
On Checkpoint Latency�Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112E-mail: vaidya@cs.tamu.eduWeb: http://www.cs.tamu.edu/faculty/vaidya/AbstractCheckpointing and rollback is a technique for min-imizing loss of computation in presence of failures.Two metrics can be used to characterize a checkpoint-ing scheme: (i) checkpoint overhead (increase in theexecution time of the application because of a check-point), and (ii) checkpoint latency (duration of timerequired to save the checkpoint). For many checkpoint-ing methods, checkpoint latency is larger than check-point overhead. This paper evaluates the expressionfor \average overhead" of the checkpointing schemeas a function of checkpoint latency and overhead. Itis shown that the \average overhead" is much moresensitive to the changes in checkpoint overhead, ascompared to checkpoint latency. Also, for equi-distantcheckpoints, the optimal checkpoint interval is shownto be independent of the checkpoint latency.1 IntroductionMany applications (sequential and parallel) requirelarge amount of time to complete. Such applicationscan encounter loss of a signi�cant amount of compu-tation if a failure occurs during the execution. Check-pointing and rollback recovery is a technique used tominimize the loss of computation in an environmentsubject to failures [1]. A checkpoint is a copy of theapplication's state stored on a stable storage � a stablestorage is not subject to failures. The application pe-riodically saves checkpoints; the application recoversfrom a failure by rolling back to a recent checkpoint.Checkpointing can be used for sequential as well asparallel (or distributed) applications. When the ap-plication consists of more than one process, a consis-tent checkpointing algorithm can be used to save aconsistent state of the multi-process application.Two metrics can be used to characterize a check-pointing scheme:� Checkpoint overhead C is the increase in theexecution time of the application because of acheckpoint.� Checkpoint latency L is the duration of timerequired to save the checkpoint. In many imple-�This work is supported in part by the National ScienceFoundation under CAREER Grant MIP-9502563.

mentations, checkpoint latency is larger than thecheckpoint overhead. (Illustrated in Section 2.)In the past, a large number of researchers have ana-lyzed the checkpointing and rollback recovery scheme(e.g. [1, 2, 3, 11]). However, to our knowledge, thepast work has not taken checkpoint latency into ac-count. This paper evaluates the impact of checkpointlatency on the performance of a checkpointing scheme.This work is motivated by the schemes that attempt toreduce checkpoint overhead while causing an increasein the checkpoint latency (e.g., [5, 4, 8]).Related work: Plank et al. [5, 4] present measure-ments of checkpoint latency and overhead for a fewapplications, however, they do not present any per-formance analysis. We measured checkpoint latencyand overhead for a few uni-process applications, andbrie
y analyzed the impact of checkpoint latency onperformance of \two-level" recovery schemes [7, 9].2 Checkpoint LatencyWe limit the discussion to uni-process applications.Due to lack of space, multi-process applications arenot discussed here [10]. In this section, we illustratethe distinction between checkpoint latency and check-point overhead with two examples.Sequential checkpointing is an approach for whichcheckpoint overhead is identical to checkpoint latency.In this approach, when an application process wantsto take a checkpoint, it pauses and saves its state onthe stable storage [5]. Therefore, the time required tosave the checkpoint (i.e., checkpoint latency) is prac-tically identical to the increase in the execution timeof the process (i.e., checkpoint overhead). Figure 1 il-lustrates this approach. The horizontal line representsprocessor execution, time increasing from left to right.The shaded box represents the checkpointing opera-tion. The sequential checkpointing approach achievesthe smallest possible checkpoint latency. However, itresults in a larger checkpoint overhead as comparedto other approaches.Forked checkpointing is an approach for whichcheckpoint overhead is usually much smaller than thecheckpoint latency. In this approach, when a processwants to take a checkpoint, it forks a child process
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Figure 2: Forked Checkpointing[5]. The state of the child process is identical to thatof the parent process when fork is performed. Afterthe fork, the parent process continues computation,while the child process saves its state on the stablestorage. Figure 2(a) illustrates this approach. In thisapproach, computation is overlapped with stable stor-age access (i.e., overlapped with state saving), there-fore the checkpoint overhead is usually smaller thanthe sequential checkpointing approach. Also, as theparent and the child execute in parallel, checkpointlatency is larger than the checkpoint overhead. Fig-ure 2(b) illustrates the interleaved execution of thechild and parent processes on the same processor. Asshown in the �gure, useful computation performed bythe parent process is interleaved with the checkpoint-ing operation performed by the child process.For future reference, note that, a checkpoint is saidto have been established if a future failure can betolerated by a rollback to this checkpoint. Thus, acheckpoint is not considered to be established until theend of the latency period. When the execution pro-gresses past the end of the checkpoint latency period,the checkpoint is considered to have been established
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"established" only at the endFigure 3: Modeling checkpoint latency and overhead(refer Figures 1 and 2).A checkpoint interval is de�ned as the durationbetween the establishment of two consecutive check-points. That is, a checkpoint interval begins when onecheckpoint is established, and the interval ends whenthe next checkpoint is established. (For brevity, theterm interval will be used to denote a checkpoint inter-val.) We assume that the checkpoints are equi-distant,i.e., the amount of useful computation performed dur-ing each interval is identical (denoted by T ).3 Latency and OverheadAs discussed in the previous section, the checkpointlatency period is divided into two types of execution:(1) useful computation, and (2) execution necessaryfor checkpointing. The two types are usually inter-leaved in time. However, for modeling purposes, wecan assume that the two types of executions are sep-arated in time, as shown in Figure 3. As shown inthe �gure, the �rst C units of time during the check-point latency period is assumed to be used for savingthe checkpoint. The remaining (L�C) units of time isassumed to be spent on useful computation. Althoughthe C units of overhead is modeled as being incurredat the beginning of the checkpoint latency period, thecheckpoint is considered to have been established onlyat the end of the checkpoint latency period. Althoughour representation of checkpoint latency and overheadis simpli�ed, we now demonstrate that it will lead toaccurate analysis. Two distinct situations may occurwhen a checkpoint interval is executed.Situation 1: A failure does not occur while theinterval is executed. In this case, the execution timefrom the beginning to the end of an interval is T +C.Of the T + C units, T units are spent doing usefulcomputation, while incurring an overhead of C timeunits. As shown in Figure 4(a), (L � C) units of use-ful computation is performed during the checkpointlatency period. Now consider Figure 4(b). Similar toFigure 4(a), L�C units of useful computation is per-formed during the latency period. Also, the executiontime for the interval is T + C.Situation 2: A failure occurs during the inter-val. When a failure occurs, the task must be rolledback to the previous checkpoint, incurring an over-head of R time units. In Figure 5(a), the task is rolledback to checkpoint CP1. After the rollback, L � Cunits of useful computation performed during the la-tency period of CP1 must be performed again { this isnecessary, because the state saved during checkpoint



T+C
C T C

(b)

L L-C

interval begins interval ends

T+C

LL

L-C units of useful
computations is performed

during the latency period

interval begins interval ends
(a)

Figure 4: Situation 1CP1 is the state at the beginning of the latency pe-riod for CP1. In the absence of a further failure, ad-ditional T + C units of execution is required beforethe completion of the interval. Thus, after a failure,R + (L � C) + (T + C) = R + T + L units of execu-tion is required before the completion of the interval,provided additional failures do not occur.Now consider Figure 5(b). When the failure occurs,as shown in Figure 5(b), the system can be consideredto have rolled back to the end of the \shaded portion"in the latency period for checkpoint CP1. (Note thatno state change occurs during the \shaded portion".)Now it is apparent that, in the absence of further fail-ure, R + T + L units of execution is required to com-plete the interval. Thus, our representation of check-point latency and overhead yields the same conclusionas the more accurate representation in Figure 5(a).The above discussion is also applicable if the failureoccurs during the checkpoint latency period of check-point CP2. Such a failure will also require a rollback tocheckpoint CP1, as checkpoint CP2 is not establishedwhen the failure occurred.1 The above discussion can1Chandy et al. [1] present an analysis of checkpointingschemes that does not take checkpoint latency into account.However, for sequential checkpointing (with L = C), our anal-ysis is similar to theirs with one exception. An assumptionmade by Chandy et al. [1] implies that a failure that occurswhile checkpoint CP2 (in Figure 5) is being saved, only re-quires re-initiation of the checkpointing operation. As per theirassumption, computation during the interval preceding check-point CP2 need not be performed again even if a failure occurswhile checkpoint CP2 is being established (i.e. the failure oc-curs after checkpointing is initiated but before it is completed).For many environments this assumption is not realistic. There-
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CP1 Figure 5: Situation 2also be extended to multiple failures during a check-point interval.The above two cases imply that the simpli�ed rep-resentation of checkpoint latency and overhead willyield the same results as the accurate representation.4 Evaluating the OverheadWe assume that C, L and R are constants for agiven scheme. The fault model assumed for the anal-ysis is as follows: Processor failures are governed by aPoisson process with rate �. When a processor fails,its local state is corrupted. A processor can fail dur-ing normal operation, during checkpointing, as well asduring rollback and recovery. The stable storage isnot subject to failures. (The stable storage is used forstoring checkpoints.)Let G(t) denote the expected (average) amount ofexecution time required to perform t units of usefulcomputation. (Useful computation excludes the timespent on checkpointing and rollback recovery.) Then,we de�ne overhead ratio (r) as:overhead ratio r = limt!1 G(t)� tt = limt!1 G(t)t � 1:We assume that the system is executing an in�nitetask that takes equi-distant checkpoints. The execu-tion of the task can be considered to be a series ofintervals, each interval beginning immediately after acheckpoint is established, and ending when the nextcheckpoint is established. Figure 6 illustrates intervalsI1, I2 and I3. (Meaning of various states in the �g-ure will be explained shortly.) As shown in the �gure,fore, we make the realistic assumption that a failure that occurswhile a checkpoint (say, CP2 in Figure 5) is being establishedrequires a rollback to the previous checkpoint (checkpointCP1).
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state 0 Figure 6: Intervalsinterval I1 begins after checkpoint CP0 is established,and ends when checkpoint CP1 is established. Inter-val I2 begins after checkpoint CP1 is established. Be-fore checkpoint CP2 is established, two failures occur,each requiring a rollback to checkpoint CP1. Subse-quently, the computation progresses without failureand checkpoint CP2 is established. Interval I2 is com-pleted when checkpoint CP2 is established.Observe that T units of useful computation is per-formed during each checkpoint interval. Provided nofailures occur during the interval, the total time re-quired to execute an interval is T +C. If one or morefailure occurs while executing an interval, then theexecution time is longer than T + C. Let � denotethe expected (average) execution time of an interval.Then, it is easy to see that,overhead ratio r = limt!1 G(t)t � 1 = �T � 1Expected execution time � of a single checkpoint in-terval can be evaluated using the Markov chain [6, 12]in Figure 7. State 0 is the initial state, when an in-terval starts execution. A transition from state 0 tostate 1 occurs when the interval is completed withouta failure. If a failure occurs while executing the check-point interval, then a transition is made from state 0to state 2. After state 2 is entered, a transition occursto state 1 if no further failure occurs before the nextcheckpoint is established. If, however, another fail-ure occurs after entering state 2 and before the nextcheckpoint is established, then a transition is madefrom state 2 back to state 2. When state 1 is entered,the interval has completed execution. Therefore, state1 is a sink state � there are no transitions out of state1. Figure 6 illustrates the various states for an exam-ple execution. As shown in Figure 6, during intervalI1, the task is in state 0, and enters state 1 when theinterval completes without a failure. During intervalI2, the task is initially in state 0, and enters state 2when a failure occurs. When another failure occurs,the task re-enters state 2. Subsequent to the secondfailure, interval I2 completes without any further fail-ures. State 1 is entered at the end of the interval.Each transition (X;Y ), from state X to state Y inthe Markov chain, has an associated transition proba-bility PXY and a cost KXY . Cost KXY of a transition(X;Y ) is the expected (average) time spent in state Xbefore making the transition to state Y .It is easy to see that, P01 = e��(T+C) and K01 =
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startFigure 7: Markov chainT +C. Also, P02 = 1�P01 = 1� e��(T+C). Now, thecost K02 of transition (0,2) is the expected duration,from the beginning of the interval until the time whenthe failure occurred, given that a failure occurs beforethe end of the interval. Therefore,K02 = Z T+C0 (t) � e��t1� e��(T+C) dt= ��1 � (T +C)e��(T+C)1� e��(T+C)After state 2 is entered, a transition is made to state1 if no further failure occurs before the next check-point is established. As discussed earlier, the exe-cution time required for the next checkpoint to beestablished after a failure is R + T + L. Therefore,P21 = e��(R+T+L) and K21 = R+T +L. If, however,another failure occurs after entering state 2 and beforethe next checkpoint is established, then a transition ismade from state 2 back to state 2. It follows that,P22 = 1� P21 = 1� e��(R+T+L), andK22 = Z R+T+L0 (t) � e��t1� e��(R+T+L) dt= ��1 � (R+ T + L)e��(R+T+L)1� e��(R+T+L)The expected execution time � is the expected cost ofa path from state 0 to state 1. It follows that,� = P01K01 + P02�K02 + P221� P22K22 +K21�Substituting the expressions for various costs andtransition probabilities, and simplifying, the followingexpression is obtained [10].� = ��1e�(L�C+R)(e�(T+C) � 1) (1)



It follows that, the overhead ratio r is given byr = �T � 1 = ��1e�(L�C+R)(e�(T+C) � 1)T � 1 (2)4.1 Minimizing the Overhead RatioConsider a checkpointing scheme that achieves acertain overhead C and checkpoint latency L. For thischeckpointing scheme, the objective now is to choosean appropriate value of T so as to minimize the over-head ratio r. The optimal value of T must satisfy thefollowing equation:@r@T = @@T ���1e�(L�C+R)(e�(T+C) � 1)T � 1� = 0=) e�(T+C)(1� �T ) = 1 for T 6= 0 (3)As the above equation does not include L or R, theoptimal value of T is not dependent on L and R { theoptimal T , however, depends on C. Thus, to evalu-ate the optimal checkpoint interval for a given check-pointing scheme, it is adequate to know the value ofC. However, to evaluate the overhead ratio with theoptimal T , L and R must also be known.5 Inter-Dependence Between L and CCheckpoint latency and checkpoint overhead aredependent on each other. An attempt to reduce thecheckpoint overhead typically causes an increase in thecheckpoint latency. Now, from Equation 2,@r@L = e�(L�C+R)(e�(T+C) � 1)T > 0 (4)@r@C = e�(L�C+R)T > 0 (5)From Equations 4 and 5, observe that@r@L = (e�(T+C) � 1) @r@C :Also observe that (e�(T+C) � 1) is likely to be muchsmaller than 1 for realistic values of �, T and C. Thus,@r@L will typically be much smaller than @r@C { this im-plies that r is more sensitive to the changes in C, ascompared to changes in L. This is intuitive: Observethat L does not a�ect the failure-free execution time,while C does. L only a�ects the execution time when afailure occurs. As failures do not occur too frequently,r is less sensitive to L, as compared to C.In practice, if a checkpointing scheme increases Land also results in an increase in C, then one will notuse that checkpointing scheme. Therefore, in practice,an increase in L is accompanied by a decrease in C.For sequential checkpointing, checkpoint overheadand latency are identical, say Cmax. A recoveryscheme that attempts to achieve a smaller check-point overhead (C) than sequential checkpointing willachieve a latency (L) larger than sequential check-pointing. One would not use such a scheme, unless

it resulted in a lower overhead ratio r as comparedto sequential checkpointing. Equations 4 and 5 implythat a recovery scheme that achieves a smaller check-point overhead and larger latency, as compared to se-quential checkpointing, can achieve a smaller overheadratio than sequential checkpointing, provided that thelatency is not \too much" larger than sequential check-pointing.It is our objective here to determine when the la-tency is not \too much" larger than sequential check-pointing. More precisely, the objective is to determinea function g of C such that, for any C < Cmax, theoverhead ratio r is smaller than the sequential check-pointing scheme if L < g(C). Derivation of functiong(C) is omitted here [10]. It can be shown that,g(C) = C + ��1 ln 1� �Tc1� �Tmwhere Tc is the value of T that satis�es Equation 3,and Tm is the solution of Equation 3 with C = Cmax.2.Clearly, as one would expect, g(Cmax) = Cmax. (Notethat, when C = Cmax, Tc = Tm.)The g(C) expression derived above can be used todetermine when a checkpointing scheme will performbetter than the sequential checkpointing scheme. Fig-ure 8 plots g(C) for � = 10�6 and 10�4. (� = 10�6for curves (1)-(4) and � = 10�4 for curves (5)-(8).)Consider the g(C) curve for Cmax = 25 and � = 10�6.The de�nition of g(C) implies that, if a checkpointingscheme achieves overhead and latency correspondingto a point \below" the g(C) curve for Cmax = 25, thenthis scheme achieves a smaller overhead ratio than thecorresponding sequential checkpointing scheme (withcheckpoint overhead 25). For instance, if some schemereduces C from 25 to 10, then it can achieve a smalleroverhead ratio r than the sequential checkpointingscheme, even if it increases the latency from 25 to aslarge as 2000.Comparison of curves for � = 10�6 and 10�4 in-dicates that, for the same Cmax, as � increases, g(C)decreases. This is intuitive, because with larger �, it isnecessary to keep checkpoint latency smaller (to avoidan increase in the overhead ratio).The \measured L" curve in Figure 9 plots check-point overhead and latency measured for a merge sortprogram using four di�erent checkpointing schemes {the data is borrowed from Li et al. [4]. (Although thedata in [4] corresponds to a parallel implementationon a shared memory machine, our analysis is applica-ble to this implementation.) One of the four schemesin the \measured L" curve is sequential checkpointingwith overhead Cmax = 31 seconds. For comparison,Figure 9 also plots g(C) for three di�erent values of�. Observe that, even when � is as large as 10�4 persecond, the measured checkpoint latency is well belowthe g(C) curve. This indicates that, the checkpointing2Tc is approximatelyp2 �C=� when C << 1=� (similarly,Tm �p2 �Cmax=�). Young [11] previously obtained this ex-pression by a somewhat di�erent analysis
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Figure 9: Comparison of measured checkpoint latencyand g(C) for � = 10�4; 10�6; 10�8 /sectechniques used in practice can achieve a signi�cantlysmaller overhead ratio as compared to the sequentialcheckpointing scheme.6 ConclusionsThis paper evaluates an expression for the over-head ratio of a checkpointing scheme, as a function ofcheckpoint latency (L) and checkpoint overhead (C).Our analysis shows that, for an equi-distant check-pointing strategy, the optimal checkpoint interval isnot dependent on the value of L { though it dependson the value of C. It is also observed that the over-head ratio is much more sensitive to the changes inC, as compared to changes in L. The paper uses asimple analytical model { if a di�erent model is used,the previous observation will remain valid, however,the optimal checkpoint interval may not remain inde-pendent of L (although it should be less sensitive toL than C).The paper considers only uni-process applications;the results can potentially be extended to multi-process applications as well [10].
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