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Abstract

Checkpointing and rollback is a technique for min-
wmizing loss of computation in presence of failures.
Two metrics can be used to characterize a checkpoint-
ing scheme: (i) checkpoint overhead (increase in the
execution time of the application because of a check-
point), and (ii) checkpoint latency (duration of time
required to save the checkpoint). For many checkpoint-
g methods, checkpoint latency s larger than check-
point overhead. This paper evaluates the expression
for “average overhead” of the checkpointing scheme
as a function of checkpoint latency and overhead. It
1s shown that the “average overhead” 1s much more
sensitive to the changes in checkpoint overhead, as
compared to checkpoint latency. Also, for equi-distant
checkpoints, the optimal checkpoint interval is shown
to be independent of the checkpoint latency.

1 Introduction

Many applications (sequential and parallel) require
large amount of time to complete. Such applications
can encounter loss of a significant amount of compu-
tation if a failure occurs during the execution. Check-
pointing and rollback recovery is a technique used to
minimize the loss of computation in an environment
subject to failures [1]. A checkpoint is a copy of the
application’s state stored on a stable storage — a stable
storage 1s not subject to failures. The application pe-
riodically saves checkpoints; the application recovers
from a failure by rolling back to a recent checkpoint.
Checkpointing can be used for sequential as well as
parallel (or distributed) applications. When the ap-
plication consists of more than one process, a consis-
tent checkpointing algorithm can be used to save a
consistent state of the multi-process application.

Two metrics can be used to characterize a check-
pointing scheme:

e Checkpoint overhead C' is the increase in the
execution time of the application because of a
checkpoint.

e Checkpoint latency L is the duration of time
required to save the checkpoint. In many imple-
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mentations, checkpoint latency is larger than the
checkpoint overhead. (Illustrated in Section 2.)

In the past, a large number of researchers have ana-
lyzed the checkpointing and rollback recovery scheme
(e.g. [1, 2, 3, 11]). However, to our knowledge, the
past work has not taken checkpoint latency into ac-
count. This paper evaluates the impact of checkpoint
latency on the performance of a checkpointing scheme.
This work is motivated by the schemes that attempt to
reduce checkpoint overhead while causing an increase
in the checkpoint latency (e.g., [5, 4, 8]).

Related work: Plank et al. [5, 4] present measure-
ments of checkpoint latency and overhead for a few
applications, however, they do not present any per-
formance analysis. We measured checkpoint latency
and overhead for a few uni-process applications, and
briefly analyzed the impact of checkpoint latency on
performance of “two-level” recovery schemes [7, 9].

2 Checkpoint Latency

We limit the discussion to uni-process applications.
Due to lack of space, multi-process applications are
not discussed here [10]. In this section, we illustrate
the distinction between checkpoint latency and check-
point overhead with two examples.

Sequential checkpointing is an approach for which
checkpoint overhead 1s identical to checkpoint latency.
In this approach, when an application process wants
to take a checkpoint, it pauses and saves its state on
the stable storage [5]. Therefore, the time required to
save the checkpoint (i.e., checkpoint latency) is prac-
tically identical to the increase in the execution time
of the process (i.e., checkpoint overhead). Figure 1 il-
lustrates this approach. The horizontal line represents
processor execution, time increasing from left to right.
The shaded box represents the checkpointing opera-
tion. The sequential checkpointing approach achieves
the smallest possible checkpoint latency. However, it
results in a larger checkpoint overhead as compared
to other approaches.

Forked checkpointing i1s an approach for which
checkpoint overhead is usually much smaller than the
checkpoint latency. In this approach, when a process
wants to take a checkpoint, it forks a child process
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Figure 2: Forked Checkpointing

[5]. The state of the child process is identical to that
of the parent process when fork is performed. After
the fork, the parent process continues computation,
while the child process saves its state on the stable
storage. Figure 2(a) illustrates this approach. In this
approach, computation is overlapped with stable stor-
age access (i.e., overlapped with state saving), there-
fore the checkpoint overhead is usually smaller than
the sequential checkpointing approach. Also, as the
parent and the child execute in parallel, checkpoint
latency 1s larger than the checkpoint overhead. Fig-
ure 2(b) illustrates the interleaved execution of the
child and parent processes on the same processor. As
shown in the figure, useful computation performed by
the parent process is interleaved with the checkpoint-
ing operation performed by the child process.

For future reference, note that, a checkpoint is said
to have been established if a future failure can be
tolerated by a rollback to this checkpoint. Thus, a
checkpoint is not considered to be established until the
end of the latency period. When the execution pro-
gresses past the end of the checkpoint latency period,
the checkpoint is considered to have been established

checkpoint latency L

checkpoint  the checkpoint is considered
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Figure 3: Modeling checkpoint latency and overhead

(refer Figures 1 and 2).

A checkpoint interval 1s defined as the duration
between the establishment of two consecutive check-
points. That is, a checkpoint interval begins when one
checkpoint is established, and the interval ends when
the next checkpoint is established. (For brevity, the
term interval will be used to denote a checkpoint inter-
val.) We assume that the checkpoints are equi-distant,
1.e., the amount of useful computation performed dur-
ing each interval is identical (denoted by T').

3 Latency and Overhead

As discussed in the previous section, the checkpoint
latency period is divided into two types of execution:
(1) useful computation, and (2) execution necessary
for checkpointing. The two types are usually inter-
leaved in time. However, for modeling purposes, we
can assume that the two types of executions are sep-
arated in time, as shown in Figure 3. As shown in
the figure, the first C' units of time during the check-
point latency period is assumed to be used for saving
the checkpoint. The remaining (L —C') units of time is
assumed to be spent on useful computation. Although
the C' units of overhead is modeled as being incurred
at the beginning of the checkpoint latency period, the
checkpoint is considered to have been established only
at the end of the checkpoint latency period. Although
our representation of checkpoint latency and overhead
is simplified, we now demonstrate that it will lead to
accurate analysis. Two distinct situations may occur
when a checkpoint interval is executed.

Situation 1: A failure does not occur while the
interval 18 executed. In this case, the execution time
from the beginning to the end of an interval is T+ C'.
Of the T'+ C' units, T units are spent doing wuseful
computation, while incurring an overhead of C' time
units. As shown in Figure 4(a), (L — (') units of use-
ful computation is performed during the checkpoint
latency period. Now consider Figure 4(b). Similar to
Figure 4(a), L — C' units of useful computation is per-
formed during the latency period. Also, the execution
time for the interval is 7'+ C'.

Situation 2: A failure occurs during the inter-
val. When a failure occurs, the task must be rolled
back to the previous checkpoint, incurring an over-
head of R time units. In Figure 5(a), the task is rolled
back to checkpoint CP1. After the rollback, L — C'
units of useful computation performed during the la-
tency period of CP1 must be performed again — this is
necessary, because the state saved during checkpoint
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CP1 is the state at the beginning of the latency pe-
riod for CP1. In the absence of a further failure, ad-
ditional T4+ C' units of execution is required before
the completion of the interval. Thus, after a failure,
R+(L-C)+(T+C)= R+ T+ L units of execu-
tion is required before the completion of the interval,
provided additional failures do not occur.

Now consider Figure 5(b). When the failure occurs,
as shown in Figure 5(b), the system can be considered
to have rolled back to the end of the “shaded portion”
in the latency period for checkpoint CP1. (Note that
no state change occurs during the “shaded portion”.)
Now 1t is apparent that, in the absence of further fail-
ure, R 4+ 7T + L units of execution 1s required to com-
plete the interval. Thus, our representation of check-
point latency and overhead yields the same conclusion
as the more accurate representation in Figure 5(a).

The above discussion is also applicable if the failure
occurs during the checkpoint latency period of check-
point CP2. Such a failure will also require a rollback to
checkpoint CP1, as checkpoint CP2 is not established
when the failure occurred.! The above discussion can

1Chandy et al. [1] present an analysis of checkpointing
schemes that does not take checkpoint latency into account.
However, for sequential checkpointing (with L = ('), our anal-
ysis is similar to theirs with one exception. An assumption
made by Chandy et al. [1] implies that a failure that occurs
while checkpoint CP2 (in Figure 5) is being saved, only re-
quires re-initiation of the checkpointing operation. As per their
assumption, computation during the interval preceding check-
point CP2 need not be performed again even if a failure occurs
while checkpoint CP2 is being established (i.e. the failure oc-
curs after checkpointing is initiated but before it is completed).
For many environments this assumption is not realistic. There-
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Figure 5: Situation 2

also be extended to multiple failures during a check-
point interval.

The above two cases imply that the simplified rep-
resentation of checkpoint latency and overhead will
yield the same results as the accurate representation.

4 Evaluating the Overhead

We assume that ¢/, L and R are constants for a
given scheme. The fault model assumed for the anal-
ysis 18 as follows: Processor failures are governed by a
Poisson process with rate A. When a processor fails,
its local state is corrupted. A processor can fail dur-
ing normal operation, during checkpointing, as well as
during rollback and recovery. The stable storage is
not subject to failures. (The stable storage is used for
storing checkpoints.)

Let Gi(t) denote the expected (average) amount of
execution time required to perform ¢ units of useful
computation. (Useful computation excludes the time
spent on checkpointing and rollback recovery.) Then,
we define overhead ratio (r) as:

overhead ratio r = tlim M = tlim %

-1

We assume that the system is executing an infinite
task that takes equi-distant checkpoints. The execu-
tion of the task can be considered to be a series of
intervals, each interval beginning immediately after a
checkpoint is established, and ending when the next
checkpoint is established. Figure 6 illustrates intervals
I1, 12 and 13. (Meaning of various states in the fig-
ure will be explained shortly.) As shown in the figure,

fore, we make the realistic assumption that a failure that occurs
while a checkpoint (say, CP2 in Figure 5) is being established
requires a rollback to the previous checkpoint (checkpoint CP1).
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interval I1 begins after checkpoint CPO is established,
and ends when checkpoint CP1 is established. Inter-
val I2 begins after checkpoint CP1 is established. Be-
fore checkpoint CP2 is established, two failures occur,
each requiring a rollback to checkpoint CP1. Subse-
quently, the computation progresses without failure
and checkpoint CP2 is established. Interval 12 is com-
pleted when checkpoint CP2 is established.

Observe that T units of useful computation is per-
formed during each checkpoint interval. Provided no
failures occur during the interval, the total time re-
quired to execute an interval is 7'+ C'. If one or more
failure occurs while executing an interval, then the
execution time is longer than 7'+ C'. Let I' denote
the expected (average) execution time of an interval.
Then, it is easy to see that,

¢ r
overhead ratio r = lim & —-1==-1
t—o00 t T

Expected execution time I' of a single checkpoint in-
terval can be evaluated using the Markov chain [6, 12]
in Figure 7. State 0 is the initial state, when an in-
terval starts execution. A transition from state 0 to
state 1 occurs when the interval 1s completed without
a failure. If a failure occurs while executing the check-
point interval, then a transition is made from state 0
to state 2. After state 2 is entered, a transition occurs
to state 1 if no further failure occurs before the next
checkpoint is established. If, however, another fail-
ure occurs after entering state 2 and before the next
checkpoint is established, then a transition is made
from state 2 back to state 2. When state 1 is entered,
the interval has completed execution. Therefore, state
1 is a sink state — there are no transitions out of state
1. Figure 6 illustrates the various states for an exam-
ple execution. As shown in Figure 6, during interval
I1, the task is in state 0, and enters state 1 when the
interval completes without a failure. During interval
12, the task is initially in state 0, and enters state 2
when a failure occurs. When another failure occurs,
the task re-enters state 2. Subsequent to the second
failure, interval 12 completes without any further fail-
ures. State 1 is entered at the end of the interval.

Fach transition (X, V), from state X to state ¥ in
the Markov chain, has an associated transition proba-
bility Pxy and a cost Kxy. Cost Kxy of a transition
(X,Y) is the expected (average) time spent in state X
before making the transition to state Y.

It is easy to see that, Py; = e T+C) and Ky =

start @/@
Figure 7: Markov chain

T+C. Also, Popo =1 —FPy; = 1— e~ MT+C), Now, the
cost Kpa of transition (0,2) is the expected duration,
from the beginning of the interval until the time when
the failure occurred, given that a failure occurs before
the end of the interval. Therefore,
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After state 2 is entered, a transition is made to state
1 if no further failure occurs before the next check-
point 1s established. As discussed earlier, the exe-
cution time required for the next checkpoint to be
established after a failure is R + 7T + L. Therefore,
Py = e MEHTHL) and Koy = R+ T+ L. If, however,
another failure occurs after entering state 2 and before
the next checkpoint is established, then a transition is
made from state 2 back to state 2. It follows that,

P22 =1- P21 =1- 6_>\(R+T+L), and
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The expected execution time I' is the expected cost of
a path from state 0 to state 1. It follows that,

Pss

I' = PyKoi+ Poe <K02 + 1 Koo + K21)

— 122

Substituting the expressions for various costs and
transition probabilities, and simplifying, the following
expression is obtained [10].

r = /\—leA(L—C+R)(6>\(T+C) _ 1) (1)



It follows that, the overhead ratio r is given by

r A—LAL=CHR)(ATHC) )
= ——1 =

T T
4.1 Minimizing the Overhead Ratio

Consider a checkpointing scheme that achieves a
certain overhead C' and checkpoint latency L. For this
checkpointing scheme, the objective now is to choose
an appropriate value of 7" so as to minimize the over-
head ratio r. The optimal value of T" must satisfy the
following equation:

—1 (2

Or 9 /\—16A(L—C+R)(6A(T+C) —1) X .
aT ~ dT T e

= AMFON A =1for T#£0 (3)

As the above equation does not include L or R, the
optimal value of 7" is not dependent on L and R — the
optimal 7', however, depends on C'. Thus, to evalu-
ate the optimal checkpoint interval for a given check-
pointing scheme, it is adequate to know the value of
C. However, to evaluate the overhead ratio with the
optimal 7', L and R must also be known.

5 Inter-Dependence Between [ and C
Checkpoint latency and checkpoint overhead are
dependent on each other. An attempt to reduce the
checkpoint overhead typically causes an increase in the
checkpoint latency. Now, from Equation 2,

or AL=CHR)(MTHC) _ 1)

a—L = T > 0 (4)
or (ML—C+R)

% = 771 > 0 (5)

From Equations 4 and b, observe that

87“ _ A(T-I—C) 67”
oL = -V 56

Also observe that (e*TT¢) — 1) is likely to be much

smaller than 1 for realistic values of A, T"and C'. Thus,
g—z will typically be much smaller than g—g — this im-
plies that r is more sensitive to the changes in C, as
compared to changes in L. This is intuitive: Observe
that L does not affect the failure-free execution time,
while C' does. L only affects the execution time when a
failure occurs. As failures do not occur too frequently,
7 18 less sensitive to L, as compared to C'.

In practice, if a checkpointing scheme increases L
and also results in an increase in (', then one will not
use that checkpointing scheme. Therefore, in practice,
an increase in L is accompanied by a decrease in C'.

For sequential checkpointing, checkpoint overhead
and latency are identical, say Cipae. A recovery
scheme that attempts to achieve a smaller check-
point overhead (C') than sequential checkpointing will
achieve a latency (L) larger than sequential check-
pointing. One would not use such a scheme, unless

it resulted in a lower overhead ratio r as compared
to sequential checkpointing. Equations 4 and 5 imply
that a recovery scheme that achieves a smaller check-
point overhead and larger latency, as compared to se-
quential checkpointing, can achieve a smaller overhead
ratio than sequential checkpointing, provided that the
latency is not “too much” larger than sequential check-
pointing.

It 1s our objective here to determine when the la-
tency is not “too much” larger than sequential check-
pointing. More precisely, the objective is to determine
a function g of C' such that, for any C' < Cp4e, the
overhead ratio r is smaller than the sequential check-
pointing scheme if L < g(C'). Derivation of function
¢(C) is omitted here [10]. Tt can be shown that,

1= XT,

-1
g(CY=C 4+ A" In =T,
where 7, is the value of T' that satisfies Equation 3,
and T, is the solution of Equation 3 with C' = C\as.2.
Clearly, as one would expect, ¢(Craz) = Crmar. (Note
that, when C' = Crgp, Te = Tiny.)

The ¢(C') expression derived above can be used to
determine when a checkpointing scheme will perform
better than the sequential checkpointing scheme. Fig-
ure 8 plots g(C) for A = 107% and 10=*%. (A = 10~°
for curves (1)-(4) and A = 10=* for curves (5)-(8).)
Consider the g(C) curve for Cpge = 25 and A = 1076,
The definition of g(C') implies that, if a checkpointing
scheme achieves overhead and latency corresponding
to a point “below” the g(C') curve for Cpqp = 25, then
this scheme achieves a smaller overhead ratio than the
corresponding sequential checkpointing scheme (with
checkpoint overhead 25). For instance, if some scheme
reduces C' from 25 to 10, then it can achieve a smaller
overhead ratio r than the sequential checkpointing
scheme, even if it increases the latency from 25 to as
large as 2000.

Comparison of curves for A = 107°% and 10~* in-
dicates that, for the same Ciuqz, as A increases, ¢(C)
decreases. This 1s intuitive, because with larger A, it is
necessary to keep checkpoint latency smaller (to avoid
an increase in the overhead ratio).

The “measured L” curve in Figure 9 plots check-
point overhead and latency measured for a merge sort
program using four different checkpointing schemes —
the data is borrowed from Li et al. [4]. (Although the
data in [4] corresponds to a parallel implementation
on a shared memory machine, our analysis 1s applica-
ble to this implementation.) One of the four schemes
in the “measured L.” curve is sequential checkpointing
with overhead C),4: = 31 seconds. For comparison,
Figure 9 also plots g(C) for three different values of
A. Observe that, even when X is as large as 10™% per
second, the measured checkpoint latency is well below
the g(C') curve. This indicates that, the checkpointing

2T is approximately /2 * C/A when C' << 1/) (similarly,
T & /2 * Cmaz/A). Young [11] previously obtained this ex-

pression by a somewhat different analysis
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techniques used in practice can achieve a significantly
smaller overhead ratio as compared to the sequential
checkpointing scheme.

6 Conclusions

This paper evaluates an expression for the over-
head ratio of a checkpointing scheme, as a function of
checkpoint latency (L) and checkpoint overhead (C).
Our analysis shows that, for an equi-distant check-
pointing strategy, the optimal checkpoint interval is
not dependent on the value of L — though it depends
on the value of C'. Tt is also observed that the over-
head ratio 1s much more sensitive to the changes in
C, as compared to changes in L. The paper uses a
simple analytical model — if a different model is used,
the previous observation will remain valid, however,
the optimal checkpoint interval may not remain inde-
pendent of L (although it should be less sensitive to
L than ().

The paper considers only uni-process applications;
the results can potentially be extended to multi-
process applications as well [10].
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