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Abstract

We consider a wireless grid network in which nodes are prone to failure. In the considered failure mode, each
node has an independent probability of failure p, and failures may be either Byzantine or crash-stop in nature.
All nodes are assumed to have a common transmission range r, and a resultant common degree d. We establish
necessary and sufficient conditions for the degree of each node as a function of the total network size n and the
failure probability p, so as to ensure that reliable broadcast succeeds with probability 1, as n → ∞. Our results
indicate that reliable broadcast is asymptotically achievable with Byzantine failures if p < 1

2 , and the degree of

each node is Θ
(

lnn
ln 1

2p +ln 1
2(1−p)

)

. These results exhibit similarity of form to results obtained for crash-stop failures

that indicate a required degree of Θ
(

lnn
ln 1

p

)

for p < 1.

I. INTRODUCTION

We consider the problem of reliable broadcast in a wireless grid network prone to probabilistic failures.
The node failures are assumed i.i.d. with probability p. Two separate failure types are considered, viz.,
Byzantine and crash-stop. We show that when nodes exhibit Byzantine failures, reliable broadcast requires
that p < 1

2 , and the node degree must be Θ
(

lnn
ln 1

2p +ln 1
2(1−p)

)

for asymptotic achievability of reliable

broadcast. This may alternatively be stated as Θ
(

lnn
D(Q 1

2
||P)

)

where Q 1
2

denotes a distribution with failure

probability 1
2 , P denotes the actual distribution with failure probability p, and D(Q||P) denotes the relative

entropy (or Kullback-Leibler distance) between distributions Q and P. For crash-stop failures, the problem
of reliable broadcast is equivalent to connectivity. For this case, we show that node degree must be Θ

(

lnn
ln 1

p

)

for p < 1, or alternatively stated, Θ
(

lnn
D(Q1||P)

)

, where Q1 is the distribution with failure probability 1.
This report comprises two independent parts. We consider the case of Byzantine failures in the first part.
In the second part, we address the issue of crash-stop failures as a connectivity question. Along with
connectivity, we also obtain conditions for coverage that point toward the same expression, except for the
constants involved.

Minor Corrections made in Feb 2006. This report supercedes an earlier report ”Connectivity and Coverage in Failure-Prone Wireless Grid
Networks”, dated September 2005.
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II. SOME USEFUL MATHEMATICAL RESULTS

We state some mathematical results that have been used in our proofs:

FACT 1. ∀x ∈ [0,1] : ln 1
1−x ≥ x

FACT 2. If f (n) ≤ n
1
2−ε(0 < ε < 1

2):

lim
n→∞

(

1+
f (n)

n

)n

= e
( lim
n→∞

f (n))

Proof: Let f (n) ≤ n
1
2−ε, where 0 < ε < 1

2 . Let g(n) = (1+ f (n)
n )n. Then:

lng = n ln(1+
f (n)

n
) = n

(

f (n)

n
− 1

2(
f (n)

n
)2 +

1
3(

f (n)

n
)3 − ....

)

[1]

= n
∞

∑
k=1

(−1)k−1 1
k
(

f (n)

n
)k = f +

∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 )

≤ f (n)+ f (n)
∞

∑
k=2

1
k
(

f (n)

n
)k−1 < f (n)+ f (n)

∞

∑
k=2

(
1√
n
)k−1

= f (n)

(

1+
∞

∑
k=1

(
1√
n
)k

)

= f (n)

(

1+
1

1− 1√
n

)

≤ 2 f for n ≥ 4

∴

(

1+
f (n)

n

)n

≤ e2 f (n) for n ≥ 4

lng = n ln(1+
f (n)

n
) = n

(

f (n)

n
− 1

2(
f (n)

n
)2 +

1
3(

f (n)

n
)3 − ....

)

[1] = n
∞

∑
k=1

(−1)k−1 1
k
(

f (n)

n
)k

= f (n)+
∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 )

lim
n→∞

lng = lim
n→∞

f (n)+
∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 ) = lim
n→∞

f (n)

∴ lim
n→∞

g(n) = e
( lim
n→∞

f (n))

FACT 3. If c > 0 is a positive constant independent of n, and b≥ 1 is another positive constant independent
of n, then ∃no ∈ N such that:
1− 1

(lnn)b ≤ 1
n

c
n

for n > no



Proof:

∵

1
1− 1

(lnn)b

≥ e
1

(lnn)b (from Fact 1 )

∴ 1− 1
(lnn)b ≤ e

− 1
(lnn)b =

1

e
1

(lnn)b

=
1

e
lnn

(lnn)(b+1)

=
1

n
1

(lnn)(b+1)

≤ 1
n

c
n

for large n

∵ ∃no ∈ N s.t. 1
(lnn)(b+1)

≥ c
n
,∀n > no

LEMMA 1. (Jogdeo & Samuels [2]) Given X = Y1 +Y2 + ...,+Yn where ∀i,Yi = Bernoulli(pi), and
∑ pi = np, the median m of the distribution is either bnpcordnpe, i.e., Pr[X ≤ m]≥ 1

2 and Pr[X ≥ m]≥ 1
2 .

Corollary 1. Given X = Y1 +Y2 + ...,+Yn where ∀i,Yi = Bernoulli(p), the median m of the distribution
is either bnpcordnpe, i.e., Pr[X ≤ m] ≥ 1

2 and Pr[X ≥ m] ≥ 1
2 .

Proof: The proof proceeds by setting p1 = p2 = ... = pn = p and applying the above-stated Lemma.

Corollary 2. Given X = Y1 +Y2 + ...,+Yn where n is even, and ∀i,Yi = Bernoulli(p) where p ≥ 1
2 , the

median m of the distribution satisfies m ≥ n
2 .

Proof: We know that m is either bnpcordnpe. When p = 1
2 , m = n

2 (as n is even). For p > 1
2 ,

m ≥ bnpc ≥ bn
2c = n

2 .

LEMMA 2. (Chernoff Bound) If X =
n
∑

i=1
Xi, where each Xi is Bernoulli(p), then for 0 ≤ β ≤ 1:

Pr[X ≤ (1−β)E[X ]] ≤ exp(−β2

2 E[X ]) (1)

LEMMA 3. (Relative Entropy Form of Chernoff-Hoeffding Bound[3]) If X =
n
∑

i=1
Xi, where each Xi is

Bernoulli(p), then for 0 ≤ β ≤ 1:

Pr[X ≥ βn] ≤ e−n(β ln β
p +(1−β) ln 1−β

1−p ) (2)

LEMMA 4. [4] If X1, X2,..., Xn are drawn i.i.d. from alphabet χ according to Q(x), then probability of
x is given by:

Q(n)(x) = e−n(H(Px)+D(Px||Q)) (3)
where H and P denote the entropy and relative entropy functions (here considered w.r.t base e).

Also, for any distributions P and Q, the size of type class T (P) satisfies:
1

(n+1)|χ|
enH(P) ≤ |T (p)| ≤ enH(P) (4)



and, the probability of the type class T (P) under Q is governed by:

1
(n+1)|χ|

e−n(D(P||Q)) ≤ Q(n)(T (p)) ≤ e−n(D(P||Q)) (5)

LEMMA 5. Suppose S1 and S2 are sets of Bernoulli random variables, such that S1 = {I1, I1, ..., Im} and
S2 = {Ik+1, ..., Ik+m}, where ∀i, Ii = Bernoulli(p). If N1 = ∑

I j∈S1
I j and N2 = ∑

I j∈S2
I j then:

Pr[N2 < a|N1 < a] ≥ Pr[N2 < a] (6)

Proof: We know that S1 ∩ S2 = {Ik+1, ..., Im}. Let M1 = ∑
I j∈S1∩S2

I j, and let T = ∑
I j∈(S2−S1)

I j. Then

M1 = N1 −b where b = ∑
I j∈(S1−S2)

I j ≥ 0. Thus N1 < a ⇒ M1 < a−b < a. Note that Pr[M1 < k|M1 < a] =

Pr[M1<kandM1<a]
Pr[M1<a] ≥ Pr[M1 < k].

Pr[N2 < a|N1 < a] ≥ P[N2 < a|M1 < a] =
a−1
∑
k=0

Pr[M1 < k|M1 < a]·Pr[T = a−1− k] (7)

≥
a−1
∑
k=0

Pr[M1 < k]·Pr[T = a−1− k] = Pr[N2 < a] (8)

III. ASYMPTOTIC NOTATION

We use the following asymptotic notation:
• O(g(n)) = { f (n)|∃c,No, such that f (n) ≤ cg(n) for n > No}
• o(g(n)) = { f (n)| lim

n→∞
f (n)
g(n) = 0}

• ω(g(n)) = { f (n)|g(n) = o( f (n))}
• Ω(g(n)) = { f (n)|g(n) = O( f (n))}
• Θ(g(n)) = { f (n)|∃c1,c2,No, such that c1g(n) ≤ f (n) ≤ c2g(n) for n > No}

Thus, wherever we have an expression involving one of the above, it implies that we can replace the
asymptotic notation term with any function of that class, and the derived result would hold.



Byzantine Failures
IV. NETWORK MODEL

We consider a network model wherein nodes are located on a two-dimensional rectangular toroidal
grid (each grid unit is a 1× 1 square). The case of a non-toroidal grid will be briefly discussed, and
does not affect our results. We designate an origin, and all nodes can be uniquely identified by their grid
location (x,y) w.r.t. this origin. All nodes have a common transmission radius r. A message transmitted
by a node (x,y) is heard by all nodes within distance r from it (where distance is defined in terms of
the particular metric under consideration, and r is assumed to be an integer). The set of these nodes is
termed the neighborhood of (x,y).

In this paper, we consider two distance metrics: L∞ and L2. The L∞ metric is the metric induced by the L∞
norm [5], such that the distance between points (x1,y1) and (x2,y2) is given by max{|x1 − x2|, |y1 − y2|}
in the this metric. Thus nbd(a,b) comprises a square of side 2r with its centroid at (a,b), and the
degree of a node is 4r2 +4r. The L2 metric is induced by the L2 norm [5], and is the Euclidean distance
metric. The L2 distance between points (x1,y1) and (x2,y2) is given by

√

(x1 − x2)2 +(y1 − y2)2, and
nbd(a,b) comprises nodes within a circle of radius r centered at (a,b). The L∞ metric enables more
tractable analysis, from which necessary and sufficient conditions for the L2 (Euclidean) metric proceed.
In Section IX, we further elaborate on how the results for the two metrics are related.

A random failure mode is assumed, wherein each node can fail with probability p independently
of other nodes. Failures are Byzantine in nature. However, failed nodes cannot spoof addresses or cause
deliberate collisions, i.e., the MAC layer is assumed fault-free. There is an assumption that the channel
is perfectly reliable, and a local broadcast is correctly received by all neighbors. Note that this idealized
shared radio channel intrinsically preserves ordering of messages sent by a node, i.e., if a node transmits
messages m1 and m2 respectively in order, they will be received in that same order by all neighbors. We
call this idealized behavior the reliable local broadcast assumption. The same assumption underlies the
results in [6] and [7] for an adversarial fault model.

V. RELATED WORK

Reliable broadcast in radio networks has been studied in [8], [6], [7] and [9]. Crash-stop failures are
considered in [8] for finite networks comprising nodes located in a regular grid pattern and algorithms
are described for efficient broadcast to the part of the network that is reachable from the source. However
this work does not attempt to quantify the number of faults that render some nodes unreachable. In
[6], a locally bounded model is considered, where an adversary is free to place faults, as long as no
neighborhood has more thasn t faults. It was shown that for a network of nodes located on an infinite grid
of unit squares and having transmission radius r, reliable broadcast is not achievable for t ≥ d 1

2r(2r +1)e
(in both L∞ and L2 metrics). This was established as an exact threshold in L∞ by [7], and a protocol
was described that achieved the threshold. An approximate threshold was also established for the L2
metric (that is tight asymptotically, and corresponds to the same fraction of a neighborhood as in L∞).
A sufficient condition for reliable broadcast in general graphs with a locally bounded adversarial model
was described in [10], and a simpler protocol for the grid network case was also presented. In [11],
further study of the locally bounded fault model has been undertaken on arbitrary graphs. Upper and
lower bounds for achievability of reliable broadcast are presented based on graph-theoretic parameters,
for arbitrary graphs. However, no exact thresholds are established. It is also shown that there exist
certain graphs in which algorithms that work with knowledge of topology succeed in achieving reliable
broadcast, while those that lack this knowledge fail to do so.



In closely related work, [9] considers the case of message-passing and radio networks with random
transient failures. In our knowledge, the results in this paper are the first for radio networks exhibiting
random but permanent Byzantine failures.

VI. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that shall be used in this paper. Nodes can be
identified by their grid location i.e. (x,y) denotes the node at (x,y). The neighborhood of (x,y) comprises
all nodes within distance r of (x,y) and is denoted as nbd(x,y). The degree of each node is referred
to as d. In L∞ metric, d = 4r2 + 4r, while the size of a neighborhood (including the neighborhood
center) is d + 1 = 4r2 + 4r + 1. Thus, the minimum degree is dmin = 8, corresponding to r = 1. The
diameter of the network (in terms of distance, and not number of hops) is referred to as D. If n is a
perfect square, D =

√
n. The source of the broadcast may be deemed to be situated at (0,0), without

affecting generality of the results. In general, we allow any node of the network to be the source (with a
corresponding shift of reference coordinates). For succint description, we define a term pnbd(x,y) where
pnbd(x,y) = nbd(x−1,y)∪nbd(x+1,y)∪nbd(x,y−1)∪nbd(x,y+1). Intuitively pnbd(x,y) denotes the
perturbed neighborhood of (x,y), obtained by perturbing the center of the neighborhood to one of the
nodes immediately adjacent to (x,y) on the grid. Besides, we use Be(p) to denote a Bernoulli random
variable with parameter p.

VII. NECESSARY CONDITIONS FOR RELIABLE BROADCAST

THEOREM 1. If a node has at least half faulty neighbors, it will commit to an erroneous value with
probability at least 1

2 .

Proof: If a node has at least half faulty neighbors, it cannot hope to obtain the correct value by
applying a function to all their messages. The issue is whether it is capable of selecting a subset of
neighbors from which it can get the correct answer with high probability. We show that this is not
possible. Consider a node u. Denote by P (nbd(u)) the power set of nbd(u), i.e., the set of all possible
subsets of neighbors. Suppose, it is known to u that half or more of its neighbors are faulty. Since failures
are i.i.d., we obtain that:

Pr[v ∈ nbd(u) is faulty|nbd(u) has half+ faults] > 1
2 (9)

Consider any set S ∈ P (nbd(u)). Then Pr[ at least half nodes in S faulty] ≥ 1
2 (from Lemma 1). Hence

for any subset S, the probability of obtaining an erroneous value from S is at least 1
2 . Iteratively sampling

over many such subsets is also not useful, as on sampling a sequence of m sets S1,S2, ...,Sm, the
probability that at least half the Si’s had half or more faults, is at least 1

2 .

An alternative way to view this is that corresponding to each fault configuration C1 with t ≥ d
2 in

nbd(u), there is another configuration C2 with t faults, such that all non-faulty nodes in C1 are faulty in
C2, while the non-faulty nodes in C2 were all faulty in C1. Then, the faulty nodes can modulate their
behavior so that u is unable to distinguish between the case where the correct broadcast value was v1
and configuration was C1 and the case when the correct value was v2 and the configuration was C2.
THEOREM 2. When failure probability p ≥ 1

2 , and n
d → ∞ (this happens when d = o(n)),

lim
n→∞

Pr[ reliable broadcast fails] > η > 0 (for some positive constant η ≤ 1). In particular, if n(1−p)
d → ∞,

or if p ≥ 1−o(1
n), then: lim

n→∞
Pr[ reliable broadcast fails] = 1.

Proof: Suppose failure probability p ≥ 1
2 .



Fig. 1. Division of network into disjoint neighborhoods

a) 1
2 ≤ p ≤ 1− γ(0 < γ < 1

2): Note that in this case, γ can be an arbitrarily small constant, but must
be independent of n. Consider a particular node j in the network. Then, if j is non-faulty, but more than
half of its neighbors are faulty, reliable broadcast fails with probability at least half, as this node cannot
get a correct view. Given that there are d neighbors, and each may fail independently with probability p,
let Y j denote the number of failed neighbors of j. Then, Y takes values from 0,1, ...,d, and E[Y ]≥ d

2 . Thus
bE[Y ]c ≥ bd

2c= d
2 (since d = 4r2 +4r is always even). Thus, Pr[Y ≥ d

2 ]≥ Pr[Y ≥ bE[Y ]c]≥ 1
2 (from lemma

1). Let us call this probability q. When p ≤ 1−γ (for arbitrarily small constant γ), we have 1− p ≥ γ > 0.
Thus:

Pr[ j alive; at least half nbd( j) faulty ] ≥ (1− p)q ≥ γ
2 > 0 (10)

Let us mark out a subset of nodes j such that the neighborhoods of these nodes are all disjoint, as

in Fig. 1. Then the number of such nodes that we may obtain is approximately k = b n
d c ≥ n

d − 1 (a
more precise number would be (b

√
n

r c)2 (where d = 4r2 + 4r), but the loss of precision is negligible for
large n). Let I j be an indicator variable that takes value 1 if j is non-faulty but has at least half faulty
neighbors. Then Pr[I j = 1] ≥ γ

2 > 0, and all I j’s are independent. Consider the case where n
d → ∞. Let X

be a random variable indicating the number of non-faulty nodes with at least half faulty neighbors. Then
E[X ] = ∑Pr[I j = 1] ≥ γ

2
(

n
d −1

)

→ ∞. Thus from the Chernoff Bound in Lemma 2:

Pr[X ≤ βE[X ]] ≤ e−
(1−β)2E[X ]

2 (0 < β < 1)

lim
n→∞

Pr[X > βE[X ]] > lim
n→∞

1− e−
(1−β)2E[X ]

2 = 1(∵ E[X ] → ∞) (11)

Thus, as n → ∞, the number of non-faulty nodes isolated by half or more faulty neighbors will also tend
to infinity with probability 1. Given that each of these fails to receive broadcast with probability at least
half, application of Chernoff bound leads to the conclusion that the probability of broadcast failure tends
to 1.



b) 1− γ < p ≤ 1−ω(d
n ): This is relevant if d is an increasing function of n and/or p. Once again,

consider a particular node j in the network. Then, if j is non-faulty, but more than half of its neighbors
are faulty, reliable broadcast fails. Given that there are d neighbors, and each may fail independently with
probability p, let Y j denote the number of failed neighbors of j. Then, Y takes values from 0,1, ...,d, and
E[Y ] = pd > (1−γ)d > 1

2d. We set β = 1− 1
2(1−γ) and apply the Chernoff bound in Lemma 2. This yields:

Pr[Y j ≤
d
2 ) ≤ exp






−

(

1− 1
2(1−γ)

)2

2 (1− γ)d






(12)

≤ exp



−

(

1
4(1−γ) − γ

)

2 d



< exp
(

−
1
4
2 d

)

if 0 < γ <
1
16 (13)

≤ 1
e

(as d ≥ 8) (14)

∴ Pr[Y j ≥
d
2 ] > 1− 1

e
(15)

Since 1− γ < p ≤ 1−ω(d
n ), we have n

d (1− p) → ∞. Also:

Pr[ j fault-free; at least half nbd( j) faulty ] ≥ (1− p)(1− 1
e
) (16)

Let us again mark out a subset of nodes j such that the neighborhoods of these nodes are all disjoint,
as in Fig. 1. Then the number of such nodes obtained is approximately k = b n

d c ≥ n
d − 1. Let I j be

an indicator variable that takes value 1 if j is non-faulty but has at least half faulty neighbors. Then
Pr[I j = 1] ≥ (1− p)(1− 1

e ), and all I j’s are independent. Let X = ∑ I j be a random variable denoting
number of alive but isolated nodes. Then E[X ] ≥ (1− p)(1− 1

e )
(

n
d −1

)

≈ n(1−p)(1− 1
e )

d → ∞ if n
d → ∞.

Thus from the Chernoff Bound in Lemma 2, for 0 < β < 1 (e.g. β = 1
3 ) :

Pr[X ≤ βE[X ]] ≤ e−
(1−β)2E[X ]

2 lim
n→∞

Pr[X > βE[X ]] > lim
n→∞

1− e−
(1−β)2E[X ]

2 = 1(∵ E[X ] → ∞) (17)

Thus, as n → ∞, the number of non-faulty nodes isolated by half or more faulty neighbors will also tend
to infinity with probability 1.

c) 1−ω(d
n ) < p ≤ 1−ω(1

n): Note that n(1− p) → ∞. Thus, it is easily seen there will still be a
large number of fault-free nodes in the network (and this number will also tend to infinity as n increases).
The cases of interest are those in which at least two non-neighboring nodes in the entire network are
alive (else the broadcast issue is either trivialized or moot), and as n(1− p) → ∞ in this range, there
will indeed be at least two such alive nodes with probability q → 1 (as may be verified by application
of the Chernoff bound from Lemma 2). Then, consider each of these alive nodes, say A and B. The
probability that half or more of A’s neighbors are faulty can be no less that that in the previous case, i.e.,
Pr[ A has half or more faulty neighbors] ≥ 1− 1

e . Similarly, Pr[ B has half or more faulty neighbors] ≥
1− 1

e . Then Pr[at least A or B has half or more faulty neighbors]≥ 1− 1
e > 0. From Theorem 1, we know

that having half faulty neighbors leads to failure with probability at least half. Hence reliable broadcast
fails with a significant positive probability.



d) p = 1−Θ(1
n):

Pr[All nodes faulty;broadcast issue moot] = pn (18)

≥
(

1−Θ(
1
n
)

)n

= (1−g(n))n where g(n) =
α
n

(19)

lim
n→∞

Pr[All nodes faulty; broadcast issue moot] (20)

≥ lim
n→∞

(1−g(n)))n =
(

1− α
n
)
)n

= e−α > 0 from Fact 2 (21)

e) p ≥ 1−o(1
n) :

Pr[All nodes faulty;broadcast issue moot] = pn (22)

≥
(

1−o(
1
n
)

)n

= (1−g(n))n where g(n)

1/n
= ng(n) → 0 (23)

lim
n→∞

Pr[All nodes faulty; broadcast issue moot] (24)

≥ lim
n→∞

(1−g(n)))n = lim
n→∞

(

1− ng(n)

n
)

)n

(25)

= e− lim(ng(n)) = 1 from Fact 2 (26)

THEOREM 3. When p ≤ 1
2 −ε(0 < ε < 1

2), and node degree d ≤ c lnn
ln 1

2p +ln 1
2(1−p)

(for suitable constant c),

reliable broadcast asymptotically fails with probability 1.

Proof: Suppose failure probability p ≤ 1
2 − ε, where ε is an arbitrarily small constant. Choose an

increasing function f (n) = o(
√

n), and a constant 0 < c < 1 such that c
2 lnn ≤ lnn− 3ln lnn− 2ln f (n),

for sufficiently large n. Take n to be large enough so that ln 1
2p + ln 1

2(1−p) ≥ lnn
f (n) . Thus we

obtain d ≤ c f (n)) < f (n). To illustrate, we take f (n) = (lnn)2, and n to be large enough so that
ln 1

2p + ln 1
2(1−p) ≥

1
lnn . Setting d ≤ c lnn

ln 1
2p +ln 1

2(1−p)

, for this choice of c, and large enough n, we obtain

d ≤ c(lnn)2 < (lnn)2.

Consider a particular node j in the network. Then, if j is non-faulty, but more than half of its
neighbors are faulty, reliable broadcast fails with probability at least half (from Theorem 1). Given that
there are d neighbors, and each may fail independently with probability p, let I jk(1 ≤ k ≤ d) denote the
indicator variable corresponding to neighbor k of j (enumerated in some order), such that I jk = 1 if k
is faulty, and 0 otherwise. Then Y j = ∑ I jk denotes the number of failed neighbors of j. Y takes values

from 0,1, ...,d, and E[Y ] = pd. Pr[Y j ≥ d
2 ] =

d
∑

i= d
2

(d
i

)

pi(1 − p)(d−i). Let us simply consider the event

Y j = d
2 . Then we can apply the lower bound from Lemma 4. The variables I jk(1 ≤ k ≤ d) are drawn from

χ = {0,1} as per distribution Q = Be(p), and the distribution P corresponding to Y j = d
2 is Be(1

2) (we



shall refer to this as Q 1
2
). |χ| = 2, and 1

(d+1)|χ|
= 1

(d+1)2 > 1
3
2 d2 = 2

3e−2lnd (since d ≥ 8). Thus, we obtain:

Pr[Y j ≥
d
2 ] ≥ Pr[Y j =

d
2 ] ≥ 1

(d +1)|χ|
e−d(D(P||Q)) =

1
(d +1)2 e

−d(D(Q 1
2
||Q))

>
2
3e

−d(D(Q 1
2
||Q))−2lnd

(27)

>
2
3e

−(c lnn
ln 1

2p +ln 1
2(1−p)

)( 1
2 ln 1

2p + 1
2 ln 1

2(1−p)
)−4ln lnn

(28)

(since n is chosen large enough to ensure that ln 1
2p

+ ln 1
2(1− p)

≥ 1
lnn

, and c < 1, (29)

leading to d ≤ c(lnn)2 < (lnn)2 ) (30)

=
2
3e−

c
2 lnn−4ln lnn ≥ 2(lnn)3

3n
from our choice of c (31)

Let us call this probability q.

Pr[ j alive; at least half nbd( j) faulty ] ≥ (1− p)q (32)

>
1
2

2(lnn)3

3n
=

(lnn)3

3n
(33)

Let us mark out a subset of nodes j such that the neighborhoods of these nodes are all disjoint, as
in Fig. 1. Then the number of such nodes that we may obtain is approximately k = b n

d c ≥ n
d − 1. Let

I j be an indicator variable that takes value 1 if j is non-faulty but has at least half faulty neighbors.
Then Pr[I j = 1] ≥ (lnn)3

3n , and all I j’s are independent. Consider the case where n
d → ∞, as n → ∞. We

have chosen n large enough to ensure that ln 1
2p + ln 1

2(1−p) ≥
1

lnn , i.e. d ≤ c(lnn)2. Let X be a random
variable indicating the number of non-faulty nodes with half or more faulty neighbors. Then ∑ I j, and
E[X ] = ∑Pr[I j = 1] ≥ (lnn)3

3n

(

n
d −1

)

≈ (lnn)3

3d > lnn
3 → ∞ (as d < (lnn)2). Thus we can apply the Chernoff

bound in Lemma 2 to obtain:

Pr[X ≤ βE[X ]] ≤ e−
(1−β)2E[X ]

2 (34)

lim
n→∞

Pr[X > βE[X ]] > lim
n→∞

1− e−
(1−β)2E[X ]

2 = 1 ∵ E[X ] → ∞ (35)

Thus, as n → ∞, the number of non-faulty nodes isolated by half or more faulty neighbors will also tend
to infinity with probability 1. Since, each of them fails to receive broadcast with probability at least half,
the probability that some nodes will indeed fail to receive the broadcast tends to 1:

lim
n→∞

Pr[ reliable broadcast fails] → 1

VIII. SUFFICIENT CONDITION FOR RELIABLE BROADCAST

We now present a sufficient condition for the asymptotic achievability of reliable broadcast.

THEOREM 4. When p < 1
2 , and node degree d ≥ max{dmin,16 lnn

ln 1
p +ln 1

2(1−p)

} = max{dmin,16 lnn
D(Q 1

2
||P))}

(recall that dmin = 8 corresponding to r = 1), reliable broadcast is asymptotically achievable with
probability 1.

Note that when ln 1
2p + ln 1

2(1−p) ≤
16lnn

n , the degree exceeds total network size n, and thus the sufficient
condition ceases to be relevant, merely indicating that having a single-hop network suffices for reliable
broadcast (which is the trivial sufficient condition for the assumed radio network model). Thus the sufficient
condition is of interest only so long as ln 1

2p + ln 1
2(1−p) > 16lnn

n .
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y=b−r

y=b+r

y=b+1

y=b−1(a, b)

qnbdA(a, b)qnbdB(a, b)

qnbdC(a, b) qnbdD(a, b)

Fig. 2. Depiction of qnbdA, qnbdB, qnbdC, qnbdD
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x=a

y=b

y=b−r

y=b+r

(a, b)

x=a−r−1 x=a+r+1

x=a−1 x=a+1

y=b+1
y=b−1

qnbdC ′

qnbdA′qnbdB′

qnbdD′

Fig. 3. Depiction of qnbdA′ , qnbdB′ , qnbdC′ , qnbdD′

Region x-extent y-extent
qnbdA(a,b) a ≤ x ≤ (a+ r) (b− r) ≤ y ≤ (b−1)
qnbdB(a,b) (a− r) ≤ x ≤ (a−1) (b− r) ≤ y ≤ b
qnbdC(a,b) (a− r) ≤ x ≤ a (b+1) ≤ y ≤ (b+ r)
qnbdD(a,b) (a+1) ≤ x ≤ (a+ r) b ≤ y ≤ (b+ r)
qnbdA′(a,b) (a+1) ≤ x ≤ (a+ r) (b− r) ≤ y ≤ b
qnbdB′(a,b) (a− r) ≤ x ≤ a (b− r) ≤ y ≤ (b−1)
qnbdC′(a,b) (a− r) ≤ x ≤ (a−1) b ≤ y ≤ (b+ r)
qnbdD′(a,b) a ≤ x ≤ (a+ r) (b+1) ≤ y ≤ (b+ r)

TABLE I
SPATIAL EXTENTS OF QUARTER NEIGHBORHOODS

a) p ≤ o(1
n): When the failure probability is so small as to fall in this range, the probability of even

a single node failing approaches 0 asymptotically, and thus reliable broadcast is trivially ensured even
with the minimum transmission range of 1. This may be seen thus:

Pr[No failures;trivial broadcast] = (1− p)n (36)

≥
(

1−o(
1
n
)

)n

(37)

lim
n→∞

Pr[No failures;trivial broadcast] (38)

≥ lim
n→∞

(

1−o(
1
n
)

)n

= e− lim(no( 1
n )) = 1 from Fact 2 (39)

b) p = Ω(1
n): We define a term called quarter-neighborhood of a node (x,y), and denote it by

qnbd(x,y). We associate eight quarter-neighborhoods with each node: qnbdA, qnbdB, qnbdC, qnbdD,
qnbdA′ , qnbdB′ , qnbdC′ , qnbdD′ . The quarter-neighborhoods for a node (a,b) are depicted in Fig. 2
and 3, and their spatial extents are tabulated in Table I. Observe that qnbdB(a,b) = qnbd′

A(a− r− 1,b),
qnbdC(a,b) = qnbdA(a− r,b + r + 1), and qnbdD(a,b) = qnbd′

A(a,b + r + 1). Similarly, qnbdB′(a,b) =
qnbdA(a− r−1,b), qnbdC′(a,b) = qnbdA′(a− r−1,b+ r), and qnbdD′(a,b) = qnbdA(a,b+ r +1) Thus if
we simply consider qnbdA(u) and qnbdA′(u)∀ nodes u, we will have considered all quarter-neighborhoods,



i.e. the number of distinct (but not disjoint) quarter-neighborhoods is 2n. Henceforth, we shall sometimes
use Q(x,y) to refer to qnbdA(x,y), and Q′(x,y) to refer to qnbdA′(x,y). The population of any qnbd is
r(r + 1), and since d = 4r2 + 4r = 4r(r + 1), the qnbd population = d

4 . We now state and prove the
following result which is crucial to proving our sufficient condition for reliable broadcast:

THEOREM 5. If p < 1
2 , d ≥ max{dmin,16 lnn

ln 1
2p +ln 1

2(1−p)

} = max{dmin,16 lnn
D(Q 1

2
||P))}, then:

lim
n→∞

Pr[ ∀(x,y) less than
d
8 faults in

Q(x,y) and Q′(x,y)] → 1

Proof: As shown above, the population of any qnbd is d
4 . Each node may fail independently

with probability p.Let Y(x,y) be a random variable denoting the number of faulty nodes in Q(x,y). Then
E[Y(x,y)] = pd

4 . Using δ = 1
2p − 1, we may then apply the relative entropy form of the Chernoff bound

(Lemma 3) to Y(x,y) = ∑
j∈nbd(x,y)

I j. Note that d ≥ max{dmin,16 lnn
ln 1

2p +ln 1
2(1−p)

} ≥ 16 lnn
ln 1

2p +ln 1
2(1−p)

. Thus, we

obtain:

Pr[Y(x,y) ≥
d
8 ] ≤ e

− d
4 ( 1

2 ln 1
2p + 1

2 ln 1
2(1−p)

) (40)

≤ e
−( 16lnn

4(ln 1
2p +ln 1

2(1−p)

))( 1
2 ln 1

2p + 1
2 ln 1

2(1−p)
)

(41)

= e−2lnn =
1
n2 (42)

Similarly, setting Y ′
(x,y) be a random variable denoting the number of faulty nodes in Q′(x,y), we obtain

that:
Pr[Y ′

(x,y) ≥
d
8 ] ≤ 1

n2 (43)

The Y(x,y)’s and Y ′
(x,y)’s are not independent, as they are not all disjoint. However, it may be seen that where

dependence exists, it is that of positive correlation (Lemma 5). Thus Pr[Y(x′,y′) < d
8 |Y(x,y) < d

8 ]≥Pr[Y(x′,y′) <
d
8 ], and Pr[Y(x′,y′) < d

8 |Y ′
(x,y) < d

8 ] ≥ Pr[Y(x′,y′) < d
8 ]. Similarly, we obtain that: Pr[Y ′

(x′,y′) < d
8 |Y(x,y) < d

8 ] ≥
Pr[Y ′

(x′,y′) < d
8 ], and Pr[Y ′

(x′,y′) < d
8 |Y ′

(x,y) < d
8 ] ≥ Pr[Y ′

(x′,y′) < d
8 ] Hence:

Pr[∀(x,y),Y (x,y) <
d
8 and Y ′(x,y) <

d
8 ] (44)

≥ ∏Pr[Y(x′,y′) <
d
8 ]∏Pr[Y ′

(x′,y′) <
d
8 ] (45)

=

(

1− 1
n2

)n(

1− 1
n2

)n

(46)

=

(

1− 1
n2

)2
n (47)

∴ lim
n→∞

Pr[∀(x,y),Y (x,y) <
d
8 and Y ′(x,y) <

d
8 ] (48)

≥ lim
n→∞

(

1− 1
n2

)2
n = e− lim( 2

n ) = 1 from Fact 2 (49)



We now consider a simple broadcast protocol that is similar to the protocol described in [6] for the
adversarial model:

• Initially, the source does a local broadcast of the message.
• Each neighbor i of the source immediately commits to the the first value v it heard from the source,

and then locally broadcasts it once in a COMMIT T ED(i,v) message.
• Hereafter, the following protocol is followed by each node j /∈ nbd(s):

If 1
2r(r+1)+1 = d

8 +1 COMMIT T ED(i,v) message are received for a certain value v, from neighbors
i all lying within a single qnbd, and not already committed to some value, commit to v, and locally
broadcast a COMMIT T ED( j,v) message.

THEOREM 6. (Probabilistic Correctness) The probability that a node shall commit to a wrong value by
following the above protocol diminishes to 0 asymptotically.

Proof: If all Q(x,y)(Q′(x,y)) have strictly less than d
8 faults, the correctness of the protocol proceeds

as follows:

The proof is by contradiction. Consider the first fault-free node, say j, that makes a wrong decision to
commit to a value v. This implies that d

8 +1 of its neighbors within some qnbd broadcast a COMMIT T ED
message for v (the COMMIT T ED messages were directly heard, leaving no place for doubt). All of
these nodes cannot be faulty, as no more than d

8 nodes in any qnbd are faulty. Thus there was at least
one fault-free node that committed to v. Since j is the first fault-free node to make a wrong decision,
none of the fault-free nodes amongst the d

8 + 1 nodes could have made a wrong decision. Thus v must
indeed be the correct value.

We know that all Qnbd(x,y) have less than d
8 faults with probability 1 asymptotically, and hence

the protocol also functions correctly with probability 1 asymptotically.

THEOREM 7. (Probabilistic Completeness) Each node is eventually able to commit to the (probabilis-
tically) correct value.

Proof:
The proof proceeds by induction.

Base Case:

All honest nodes in nbd(0,0) are able to commit to the correct value. This follows trivially since
they hear the origin directly, and we assume that address-spoofing is impossible.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b) i.e. all honest nodes in nbd(a,b) are able to
commit to the correct value, then all honest nodes in pnbd(a,b) are able to commit to the correct value.

Proof of Inductive Hypothesis:

We show that each node P in pnbd(a,b) − nbd(a,b) has one of qnbdA(P), qnbdB(P), qnbdC(P),
qnbdD(P), qnbdA′(P), qnbdB′(P), qnbdC′(P), qnbdD′(P) fully contained in nbd(a,b). Since no more than
d
8 of the nodes in a qnbd are faulty with probability 1 (asymptotically), this guarantees that the node
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Fig. 5. Relationship between L∞ and L2 neighborhoods

will become aware of d
8 + 1 nodes in nbd(a,b) having committed to a (the correct) value, and will also

commit to it. The situation is depicted in Fig. 4 for P ∈ {(a− r + l,b + r + 1)|1 ≤ l ≤ r}, for which
qnbdA(P) lies in nbd(a,b). For all other locations, a similar argument holds.

IX. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived for L∞ metric continue to hold for L2 metric, with only the constants
in the theta notation changing.

LEMMA 6. If reliable broadcast is achievable asymptotically in L∞ for all r ≥ rmin, then it is achievable
asymptotically in L2 for all r ≥ rmin

√
2.

Proof: The proof is by contradiction. Suppose that, for a given failure configuration, broadcast is
asymptotically achievable in L∞ for all r ≥ rmin but is not asymptotically achievable for all r ≥ rmin

√
2

in L2. Observe that it is possible to circumscribe a L∞ neighborhood of range r by a L2 neighborhood
of range r

√
2 (Fig. 5). Hence the non-faulty nodes in an L2 network of transmission range r

√
2 can be

made to simulate the operation of nodes in a L∞ network with range r (as the L∞ neighborhood is fully
contained within the L2 neighborhood). Also, given that this is a network of known topology, with no
address spoofing allowed, the faulty nodes cannot gain any unfair advantage, by not simulating the the L∞
network. This implies that if broadcast is achievable in the L∞ network of range r , so must it be in the
L2 network of range r

√
2. If there is some r ≥ rmin for which we can achieve broadcast in the L∞ network

asymptotically, but not in the the L2 network of range r
√

2, we obtain a contradiction, as achievability in
the L∞ network would imply achievability in the L2 network.



LEMMA 7. If reliable broadcast fails asymptotically in L∞ for all r ≤ rmin, then it fails asymptotically
in L2 for all r ≤ rmin.

Proof: The proof is by contradiction. Suppose that broadcast fails asymptotically in L∞ for range r,
but does not fail in L2 for range r. Observe that an L∞ neighborhood of transmission range r circumscribes
an L2 neighborhood of range r (Fig. 5). Thus, for any given failure configuration, if broadcast succeeds
in the the L2 network of range r, so can it in the L∞ network of radius r, as we could simply make the
fault-free nodes in the L∞ network simulate the behavior of nodes in the L2 network. Hence, if broadcast
does not fail in the L2 network of range r ≤ rmin, it will not fail in the L∞ network of range r ≤ rmin. This
yields a contradiction.

X. NON-TOROIDAL NETWORKS

We used the assumption that the network is toroidal to avoid edge effects. However, one can see
that the results would continue to hold even if the network were spread over a non-toroidal rectilinear
domain. The necessary condition would continue to hold, since the degree of nodes at the edges can be
no more more than the degree of nodes towards the center, and if reliable broadcast is impossible even
with the assumption of equal degree for all nodes, it must certainly be impossible when some nodes
(those at the edges) have a smaller degree.

The sufficient condition continues to hold since the described protocol relies on information from
quarter-neighborhoods, and it can be seen that even the nodes at the edges have at least one quarter-
neighborhood within the network region.



Crash-Stop Failures/Connectivity and Coverage

XI. NETWORK MODEL

We consider a network model wherein nodes are located on a two-dimensional rectangular toroidal
grid (each grid unit is a 1× 1 square). The case of a non-toroidal grid will be briefly discussed, and
does not affect our results. We designate an origin, and all nodes can be uniquely identified by their grid
location (x,y) w.r.t. this origin. All nodes have a common transmission radius r. A message transmitted
by a node (x,y) is heard by all nodes within distance r from it (where distance is defined in terms of
the particular metric under consideration, and r is assumed to be an integer). The set of these nodes is
termed the neighborhood of (x,y).

In this paper, we consider two distance metrics: L∞ and L2. The L∞ metric is the metric induced by the L∞
norm [5], such that the distance between points (x1,y1) and (x2,y2) is given by max{|x1 − x2|, |y1 − y2|}
in the this metric. Thus nbd(a,b) comprises a square of side 2r with its centroid at (a,b), and the
degree of a node is 4r2 +4r. The L2 metric is induced by the L2 norm [5], and is the Euclidean distance
metric. The L2 distance between points (x1,y1) and (x2,y2) is given by

√

(x1 − x2)2 +(y1 − y2)2, and
nbd(a,b) comprises nodes within a circle of radius r centered at (a,b). The L∞ metric enables more
tractable analysis, from which necessary and sufficient conditions for the L2 (Euclidean) metric proceed.
In Section IX, we further elaborate on how the results for the two metrics are related.

A random failure mode is assumed, wherein each node can fail with probability p independently
of other nodes. A failed node simply stops functioning, i.e., failures are of the crash-stop kind.

XII. RELATED WORK

Conditions for connectivity and coverage have been formulated in the context of different network
models. In [12], it was proved that in a unit area network with uniformly distributed node placement,
where nodes have a common transmission radius r, such that πr2 = (logn+c(n))

n , the network is
asymptotically connected with probability one iff c(n) → ∞. In [13], an alternate model was considered
whereby randomly deployed nodes may modulate their transmission power (and hence range) to ensure
that they have a certain number of neighbors. It was proved that each node must be connected to Θ(logn)
neighbors for asymptotic connectivity with probability one. Recently, necessary and sufficient conditions
for asymptotic connectivity in a network with low duty cycle sensors have been formulated in [14].

A grid network model was considered in [15] where nodes are located at grid locations on a
square grid, but may fail independently. Nodes have a common transmission range r. The probability of
not failing is specified as p, and it is shown that a sufficient condition for connectivity and coverage is
that transmission range r must be set to ensure that node degree is c1(

logn
p ) (for some constant c1). It is

also shown that a necessary condition for coverage (and hence for joint coverage and connetivity) is that
node degree be at least c2(

logn
p ) (for another constant c2. A fallacy in the above necessary condition was

pointed out by [16], and a subsequent correction [17] by the authors of [15] presents examples illustrating
that the necessary condition may fail to hold for certain subranges of p. The issue of coverage has
been examined in detail in [16] for random, grid, and poisson deployments. However, the necessary and
sufficient conditions formulated by them take a more complex form, and do not point to a single f (n, p)
such that a degree of Θ( f (n, p)) is both necessary and sufficient for asymptotic coverage. Besides, the
necessary condition is formulated for the specific case when lim

n→∞
p → 0

Our results are closely related to the results of [15]. However, we prove that, given a failure



probability p, it is necessary and sufficient to have a degree of Θ( logn
log 1

p
) for both connectivity and

coverage. Expressed in the notation of [15], we stipulate a degree of Θ( logn
log 1

1−p
). Our results diverge

considerably from those of [15] when the failure probability becomes extremely small, and thus our
necessary conditions would hold in a certain subdomain where that of [15] would not. However, there
is a small sub-domain of p in which our necessary conditions also cease to hold, as with the conditions
of [15]. Besides, we work in the L∞ distance metric, and then map the results to L2. This yields much
simpler proofs. We also remark that our joint sufficient condition for connectivity and coverage is actually
sufficient for 9-coverage and not merely 1-coverage (where k-coverage implies that each point is covered
by at least k non-faulty nodes). It is noteworthy that our results may be derived from analysis presented
in [18] regarding the feasible rate in a sensor network, although no statement has been made in [18] in
this regard.

XIII. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that shall be used in this paper. Nodes can identified
by their grid location i.e. (x,y) denotes the node at (x,y). The neighborhood of (x,y) comprises all nodes
within distance r of (x,y) and is denoted as nbd(x,y). The degree of each node is referred to as d.
In L ∞ metric, d = 4r2 + 4r, while the size of a neighborhood (including the neighborhood center) is
d + 1 = 4r2 + 4r + 1. The diameter of the network (in terms of distance, and not number of hops) is
referred to as D. If n is a perfect square, D =

√
n.

XIV. NECESSARY CONDITION FOR CONNECTIVITY

THEOREM 8. When p < 1− 1
lnn , then in the L∞ metric, the transmission range r must satisfy r ≥

max{1,Ω(
√

lnn
ln 1

p
)}, i.e., the node degree d ≥ max{1,Ω( lnn

ln 1
p
)}, else lim

n→∞
Pr[ disconnection] = 1.

Proof: It is obvious that the minimum transmission range required for connectivity is 1, else the
degree of all nodes is 0 (except in the case when connectivity loses meaning as all nodes are faulty,
and so the network can be deemed connected trivially). Similarly, the network is trivially connected
if r = D, as all nodes are in direct range of each other. Suppose that r =

√

c lnn
ln 1

p
. Thus, when p ≥ 1

n
c
n

,

r =
√

c lnn
ln 1

p
≥√

n ≥ D, and the necessary condition ceases to be relevant (as r = D ensures connectivity).

We show that the network is asymptotically disconnected with probability 1 if r <
√

c lnn
ln 1

p
, for

some constant 0 < c < 1, as long as p < 1− 1
lnn . Note that if p < 1−δ for any arbitrarily small constant

δ > 0 (independent of n), then for sufficiently large n, the necessary condition would hold for all p.
Also note that 1− 1

lnn < 1
n

c
n

for large n (from Fact 3). Thus, the values of p for which our necessary
condition holds are those in which the transmission range remains less than D. When p ≥ 1− 1

n1+ε , all
nodes are faulty with probability approaching 1, and the issue of connectivity is moot. When p ≤ 1

nc ,
r =

√

c lnn
ln 1

p
≤ 1, and for this range of p, the necessary condition lapses to having the minimum range of

1.

a) p ≤ 1− 1
lnn : Consider a particular node j in the network. Then, if j is non-faulty, but all its

neighbors are faulty, we have a potential disconnection event. Given that there are d neighbors, and each
may fail independently with probability p, the probability that j does not fail, but all nodes in nbd( j)
fail, is (1− p)pd . We choose a constant 0 < c < 1 such that c lnn ≤ lnn− 4ln lnn, for sufficiently large



Fig. 6. Nodes having disjoint neighborhoods

n. In general, c can be chosen very close to 1, e.g., 1− ε(0 < ε < 1), and the condition will hold for
n > no, for some no. Since p ≤ 1− 1

lnn , we obtain that 1
1−p ≤ lnn. Let r ≤

√

c lnn
8ln 1

p
. The node degree

d = 4r2 +4r ≤ 4r2 +4r2 = 8r2, for n ≥ 1. Thus, for our choice of r, it turns out that d ≤ c lnn
ln 1

p
. Then, it

may be seen that:

Pr[ A given node j is alive, but isolated] (50)
≥ Pr[ j is alive and all neighbors of j are faulty ] (51)

= (1− p)pd >
1

lnn
p

c lnn
ln 1

p (52)

=
1

lnn
1
nc =

1
nc lnn

(53)

≥ (lnn)3

n
(from our choice of c) (54)

Let us mark out a subset of nodes j such that the neighborhoods of these nodes are all disjoint,
as in Fig. 6. Then the number of such nodes that we may obtain = b

( √
n

2r+1

)2
c ≥ n

9r2 − 1 (since√
n may not be multiple of 2r + 1). Let I j be an indicator variable that takes value 1 if j is alive

but isolated. Then Pr[I j = 1] ≥ (lnn)3

n , and all I j’s are independent. Let X be a random variable
denoting the number of nodes from the chosen set that are alive and isolated. Then X = ∑ I j, and

E[X ] ≥ (lnn)3

n

(

n ln 1
p

9c lnn −1
)

≥ (lnn)3

n

n ln 1
1− 1

lnn
9lnn ≥ 1

9(lnn)2 ln 1
1− 1

lnn
≥ 1

9 lnn → ∞. We can thus apply the

Chernoff bound from Lemma 2: Thus, with suitable 0 < c < 1 and β = E[X ]−1
E[X ] , we obtain that for

p < 1− 1
lnn , if r ≤

√

c lnn
8ln 1

p
, then E[X ] → ∞, and hence lim

n→∞
Pr[ At least two alive nodes are isolated] = 1.

Observe that actually the necessary condition would hold for all p such that E[X ] → ∞. For instance,
the above analysis holds for all p ≤ 1− 1

(lnn)b (where b is a constant), with a corresponding suitably



varying choice of c to ensure that Pr[I j = 1] ≥ (lnn)(b+2)

n . Besides, if E[X ] → γ > 0, the asymptotic
disconnection probability is still a positive finite quantity, and the condition is still necessary for
asymptotic connectedness probability to approach 1.

b) p ≥ 1− 1
n1+ε : When the failure probability becomes so high as to fall in this range, we obtain:

lim
n→∞

Pr[ Any node is alive] = 1− pn (55)

= lim
n→∞

1−
(

1− 1
n1+ε

)n

= 1− e− lim( 1
nε ) = 0 from Fact 2 (56)

Thus the network is trivially connected by definition, regardless of degree.

XV. NECESSARY CONDITION FOR COVERAGE

We now show that for the network to be asymptotically covered with probability approaching 1, it
is necessary that the transmission range r satisfy: r ≥ max{1,Ω(

√

lnn
ln 1

p
)}, i.e., the node degree be d ≥

max{1,Ω( lnn
ln 1

p
)}.

THEOREM 9. For p < 1− 1
lnn , for a suitable constant 0 < c < 1, if d < c lnn

ln 1
p

:

lim
n→∞

Pr[Some point is not covered] → 1

Proof: As in the case of connectivity it is obvious that r must be at least 1, else some points will
not be covered. We handle two subranges of p separately.

a) p < 1− 1
lnn : The proof relies on subdivision of the network into disjoint neighborhoods, as in

Fig. 6. If there exists at least one neighborhood with absolutely no nodes alive (neither the neighborhood
center nor its neighbors), then the center of that neighborhood is not covered. Thus we seek to determine
the probability of such an event.

We choose a constant 0 < c < 1 such that 9
8c lnn ≤ lnn − 3ln lnn, for sufficiently large n. This

ensures that 1
nc ≥ (lnn)3

n for large n. Let r ≤
√

c lnn
8ln 1

p
. The neighborhood population is given by

d + 1 = 4r2 + 4r + 1 ≤ 4r2 + 4r2 + r2 = 9r2, for n ≥ 1. Thus, d + 1 ≤ 9
8c lnn

ln 1
p
. Let I j be an indicator

variable that takes value 1 if there is no alive node in the neighborhood centered at node j, and value 0

otherwise. Then Pr[X j = 1] = pd+1 = p
9
8 c lnn

ln 1
p = (lnn)3

n (from our choice of c). Let X = ∑ I j be a random

variable indicating the number of neighborhoods with no alive node. Then E[X ] = (lnn)3

9r2 =
8(lnn)2 ln 1

p
9c

(after plugging in the chosen value of r). If p < 1− 1
lnn , then E[X ] ≥ lnn(lnn ln 1

1− 1
lnn

) > lnn → ∞ (from

Fact 1), and application of the Chernoff bound from Lemma 2 yields that Pr[X = 0] ≤ exp(− E[X ]
2 ) → 0.

Thus there is some uncovered region with probability 1.

Similar to the necessary condition for connectivity, observe that this necessary condition would
hold for all p such that E[X ] → ∞. In particular, the above analysis holds for all p ≤ 1− 1

(lnn)b (where

b is a constant), with a corresponding suitably varying choice of c to ensure that Pr[I j = 1] ≥ (lnn)(b+2)

n .



Also, if E[X ] → γ > 0, the asymptotic probability of some point being uncovered is a positive finite
quantity, and the condition is still necessary for asymptotic coverage probability to approach 1.

b) p ≥ 1− 1
n1+ε (0 < ε < 1): We obtain that Pr[ no nodes alive ] = pn ≥

(

1− 1
n1+ε

)n
. As n → ∞, the

following holds:

lim
n→∞

Pr[some point not covered] ≥ Pr[no node alive] (57)

= lim
n→∞

(

1− 1
n1+ε

)n

= e− lim( 1
nε ) = 1 from Fact 2 (58)

Thus the network is trivially not covered, regardless of transmission range.

XVI. SUFFICIENT CONDITION FOR CONNECTIVITY AND COVERAGE

We now present a sufficient condition for the asymptotic existence of both connectivity and coverage.

THEOREM 10. When d ≥ 32 lnn
ln 1

p
, the network is asymptotically connected and covered with probability

1.

a) p ≤ 1
n1+ε : When the failure probability is so small as to fall in this range, the probability of even

a single node failing approaches 0 asymptotically, and thus connectivity and coverage is trivially ensured
even with the minimum transmission range of 1. This may be seen thus:

Pr[No failures;full connectivity/coverage] = (1− p)n (59)

≥
(

1− 1
n1+ε

)n

(60)

lim
n→∞

Pr[No failures;full connectivity/coverage] (61)

≥ lim
n→∞

(

1− 1
n1+ε

)n

= e− lim( 1
nε ) = 1 from Fact 2 (62)

b) p = Ω(1
n): Proof:

Consider the subdivision of the grid as depicted in Fig. 7, so that the resulting cells have x-extents
(y-extents) 0 to a, a+1 to a+b, a+b+1 to 2a+b+1, and so on. Here a = b r

2c and b = r−a = r−b r
2c.

Then, each node is within range of all other nodes in the cells adjoining its own. Thus it is obvious that if
each square has at least one non-faulty node, there exists a connected backbone that covers all points, and
hence all nodes. Thus all non-faulty nodes are connected to each other via this backbone. The dimensions
of the cells thus obtained can be (a+1)2, (a+1)b or b2. Thus the population k of any cell satisfies k ≥ r2

4 ,
and the maximum possible number of cells m ≤ 4n

r2 . Then:

Pr[ at least one node alive in a given cell ] = 1− pk ≥ 1− p
r2
4 (63)

∴ Pr[ at least 1 node alive in each cell] ≥
(

1− p
r2
4

) 4n
r2

(64)
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0

a+b

2a+b+1

(a+1) 2
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Pop. Pop.

(a+1)b

Fig. 7. Subdivision of network into cells

Let us choose r ≥
√

8lnn
ln 1

p
. Then:

Pr[at least 1 node alive in each cell] ≥
(

1− p
r2
4

)

n ln 1
p

2lnn

(65)

Since p ≥ α1
n for some constant α , ln 1

p ≤ lnn− lnα. Hence:

Pr[at least 1 node alive in each cell] ≥
(

1− p
r2
4

)

n ln 1
p

2lnn

=

(

1− p
2lnn
ln 1

p

)

n ln 1
p

2lnn

≥
(

1− 1
n2

) n
2 (1− lnα

lnn )

(66)

(67)

Thus, by application of Fact 2, we obtain:

lim
n→∞

Pr[at least 1 node alive in each cell] ≥ lim
n→∞

(

1− 1
n2

) n
2 (1− lnα

lnn )

= e− lim( 1
2n ) = 1 from Fact 2 (68)

Since this condition ensures connectivity and coverage, we obtain that:

lim
n→∞

Pr[network is connected and covered] → 1 (69)

XVII. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived for L∞ metric continue to hold for L2 metric, with only the constants
in the theta notation changing.

LEMMA 8. If the network is asymptotically connected (covered) in L∞ for all r ≥ rmin, then the network
is connected (covered) asymptotically in L2 for all r ≥ rmin

√
2.

Proof: The proof is by contradiction. Suppose that, for a given failure configuration, the network
is asymptotically connected in L∞ for all r ≥ rmin but is not asymptotically connected for all r ≥ rmin

√
2



r

√

2

r

r
r

r

Fig. 8. Relationship between L∞ and L2 neighborhoods

in L2. Observe that it is possible to circumscribe a L∞ neighborhood of range r by a L2 neighborhood
of range r

√
2 (Fig. 8). Hence the nodes in an L2 network of transmission range r

√
2 can be made to

simulate the operation of nodes in a L∞ network with range r (as the L∞ neigborhood is fully contained
within the L2 neighborhood). This implies that if the L∞ network of range r is connected (covered), so
must be the L2 network of range r

√
2. If there is some r ≥ rmin for which the L∞ network of range r is

connected (covered) asymptotically, but the L2 network of range r
√

2 is not, we obtain a contradiction,
as connectedness (coverage) of the L∞ network would imply connectedness (coverage) of the L2 network.

LEMMA 9. If the network is asymptotically disconnected (not covered) in L∞ for all r ≤ rmin, then the
network is disconnected (not covered) asymptotically in L2 for all r ≤ rmin.

Proof: The proof is by contradiction. Suppose that the network is asymptotically disconnected (not
covered) in L∞ for range r, but is not disconnected (not covered) in L2 for range r. Observe that an
L∞ neighborhood of transmission range r circumscribes an L2 neighborhood of range r (Fig. 8). Thus,
for any given random failure configuration, if the L2 network of range r were connected (covered), so
would be the L∞ network of radius r, as we could simply make the nodes in the L∞ network simulate the
behavior of nodes in the L2 network, and obtain connectedness (coverage). Hence, if the L2 network of
range r ≤ rmin is not asymptotically disconnected (not covered), the L∞ network of range r ≤ rmin must
also not be disconnected (not covered). This yields a contradiction.

XVIII. DISCUSSION

It is interesting to note that in case of a grid network, the necessary and sufficient node degree turns
out to be Θ

(

logn
log 1

p

)

, as compared to Θ( log(n(1−p))
1−p ) (when expressed in our notation) for the case of a

randomly deployed network, where sensors are active with probability 1− p [14]. However, it is not
difficult to see that such a difference is to be expected. In a grid network, as failure(or sleep) probability
p → 0, the network tends towards a deterministic topology, whereas in a random network, if failure or
sleep probability p → 0, the network can only tend towards a denser but still random network. Thus, at
small values of p, a very small degree will suffice for a grid network, but may not for a random network.
At larger p values, the grid network exhibits increasing randomness and begins to resemble a network
with random deployment. Thus, one may see that the two expressions are within a small range of each
other when p is large (given sufficiently large n), but diverge as p → 0.

Another observation is that the form of the results is very similar to results obtained by us for
reliable broadcast in a grid network with Byzantine failures. For Byzantine failures, we have obtained that
the necessary and sufficient conditions for reliable broadcast entail a node degree of Θ

(

lnn
ln 1

2p +ln 1
2(1−p)

)

,



which may be re-stated as Θ
(

lnn
D(Q 1

2
||P)

)

where Q 1
2

denotes a distribution with failure probability 1
2 , P

denotes the actual distribution with failure probability p, and D(Q||P) denotes the relative entropy (or
Kullback-Leibler distance) between distributions Q and P. Similarly, one may view the node degree for
connectivity as Θ

(

lnn
D(Q1||P)

)

, where Q is the distribution with failure probability 1, and P is the actual
failure distribution.

XIX. NON-TOROIDAL NETWORKS

We have made the assumption that the network is toroidal, so as to avoid edge effects. However, we
can see that the degree of any node at the outermost edge is no more than d, and at least d

4 (where
d is the uniform degree that each node would have in the toroidal case). Thus, the necessary condition
would continue to hold as is (since some nodes having a lesser degree can only increase the probability
of disconnection). The construction used to prove the sufficient condition also continues to hold as is,
since all full-cells in the tiling will have at least one active node each, and even if there are regions at
the fringes left-over, they will still fall within range of some active node in the nearest full tile (due to
the chosen dimensions of the cells). Thus, the results are not affected. A similar argument leads to the
conclusion that the coverage results are not affected.
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