properinD

Ul =

%f(”” = [A(W)] > |£|

Proof of Claim (a): We know thatU € 4} for somei that is proper inD. Also, since no node can be the
previous hop in stefx of more flows than those assigned to it in step 1, and Invariant 1 held after stdp-1, it
proceeds that no previous hop node is common to more thantédrenbackbone links. Lefl be the set of distinct
previous hop nodes associated with Then |4 > 4| v > & (2fan) > faw) | faln) o, fnaln) | o > pfainy
(note thatf"a( ) > 250f > 500> 112). Observe thafl thus contains at least one subngatlsfylng|Q?»| [m].
Recognizing that all members ¢, and hence all members df, are capable of switching on chanrnewe can
invoke Lemma 18 onB, to obtain that whenf > 100: |C(B)| > [¥]. This yields: A((U) > |C(QS)|L5”%(”>J >

(C(B)| (20 — 1) > 3] (220 —1) > 350 3¢ > 50 3 () 1 > S0 > g

=78 8 \ 250
Claim (b): Consider a set/ C £. Then:

[N (V)| < |V| = 3i properinD,S$ C ¥V s.t. :
29fna(n) (22)

5 e W and]s| > [T

Proof of Claim (b): SupposeA (V)| < |V|. Let us denote bys; C ¥ the set of all backbone vertices i
that are associated with channdii.e., have channel available as a valid proper channel choice for entering cell
D). Consider the bipartite sub-grafh,, induced by?” UA (?), and assign all edges unit capacity. Construct
the graphG, U {s,t} where s is a source node having a unit capacity edge to alcesst € 7/, andt is a sink
node, connected to each vertax A() via a unit capacity edge. We try to obtain(at) flow g such that
all edges(s,v) are saturated. Each vertexc 1’ sub-divides the unit of flow received fromequally amongst all
edges(v,u) outgoing from it. Since each vertex has edges to verticest drfast3f channels, this yields at least
3 (5“%(“) —1) > ng”"’“” edges (see Eqgn. 21). Thus each 9/ contributes at mostzgf% units of flow to a

vertexu € A[(V), i.e., g(v,u) < 29fna( - Hence no vertexi € A((7) gets more thar(u) = Z g(v,u) = 29%‘1?(‘ s
VES

units of flow, wherd is the channel corresponding to veriexResultantly, if|.S5| < | for all channels that
are proper in cellD, this implies thath(u) < 1, and settingy(u,t) = h(u) yields the desweojs,t) flow. Henceg is

a valid flow that allows a unit of flow to pass through each veite 7. From the Integrality Theorem (Theorem
6), we can obtain an integer-capacity flow that yields a matebf size|?/|. Thus, from Hall's marriage theorem
(Theorem 5)|A (V)| > || (else a matching of sizgl/| could not have existed). This yields a contradiction. Thus
there must exist a proper chanriebnd$§; C 9 such thats; € 4 and|S;| > ngfi
necessarily be an integer, it proceeds tsit> (ng”a(” 1, and Eqgn. (22) holds.

29fna )J

]. Since set-cardinality must

Claim (c): V¥ C £ such thaf V| > % N(V)| > |V
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Proof of Claim (c)'Supposqﬂ\[( )| < |¥|. Then, from Claim (b), there exists a s&tC ¥’ such that$ € 'V.,
and || > [ng"a 1. Thus S qualifies as a set to which Claim (a) applies. Invoking Claah @n this sets;, it
follows that|AL(V)| > |AL(Si)| > |£] > |V|. This yields a contradiction. Thus\ (V)| > |V].

Hence, by application of Hall's marriage theorem (Theoremeach backbone vertex can be matched with a
unigue channel vertex, and the corresponding backbonebeitissigned to the channel with which this vertex is
associated. Thus all backbones get assigned a channekiaod there ar¢sna | channel vertices for each proper
channel) no more thahf’”a(n | incoming backbone links are assigned to any single channel.

While Hall’s marriage theorem proves that such a matchingtgxthe matching itself can be computed using
the Ford-Fulkerson method [2] on a flow network obtained fritva bipartite graph by adding a source with an
edge to each vertex id, a sink to which each vertex i® has an edge, and assigning unit capacity to all edges.

Thus Invariant 2 continues to hold after the channel-atiocaphase of stef. *

Node-Allocation:Having determined the channel each backbone should usadoasil D, we need to assign
a node in cellD to each backbone. For this, we again construct a bipartaphgrin this graph, the first set of
vertices (call it ) comprise a vertex for each backbone entering @elin stepk. The second set (call i)
comprises 14 vertices for eadfackbone candidataode in cellD. A vertexx in ¥ has an edge with a vertex
in R iff the actualbackbone candidateode associated with is capable of switching on the channel assigned to
the backbone associated with vertein the preceding channel-allocation phase.

Each vertexx € ¥ has degree at least W4, since it is assigned to proper channel, which by definition has at
leastM,, representatives in ceiD, each of which has 14 associated verticeRinAlso recall thatM,, = [gf;;(”)].
Once again we seek to show that for fIC 7, |A(V)| > |V|.

Consider any set’ € F.

Since no channel is assigned more tﬂwj entering backbone links in this step, the vertices¥inare
cumulatively associated with at least> 5‘&,‘] distinct proper channels. Since each of these channels dtave
leastM, backbone candidataodes capable ‘of switching on them, and any one node can wfitighson up to f

proper channels, this implies that the number of nodes ih Petumulatively associated with these> fmn
¢

“It is interesting to consider whether load-balance wouldtiome to hold even if we follow simpler procedures. We hakieven in [1], [9]
that for random(c, f) assignment, a per-flow throughput &{W Crllogrl) is achievable with a much simpler construction. That camsion
is of interest despite not achieving optimal capacity siitqg@ovides a trade-off between throughput and routinggsiciing complexity. In fact
when f is a small constant, the asymptotic capacity for both caotitms is within a small constant factor of each other. Hmueit is also
useful to consider whether simpler procedures can allowtorechieve the optimal capacity. As an illustration, coasid procedure where a
backbone link is assigned to the least-loaded of all chanaeghilable to it. If this procedure can be proved to yieldiropt load-balance, it
would have useful practical implications toward potefyiahdicating that even simple protocols can suffice for gpedformance. This problem
is a special variant of the problem of throwing balls into shimith the power ofd choices. The problem of throwing balls intob bins with
d choices was studied in [13]. In [14], a balls-and-bins téghe is used to obtain fractional matchings in graphs. Hewéhese results yield
probability bounds polynomial in number of bins. In our catbe bins (channels) a@(logn) (wheren is number of nodes), and we need much
stronger bounds to ensure that global overload probakiiitgs to 0, and thus a simple adaptation of existing baltshinis proofs does not
suffice. Our case also has additional constraints, e.g.ntineber of choices available to each ball@éf), and the number of balls (traversing
source backbones) decreases with increasg in

Also of interest is the possibility of having optimal-cajigcachieving procedures where backbones are construaqdestially, or even
better, completely asynchronously (recall that the simplanstruction possesses these properties, but yieldoptimal capacity). If such a
procedure can be shown to achieve good load balance, it le&s psotocol implications in that when a new flow is admittedutes for existing
flows do not need to be re-organized to ensure load-balance.
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hannels is at leastMu_ > [VIZE2T S 99 o0y h node has 14 vertices, it foll VY >
proper channels is at leastsur; > —smin — > 175+ @nd as each node has 14 vertices, it follows ihatv)| >
[}

14(%) > 1207 |, o

Cc

125 125

Then invoking Hall's Marriage Theorem again, each vexex# can be matched with a unique vertex %, and
the actual network node associated wjtlhs deemed the backbone representative for the backbonespomding
to vertexx in cell D (the matching can again be computed via the Ford-Fulkersethad). Since there are at
most 14 vertices associated with a node, no node is assigoesithran 14 incoming backbone links in stepand
Invariant 1 continues to hold after the node-allocationgghaf stepk.

Thus we have shown that both Invariants 1 and 2 continue to afdér stepk.

Hence after stepmax (Wherehpax < L), each cellD hasO(w) = O(nv a(n)) entering backbone links

/a(n) Cc Cc
per channel, and each node appearffhmay) = O(—~=) = O(nV:m)) (from Egn. (10)) source backbones.

a(n)
|

Detour backbones=rom Lemma 21 the number of additional flows traversing aded to detour routing is only
O(logfn), and each such flow will at most traverse the cell twice. The®ur flows do not pose any significant
load-balancing issue at any cell, and we can grow the baddans for these flows in any manner possible,
i.e. by assigning links to any eligible node/channel (astezne eligible node is guaranteed to exist since, as a
consequence of Lemma 17, each node can switch on atﬂél%ﬂstchannels that are proper in the next cell).

Additional last hop:We now account for the possible additional last hop that stiaves may have, yielding an
additional cell inS (in addition to those traversed from source to pseudo-datstin). We already argued that at
mostO(na(n)) = O(”—\/f(_n)) flows (from Eqgn. (9)) enter any cell on their additional lasiph Thus, even if their
backbone links are assigned to the same channel/node, we mUhaveO(n—‘/f(_n)) flows per node and channel
in any cell for theS stage.

b) Expanding backbone t6}, —S: In this stageB,(x) expands into the cells traversed by flows for which
is the destination. Note that by our routing strategy a flow anly attempt to switch to the destination backbone
when it entergeady-for-transitionmode. From Lemma 23, the total number of flows traversing hineteady-
for-transition mode isO(log® n) (counting possible repeat traversals), which is much mﬂﬂanO(@). Thus
flows on their destination backbone do not pose any majorhzdance issues, and the backbones can be expanded
into cells of D, — § by assigning links to any eligible node/channel.

B. Proving load-balance within a cell

We now show that no channel or interface bottlenecks formhenrietwork when our described construction is
used.

Per-Channel Load:

Lemma 25:The number of flows that enter any cell on a given channé)(ig—f(m) w.h.p.

Proof: A flow on routeDy, D, ..., Dj_1, Dj.... may enter a cellD; on a channel if (1) the flow is inprogress-
on-source-backbonmode, or it is inready-for-transitionmode, but is yet to find a transition into the destination
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Fig. 5. Two additional transition links for a flow lying whgliwithin the cell

backbone , and is the shared channel between the source backbone nodegs inand Dj, or (2) the flow has
already made a transition, amds the shared channel between the destination backbones modg_; and D;

We first consider the flows that enter a cellprogress-on-source-backbon@ode, i.e., are proceeding on their
source backbones. Recall that these are all non-detoteddiows, since detour-routed flows are alwayseady-
for-transition mode. Then the number of such flows that enter any cell on desicttannel isO(n—Vca(n)) from
Lemma 24.

We now need to account for the fact that some of these flows reaiyp bhe ready-for-transitionmode. From
Lemma 23 there ar®(log®n) flows traversing any cell ineady-for-transitionmode w.h.p. (recall that these include
the detour-routed flows with their repeat traversals codirsieparately, and the possible additional B4D hop).
Thus regardless of whether they are still on their sourceklbace, or have already made the transition to their
destination backbone, no channel can have more @(wg®n) such flows entering the cell.

Hence the number of flows entering on a single chann@l(nls—Vé’l(n))+0(log6 n = O(H—Vf(n)) w.h.p. for each
cell of the network. [ |

Lemma 26:The number of flows that leave any cell on any single chann@l(nls—vf(m) w.h.p.

Proof: Note that the flows that leave the cell, must then enter ond@f8t adjacent cells on that channel
(as the corresponding backbone link for a flow leaves theeatircell, and enters an adjacent cell). Thus, flows
leaving the cell on a channel can be no more than 8 times thénmiax number of flows entering a cell on any
one channel, which has been established)ans\/—(fW) in Lemma 25. Hence, the total number of flows leaving any

given cell on a given channel is aI@(n—VS(n)) w.h.p. ]

Lemma 27:The number of additional transition links scheduled on dngle channel within any cell i©(log®n)
w.h.p.

Proof: Recall that transition strategy outlined in the proof of lmam 19, whereby the flow locates a cell
along the route where the source backbone ngdeand destination backbone nodg are connected through a
third nodez. This yields two additional linkslx — z, andz — gy that lie entirely within the cell (Fig. 5). Note that
the number of flows performing this transition in the cell d@no more than the number of flows traversing the
cell in ready-for-transitionmode. From Lemma 23 there a@log®n) such flows traversing any cell w.h.p. In the
worst case, we can count 2 additional links for each such flsvibeing all assigned to one channel. The result
proceeds from this observation. ]
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Per-Node Load:

Lemma 28:The number of flows that are assigned to any one node in an;'vsc@ﬂn—vca(n)) w.h.p.

Proof: A node is always assigned the single flow for which it is therseuA node is also assigned flows
for which it is the destination, and from Lemma 7 there are ashD(n) = O(logn) such flows for any node
w.h.p. Besides, a node may be assigned flows that are imetidy-to-transitionmode, for which it facilitates a
transition (if it is atransition facilitator node), or on whose destination backbone it figures. ThereDgiag® n)
such transitioning flows in a cell w.h.p. from Lemma 23. Thusode can only hav®(log®n) such flows assigned.

We now consider the flows iprogress-on-source-backbon®de that do not originate in the cell. These nodes
are on their source-backbone, and from Lemma 24, each nc&jathaostO(n—Vf(m) such flows assigned. Thus,
the resultant number of assigned flows per node-isDin) + O(log® n) +O(n—VCa(n)) = O(n—Va(n)). |

C
C. Transmission schedule

As mentioned earlier, from the Protocol Model assumpti@checell can face interference from at most a constant

numberf of nearby cells. Thus, if we consider the resultant celbiférence graph (a graph with a vertex for each
cell, and an edge between two vertices if the correspondiilg can interfere with each other), it has a chromatic
number at most ¥ 3. Hence, we can come up with a global schedule haviag3unit time slots in each round.
In any slot, if a cell is active, then all interfering cellseainactive. The next issue is that of intra-cell scheduling.
We need to schedule transmissions so as to ensure that atnamynstant, there is at most one transmission on
any given channel in the cell. Besides, we also need to ertsatano node is expected to transmit or receive more
than one packet at any time instant.

We construct a conflict graph based on the nodes in the actiljeaad its adjacent cells (note that the hop-sender
of each flow shall lie in the active cell, and the hop-receshall lie in one of the adjacent cells, except for transition
links, for which both lie in the active cell), as follows: weeate a separate vertex for each flow for which a node
in the cell needs to transmit data (we count repeat trav@rmahdditional transition links as distinct flows for the
purpose of scheduling; these have been accounted for whilading the number of flows in a cell in previous
lemmas). Since the flow has an assigned channel on which iaigsein that particular hop, each vertex in the
graph has an implicit associated channel. Besides, eatéxveais an associated pair of nodes corresponding to the
hop endpoints. Two vertices are connected by an edge if &) tiave the same associated channel, or (2) at least
one of their associated nodes is the same. The schedulitdeprahus reduces to obtaining a vertex-coloring of
this graph. If we have a vertex coloring, then it ensures {hat node is never simultaneously sending/receiving
for more than one flow (2) no two flows on the same channel argeasimultaneously. Thus, the number of
neighbors of a graph vertex is upper bounded by the numbeowtftequiring a transmission in the active cell on
that channel, and the number of flows assigned to the flow'shtwwendpoints (both hop-sender and hop-receiver).
It can be seen from Lemma 25, Lemma 26, Lemma 27 and Lemma 28hihalegree of the conflict graph is

O(nV:(n))+O(nV:(n))+O(Iogﬁn)+O(n—vf(m)+0(nvf(n)) = O(nvf(n)) (note thatO(log®n) — O(H—me)),
since we showed in Eqn. (9) t = ")), Thus the graph can be colored @(X22) colors.
i howed i (9) th&82" — o(, /). Thus the graph can be colored @(™Y2™) col

— /mlogn
Hence, the cell-slot (which can be assumed to be of unit timejivided intoO(nTa(n)) = O(+2nd-) equal
length subslots, and all traversing flows get a slot for tnaission. This implies that each flow get<¥c, /-Pmnd.)

nlogn
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fraction of the time. Moreover, each cell gets at least ooeisl1+ 3 slots, wheref is a constant, and each channel
has bandwidthY. Thus each flow gets a throughput of at Ieé%) (W) Q(c,/Pmd ) = Q(w, /Pmd).

nlogn nlogn

We thus obtain the following theorem:

Theorem 8:Whenc = O(logn) and 2< f < c, the per-flow network capacity with randofn, f) assignment is
@(W Prnd )

nlogn

VIIl. A REMARK ON THE PROOFTECHNIQUE

Note that many of our intermediate lemmas assume certainatdés events proved to occur w.h.p. in some of
the lemmas proved before them, e.g., most intermediate Bsrare conditioned on the event in Lemma 11. It is
not hard to see that the overall result continues to holdpu.las briefly explained in this section:

Let a generic undesirable event be denoted®y(i.e., ~F; is the desirable event). We know from the union
bound that:

PI’[‘Z]_ @] fz] < PI’[‘Z]_] + PI’[‘Zz] (23)

Note that the following is also always true:
Pr[E1U Ep] = Pr[E1] 4 Pr[—E1]Pr[Ez|~E1] < Pr[E1] 4 Pr[Ez|—~Ei1] (24)

In light of this, it is not hard to see that the probability tlewen one of the undesirable events from any of these
lemmas occurs, can be upper-bounded by summing up the dindiv(iin some cases, conditional) probability of
occurrence of each undesirable event, as bounded by eachaédne., by essentially applying a union bound on
the probabilities proved in each lemma). Since we have im@lly a small constant number of lemmas, and each
lemma shows that the (possibly conditional on events shavoctur w.h.p. in previous lemmas) probability of
occurrence of some undesirable event goes to 0 (or equilalgimows that the probability of occurrence of the
complementary desirable event goes to 1), the sum will atsdogzero. Hence, the probability that even one of
the undesirable events happens goes to 0.

IX. DISCUSSION

In this paper, we described a construction that achieves-fiqve throughput ofQ(W, /-Pmd.) for ¢ = O(logn),

nlogn
wheneverc, f take values such thdt> 100. Forf < 100, the lower bound construction presented by us in [1], [9]
(which yieldedQ( ngn) per-flow throughput) is of the same asymptotic order (frommiea 9, it follows that
f f
v E = Q(%), and thus wherf < 100, Y. E = Q(1)). In light of the upper bound o®(W, /fu) proved by
nlogn niogn
us in [1], [9], this establishes the capacity for rand@nf) assignment a®(W n‘fga’n) in the regimec = O(logn).

We now show the following:

f f f
pmd=1—(1—E)(1—r1)---(1—m) 5

2
> 1—(1—%)f >1-e <( from Lemma §
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Communication Probability with Constrained Switching (c=O(log(n)))
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Fig. 6. Comparison of probability of sharing a channel

Thus, f = Q(/C) = pma = Q(1). To illustrate, if we setf = /¢, pmg > 1— % > 3. In light of Eqn. (25),
our result implies thaf = Q(,/c) suffices for achieving capacity of the same order as the wir@ned switching
f

case [11]. Forf = ,/c, the previously established lower bound @fW Wogn)' would have yielded a capacity

degradation of a factor od:%, compared to the unconstrained switching case. In genenal,may see that the
capacity may diverge from the previous lower bound W%eﬂ» 0, but f — . Fig. 6 is a numerical plot (obtained
by settingc to 10*, and varyingf from 2 to ¢) depicting how the probability,,q compares with the probability
Pag | = min{%, 1}. Recall thatpynq is the probability that two nodes share at least one chann@lridom(c, f)
assignment, an@g“dajx is the upper bound on the probability that two nodes shareattlone channel in adjacent
(c, f) assignment [1]. It is quite remarkable that though both n®d#ow nodes to switch between a subsetf of
channels, the additional degrees of freedom obtained \vdaa@om assignment lead to a much quicker convergence of
Prng toward 1. The results in [1] established that connectivigswhe dominant constraint determining capacity for
adjacent(c, f) assignment in the = O(logn) regime. The lower bound in this paper for randdanf) assignment
matches the upper bound imposed by the connectivity cans{isee [1]). Thus, the quick convergencemfqy to

1 leads to a quicker convergence of capacity towards thainatile via unconstrained switching.

It is to be noted that the lower bound of [1], [9] was obtaineding a much simpler construction than the
one described in this paper. Thus the two constructionsesgmt an interesting trade-off in capacity versus
scheduling/routing complexity.

X. CONCLUSION

We have presented a tight bound for capacity with randonfi) assignment, foc = O(logn), 2< f <c. Our
result indicates that capacity (W, / n‘fggn). Thus, one can achieve capacity of the same asymptotic asler
unconstrained switching, wheh= Q(,/c). When f < 100, the capacity is achieved by using the construction for
random(c, f) assignment described in [1], [9]. In this paper, we have dlesd a new construction that achieves

capacity forf > 100. We have also discussed the implications of this ressjpecially when compared to the
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capacity result for adjacerft, f) assignment. There still remain some interesting open mumesspertaining to the
random(c, f) model, in terms of what is achievable via strictly asynctmesrouting/scheduling. Other open issues
include extension of the random and adjacent constraintefsad multiple interfaces. Moreover, we believe that
there is much potential for formalization and analysis dfestkinds of switching constraint models.
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