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Abstract

The issue of transport capacity of a randomly deployed wireless network under random(c, f ) channel assignment
was considered by us in [1]. We showed in [1] that when the number of available channels isc= O(logn), and each

node has a single interface assigned a randomf subset of channels, the capacity isΩ(W
√

f
cnlogn) andO(W

√

prnd
nlogn),

and conjectured that capacity isΘ(W
√

prnd
nlogn). We now present a lower bound construction that yields capacity

Ω(W
√

prnd
nlogn) for all c = O(logn) and 2≤ f ≤ c. This establishes the capacity under random(c, f ) assignment as

Θ(W
√

prnd
nlogn). The surprising implication of this result is that whenf = Ω(

√
c), random(c, f ) assignment yields

capacity of the same order as attainable via unconstrained switching. Also of interest is the routing/scheduling
procedure we utilize to achieve capacity, which marks a significant point of departure from the construction used to

obtain the previous lower bound ofΩ(W
√

f
cnlogn). This procedure requires synchronized route-construction for all

flows in the network, leading to the open question of whether it is possible to achieve capacity using asynchronous
routing/scheduling procedures.

I. I NTRODUCTION

In [1], we argued for the need to study the performance of multi-channel networks in situations where there are

constraints on channel switching. We proposed some constraint models in [1] to capture some expected constraints,

and analyzed two such models, viz., adjacent(c, f ) assignment and random(c, f ) assignment. We studied the impact

of such restricted switching, quantified by the parameterf (where f is the number of channels an individual node

may switch to) in the regimec= O(logn). One of our proposed models was termed random(c, f ) assignment. For

this model, we proved in [1] that capacity isO(W
√

prnd
nlogn) andΩ(W

√

f
cnlogn).

In this paper, we establish the per-flow capacity under random (c, f ) assignment for the regimec = O(logn) as

Θ(W
√

prnd
nlogn) by presenting a lower bound construction that yieldsΩ(W

√

prnd
nlogn) per-flow throughput. It can be
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shown thatprnd ≥ 1−e−
f 2
c . Hence the implication of this result is that whenf = Ω(

√
c), random(c, f ) assignment

yields capacity of the same order as attainable via unconstrained switching. Thus, for the random(c, f ) assignment

model,
√

c-switchability is sufficient to make order-optimal use of all c channels, whenc = O(logn).

Interestingly, our capacity achieving routing/scheduling procedure requires that routes/schedules for all flows be

computed in lock-step in a synchronized manner. This leavesopen the question of whether capacity can be achieved

via asynchronous routing/scheduling procedures.

II. NOTATION AND TERMINOLOGY

Throughout this paper, we use the following standard asymptotic notation [2]:

• f (n) = O(g(n)) means that∃c,No, such that

f (n) ≤ cg(n) for n > No

• f (n) = o(g(n)) means that lim
n→∞

f (n)
g(n) = 0

• f (n) = ω(g(n)) means thatg(n) = o( f (n))

• f (n) = Ω(g(n)) means thatg(n) = O( f (n))

• f (n) = Θ(g(n))means that∃c1,c2,No, such that

c1g(n) ≤ f (n) ≤ c2g(n) for n > No

When f (n) = O(g(n)), any functionh(n) = O( f (n)) is also O(g(n)). We often refer to such a situation as

h(n) = O( f (n)) =⇒ O(g(n)).

As in [3], we say that the per flow network throughput isλ(n) if each flow in the network can be guaranteed a

throughput of at leastλ(n) with probability 1, asn→ ∞.

Whenever we use log without explicitly specifying the base,we imply thenatural logarithm.

III. SOME USEFUL RESULTS

Theorem 1:(Vapnik-Chervonenkis Theorem) Let S be a set with finite VC dimension VCdim(S). Let {Xi} be

i.i.d. random variables with distributionP. Then forε,δ > 0:

Pr

(

sup
D∈S

| 1
N

N

∑
i=1

IXi∈D −P(D)| ≤ ε

)

> 1− δ

wheneverN > max

(

8VCdim(S)

ε
log2

16e
ε

,
4
ε

log2
2
δ

)

Theorem 2:(Chernoff Bound [4]) LetX1, ...,Xn be independent Poisson trials, wherePr[Xi = 1] = pi . Let X =
n
∑

i=1
Xi. Then, for anyβ > 0:

Pr[X ≥ (1+ β)E[X]] <

(

eβ

(1+ β)(1+β)

)E[X]

(1)
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Theorem 3:(Chernoff Upper Tail Bound [4]) LetX1, ...,Xn be independent Poisson trials, wherePr[Xi = 1] = pi .

Let X =
n
∑

i=1
Xi . Then, for 0< β ≤ 1:

Pr[X ≥ (1+ β)E[X]]≤ exp(−β2

3
E[X]) (2)

Theorem 4:(Chernoff Lower Tail Bound [4]) LetX1, ...,Xn be independent Poisson trials, wherePr[Xi = 1] = pi .

Let X =
n
∑

i=1
Xi . Then, for 0< β < 1:

Pr[X ≤ (1−β)E[X]]≤ exp(−β2

2
E[X]) (3)

Lemma 1:The chernoff bounds continue to apply if the Poisson trials are not independent, but are negatively

correlated.

This is a well-known, and often-used result, e.g., see [5].

Lemma 2:Suppose we are given a unit toroidal region withn nodes located uniformly at random, and the region

is sub-divided into axis-parallel square cells of areaa(n) each. Ifa(n) = 100α(n) logn
n ,1≤ α(n) ≤ n

100 logn, then each

cell has at least(100α(n)−50) logn, and at most(100α(n)+50) logn nodes, with high probability.

Proof: It is known that the set of axis-parallel squares inR
2 has VC-dimension 3. In our construction, we

have a set of axis-parallel square cellsS such that the cells all have areaa(n) = 100α logn
n . Then considering then

random variablesXi denoting node positions,Pr[Xi ∈ D(D ∈ S)] = 100α logn
n . Then, from the VC-theorem (Theorem

1):

Pr

(

sup
D∈S

|No. of nodes inD
n

− 100α(n) logn
n

| ≤ ε(n)

)

> 1− δ(n)

whenevern > max

(

24
ε

log2
16e

ε
,
4
ε

log2
2
δ

)

This is satisfied whenε(n) = δ(n) = 50 logn
n . Thus, with probability at least 1− 50 logn

n , the populationPop(D) of

cell D satisfies:
(100α(n)−50) logn

n
≤ Pop(D)≤ (100α(n)+50) logn

n
(4)

Lemma 3:Suppose we are given a unit toroidal region withn points(or nodes) located uniformly at random,

let us consider the set of all circles of radiusR and areaA(n) = πR2 on the unit toroid. IfA(n) = 100α(n) logn
n ,1≤

α(n) ≤ n
100 logn, then each circle has at least(100α(n)−50) logn, and at most(100α(n)+50) logn of these points

(or nodes), with high probability.

Proof: The set of all circles of radiusR in R
2 has VC-dimension 3 (e.g., see [3]). Thereafter by the same

argument as in the proof of Lemma 2, the result proceeds.

Lemma 4: If n pairs of points(Pi ,Qi) are chosen uniformly at random in the unit area network, the resultant

set of straight-line formed by each pairLi = PiQi satisfies the condition that no cell has more thann
√

a(n) lines

passing through it w.h.p.
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Proof: Given the linesLi are i.i.d., the proof of Lemma 3 in [6] can be applied to prove this result.

Lemma 5:For all 0≤ x≤ 1 : (1−x)≤ e−x.

Theorem 5:(Hall’s Marriage Theorem [7], [8]) Given a setS , let T = {T1,T2, . . .Tn} be a finite system of subsets

of S . ThenT possesses a system of distinct representatives if and only if for eachk in 1,2, ..,n, any selection ofk

of the setsTi will contain between them at leastk elements ofS . Alternatively stated: for allA ⊆ T , the following

is true: |∪A | ≥ |A |

Lemma 6:The number of subsets of sizek chosen from a set ofm elements is given by
(m

k

)

≤
(

me
k

)k
.

Theorem 6:(Integrality Theorem [2]) If the capacity function of a network flow graph takes on only integral

values (i.e., each edge has integer capacity), then the maximum flowx produced by the Ford-Fulkerson method has

the property that|x| is integer-valued. Moreover, for all verticesu andv, the value ofx(u,v) is an integer.

IV. N ETWORK MODEL

We consider a network ofn single-interfacenodes randomly deployed over a unit torus. Each node is the source

of exactly one flow. As in [3], each sourceS selects a destination by first fixing on a pointD′ uniformly at random,

and then picking the nodeD (other than itself), that is closest toD′. The total bandwidth (data-rate) available isW,

and it is divided intoc channels of equal bandwidthWc , wherec= O(logn). We assume thatc≥ 2, asc= 1 implies

that f = 1 is the only possibility, which yields the degenerate single-channel case. We also assume 2≤ f ≤ c. A

justification for not allowingf = 1 for c≥ 2 is given in [1], [9], where we show that for the random(c, f ) model

(and also the adjacent(c, f ) model described in [1]),f = 1 andc≥ 2 leads to zero capacity, as some flow will get

no throughput w.h.p.

V. SOME RESULTS ABOUT THE TRAFFIC MODEL

In this section we establish that for the traffic model of [3] (which is also used in this paper), a node is the

destination ofO(logn) flows w.h.p. Also, at least one node is the destination ofΩ(logn) flows w.h.p.

Lemma 7:The number of flows for which any node is the destination isO(logn) w.h.p.

Proof: Consider a flow’s pseudo-destinationD′. Consider a circle of radius
√

100 logn
πn , and hence area100 logn

n

centered around this pseudo-destination. From Lemma 3, allsuch circles containΘ(logn) nodes, w.h.p. In a rare

scenario, one of these nodes could potentially be the sourcenode for that flow. However, the circle still has more

than one node other than the flow’s source. Thus, the flow will select as its destination, some node within this

circle. Hence a flow can only be assigned a destination withindistance
√

100 logn
πn from its pseudo-destination. Thus it

proceeds that a node can only be the destination for flows whose pseudo-destination lies within a distance
√

100 logn
πn

from it. From Lemma 3, each circle of this size containsO(logn) pseudo-destinations w.h.p. Thus no node is the

destination of more thanO(logn flows.

Lemma 8:For largen, at least one node is a destination forΩ(logn) flows with a probability at least1e(1−
1
e)(1− δ), whereδ > 0 is an arbitrarily small constant.
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Proof: The necessary condition for connectivity in [10] (Theorem 2.1 of [10]) is established by proving that

if we considerR(n) such thatπR2(n) = logn+b(n)
n , where limsupb(n) = b < ∞, then with positive probability, there

exists at least one nodex which is isolated, i.e., there is no other node within distance R(n) of x. In the context of

[10], this was utilized by interpretingR(n) as transmission range, and thus obtaining a lower bound for connectivity.

However, we now exploit that result in a different manner to prove our lemma as follows: ChooseR(n) =
√

logn+1
πn ,

i.e., b(n) = b = 1. Note that in this proof,R(n) is not the transmission range; it is merely a chosen distance value.

Then by invoking Theorem 2.1 from [10], there exists a node A such that there is no other node within a distance

R(n) from it, with probability p where liminfp≥ e−b(1−e−b) = 1
e(1− 1

e). In fact, from the proof of Theorem 2.1

in [10], it proceeds thatp≥ (1− ε)1
e(1− 1

e), for any ε > 0, and sufficiently largen. Call this eventE1.

Thus, given eventE1 has occurred and such a node A exists, if we consider the Voronoi tessellation generated by

the n nodes, then the Voronoi polygon of A has area at leastπ(R(n)
2 )2 = πR2(n)

4 = logn+1
4n . Note that this tessellation

constitutes a spatial partition of the network area. Also, it immediately proceeds from the traffic model, that if a

flow’s pseudo-destination falls within the polygon of nodex, then x is selected as that flow’s destination, unless

x is itself the source of that flow (since a generator (node) is always the nearest generator to points within its

own polygon). Also recall that pseudo-destinations are chosen uniformly at random. LetXi ,1≤ i ≤ n be indicator

variables such thatXi = 1 if A is flow i’s destination, and 0 else. ThenPr[Xi = 1] = 0 if A is the source of flowi

(and there is exactly one suchi). For all other values ofi, Pr[Xi = 1|E1] ≥ logn+1
4n , since A is selected as flowi’s

destination if either (1) flowi’s pseudo-destination falls in A’s Voronoi polygon (the probability of this event is given

by the area of A’s Voronoi polygon, and is thus at leastlogn+1
4n , or (2) if flow i’s pseudo-destination falls within the

polygon of its own source, and A is the next-nearest node (we ignore this probability, as we only require a lower

bound). LetX = ∑Xi . ThusE[X|E1] ≥ (1− 1
n) logn+1

4 ≥ logn
4 for largen. The Xi ’s are i.i.d., and thus application of

the Chernoff bound from Theorem 4, withβ = 1
2 yields that:

Pr[X ≤ logn
8

|E1] ≤ Pr[X ≤ E[X]

2
|E1] ≤ exp(−E[X]

8
) ≤ exp(− logn

32
) =

1

n
1
32

(5)

Denote byE2 the event that some node indeed is destination to at leastlogn
8 flows. Then it proceeds from Eqn. (5)

that Pr[E2|E1] ≥ 1− 1

n
1
32

. Also, Pr[E2] ≥ Pr[E1]Pr[E2|E1]. Hence at least one node is a destination forΩ(logn)

flows with a probability at least(1−ε)e−b(1−e−b)(1− 1

n
1
32

)≥ 1
e(1− 1

e)(1−δ) for any chosenδ > ε, and sufficiently

largen.

VI. RANDOM (c, f ) ASSIGNMENT

In this section we briefly describe the random(c, f ) assignment model first described in [9], and summarize some

already proven results that will be useful in proving the lower bound on capacity. In this assignment model, a node

is assigned a subset off channels uniformly at random from the set of all possible channel subsets of sizef . Thus

the probability that two nodes share at least one channel is given by prnd = 1− (1− f
c )(1− f

c−1)...(1− f
c− f+1).

Lemma 9:For c≥ 2, and 2≤ f ≤ c, the following holds:

cprnd

f
≤ min{ c

f
,2 f} (6)

Proof: Since prnd ≤ 1, we obtain thatcprnd
f ≤ c

f .
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If f ≥
√ c

2, then cprnd
f ≤

√
2c ≤ 2 f follows from the observation thatprnd ≤ 1. Hence, we focus on the case

f <
√ c

2.

1− prnd = (1− f
c
)(1− f

c−1
)...(1− f

c− f +1
)

≥ (1− f
c− f +1

) f
> (1− 2 f

c
) f ≥ 1− 2 f 2

c

∴ prnd ≤
2 f 2

c

∴

cprnd

f
≤ 2 f

(7)

Thus, cprnd
f ≤ min{ c

f ,2 f}.

Lemma 10:min{ c
f ,2 f} ≤

√
2c

Proof: For a givenc, we have 2≤ f ≤ c. Thus, givenc, c
f is a monotonically decreasing function off , while

2 f is a monotonically increasing function off . c
f = 2 f =

√
2c at f =

√ c
2. For f ≤

√ c
2, min{ c

f ,2 f} = 2 f ≤
√

2c,

and for f >
√ c

2, min{ c
f ,2 f} = c

f ≤
√

2c. Thus min{ c
f ,2 f} ≤

√
2c.

A. Sufficient Condition for Connectivity

This theorem has been stated and proved by us in [1] (also [9]). However, we repeat it here in the interests of

clarity.

Theorem 7:With random(c, f ) assignment, whenc = O(logn), if πr2(n) = 800π logn
prndn , then:

Pr[ network is connected] → 1

Proof: The construction is based on a notion of per-nodebackbones. Consider a subdivision of the toroidal

unit area into square cells of areaa(n) = 100 logn
prndn . Then by settingα(n) = 1

prnd
in Lemma 2 there are at least50 logn

prnd

nodes in each cell with probability at least 1− 50 logn
n . Set r(n) =

√

8a(n). Then a node in any given cell has all

nodes in adjacent cells within its range. Within each cell, choose2 logn
prnd

nodes uniformly at random, and set them

apart astransition facilitators(the meaning of this term shall become clear later). This leaves at least48 logn
prnd

nodes

in each cell that can act asbackbone candidates.

Consider any node in any given cell. The probability that it can communicate to any other random node in its

range isprnd. Then the probability that in an adjacent cell, there is no backbone candidate node with which it can

communicate is less than(1− prnd)
48 logn
prnd ≤ 1

e48 logn = 1
n48 (applying Lemma 5).

The probability that a given node cannot communicate with any node in some adjacent cell is thus at most8
n48

(as there are upto 8 adjacent cells per node). By applying theunion bound over alln nodes, the probability that at

least one node is unable to communicate with any backbone candidate node in at least one of its adjacent cells is

at most 8
n47 .

We associate with each nodex a set of nodesB(x) called the primary backbone forx. B(x) is constituted as

follows. Throughout the procedure, cells that are already covered by the under-construction backbone are referred

to asfilled cells. x is by default a member ofB(x), and its cell is the firstfilled cell. From each adjacent cell,

amongst all backbone candidate nodes sharing at least one common channel withx, one node is chosen uniformly

6



at random and added toB(x). Thereafter, from each cell bordering a filled cell, of all nodes sharing at least one

common channel with some node already inB(x), one is chosen uniformly at random, and is added toB(x); the

cell containing the chosen node gets added to the set of filledcells. This process continues iteratively, till there is

one node from every cell inB(x). From our earlier observations,B(x) eventually covers all cells with probability

at least 1− 8
n47 . Now consider any pair of nodesx andy. If B(x)∩B(y) 6= φ the two nodes are obviously connected,

as one can proceed fromx onB(x) towards one of the intersection nodes, and thence toy onB(y), and vice-versa.

Suppose, the two backbones are disjoint. Thenx andy are still connected if there is some cell such that the member

of B(x) in that cell (let us call itqx) can communicate with the member ofB(y) in that cell (let us call itqy), either

directly, or through a third node.qx and qy can communicate directly with probability 1 if they share a common

channel. Thus the case of interest is one in which no cell hasqx andqy sharing a channel.

If they do not share a common channel, we consider the event that there exists a third node amongst thetransition

facilitators in the cell through whom they can communicate. Note that, fortwo given backbonesB(x) andB(y),

the probability that in a network cell, givenqx andqy that do not share a channel, they can both communicate with

a third nodez that did not participate in backbone formation and is known to lie in the same cell, is independent

across cells. Therefore, the overall probability can be lower-bounded by obtaining for one cell the probability of

qx andqy communicating via a third nodez, given they have no common channel, considering that each cell has

at least2 logn
prnd

possibilities forz, and treating it as independent across cells. We elaborate this further.

Let qx have the set of channelsC(qx) = {cx1, ...,cxf }, andqy have the set of channelsC(qy) = {cy1, ...,cyf }, such

thatC(qx)∩C(qy) = φ. Consider a third nodez amongst the transition facilitators in the same cell asqx andqy. We

desirez to have at least one channel common with bothC(qx) andC(qy). Then let us merely consider the possibility

that z enumerates itsf channels in some order, and then inspects the first two channels, checking the first one for

membership inC(qx), and checking the second one for membership inC(qy). This probability is
(

f
c

)(

f
c−1

)

>
f 2

c2 .

Thusqx andqy can communicate throughz with probability pz >
f 2

c2 = Ω( 1
log2 n

). 1 There are2 logn
prnd

possibilities for

z within that cell, and all the possiblez nodes have i.i.d. channel assignments. Thus, the probability that qx andqy

cannot communicate through anyz in the cell is at most(1− pz)
2 logn
prnd , and the probability they can indeed do so is

pxy ≥ 1− (1− pz)
2 logn
prnd .

Thus, the probability that this happens in none of the1a(n) = prndn
100 logn cells is at most(1− pxy)

prndn
100 logn ≤

(1− pz)
2 logn
prnd

prndn
100 logn < (1− f 2

c2 )
2 logn
prnd

prndn
100 logn ≤ e

− f 2n
50c2 → e

−Ω( n
log2 n

)
(recall that c = O(logn)). Applying union bound

over all
(n

2

)

<
n2

2 node pairs, the probability that some pair of nodes are not connected is at mostn
2e

−Ω( n
log2n

)

2 <

1
2e

−Ω( n
log2n

)+2 logn → 0. Applying union bound over this probability and the probability that some of the cells are

not sufficiently populated (as mentioned earlier, this probability is at most50 logn
n ), we obtain that the probability

of a connected network converges to 1.

VII. L OWER BOUND ON CAPACITY

We proved a lower bound ofΩ(W
√

f
cnlogn) for random(c, f ) assignment in [1], [9]. From Lemma 9, it follows

that

√

f
cnlogn

√

prnd
nlogn

= Ω( 1√
f
). Thus for f < 100,

√

f
cnlogn

√

prnd
nlogn

= Ω(1), and the construction presented in [1] (details in [9]) is

1As can be seen, this is a very loose bound onpz and can be substantially improved. However, even this looselower bound suffices for our
current purpose.
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asymptotically optimal.

We now present a construction that achievesΩ(W
√

prnd
nlogn) when f ≥ 100 (thus necessarilyc≥ 100).

Subdivision of network region into cells:We use a square cell construction (similar to that used in [6], and

subsequently in [11], [1]). The surface of the unit torus is divided into square cells of areaa(n) each, and the

transmission range is set to
√

8a(n), thereby ensuring that any node in a given cell is within range of any other

node in any adjoining cell. Since we utilize theProtocol Model[3], a node C can potentially interfere with an

ongoing transmission from node A to node B, only ifBC≤ (1+ ∆)r(n). Thus, a transmission in a given cell can

only be affected by transmissions in other cells within a distance(2+ ∆)r(n) from some point in that cell. Since

∆ is independent ofn, the number of cells that interfere with a given cell is only some constant (sayβ).

We choosea(n) = 250max{logn,c}
prndn = Θ( logn

prndn) (sincec = O(logn)).

Then the following holds:

Lemma 11:Each cell has at least4na(n)
5 = 200max{logn,c}

prnd
and at most6na(n)

5 = 300max{logn,c}
prnd

nodes w.h.p.

Proof: We have chosena(n) = 250max{logn,c}
prndn . Thusa(n)≥ 100 logn

prndn . Then if c≤ logn, we can setα = 2.5
prnd

> 1

in Lemma 2, and whenc> logn, i.e.,c= γ logn(γ > 1) (recall thatc= O(logn)), we can setα = 2.5γ
prnd

> 1, to obtain

that the following holds with probability at least 1− 50 logn
n for all cellsD:

250max{logn,c}
prnd

−50logn≤ Pop(D) ≤ 250max{logn,c}
prnd

+50logn

Thereafter noting that250max{logn,c}
prnd

−50logn ≥ 200max{logn,c}
prnd

, and 250max{logn,c}
prnd

+ 50logn ≤ 300max{logn,c}
prnd

, com-

pletes the proof.

Corollary 1: Each cell has at least200 logn
prnd

nodes w.h.p.

Many of the intermediate results in the rest of this paper assume that the high-probability event of Lemma 11

holds.

We also state the following facts:

f
c
≤ prnd ≤ 1 (8)

For largen, sincec = O(logn), and 2≤ f ≤ c:

na(n) =
250max{logn,c}

prnd
= O(log2n)

n
√

a(n)

c
=

1
c

√

250nmax{logn,c}
prnd

= Ω(

√

n
logn

)

∴ f (n) = O(na(n)) =⇒ f (n) = O(
n
√

a(n)

c
)

(9)
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1
√

a(n)
=

√

prndn
250max{logn,c} = O(

√

n
logn

)

n
√

a(n)

c
=

1
c

√

250nmax{logn,c}
prnd

= Ω(

√

n
logn

)

∴ f (n) = O(
1

√

a(n)
) =⇒ f (n) = O(

n
√

a(n)

c
)

(10)

Some properties of SD′D routing: Recall that we use the traffic model of [3], where each sourceSfirst chooses

a pseudo-destinationD′, and then selects the nodeD nearest to it as the actual destination. In [3], the routeSD′D

was followed, whereby the flow traversed cells intersected by the straight lineSD′, and then took an extra last hop

if required. In our case, it may not always suffice to useSD′D routing (we elaborate on this later). However, this

is still an important component of our routing procedure, and so we state and prove the following lemmas (some

were also stated by us in [9]) forSD′D routing:

Lemma 12:Given only straight-lineSD′ routing (no additional last-hop), the number of flows that enter any cell

on their i-th hop is at most⌊5na(n)
4 ⌋ w.h.p., for anyi.

Proof: Let us consider the straight-line partSD′ of an SD′D route. Thus all then SD′ lines are i.i.d. Denote

by Xk
i the indicator variable which is 1 if the flowk enters a cellD on its i-th hop. Then, as observed in [6]

(proof of Lemma 3), for i.i.d. straight lines, theXk
i ’s are identically distributed, andXk

i andXl
j are independent for

k 6= l . However for a given flowk, at most one of theXk
i ’s can be 1 as a flow only traverses a cell once. Then

Pr[Xk
i = 1] = a(n) = 250max{logn,c}

prndn .

Let Xi =
n
∑

k=1
Xk

i . ThenE[Xi] = na(n). Also, for a giveni, the Xk
i ’s are independent [6]. Then by application of

the Chernoff bound from Thereom 3 (withβ = 1
4):

Pr[Xi ≥
5E[Xi]

4
] ≤ exp(−E[Xi]

48
)

∴ Pr[Xi ≥
1250max{logn,c}

4prnd
]

≤ exp(−250max{logn,c}
48prnd

) <
1
n5

(11)

The maximum value thati can take is 2√
a(n)

=
√

2nprnd
250max{logn,c} < n. Also the number of cells is 1

a(n) ≤ n. Then by

application of union bound over alli, and all cellsD, the probability thatXi ≥ 5E[Xi ]
4 is less than1

n3 , and thus the

number of flows that enter any cell on any hop is less than5na(n)
4 = 1250max{logn,c}

4prnd
with probability at least 1− 1

n3 .

Resultantly, sinceXi is an integer, we can say that it is at most⌊5na(n)
4 ⌋ w.h.p.

Lemma 13:The number of flows for which any single node is the destination is O(na(n)) w.h.p.

Proof: From Lemma 7, the number of flows for which any node is the destination isO(logn). We have chosen

a(n) = Θ( logn
prndn) = Ω( logn

n ). Thus,O(logn) =⇒ O(na(n)). This yields the result.

Lemma 14:If a node is destination of some flow, that flow’s pseudo-destination must lie within either the same

cell, or an adjacent cell w.h.p.

9



Proof: It was shown in the proof of Lemma 7 that a flow will be assigned to a destination lying within a

circle of radius
√

100 logn
πn centered around the pseudo-destination w.h.p. Conversely, if a flow is assigned to a node,

then the pseudo-destination must lie within a circle of of radius
√

100 logn
πn centered around the node.

It is easy to see that a circle of radius
√

100 logn
πn centered at a node will fall completely within the cells adjacent

to the node’s cell (by our choice of cell-areaa(n)). Hence if a node is destination of some flow, that flow’s

pseudo-destination must lie within either the same cell, oran adjacent cell.

Lemma 15:The number ofSD′D routes that traverse any cell isO(n
√

a(n)) w.h.p.

Proof: The proof for this lemma is largely based on a proof in [6]. Consider a cellD. From Lemma 4

(which proceeds from a lemma in [6]) we know that the number ofSD′ straight-lines traversing any single cell are

O(n
√

a(n)). We must now consider the number of routes whose lastD′D hop may enter this cellD. If D is in the

same cell asD′, there is no extra hop. Let us now consider the case thatD′ lies in one of the 8 adjacent cells, but

D lies in the cellD (from Lemma 14, we know thatD lies in cellD only if D′ lies inD or its adjacent cells). The

number of flows for whichD′ lies in one of the 8 cells adjacent toD is O(na(n)) w.h.p.(by applying Lemma 2 to the

set ofn pseudo-destinations). Also from Eqn. (9), and the fact thatc> 1, we know thatO(na(n)) =⇒ O(n
√

a(n)).

Thus the total number of traversing routes isO(n
√

a(n)).

Having stated and proved these lemmas, we now establish someproperties of the spatial distribution of channels,

and thereafter describe our scheduling/routing procedurefurther:

Definition 1: We define a termMu whereMu = ⌈9 f na(n)
25c ⌉ = ⌈90f max{logn,c}

cprnd
⌉.

Then the following holds:

Lemma 16:If there are at least200max{logn,c}
prnd

nodes in every cell, of which we choose180max{logn,c}
prnd

nodes

uniformly at random ascandidatesto examine, then, in each cell, amongst those180max{logn,c}
prnd

candidatenodes, at

leastc−⌊ f
4⌋ channels have at leastMu nodes capable of switching on them, w.h.p.

Proof: Consider any single cell D. Let us denote byE the set of180max{logn,c}
prnd

nodes lying in cell D that are

chosen uniformly at random for examination. Denote byI ji the indicator variable that is 1 if a nodej can switch

on channeli and 0 else.Pr[I ji = 1] = f
c and Xi = ∑ j∈E I ji is the number of nodes inE capable of switching on

channeli. ThenE[Xi] = f
c

180max{logn,c}
prnd

, and we can see thatMu = ⌈E[Xi ]
2 ⌉.

In light of Lemma 9, this leads to the following equations:

E[Xi ] =
180f max{logn,c}

cprnd
(12)

E[Xi ] ≥
180max{logn,c}

min{2 f , c
f }

≥ 90max{logn,c}
f

(13)

E[Xi] ≥ 180f from Eqn. 12 (noting thatprnd ≤ 1) (14)

E[Xi ] ≥ 180max{logn,c}
min{2 f , c

f }
≥ 180max{logn,c}√

2c
> 90max{ logn√

c
,
√

c} ≥ 90
√

logn (from Lemma 10) (15)

Note that from the preceding equations, it also proceeds that Mu ≥ ⌈max{ 45max{logn,c}
f ,90f ,45

√
logn}⌉.
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Let I ′i denote an indicator variable which is 1 ifXi <
E[Xi ]

2 , and 0 else. Then from the Chernoff bound in Theorem

4, Pr[I ′i = 1] = Pr[Xi <
E[Xi ]

2 ] ≤ Pr[Xi ≤ E[Xi ]
2 ] ≤ exp(−E[Xi ]

8 ). Besides, theI ′i ’s are negatively correlated, as each

node can only havef channels assigned to it, and thus, in the given set of nodesE , having some channel (sayci)

assigned to a large number of nodes can only decrease the presence of another channel (sayc j ).

Then if X = ∑c
i=1 I ′i , E[X]≤ cexp(−E[Xi ]

8 ) ≤ exp(−E[Xi ]
8 +O(loglogn)) ≤ exp(− 3E[Xi ]

25 ) for largen (sinceE[Xi] =

Ω(
√

logn) from Eqn. 15). Due to the negative correlation ofI ′i ’s, we can still apply the Chernoff bound (Lemma 1).

By setting(1+β)E[X] = f
4 in Theorem 2 (note thatE[X]≤ exp(− 3E[Xi ]

25 ) ≤ exp(− 3
25(180f )) <

f
4 , yielding β > 0),

we obtain by appropriate substitutions at each step, the following:

Pr[X ≥ ⌈ f
4
] ≤ Pr[X ≥ f

4
] ≤
(

eβ

(1+ β)(1+β)

)E[X]

<

(

e
(1+ β)

)(1+β)E[X]

=

(

4eE[X]

f

)
f
4

≤





4eexp(− 3
25

90max{logn,c}
f )

f





f
4

from Eqn. 13

=





4eexp(− 270max{logn,c}
25f )

f





f
4

=
exp
(

−270max{logn,c}
100

)

( f
4e)

f
4

≤ exp(−2.7max{logn,c})
( 1

2e)
f
4

≤ exp(−2.7max{logn,c})
( 1

e2 )
f
4

( since f ≥ 2)

≤ exp(−2.7max{logn,c})exp(
f
2
)

≤ exp(−2max{logn,c}) ≤ 1
n2 ( since f ≤ c)

(16)

Applying union bound over all 1
a(n)

≤ n cells in the network, the probability that this happens in any cell is at

most 1
n . Thus, with probability at least 1− 1

n, X < ⌈ f
4⌉, i.e., X ≤ ⌊ f

4⌋ (sinceX is an integer), and hence each cell

has at leastc−⌊ f
4⌋ channels withXi ≥ E[Xi ]

2 candidatenodes capable of switching on them. Thus, by our definition

of X, each cell has at leastc−⌊ f
4⌋ channels withXi ≥ ⌈E[Xi ]

2 ⌉ candidatenodes capable of switching on them (since

Xi is also an integer). From Eqn. 12 and the definition ofMu, we know thatMu = ⌈E[Xi ]
2 ⌉. Thus, the lemma is

proved.

Similar to the construction for connectivity from [1] that we briefly summarized in Section VI-A, we will construct

a backbone for each node.However, since our concern is not merely connectivity but also capacity, these backbones

need to be constructed carefully, to ensure that no bottlenecks are formed.

Conditioning on Lemma 11, there are at least200max{logn,c}
prnd

nodes in each cell w.h.p. Initially, from each cell,

we choose180max{logn,c}
prnd

nodes uniformly at random asbackbone candidates. The remaining nodes (which are at

least 20max{logn,c}
prnd

in number) are deemedtransition facilitators.

Definition 2: (Proper Channel)A channeli is deemedproper in cell D if it occurs in at leastMu backbone

candidate nodes inD.

Lemma 17:For each cell of the network, the following is true w.h.p.: ifthe number ofproper channels in the

11



cell is c′, thenc′ ≥ c−⌊ f
4⌋ ≥ c−⌊ c

4⌋ ≥ ⌈3c
4 ⌉ ≥ 3c

4 .

Proof: The proof follows from Lemma 11 and Lemma 16.

Besides, we can also show the following:

Lemma 18:2

Consider any cellD. LetWi be the set of all nodes in the 8 adjacent cellsD(k),1≤ k≤ 8, that are capable of

switching on channeli.

For a set of nodesB , defineC (B) = { j| j proper inD and∃u∈ B capable of switching onj}. If f ≥ 100, the

following holds w.h.p.:

∀ channels i,∀B ⊆Wi such that|B | = ⌈ f na(n)

4c
⌉ : |C (B)| ≥ ⌈3c

8
⌉

This is true for all cellsD.

Proof: We condition on the node-locations, and their conforming tothe high-probability event of Lemma 11.

Consider a cellD. Let c′ be the number of proper channels inD.

Having conditioned on (and thus fixed) the node-locations (and thereby node-population in each cell), channel-

presence in each cell is independent of other cells, as channel assignment is done independently for each node.

Then we can show that:c′ ≥ c−⌊ f
4⌋ ≥ c−⌊ c

4⌋ ≥ ⌈3c
4 ⌉ ≥ 3c

4 , with probability at least 1− 1
n2 , by following the

proof argument of Lemma 16 up to Eqn. (16) (just prior to application of the union bound over all cells in the

proof of that lemma).

If c′ < 3c
4 , then we assume that our desired event does not happen for thepurpose of obtaining a bound. This

probability is at most1
n2 .

We now focus on the case wherec′ ≥ 3c
4 .

Consider a particular channeli.

Recall thatWi is the set of nodes in the cells adjacent toD that can switch on channeli.

We first bound the probability that|Wi | ≥ 2400e2max{logn,c}.

Let Yi j be an indicator variable that is 1 if nodej in cells adjacent toD is capable of switching on channeli, and

0 else. Then we know thatPr[Yi j = 1] = f
c , and for a giveni, theYi j ’s are independent. LetYi = ∑

j∈D
Yi j . Then, as

the node-locations conform to the high probability event ofLemma 11,E[Yi ] ≤ 8
(

6 f na(n)
5c

)

≤ 48(250) f max{logn,c}
5cprnd

=

2400f max{logn,c}
cprnd

. Setting(1+ β)E[Yi] = 2400e2max{logn,c}, observing from Eqn. (8) thatβ ≥ e2cprnd
f −1 > 0 and

applying the Chernoff bound from Theorem 2:

2This can be viewed as a special variant of the Coupon Collector’s problem [4], where there arec different types of coupons, and each box
has a random subset off different coupons. Some other somewhat different variantshaving multiple coupons per box have been considered in
work on coding, e.g., [12].
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Pr[Yi ≥ 2400e2max{logn,c}] <
(

eβ

(1+ β)(1+β)

)E[Yi ]

<

(

e
(1+ β)

)(1+β)E[Yi ]

≤
(

f e
e2cprnd

)2400e2max{logn,c}

=

(

f
ecprnd

)2400e2max{logn,c}

≤
(

1
e

)2400e2max{logn,c}
(∵

f
cprnd

≤ 1)

= exp(−2400e2max{logn,c})

≤ 1

n2400e2

(17)

Denote byEi,D the event that, for giveni andD: ∃B ⊆Wi such that|B | = ⌈ f na(n)
4c ⌉ and |C (B)| < ⌈3c

8 ⌉.

Let pub(x) be an upper-bound onPr
[

Ei,D

∣

∣

∣
|Wi | = x,c′ ≥ 3c

4

]

. Note that, having conditioned on (and hence fixed)

the node-locations,|Wi | is independent of whetherc′ ≥ 3c
4 or not.

If pub(x) is an increasing function ofx, then the following holds:

Pr

[

Ei,D

∣

∣

∣c′ ≥ 3c
4

]

= Pr

[

|Wi | ≤ b|c′ ≥ 3c
4

]

Pr

[

Ei,D

∣

∣

∣|Wi | ≤ b,c′ ≥ 3c
4

]

+Pr

[

|Wi | > b|c′ ≥ 3c
4

]

Pr

[

Ei,D

∣

∣

∣|Wi | > b,c′ ≥ 3c
4

]

≤ Pr [|Wi | ≤ b]Pr

[

Ei,D

∣

∣

∣|Wi | ≤ b,c′ ≥ 3c
4

]

+Pr [|Wi | > b]

= ∑
x≤b

Pr [|Wi | = x]Pr

[

Ei,D

∣

∣

∣|Wi | = x,c′ ≥ 3c
4

]

+Pr [|Wi | > b]

≤ ∑
x≤b

Pr [|Wi | = x] pub(x)+Pr [|Wi | > b]

≤ ∑
x≤b

Pr [|Wi | = x] pub(b)+Pr [|Wi | > b]

= pub(b)∑
x≤b

Pr [|Wi | = x]+Pr [|Wi | > b]

= pub(b)Pr [|Wi | ≤ b]+Pr [|Wi | > b]

≤ pub(b)+Pr [|Wi | ≥ b]

(18)

Let us now find an upper-boundpub(x) that is an increasing function ofx:

Note that we only need to explicitly considerx≥ ⌈ f na(n)
4c ⌉, else there exist no subsetsB ⊆Wi satisfying|B | =

⌈ f na(n)
4c ⌉; thus the eventEi,D cannot occur, and trivially:pub(x) = 0 for 0≤ x < ⌈ f na(n)

4c ⌉.

If |Wi | = x ≥ ⌈ f na(n)
4c ⌉, then from Lemma 6, the number of subsets ofWi of cardinality m= ⌈ f na(n)

4c ⌉ is thus

given by:
(x

m

)

≤
(

xe
m

)m
.
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Consider a subsetB ⊆Wi of specified cardinalitym= ⌈ f na(n)
4c ⌉. Denote byXj the indicator variable which is 1

if channel j is not a member ofC (B) and 0 else.

Recall that each node inB has one channel known to bei, but the remainingf −1 channels assigned to it are

an i.i.d. chosen subset from the remainingc−1 available channels. Thus:

Pr[x∈W j( j 6= i)|x∈Wi ] =
f −1
c−1

≥ f −1
c

=
f
c
(1− 1

f
) ≥ 99f

100c
(∵ f ≥ 100) (19)

Then from Eqn. 19,Pr[Xj = 1] = (1− f−1
c−1 )|B| ≤ (1− 99f

100c)
⌈ f na(n)

4c ⌉ ≤ e−
99f
100c⌈

f na(n)
4c ⌉ (applying Lemma 5). Also, for

a givenB , the Xj ’s are negatively correlated.

Let X = ∑
j proper inD, j 6=i

Xj . ThenE[X]≤ c′e−
99f
100c⌈

f na(n)
4c ⌉. Setting(1+β)E[X] = c′

2 , one can see thatβ = c′
2E[X] −1≥

c′

2c′e−
99f
100c ⌈

f na(n)
4c ⌉

−1≥ e
99f 2na(n)

400c2

2 −1≥ e
495
16
2 −1 > 0 (recall thatna(n) = 250max{logn,c}

prnd
≥ 250cmax{logn,c}

2 f 2 ≥ 125c2

f 2 , from

Lemma 9). Thus we can apply the Chernoff bound from Theorem 2 to obtain that:

Pr[X ≥ c′

2
] <

(

eβ

(1+ β)(1+β)

)E[X]

<

(

e
(1+ β)

)(1+β)E[X]

=

(

2eE[X]

c′

) c′
2

≤
(

2ec′exp(− 99f
100c⌈

f na(n)
4c ⌉)

c′

)
c′
2

=

(

2eexp(− 99f
100c

⌈ f na(n)

4c
⌉)
) c′

2

=

(

exp(− 99f
100c

⌈ f na(n)

4c
⌉+(1+ ln2))

) c′
2

( noting that− 99f
100c

⌈ f na(n)

4c
⌉+(1+ ln2) < 0)

≤
(

exp(− 99f
100c

⌈ f na(n)

4c
⌉+(1+ ln2))

) 3c
8

=

(

exp(−297f
800

⌈ f na(n)

4c
⌉+

3c(1+ ln2)

8
)

)

< exp(−297f
800

⌈ f na(n)

4c
⌉+

4 f
125

⌈ f na(n)

4c
)⌉)

(∵ na(n) =
250max{logn,c}

prnd
≥ 250cmax{logn,c}

2 f 2 ,∴
3c(1+ log2)

8
<

4 f
125

⌈ f na(n)

4c
)⌉)

= exp(−265f
800

⌈ f na(n)

4c
⌉)

(20)

Also note that due to integrality ofX, X <
c′
2 =⇒ X ≤ ⌊ c′

2 ⌋ =⇒ |C (B)| ≥ ⌈ c′
2 ⌉ ≥ ⌈3c

8 ⌉.

Taking union bound over all possible subsetsB , we obtain that the probability it happens for any such

subsetB is at most
(

xe
m

)m
exp(− 265f

800 ⌈
f na(n)

4c ⌉) which is an increasing function ofx. Thus we obtain:pub(x) =
(

xe
m

)mexp(− 265f
800 ⌈

f na(n)
4c ⌉) for x≥ ⌈ f na(n)

4c ⌉. Resultantly,pub(x) is an increasing function ofx.

For b = 2400e2max{logn,c}:
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pub(b) = pub(2400e2max{logn,c}) =

(

2400e3max{logn,c}
⌈ f na(n)

4c ⌉

)⌈ f na(n)
4c ⌉

exp(− 265f
800 ⌈

f na(n)
4c ⌉) ≤

(

2400e3max{logn,c}
f na(n)

4c

)⌈ f na(n)
4c ⌉

exp(− 265f
800 ⌈

f na(n)
4c ⌉) ≤

(

9600e3cprnd
250f

)⌈ f na(n)
4c ⌉

exp(− 265f
800 ⌈

f na(n)
4c ⌉) ≤ exp((3 + log 960

25 +

log cprnd
f )⌈ f na(n)

4c ⌉)exp(− 265f
800 ⌈

f na(n)
4c ⌉) < exp((3+ log40+ log2f )⌈ f na(n)

4c ⌉)exp(− 265f
800 ⌈

f na(n)
4c ⌉) (using Lemma 9).

Since f ≥ 100, the following always holds: f ≥ 8(3 + log40 + log2f ). Thus pub(b) ≤
exp( f

8⌈
f na(n)

4c ⌉)exp(− 265f
800 ⌈

f na(n)
4c ⌉) = exp(− 165f

800 ⌈
f na(n)

4c ⌉) < exp(− f
5⌈

f na(n)
4c ⌉) < exp(− f 2na(n)

20c ) ≤ exp(− 125 logn
20 ) <

1
n6 (from Lemma 9 and our choice ofa(n)).

Thus from Eqn. (18),Pr[Ei,D |c′ ≥ 3c
4 ] ≤ pub(b)+Pr[|Wi| ≥ b] ≤ 1

n6 + 1
n2400e2 <

1
n5 .

Since there arec = O(logn) channels i to consider, we take a union bound over them to obtain that:

Pr[Ei,D for any i in D|c′ ≥ 3c
4 ] ≤ cPr[Ei,D for a giveni in D|c′ ≥ 3c

4 ]).

Thus:Pr[Ei,D for any i in D ] ≤ Pr[c′ < 3c
4 ]+Pr[c′ ≥ 3c

4 ](cPr[Ei,D for a giveni in D|c′ ≥ 3c
4 ]) ≤ Pr[c′ < 3c

4 ]+

cPr[Ei,D for a giveni in D|c′ ≥ 3c
4 ] ≤ 1

n2 + c
n5

We then take another union bound over all1
a(n) = prndn

250max{logn,c} <
n
c cellsD to obtain that the probability this

occurs in any cell is at most1cn + 1
n4 .

Finally, recall that we conditioned our proof on the node-locations conforming to the high-probability event of

Lemma 11. The probability that this event does not occur is atmost 50 logn
n (as proved in Lemma 11), and we can

obtain a bound by assuming that whenever that event fails to hold, the event in the statement of this lemma fails

to hold.

This completes the proof thatC (B) ≥ c′ −⌊ c′
2 ⌋ ≥ ⌈ c′

2 ⌉ ≥ ⌈3c
8 ⌉ for all specified subsetsB of interest, for all

channelsi, and in all cellsD with probability at least 1− 1
cn − 1

n4 − 50 logn
n > 1− 2

n −
50 logn

n .

A. Routing and channel assignment

Partial Backbones:As mentioned earlier, the routing strategy is based on a per-node backbone structure similar

to that used to prove the sufficient condition for connectivity. However,instead of constructing a full backbone for

each node, only a partial backboneBp(x) is constructed for each node x. Bp(x) only covers those cells which are

traversed by flows for whichx is either source or destination. A flow first proceeds along the route on the source

backbone and will then attempt to switch onto the destination backbone.

We shall explain the backbone construction procedure in detail later. First we show how a flow can be routed

along these backbones from its source to its destination.

Lemma 19:Suppose a flow has sourcex and destinationy. Thus it is initially onBp(x) and finally needs to be

on Bp(y). Then after having traversedc
2

f 2 distinct cells (hops) (recall that 2≤ f ≤ c andc= O(logn)) , it will have

found an opportunity to make the transition w.h.p. If the routes of each of then flows get to traverse at leastc
2

f 2

distinct cells (note that each individual route needs to traverse at least so many distinct cells; two different flows

may share cells on their respective routes), then alln flows are able to transition w.h.p.
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Proof: Consider a flow traversing a sequence of cellsD1,D2, .... Then if the representative ofBp(x) (let us

call it qx) in Di can communicate (directly or indirectly) with the representative ofBp(y) (let us call itqy) in Di ,

it is possible to switch fromBp(x) to Bp(y). If qx andqy share a channel this is trivial. Ifqx andqy do not share

a channel, we consider the probability that the two can communicate via a third node from amongst thetransition

facilitators in Di , i.e. there exists a transition facilitatorz such thatz shares at least one channel withqx and one

channel withqy. In Section VI-A, we summarized a proof from [1] showing thatqx andqy can communicate through

a givenz with probability pz >
f 2

c2 = Ω( 1
log2 n

). Given our choice of cell areaa(n), and conditioned on the fact that

each cell has200max{logn,c}
prnd

nodes (Lemma 11), of which180max{logn,c}
prnd

are deemedbackbone candidatesand the rest

aretransition facilitators, there are at least 20max{logn,c}
prnd

≥ 20 logn
prnd

possibilities forz within that cell. All the possible

z nodes have i.i.d. channel assignments. Thus, the probability that qx andqy cannot communicate through anyz in

the cell is at most(1− pz)
20 logn
prnd , and the probability they communicate through somez is pxy ≤ 1− (1− pz)

20 logn
prnd .

Hence, the probability that this happens in none of thec2

f 2 distinct cells is at most(1− pxy)
c2

f 2
< (1− pz)

20c2 logn
f 2prnd <

(1− f 2

c2 )
20c2 logn
f 2prnd ≤ e

− 20 logn
prnd ≤ 1

n20 (from Lemma 5). Applying union bound over alln flows, the probability that all

flows are able to transition is at least 1− 1
n19 .

Therefore, we require each route to have at leastc2

f 2 distinct hops3. Resultantly, we cannot stipulate thatall

flows be routed along the (almost) straight-line pathSD′D (Fig. 1). If SD′D is short, a detour may be required

to ensure the minimum route-length, akin to detour-routingin the constructions of [1]. Such flows are said to be

detour-routed.

Flow Transition Strategy:As per our strategy, a non-detour-routed flow is initially ina progress-on-source-

backbonemode, and keeps to the source backbone till there are onlyc2

f 2 distinct intermediate cells left to the

destination. At this point, it enters aready-for-transitionmode, and actively seeks opportunities to make a transition

to the destination backbone along the remaining hops. Once it has made the transition into the destination backbone,

it proceeds towards the destination on that backbone along the remaining part of the route, and is thus guaranteed

to reach the destination.

Thus, we stipulate that the (almost) straight-lineSD′D path be followed if the straight-line route comprisesh≥ c2

f 2

distinct intermediate cells (hops). IfS andD′ (hence alsoD) lie close to each other, the hop-length of the straight

line cell-to-cell path can be much smaller. In this case, adetourpath SPD′D is chosen (Fig. 2), using a circle of

radius c2

f 2 r(n) in a manner similar to that in the constructions described in[1], [9] (consider a circle of this radius

centered aroundS, choose a pointP on the circle, and follow the routeSPD′D).

A detour-routed flow is always inready-for-transitionmode.

The need to performdetourrouting for some source-destination pairs does not have anysubstantial effect on the

average hop-length of routes or the relaying load on a cell, as we show further.

Lemma 20:The length of any route increases by at mostO(log2n) hops w.h.p.

Proof: The proof proceeds directly from thedetour routing strategy. Recall that the area of a cell is
250max{logn,c}

prndn , i.e., the side of each cell isΘ(
√

logn
prndn) (more precisely it isr(n)√

8
). The distanceSP in Fig. 2 is

3Note that this does not constitute a tight bound on the minimum number of hops required for a transition.
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D

D′

Fig. 1. Routing along a straight line

S

P

D

D′

Fig. 2. Illustration of detour routing

at most c2

f 2 r(n) (radius of the circle in the figure), yielding at mostO( c2

f 2 ) hops, whilePD is againat mostΘ( c2

f 2 )

hops (diameter of circle). This increases route length by atmostO( c2

f 2 ) =⇒ O(log2n) hops (recall thatc= O(logn)).

Lemma 21:If the number of flows in any cell isx in case of pure straight-line routing, it is at mostx+

O(nc4r2(n)
f 4 ) =⇒ x+O(log6n) w.h.p. in case of detour routing.

Proof: Recall thatc = O(logn). Since the detour occurs only up to a circle of radiusc2

f 2 r(n), the extra flows

that may pass through a cell (compared to straight-line routing) are only those whose sources lie within a distance
c2

f 2 r(n) from some point in this cell. Thus all such possible sources fall within a circle of radius(1+ c2

f 2 )r(n),

and hence areaac(n) = Θ( c4r2(n)
f 4 ). Applying Lemma 3 to the set ofn node locations (with a suitable choice of

α(n)≥ 1), with high probability, any circle of this radius will have O(nac(n)) nodes, and henceO(nac(n)) sources.

Hence the number of extra flows that traverse the cell due to detour routing isO(nac(n)), and each detour-routed

flow can traverse a cell at most twice. Thus, the total number of flows (even counting repeat traversals separately)

x+ O(nc4r2(n)

f 4 ). Sincenr2(n) = O( logn
prnd

), and prnd ≥ f
c , the total number of flows isO( c5 logn

f 5 ) =⇒ x+ O(log6n)

w.h.p.

Lemma 22:The number of flows traversing any cell isO(n
√

a(n)) w.h.p. even with detour routing.

Proof: From Lemma 15, we know that the number of flows passing througha cell withSD′D routing (without

detours) isO(n
√

a(n)). Thus, from Lemma 21, the number of flows through the cell , even after some flows are

detour-routed, is at mostO(n
√

a(n))+O(log6n) =⇒ O(n
√

a(n)) (sincea(n) = Θ( logn
prnd

)).

Lemma 23:The number of flows traversing any cell inready-for-transitionmode isO(log6n) w.h.p.

Proof: First let us account for theSD′ stretch of each flow, without considering the possible additional last
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hop. We account for it explicitly later in this proof.

By our construction, a non-detour routed flow enters theready-for-transitionmode only when it isc2

f 2 hops

away from its destination. All such flows must have their pseudo-destinations within a circle of radiusΘ( c2

f 2 r(n))

centered in the cell. The number of pseudo-destinations that lie within a circle of radiusΘ( c2

f 2 r(n)) from the cell

is Θ(nc4r2(n)
f 4 ) =⇒ O( c5

f 5 logn) w.h.p., (by observing thatprnd ≥ f
c , and using suitable choice ofα(n) = O( c5

f 5 )

in Lemma 3). Alsoc = O(logn). Hence there areO(log6n) non-detour-routed flows inready-for-transitionmode

traversing the cell w.h.p.

A detour-routed flow is always inready-for-transitionmode. By Lemma 21, there areO(log6n) such flows

traversing any cell. Each such flow can only traverse a cell twice along theSD′ stretch. This yieldsO(log6n)

detour-routed flows (including repeat traversals).

Also, the cell may be re-traversed by some flows on their additional last hop. From Lemma 14, the pseudo-

destinations of such flows must lie in the same cell or one of the 8 adjacent cells. Applying Lemma 2 to the set of

n pseudo-destinations, it proceeds that the total number of pseudo-destinations lying in these 9 cells isΘ(na(n))

w.h.p. Thus, the number of flows entering the cell on their additional last hop isO(na(n)) =⇒ O(log2n).

Hence the number of flows transitioning in any cell isO(log6n) w.h.p.

Backbone Construction:The backbone construction procedure is required to take load-balancing into account.

Thus we can describe the procedure for constructing the backboneBp(x) of x as follows:

Given a cellD, the 8 cells adjacent to cellD are denoted asD( j),1 ≤ j ≤ 8 (Fig. 3).Bp(x) is constituted as

follows. Let S ∪Db be the subset of cells that must be covered byBp(x) whereS comprises cells traversed by the

flow for which x is the source, andDb comprises the cells traversed by flows for which it may be the destination.

x is by default a member ofBp(x).

We consider backbone construction for the route from each source to its pseudo-destination below. Some routes

require an additional last hop to reach the actual destination node. However, from Lemma 14, the only such last

hop routes that may enter a cell correspond to pseudo-destinations in the 8 adjacent cells. Then applying Lemma

2 to the set of pseudo-destinations, they are onlyO(na(n)) such pseudo-destinations, and thus onlyO(na(n)) such

last-hop flows entering the cell. Hence we can account for them separately.

a) Expanding backbones toS : We first cover cells inS . Recall that we are only constructing theSD′ part

and not considering the possible additional last hop at thisstage.

This has two sub-stages. In the first stage, we construct backbones for source nodes whose flow does not require

a detour. In the second sub-stage we construct backbones forsource nodes whose flow requires a detour.

Straight-line backbones:

This step proceeds in a hop-by-hop manner for all non-detour-routed flows in parallel (each of which has a

unique sourcex).

Any cell of S in which there is already a node assigned toBp(x) is called a filled cell. Thus initiallyx’s cell is
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Fig. 3. CellD and neighboring cells during backbone construction

filled. We then consider the cell inS that is traversed next by the flow. We consider all nodes in that cell sharing

one or more common channel withx. This provides a number of alternative channels on which theflow can enter

that cell.

Let hmax be the maximum hop-length of any non-detour-routedSD′ route. Then,hmax = O( 1√
a(n)

) and the

procedure hashmax steps. In stepk, for each source nodex whose flow hask or more hops,Bp(x) expands into

the cell entered byx’s flow on thek-th hop. Each cellD performs the following procedure:

The backbones are extended by constructing bipartite graphs that aid load-balance.

Lemma 24:If f ≥ 100, then it is possible to devise a backbone construction procedure, such that, after step

hmax of the backbone construction procedure forS (for non-detour-routed flows), each cell hasO(
n
√

a(n)

c ) incoming

backbone links on a single channel, and each node appears onO(
n
√

a(n)

c ) (source) backbones, w.h.p.

Proof: This proof assumes the high probability events in Lemma 11, Lemma 12, Lemma 17, and Lemma 18

occur.

We present an inductive argument. Recall that we are expanding backbones to cover cells inS . At each step

of the (inductive) construction, we first have a channel-allocation phase, followed by a node-allocation phase. We

prove that after stepk of the backbone construction procedure, the following two invariants hold forall cells of the

network:

• Invariant 1: Each node is assigned at most 14 new incoming backbone links during stepk. Thus after stepk,

it appears in a total ofO(14k) =⇒ O(k) backbones.

• Invariant 2: No more than⌊5na(n)
c ⌋ new backbone links enter the cell on a single channel during step k. Thus,

in total O(
kna(n)

c ) incoming backbones (entering the cell) are assigned (incoming links) on a single channel

after stepk.

If the above two Invariants hold, then it is easy to see that after hmax steps, cellD will have no more than
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5hmaxna(n)
c = O(

n
√

a(n)

c ) backbone links assigned to any single channel, and no node occurs on more than 14hmax =⇒
O( 1√

a(n)
) =⇒ O(

n
√

a(n)

c ) backbones (from Eqn. (10)).

We prove that the Invariants hold, by induction, as follows:

If Invariant 1 holds at the end of step k−1, then Invariant 2 continues to hold after the channel-allocation

phase of step k. If Invariant 2 holds after the channel-allocation phase of step k, then Invariant 1 will

continue to hold after the node-allocation phase of step k, and thus both Invariants 1 and 2 will hold at the
end of step k.

Base Case:

Before the procedure begins, at step 0, each node is assignedto its own backbone, for which it is effectively the

origin (and this can be viewed as a single backbone link incoming to this node from an imaginary super-source).

Thus after Step 0, Invariant 1 holds trivially, and Invariant 2 is irrelevant, and thus trivially true.

Inductive Step:

Suppose Invariants 1 and 2 held at the end of stepk−1. Consider a particular cellD during stepk.

Let the number ofproper channels inD be c′. From Lemma 17, we know thatc′ ≥ c−⌊ f
4⌋ ≥ 3c

4 for each cell.

Each flow that enters cellD in stepk has a previous hop-node in one of the 8 adjacent cells. Also note that, from

Lemma 17, each previous hop node has at least⌈3 f
4 ⌉ of cell D ’s proper channels available to it as choices (since

it has f channels of which at most⌊ f
4⌋ may be non-proper in cellD).

Channel-Allocation:Construct a bipartite graph with two sets of vertices (Fig. 4); one set (call itL) has a

vertex corresponding to each of the (source) backbones thatenter the cellD in stepk. From Lemma 12, it proceeds

that |L| ≤ ⌊5na(n)
4 ⌋. The other set (call itP ) has⌊5na(n)

c ⌋ ≤ 5na(n)
c vertices for each proper channeli in cell D, i.e.,

|P | = c′⌊5na(n)
c ⌋.

A backbone vertex is connected to all the vertices for the channels proper inD on which its previous hop node

can switch (and which are therefore valid channel choices for entering the cellD). We show that there exists a

matching that pairs each backbone vertex to a unique channelvertex, through an argument based on Hall’s marriage

theorem (Theorem 5). Thus, we seek to show that for allV ⊆ L, |N (V )| ≥ |V |, whereN (V ) ⊆ P is the union

of the neighbor-sets of all vertices inV .

We first note the following:

⌈3 f
4
⌉⌊5na(n)

c
⌋ ≥ 3 f

4

(

5na(n)

c
−1

)

=
15f na(n)

4c
− 3 f

4

≥ 15f na(n)

4c
− 3 f na(n)

1000c
≥ 29f na(n)

8c
(∵ na(n)≥ 250c)

(21)

Consider the following two cases:

Case 1:|V | < 29f na(n)
8c : Consider any setV of backbone vertices such that|V | < 29f na(n)

8c . Then, since there

are at most⌊ f
4⌋ non-proper channels in a cell, every previous hop node has atleast ⌈3 f

4 ⌉ ≥ 3 f
4 proper channel

choices. For each proper channel there are⌊5na(n)
c ⌋ ≥ 5na(n)

c −1 associated channel vertices. Thus we obtain that
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Set L

Set V ⊆ L

Channel i1

Channel i2

Set N (V)

Channel ic′−1

Channel ic′

vertices

vertices

One vertex for each

Channel i3

vertices

vertices

vertices

backbone entering

cell D in step k

Set P
⌊5na(n)

c
⌋ vertices

for each proper channel

Fig. 4. Bipartite Graph for CellD in stepk

|N (V )| ≥ 3 f
4

(

5na(n)
c −1

)

≥ 29f na(n)
8c (from Eqn. 21). Thus|N (V )| ≥ |V |.

Case 2:|V | ≥ 29f na(n)
8c : Now consider setsV of size at least29f na(n)

8c . Note that since Invariant 1 held till end

of stepk−1, no more than 14 backbone links were assigned to any single node in
8∪

k=1
D(k) in stepk−1.

Intuitively, in order to show that|N (V )| ≥ |V | for all suchV , we first state and prove the observation that if a

channel overload condition occurs, resulting in|N (V )| < |V | for someV , then the overload must also manifest

itself in somechannel-alignedsubset (i.e. a subset where all flows have somecommonproper channeli available

to them). Thus, to show that no overload condition occurs, itsuffices to show that no overload condition occurs in

any of thesecritical channel-aligned subsets, which can be shown using Lemma 18.The argument is formalized

as follows:
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Let Vi be the set comprising all setsUi ⊆ L, such that all backbone vertices inUi have channeli associated

with them (i.e., all backbone vertices inUi have i available to them as a valid proper channel choice for entering

D).

Claim (a): ∀U ∈ S

i proper inD
Vi :

|U| ≥ ⌈29f na(n)

8c
⌉ =⇒ |N (U)| ≥ |L|

Proof of Claim (a): We know thatU ∈ Vi for some i that is proper inD. Also, since no node can be the

previous hop in stepk of more flows than those assigned to it in stepk−1, and Invariant 1 held after stepk−1, it

proceeds that no previous hop node is common to more than 14 entering backbone links. LetA be the set of distinct

previous hop nodes associated withU. Then |A | ≥ 1
14|U| ≥ 1

14(
29f na(n)

8c ) ≥ f na(n)
4c + f na(n)

112c >
f na(n)

4c + 1≥ ⌈ f na(n)
4c ⌉

(note that f na(n)
c ≥ 250f ≥ 500> 112). Observe thatA thus contains at least one subsetB satisfying|B |= ⌈ f na(n)

4c ⌉.
Recognizing that all members ofA , and hence all members ofB , are capable of switching on channeli, we can

invoke Lemma 18 onB , to obtain that whenf ≥ 100: |C (B)| ≥ ⌈3c
8 ⌉. This yields:N (U) ≥ |C (B)|⌊5na(n)

c ⌋ ≥
|C (B)|

(

5na(n)
c −1

)

≥ ⌈3c
8 ⌉
(

5na(n)
c −1

)

≥ 15na(n)
8 −⌈3c

8 ⌉ ≥
15na(n)

8 − 3
8

(

na(n)
250

)

−1≥ 5na(n)
4 ≥ |L|.

Claim (b): Consider a setV ⊆ L. Then:

|N (V )| < |V | =⇒ ∃i proper inD,Si ⊆ V s.t. :

Si ∈ Vi and |Si | ≥ ⌈29f na(n)

8c
⌉

(22)

Proof of Claim (b):Suppose|N (V )| < |V |. Let us denote bySi ⊆ V the set of all backbone vertices inV

that are associated with channeli (i.e., have channeli available as a valid proper channel choice for entering cell

D). Consider the bipartite sub-graphGV induced byV ∪N (V ), and assign all edges unit capacity. Construct

the graphGV ∪{s,t} where s is a source node having a unit capacity edge to all verticesv∈ V , and t is a sink

node, connected to each vertexu ∈ N (V ) via a unit capacity edge. We try to obtain a(s,t) flow g such that

all edges(s,v) are saturated. Each vertexv∈ V sub-divides the unit of flow received froms equally amongst all

edges(v,u) outgoing from it. Since each vertex has edges to vertices of at least 3 f
4 channels, this yields at least

3 f
4

(

5na(n)
c −1

)

≥ 29f na(n)
8c edges (see Eqn. 21). Thus eachv ∈ V contributes at most 8c

29f na(n) units of flow to a

vertex u∈ N (V ), i.e., g(v,u) ≤ 8c
29f na(n)

. Hence no vertexu∈ N (V ) gets more thanh(u) = ∑
v∈Si

g(v,u) = 8c|Si |
29f na(n)

units of flow, wherei is the channel corresponding to vertexu. Resultantly, if|Si | ≤ ⌊29f na(n)
8c ⌋ for all channelsi that

are proper in cellD, this implies thath(u) ≤ 1, and settingg(u,t) = h(u) yields the desired(s,t) flow. Henceg is

a valid flow that allows a unit of flow to pass through each vertex v∈V . From the Integrality Theorem (Theorem

6), we can obtain an integer-capacity flow that yields a matching of size|V |. Thus, from Hall’s marriage theorem

(Theorem 5),|N (V )| ≥ |V | (else a matching of size|V | could not have existed). This yields a contradiction. Thus

there must exist a proper channeli, andSi ⊆ V such thatSi ∈ Vi and |Si | > ⌊29f na(n)
8c ⌋. Since set-cardinality must

necessarily be an integer, it proceeds that|Si | ≥ ⌈29f na(n)
8c ⌉, and Eqn. (22) holds.

Claim (c): ∀V ⊆ L such that|V | ≥ 29f na(n)
8c : |N (V )| ≥ |V |
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Proof of Claim (c):Suppose|N (V )| < |V |. Then, from Claim (b), there exists a setSi ⊆ V such thatSi ∈ Vi ,

and |Si | ≥ ⌈29f na(n)
8c ⌉. ThusSi qualifies as a set to which Claim (a) applies. Invoking Claim (a) on this setSi , it

follows that |N (V )| ≥ |N (Si)| ≥ |L| ≥ |V |. This yields a contradiction. Thus,|N (V )| ≥ |V |.

Hence, by application of Hall’s marriage theorem (Theorem 5), each backbone vertex can be matched with a

unique channel vertex, and the corresponding backbone willbe assigned to the channel with which this vertex is

associated. Thus all backbones get assigned a channel, and (since there are⌊5na(n)
c ⌋ channel vertices for each proper

channel) no more than⌊5na(n)
c ⌋ incoming backbone links are assigned to any single channel.

While Hall’s marriage theorem proves that such a matching exists, the matching itself can be computed using

the Ford-Fulkerson method [2] on a flow network obtained fromthe bipartite graph by adding a source with an

edge to each vertex inL, a sink to which each vertex inP has an edge, and assigning unit capacity to all edges.

Thus Invariant 2 continues to hold after the channel-allocation phase of stepk. 4

Node-Allocation:Having determined the channel each backbone should use to enter cellD, we need to assign

a node in cellD to each backbone. For this, we again construct a bipartite graph. In this graph, the first set of

vertices (call itF ) comprise a vertex for each backbone entering cellD in step k. The second set (call itR )

comprises 14 vertices for eachbackbone candidatenode in cellD. A vertex x in F has an edge with a vertexy

in R iff the actualbackbone candidatenode associated withy is capable of switching on the channel assigned to

the backbone associated with vertexx in the preceding channel-allocation phase.

Each vertexx∈ F has degree at least 14Mu, since it is assigned to aproper channel, which by definition has at

leastMu representatives in cellD, each of which has 14 associated vertices inR . Also recall thatMu = ⌈9 f na(n)
25c ⌉.

Once again we seek to show that for allV ⊆ F , |N (V )| ≥ |V |.

Consider any setV ∈ F .

Since no channel is assigned more than⌊5na(n)
c ⌋ entering backbone links in this step, the vertices inV are

cumulatively associated with at leastm≥ |V |
⌊ 5na(n)

c ⌋
distinct proper channels. Since each of these channels haveat

leastMu backbone candidatenodes capable of switching on them, and any one node can only switch on up to f

proper channels, this implies that the number of nodes in cell D cumulatively associated with thesem≥ |V |
⌊ 5na(n)

c ⌋

4It is interesting to consider whether load-balance would continue to hold even if we follow simpler procedures. We have shown in [1], [9]

that for random(c, f ) assignment, a per-flow throughput ofΘ(W
√

f
cnlogn) is achievable with a much simpler construction. That construction

is of interest despite not achieving optimal capacity sinceit provides a trade-off between throughput and routing/scheduling complexity. In fact
when f is a small constant, the asymptotic capacity for both constructions is within a small constant factor of each other. However, it is also
useful to consider whether simpler procedures can allow oneto achieve the optimal capacity. As an illustration, consider a procedure where a
backbone link is assigned to the least-loaded of all channels available to it. If this procedure can be proved to yield optimal load-balance, it
would have useful practical implications toward potentially indicating that even simple protocols can suffice for goodperformance. This problem
is a special variant of the problem of throwing balls into bins with the power ofd choices. The problem of throwinga balls into b bins with
d choices was studied in [13]. In [14], a balls-and-bins technique is used to obtain fractional matchings in graphs. However these results yield
probability bounds polynomial in number of bins. In our case, the bins (channels) areO(logn) (wheren is number of nodes), and we need much
stronger bounds to ensure that global overload probabilitygoes to 0, and thus a simple adaptation of existing balls-into-bins proofs does not
suffice. Our case also has additional constraints, e.g., thenumber of choices available to each ball isΘ( f ), and the number of balls (traversing
source backbones) decreases with increase inf .

Also of interest is the possibility of having optimal-capacity achieving procedures where backbones are constructed sequentially, or even
better, completely asynchronously (recall that the simpler construction possesses these properties, but yields sub-optimal capacity). If such a
procedure can be shown to achieve good load balance, it has useful protocol implications in that when a new flow is admitted, routes for existing
flows do not need to be re-organized to ensure load-balance.
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proper channels is at least|V |Mu

f ⌊ 5na(n)
c ⌋

≥ |V |⌈ 9 f na(n)
25c ⌉

5 f na(n)
c

≥ 9|V |
125 , and as each node has 14 vertices, it follows that|N (V )| ≥

14
(

9|V |
125

)

≥ 126|V |
125 > |V |.

Then invoking Hall’s Marriage Theorem again, each vertexx∈F can be matched with a unique vertexy∈R , and

the actual network node associated withy is deemed the backbone representative for the backbone corresponding

to vertexx in cell D (the matching can again be computed via the Ford-Fulkerson method). Since there are at

most 14 vertices associated with a node, no node is assigned more than 14 incoming backbone links in stepk, and

Invariant 1 continues to hold after the node-allocation phase of stepk.

Thus we have shown that both Invariants 1 and 2 continue to hold after stepk.

Hence after stephmax (wherehmax≤ 2√
a(n)

), each cellD hasO(hmaxna(n)
c ) =⇒ O(

n
√

a(n)

c ) entering backbone links

per channel, and each node appears onO(hmax) = O( 1√
a(n)

) =⇒ O(
n
√

a(n)

c ) (from Eqn. (10)) source backbones.

Detour backbones:From Lemma 21 the number of additional flows traversing a celldue to detour routing is only

O(log6n), and each such flow will at most traverse the cell twice. Thus detour flows do not pose any significant

load-balancing issue at any cell, and we can grow the backbones in S for these flows in any manner possible,

i.e. by assigning links to any eligible node/channel (at least one eligible node is guaranteed to exist since, as a

consequence of Lemma 17, each node can switch on at least⌈3 f
4 ⌉ channels that are proper in the next cell).

Additional last hop:We now account for the possible additional last hop that someflows may have, yielding an

additional cell inS (in addition to those traversed from source to pseudo-destination). We already argued that at

mostO(na(n)) =⇒ O(
n
√

a(n)

c ) flows (from Eqn. (9)) enter any cell on their additional last hop. Thus, even if their

backbone links are assigned to the same channel/node, we would still haveO(
n
√

a(n)

c ) flows per node and channel

in any cell for theS stage.

b) Expanding backbone toDb−S : In this stageBp(x) expands into the cells traversed by flows for whichx

is the destination. Note that by our routing strategy a flow will only attempt to switch to the destination backbone

when it entersready-for-transitionmode. From Lemma 23, the total number of flows traversing a cell in ready-

for-transition mode isO(log6 n) (counting possible repeat traversals), which is much smaller thanO(
n
√

a(n)

c ). Thus

flows on their destination backbone do not pose any major load-balance issues, and the backbones can be expanded

into cells ofDb−S by assigning links to any eligible node/channel.

B. Proving load-balance within a cell

We now show that no channel or interface bottlenecks form in the network when our described construction is

used.

Per-Channel Load:

Lemma 25:The number of flows that enter any cell on a given channel isO(
n
√

a(n)

c ) w.h.p.

Proof: A flow on routeD1,D2, ...,D j−1,D j .... may enter a cellD j on a channeli if (1) the flow is inprogress-

on-source-backbonemode, or it is inready-for-transitionmode, but is yet to find a transition into the destination
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Fig. 5. Two additional transition links for a flow lying wholly within the cell

backbone , andi is the shared channel between the source backbone nodes inD j−1 andD j , or (2) the flow has

already made a transition, andi is the shared channel between the destination backbone nodes in D j−1 andD j

We first consider the flows that enter a cell inprogress-on-source-backbonemode, i.e., are proceeding on their

source backbones. Recall that these are all non-detour-routed flows, since detour-routed flows are always inready-

for-transition mode. Then the number of such flows that enter any cell on a single channel isO(
n
√

a(n)

c ) from

Lemma 24.

We now need to account for the fact that some of these flows may be in the ready-for-transitionmode. From

Lemma 23 there areO(log6n) flows traversing any cell inready-for-transitionmode w.h.p. (recall that these include

the detour-routed flows with their repeat traversals counted separately, and the possible additional lastD′D hop).

Thus regardless of whether they are still on their source backbone, or have already made the transition to their

destination backbone, no channel can have more thanO(log6n) such flows entering the cell.

Hence the number of flows entering on a single channel isO(
n
√

a(n)

c )+O(log6n) =⇒ O(
n
√

a(n)

c ) w.h.p. for each

cell of the network.

Lemma 26:The number of flows that leave any cell on any single channel isO(
n
√

a(n)

c ) w.h.p.

Proof: Note that the flows that leave the cell, must then enter one of the 8 adjacent cells on that channel

(as the corresponding backbone link for a flow leaves the current cell, and enters an adjacent cell). Thus, flows

leaving the cell on a channel can be no more than 8 times the maximum number of flows entering a cell on any

one channel, which has been established asO(
n
√

a(n)

c ) in Lemma 25. Hence, the total number of flows leaving any

given cell on a given channel is alsoO(
n
√

a(n)

c ) w.h.p.

Lemma 27:The number of additional transition links scheduled on any single channel within any cell isO(log6n)

w.h.p.

Proof: Recall that transition strategy outlined in the proof of Lemma 19, whereby the flow locates a cell

along the route where the source backbone nodeqx, and destination backbone nodeqy are connected through a

third nodez. This yields two additional linksqx → z, andz→ qy that lie entirely within the cell (Fig. 5). Note that

the number of flows performing this transition in the cell canbe no more than the number of flows traversing the

cell in ready-for-transitionmode. From Lemma 23 there areO(log6n) such flows traversing any cell w.h.p. In the

worst case, we can count 2 additional links for each such flow as being all assigned to one channel. The result

proceeds from this observation.
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Per-Node Load:

Lemma 28:The number of flows that are assigned to any one node in any cellis O(
n
√

a(n)

c ) w.h.p.

Proof: A node is always assigned the single flow for which it is the source. A node is also assigned flows

for which it is the destination, and from Lemma 7 there are at most D(n) = O(logn) such flows for any node

w.h.p. Besides, a node may be assigned flows that are in theready-to-transitionmode, for which it facilitates a

transition (if it is a transition facilitator node), or on whose destination backbone it figures. There areO(log6n)

such transitioning flows in a cell w.h.p. from Lemma 23. Thus anode can only haveO(log6n) such flows assigned.

We now consider the flows inprogress-on-source-backbonemode that do not originate in the cell. These nodes

are on their source-backbone, and from Lemma 24, each node has at mostO(
n
√

a(n)

c ) such flows assigned. Thus,

the resultant number of assigned flows per node is 1+D(n)+O(log6n)+O(
n
√

a(n)

c ) =⇒ O(
n
√

a(n)

c ).

C. Transmission schedule

As mentioned earlier, from the Protocol Model assumption, each cell can face interference from at most a constant

numberβ of nearby cells. Thus, if we consider the resultant cell-interference graph (a graph with a vertex for each

cell, and an edge between two vertices if the corresponding cells can interfere with each other), it has a chromatic

number at most 1+ β. Hence, we can come up with a global schedule having 1+ β unit time slots in each round.

In any slot, if a cell is active, then all interfering cells are inactive. The next issue is that of intra-cell scheduling.

We need to schedule transmissions so as to ensure that at any time instant, there is at most one transmission on

any given channel in the cell. Besides, we also need to ensurethat no node is expected to transmit or receive more

than one packet at any time instant.

We construct a conflict graph based on the nodes in the active cell, and its adjacent cells (note that the hop-sender

of each flow shall lie in the active cell, and the hop-receivershall lie in one of the adjacent cells, except for transition

links, for which both lie in the active cell), as follows: we create a separate vertex for each flow for which a node

in the cell needs to transmit data (we count repeat traversals or additional transition links as distinct flows for the

purpose of scheduling; these have been accounted for while bounding the number of flows in a cell in previous

lemmas). Since the flow has an assigned channel on which it operates in that particular hop, each vertex in the

graph has an implicit associated channel. Besides, each vertex has an associated pair of nodes corresponding to the

hop endpoints. Two vertices are connected by an edge if (1) they have the same associated channel, or (2) at least

one of their associated nodes is the same. The scheduling problem thus reduces to obtaining a vertex-coloring of

this graph. If we have a vertex coloring, then it ensures that(1) a node is never simultaneously sending/receiving

for more than one flow (2) no two flows on the same channel are active simultaneously. Thus, the number of

neighbors of a graph vertex is upper bounded by the number of flows requiring a transmission in the active cell on

that channel, and the number of flows assigned to the flow’s twohop endpoints (both hop-sender and hop-receiver).

It can be seen from Lemma 25, Lemma 26, Lemma 27 and Lemma 28 that the degree of the conflict graph is

O(
n
√

a(n)

c ) + O(
n
√

a(n)

c ) + O(log6n)+ O(
n
√

a(n)

c ) + O(
n
√

a(n)

c ) = O(
n
√

a(n)

c ) (note thatO(log6n) =⇒ O(
n
√

a(n)

c ),

since we showed in Eqn. (9) that
n
√

a(n)

c = Ω(
√

n
logn)). Thus the graph can be colored inO(

n
√

a(n)

c ) colors.

Hence, the cell-slot (which can be assumed to be of unit time)is divided into O(
n
√

a(n)

c ) = O(

√

nlogn
prnd
c ) equal

length subslots, and all traversing flows get a slot for transmission. This implies that each flow gets aΩ(c
√

prnd
nlogn)
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fraction of the time. Moreover, each cell gets at least one slot in 1+β slots, whereβ is a constant, and each channel

has bandwidthW
c . Thus each flow gets a throughput of at least

(

1
1+β

)

(

W
c

)

Ω(c
√

prnd
nlogn) = Ω(W

√

prnd
nlogn).

We thus obtain the following theorem:

Theorem 8:Whenc = O(logn) and 2≤ f ≤ c, the per-flow network capacity with random(c, f ) assignment is

Θ(W
√

prnd
nlogn).

VIII. A R EMARK ON THE PROOF TECHNIQUE

Note that many of our intermediate lemmas assume certain desirable events proved to occur w.h.p. in some of

the lemmas proved before them, e.g., most intermediate lemmas are conditioned on the event in Lemma 11. It is

not hard to see that the overall result continues to hold w.h.p., as briefly explained in this section:

Let a generic undesirable event be denoted byEi (i.e., ¬Ei is the desirable event). We know from the union

bound that:

Pr[E1∪E2] ≤ Pr[E1]+Pr[E2] (23)

Note that the following is also always true:

Pr[E1∪E2] = Pr[E1]+Pr[¬E1]Pr[E2|¬E1] ≤ Pr[E1]+Pr[E2|¬E1] (24)

In light of this, it is not hard to see that the probability that even one of the undesirable events from any of these

lemmas occurs, can be upper-bounded by summing up the individual (in some cases, conditional) probability of

occurrence of each undesirable event, as bounded by each lemma (i.e., by essentially applying a union bound on

the probabilities proved in each lemma). Since we have in allonly a small constant number of lemmas, and each

lemma shows that the (possibly conditional on events shown to occur w.h.p. in previous lemmas) probability of

occurrence of some undesirable event goes to 0 (or equivalently shows that the probability of occurrence of the

complementary desirable event goes to 1), the sum will also go to zero. Hence, the probability that even one of

the undesirable events happens goes to 0.

IX. D ISCUSSION

In this paper, we described a construction that achieves a per-flow throughput ofΩ(W
√

prnd
nlogn) for c = O(logn),

wheneverc, f take values such thatf ≥ 100. For f < 100, the lower bound construction presented by us in [1], [9]

(which yieldedΩ(W
√

f
cnlogn) per-flow throughput) is of the same asymptotic order (from Lemma 9, it follows that

√

f
cnlogn

√

prnd
nlogn

= Ω( 1√
f
), and thus whenf < 100,

√

f
cnlogn

√

prnd
nlogn

= Ω(1)). In light of the upper bound ofO(W
√

prnd
nlogn) proved by

us in [1], [9], this establishes the capacity for random(c, f ) assignment asΘ(W
√

prnd
nlogn) in the regimec= O(logn).

We now show the following:

prnd = 1− (1− f
c
)(1− f

c−1
)...(1− f

c− f +1
)

≥ 1− (1− f
c
) f ≥ 1−e−

f 2
c ( from Lemma 5)

(25)
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Fig. 6. Comparison of probability of sharing a channel

Thus, f = Ω(
√

c) =⇒ prnd = Ω(1). To illustrate, if we setf =
√

c, prnd ≥ 1− 1
e >

1
2. In light of Eqn. (25),

our result implies thatf = Ω(
√

c) suffices for achieving capacity of the same order as the unconstrained switching

case [11]. Forf =
√

c, the previously established lower bound ofΩ(W
√

f
cnlogn), would have yielded a capacity

degradation of a factor ofc
1
4 , compared to the unconstrained switching case. In general,one may see that the

capacity may diverge from the previous lower bound whenf
c → 0, but f → ∞. Fig. 6 is a numerical plot (obtained

by settingc to 104, and varyingf from 2 to c) depicting how the probabilityprnd compares with the probability

pmax
ad j = min{ 2 f−1

c− f+1,1}. Recall thatprnd is the probability that two nodes share at least one channel in random(c, f )

assignment, andpmax
ad j is the upper bound on the probability that two nodes share at least one channel in adjacent

(c, f ) assignment [1]. It is quite remarkable that though both models allow nodes to switch between a subset off

channels, the additional degrees of freedom obtained via a random assignment lead to a much quicker convergence of

prnd toward 1. The results in [1] established that connectivity was the dominant constraint determining capacity for

adjacent(c, f ) assignment in thec= O(logn) regime. The lower bound in this paper for random(c, f ) assignment

matches the upper bound imposed by the connectivity constraint (see [1]). Thus, the quick convergence ofprnd to

1 leads to a quicker convergence of capacity towards that attainable via unconstrained switching.

It is to be noted that the lower bound of [1], [9] was obtained using a much simpler construction than the

one described in this paper. Thus the two constructions represent an interesting trade-off in capacity versus

scheduling/routing complexity.

X. CONCLUSION

We have presented a tight bound for capacity with random(c, f ) assignment, forc = O(logn), 2≤ f ≤ c. Our

result indicates that capacity isΘ(W
√

prnd
nlogn). Thus, one can achieve capacity of the same asymptotic orderas

unconstrained switching, whenf = Ω(
√

c). When f < 100, the capacity is achieved by using the construction for

random(c, f ) assignment described in [1], [9]. In this paper, we have described a new construction that achieves

capacity for f ≥ 100. We have also discussed the implications of this result,especially when compared to the
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capacity result for adjacent(c, f ) assignment. There still remain some interesting open questions pertaining to the

random(c, f ) model, in terms of what is achievable via strictly asynchronous routing/scheduling. Other open issues

include extension of the random and adjacent constraint models to multiple interfaces. Moreover, we believe that

there is much potential for formalization and analysis of other kinds of switching constraint models.
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