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Abstract— This paper studies how the capacity of a
static multi-channel network scales as the number of
nodes, n, increases. Gupta and Kumar have determined
the capacity of single-channel networks, and those bounds
are applicable to multi-channel networks as well, provided
each node in the network has a dedicated interface per
channel.

In this work, we establish the capacity of general multi-
channel networks wherein the number of interfaces, m,
may be smaller than the number of channels, c. We
show that the capacity of multi-channel networks exhibits
different bounds that are dependent on the ratio between c
and m. When the number of interfaces per node is smaller
than the number of channels, there is a degradation in
the network capacity in many scenarios. However, one
important exception is a random network with up to
O (log n) channels, wherein the network capacity remains
at the Gupta and Kumar bound of Θ

(

W
√

n

log n

)

bits/sec,
independent of the number of interfaces available at each
node. Since in many practical networks, number of chan-
nels available is small (e.g., IEEE 802.11 networks), this
bound is of practical interest. This implies that it may be
possible to build capacity-optimal multi-channel networks
with as few as one interface per node. We also extend our
model to consider the impact of interface switching delay,
and show that capacity losses due to switching delay can
be avoided by using multiple interfaces.

I. INTRODUCTION

Previous research (e.g., [1], [2]) has characterized the
capacity of wireless networks. One approach for enhanc-
ing the network capacity is to use multiple channels.

∗This research was supported in part by NSF grant ANI-0125859
and a Vodafone Graduate Fellowship.

Past research on wireless network capacity has typically
considered wireless networks with a single channel,
although the results are applicable to a wireless network
with multiple channels as well, provided that at each
node there is a dedicated interface per channel. With a
dedicated interface per channel, a node can use all the
available channels simultaneously. However, the number
of available channels in a wireless network can be fairly
large (e.g., IEEE 802.11a [3] has provisioned for up to
12 non-overlapping channels), and it may not be feasible
to have a dedicated interface per channel at each node.
When nodes are not equipped with a dedicated inter-
face per channel, then capacity degradation may occur,
compared to using a dedicated interface per channel.
In this paper, we characterize the impact of number of
channels and interfaces per node on the network capacity,
and show that in certain scenarios, even with a single
interface per node, there is no capacity degradation. This
implies that it may be possible to build capacity-optimal
multi-channel networks with as few as one interface per
node.

When a dedicated interface per channel is not avail-
able, the available interfaces can potentially be switched
among different channels to use any of the available
channels. Such an interface switching technique is often
used to improve channel utilization [4]–[6]. However,
interface switching incurs a delay, which may reduce
the achievable network capacity. In this paper, we also
characterize the impact of interface switching delay on
network capacity. We show that interface switching delay
has no impact on network capacity, even when there
are end-to-end delay constraints, provided that a few
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additional interfaces are provisioned for at each node.

A. Modeling multi-channel multi-interface networks

We consider a static wireless network containing n
nodes. We use the term “channel” to refer to a part of
the frequency spectrum with some specified bandwidth.
There are c channels, and we assume that every node is
equipped with m interfaces, 1 ≤ m ≤ c. We assume that
an interface is capable of transmitting or receiving data
on any one channel at a given time. We use the notation
(m, c)-network to refer to a network with m interfaces
per node, and c channels.

We define two channel models to represent the data
rate supported by each channel:

Channel Model 1: In model 1, we assume that the
total data rate possible by using all channels is W . The
total data rate is divided equally among the channels,
and therefore the data rate supported by any one of the
c channels is W/c. This was the channel model used
by Gupta and Kumar [1], and we primarily use this
model in our analysis. In this model, as the number of
channels increases, each channel supports a smaller data
rate. This model is applicable to the scenario where the
total available bandwidth is fixed, and new channels are
created by partitioning existing channels.

Channel Model 2: In model 2, we assume that each
channel can support a fixed data rate of W , independent
of the number of channels. Therefore, the aggregate data
rate possible by using all c channels is Wc. This model
is applicable to the scenario where new channels are
created by utilizing additional frequency spectrum.

The results presented in this paper are derived assum-
ing channel model 1. However, all the derivations are
applicable for channel model 2 as well, and the results
for model 2 can be obtained by replacing W in the results
of model 1 by Wc.

B. Definitions

We study the capacity of static multi-channel wireless
networks under the two settings introduced by Gupta and
Kumar [1].

Arbitrary Networks: In the arbitrary network set-
ting, the location of nodes, and traffic patterns can be
controlled. Since any suitable traffic pattern and node
placement can be used, the bounds for this scenario are
applicable to any network. The arbitrary network bounds
may be viewed as the best case bounds on network
capacity. The network capacity is measured in terms
of “bit-meters/sec” (originally introduced by Gupta and

Kumar [1]). The network is said to transport one “bit-
meter/sec” when one bit has been transported across a
distance of one meter in one second.

Random Networks: In the random network setting,
node locations are randomly chosen, and each node
sets up one flow to a randomly chosen destination.
The network capacity is defined to be the aggregate
throughput over all the flows in the network, and is
measured in terms of bits/sec.

We use the following notation to represent bounds:

1) f(n) = O(g(n)) implies there exists some con-
stant d and integer N such that f(n) ≤ dg(n) for
n > N .

2) f(n) = o(g(n)) implies that limn→∞
f(n)
g(n) = 0.

3) f(n) = Ω(g(n)) implies g(n) = O(f(n)).
4) f(n) = ω(g(n)) implies g(n) = o(f(n)).
5) f(n) = Θ(g(n)) implies f(n) = O(g(n)) and

g(n) = O(f(n)).
6) MINO (f(n), g(n)) is equal to f(n), if f(n) =

O(g(n)), else, is equal to g(n).

The bounds for random networks hold with high
probability (whp). In this paper, whp implies with “prob-
ability 1 when n → ∞.”

C. Main Results

Gupta and Kumar [1] have shown that in an arbitrary
network, the network capacity scales as Θ(W

√
n) bit-

meters/sec, and in a random network, the network capac-

ity scales as Θ

(

W
√

n
log n

)

bits/sec. Under the channel

model 1, which was the model used by Gupta and Kumar
[1], the capacity of a network with a single channel
and one interface per node (that is, a (1, 1)-network
in our notation) is equal to the capacity of a network
with c channels and m = c interfaces per node (that
is, a (c, c)-network). Furthermore, under both channel
models, the capacity of a (c, c)-network is at least as
large as the capacity of a (m, c)-network, when m ≤ c
(this is trivially true, by not using c − m interfaces in
the (c, c)-network). In the results presented in this paper,
we capture the impact of using fewer than c interfaces
per node by establishing the loss in capacity, if any, of
a (m, c)-network in comparison to a (c, c)-network.

The goal of this work is to study the impact
of the number of channels c, and the number of
interfaces per node m, on the capacity of arbitrary and
random networks. Our results show that the capacity is
dependent on the ratio c

m
, and not on the exact values

of either c or m (as shown in Lemma 2). We now state



3

1

B

A

C

N
et

w
or

k 
ca

pa
ci

ty

W

W

n

n n2

W
√

n

W
√

n

log n

log n

Capacity loss

Ratio of channels to interfaces
(

c
m

)

Capacity when c = m

Fig. 1. Impact of number of channels on capacity scaling in arbitrary
networks (figure is not to scale)

our main results under channel model 1.

1. Results for arbitrary network: The network capacity
of a (m, c)-network has two regions (see Figure 1) as
follows (from Theorem 1 and Theorem 2):

1) When c
m

is O(n), the network capacity is

Θ
(

W
√

nm
c

)

bit-meters/sec (segment A-B in Fig-
ure 1). Compared to a (c, c)-network, there is a
capacity loss by a factor of 1 −

√

m
c

.
2) When c

m
is Ω(n), the network capacity is

Θ
(

W nm
c

)

bit-meters/sec (line B-C in Figure 1).
In this case, there is a larger capacity degradation
than case 1, as nm

c
≤
√

nm
c

when c
m

≥ n.

Therefore, there is always a capacity loss in arbitrary
networks whenever the number of interfaces per node
is fewer than the number of channels.

2. Results for random network: The network capacity
of a (m, c)-network has three regions (see Figure 2) as
follows (from Theorem 3 and Theorem 4):

1) When c
m

is O(log n), the network capacity is

Θ

(

W
√

n
log n

)

bits/sec (segment D-E in Figure 2).

In this case, there is no loss compared to a (c, c)-
network. Hence, in many practical scenarios where
c may be constant or small, a single interface per
node suffices.

2) When c
m

is Ω(log n) and also O

(

n
(

log log n
log n

)2
)

,

the network capacity is Θ
(

W
√

nm
c

)

bits/sec (seg-
ment E-F in Figure 2). In this case, there is
some capacity loss. Furthermore, in this region, the
capacity of a (m, c)-random network is the same
as that of a (m, c)-arbitrary network (segment E-
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F in Figure 2 overlaps part of segment A-B in
Figure 1), implying “randomness” does not incur
a capacity penalty.

3) When c
m

is Ω

(

n
(

log log n
log n

)2
)

, the network

capacity is Θ
(

Wnm log log n
c log n

)

bits/sec (line F-G in
Figure 2). In this case, there is a larger capacity
degradation than case 2. Furthermore, in this
region, the capacity of a (m, c)-random network
is smaller than that of a (m, c)-arbitrary network,
in contrast to case 2.

3. Other results: The results presented above are
derived under the assumption that there is no delay
in switching an interface from one channel to another.
However, we show that even if interface switching delay
is considered, the network capacity is not reduced,
provided a few additional interfaces are provisioned for
at each node. This implies that it is possible to hide
the interface switching delay by using extra interfaces in
conjunction with carefully designed routing and trans-
mission scheduling protocols.

The rest of the paper is organized as follows. We
present related work in Section II. In Section III, we
establish the capacity of multi-channel networks under
arbitrary network setting. Section IV establishes the ca-
pacity of multi-channel networks under random network
setting. Section V characterizes the impact of interface
switching delay. We conclude in Section VI.

II. RELATED WORK

In their seminal work, Gupta and Kumar [1] derived
the capacity of ad hoc wireless networks. The results
are applicable to single channel wireless networks, or
multi-channel wireless networks where every node has a
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dedicated interface per channel. We extend the results
of Gupta and Kumar to those multi-channel wireless
networks where nodes may not have a dedicated interface
per channel, and also consider the impact of interface
switching delay on network capacity.

Grossglauser and Tse [2] showed that mobility can
improve network capacity, though at the cost of increased
end-to-end delay. Subsequently, other research [7], [8]
has analyzed the trade-off between delay and capacity
in mobile networks. Gamal et al. [9] characterize the
optimal throughput-delay trade-off for both static and
mobile networks. In this paper, we adapt some of the
proof techniques presented by Gamal et al. [9] to the
multi-channel capacity problem.

Recent results have shown that the capacity of wireless
networks can be enhanced by introducing infrastructure
support [10]–[12]. Other approaches for improving net-
work capacity include the use of directional antennas
[13], and the use of unlimited bandwidth resources
(UWB) albeit with power constraints [14], [15].

Li et al. [16] have used simulations to evaluate the ca-
pacity of multi-channel networks based on IEEE 802.11.
Other research on capacity is based on considerations of
alternate communication models [17]–[19].

Several researchers have proposed wireless protocols
for multi-channel networks (cf. [4]–[6], [20]–[22]). Some
solutions are based on using a single interface at each
node [5], [21], [23], [24], while other solutions require
a dedicated interface for each channel [20], [22]. More
recently, solutions have been proposed that require mul-
tiple interfaces, but fewer interfaces than the number
of channels [4], [6], [25]. Although, there are several
proposals for multi-channel networks, it is not clear
how many interfaces are actually required to maximally
utilize the available channels.

III. CAPACITY RESULTS FOR ARBITRARY NETWORKS

We model the impact of interference by using the
protocol model proposed by Gupta and Kumar [1]. The
transmission from a node i to a node j on some channel
x is successful, if for every other node k simultaneously
transmitting on channel x, the following condition holds

d(k, j) ≥ (1 + ∆)d(i, j), ∆ > 0

where d(i, j) is the distance between nodes i and j, and
∆ is a “guard” parameter that ensures that concurrently
transmitting nodes are sufficiently farther away from the
receiver to prevent excessive interference.

It is shown in [1] that the protocol model is equivalent
to an alternate physical model that is based on received

Signal-to-Interference-Noise Ratio (SINR) (when path
loss exponent is greater than 2). Therefore, the results
in this paper are applicable under the physical model as
well. We do not consider other physical layer character-
istics such as channel fading in our analysis.

We derive the capacity results for arbitrary and random
networks under the assumption that there is no switching
delay. We extend our model to consider the impact of
switching delay in Section V.

In an arbitrary network, the location of nodes, and
traffic patterns can be controlled. Recall that the network
is said to transport one “bit-meter/sec” when one bit has
been transported across a distance of one meter in a
second. The network capacity of an arbitrary network is
measured in terms of bit-meters per second, instead of
bits per second. The bit-meters/sec metric is a measure
of the “work” that is done by the network in transporting
bits. In the case of random networks, the average distance
traveled by any bit is Θ(1), and therefore the “bit-
meters/sec” and “bits/sec” capacity is of the same order.

We assume that n nodes can be located anywhere
on the surface of a torus of unit area, as in [9]. The
assumption of a torus enables us to avoid technicalities
arising out of edge effects, but the results are applicable
for nodes located on a unit square as well. We first
establish an upper bound on the network capacity of
arbitrary networks, and then construct a network to prove
the that bound is tight.

A. Upper bound on capacity

The capacity of multi-channel arbitrary networks
is limited by two constraints (described below), and
each of them is used to obtain a bound on the network
capacity. The minimum of the two bounds (the bounds
depend on ratio between the number of channels c and
the number of interfaces m) is an upper bound on the
network capacity. We derive the bounds under channel
model 1, and state the results under channel model 2 as
well1.

Constraint 1 – Interference constraint: The capacity
of arbitrary networks is constrained by interference.
Using the proof techniques presented in [1] with
some modifications to account for multiple interfaces
and channels, a bound on the network capacity is
O
(

W
√

nm
c

)

bit-meters/sec. The detailed proof is in
Appendix I.

1Recall that the results under channel model 2 can be obtained by
replacing W with Wc in the results derived under channel model 1.
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Constraint 2 – Interface constraint: The capacity of
arbitrary networks is also constrained by the maximum
number of bits that can be transmitted simultaneously
over all interfaces in the network. Since each node has
m interfaces, there are a total of mn interfaces in the
(m, c)-network. Each interface can transmit at a rate
of W

c
bits/sec. Also, the maximum distance a bit can

travel in the network is O(1) meters. Hence, the total
network capacity is at most O

(

W nm
c

)

bit-meters/sec.
This bound is tight when c

m
is Ω(n).

Combining the two constraints, the network capacity
is O

(

MINO

(

W
√

nm
c

,W nm
c

))

bit-meters/sec, under
channel model 1. Therefore, we have the following
theorem on the network capacity of arbitrary networks
(Figure 1 has a pictorial representation).

Theorem 1: The upper bound on the capacity of a
(m, c)-arbitrary network is as follows:

1) When c
m

is O(n), network capacity is

O
(

W
√

nm
c

)

bit-meters/sec under channel
model 1 and O (W

√
nmc) bit-meters/sec under

channel model 2.
2) When c

m
is Ω(n), network capacity is O

(

W nm
c

)

bit-meters/sec under channel model 1 and
O (Wnm) bit-meters/sec under channel model 2.

The network capacity of a (c, c)-network is O (W
√

n)
bit-meters/sec under channel model 1, which was the
result obtained by Gupta and Kumar [1]. When fewer
interfaces are available, there is a capacity degradation
by at least a factor of 1 −

√

m
c

. Intuitively, the capacity
degradation arises because the total bits that can be
simultaneously transmitted decreases.

B. Constructive lower bound

In this section, we construct a network to establish a
lower bound on the network capacity. The lower bound
matches the upper bound, implying that the bounds
are tight. We first establish two results that we use in
the rest of the paper. The results are proved under the
channel model 1, but hold for channel model 2 as well.

Lemma 1: Suppose m, c, c̃ are positive integers and
c̃ = c

m
. Then, a (m, c)-network can support at least the

capacity supported by a (1, c̃)-network.
Proof: Consider a (m, c)-network. We group the c

channels into c̃ groups (numbered from 1 to c̃), with m
channels per group as shown in Figure 3. Specifically,

Individual Channels Channel groups

Mapping

Group c̃

Group 1
1

m

c = c̃m

(c̃ − 1)m + 1

Fig. 3. Lemma 1 construction: Forming c̃ channel groups, with m

channels per group, in a (m, c)-network

channel group i, 1 ≤ i ≤ c̃, contains all channels j
such that (i − 1)m + 1 ≤ j ≤ im. Assume that time on
the channels is divided into slots of duration τ . Consider
any slot s. Suppose a node X in the (1, c̃)-network has
its interface on some channel i, 1 ≤ i ≤ c̃, in slot
s. We simulate this behavior in the (m, c)-network by
assigning the m interfaces of X in the slot s to the
m channels in the channel group i. In this fashion, in
any slot, the m interfaces of any node in the (m, c)-
network are mapped to a channel group. The aggregate
data rate of each channel group is Wm/c = W/c̃ (since
c = mc̃). Therefore, a channel group in the (m, c)-
network can support the same data rate as a channel
in the (1, c̃)-network. This mapping allows the (m, c)-
network to mimic the behavior of (1, c̃)-network; the
Wτ/c̃ bits sent on some channel in any time slot s in
the (1, c̃)-network can be simulated by sending Wτ/c
bits (in the same slot s) on each of the m channels in
the corresponding channel group of the (m, c)-network.
Hence, a (m, c)-network can support the capacity of a
(1, c̃) network, when c = mc̃.

Lemma 2: Suppose m and c are positive integers.
Then, a (m, c)-network can support at least 1

2 the ca-
pacity supported by a

(

1,
⌊

c
m

⌋)

-network.
Proof: Suppose

⌊

c
m

⌋

= c
m

. Then the result directly
follows from the previous lemma. Otherwise, m < c,
and we use c′ = m

⌊

c
m

⌋

of the channels in the (m, c)-
network, and ignore the rest of the channels. This can
be viewed as a (m, c′)-network, with a total data rate of
W ′ = W m

c

⌊

c
m

⌋

(as each channel supports W
c

bits/sec).
Using Lemma 1, a (m, c′)-network with total data rate
of W ′ can support at least the capacity of a

(

1,
⌊

c
m

⌋)

-
network with total data rate of W ′. However, when
W ′ < W , the (m, c′)-network with total data rate W ′ can
achieve only a fraction W ′

W
of the capacity of a

(

1,
⌊

c
m

⌋)

-
network with total data rate W (instead of W ′). Now,

W ′

W
=

m

c

⌊

c

m

⌋
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=

⌊

c
m

⌋

c
m

≥
⌊

c
m

⌋

⌊

c
m

⌋

+ 1
, since

c

m
≤
⌊

c

m

⌋

+ 1

≥ 1

2
, since

⌊

c

m

⌋

≥ 1

Hence, a (m, c)-network can support at least 1
2 the

capacity supported by a
(

1,
⌊

c
m

⌋)

network. This implies
that asymptotically, a (m, c)-network has the same order
of capacity as a

(

1,
⌊

c
m

⌋)

-network.

We now provide the following construction to
establish that a capacity of Ω

(

MINO

(

W
√

nm
c

,W nm
c

))

bit-meters/sec is achievable in a (1, c)-network under
the channel model 1. The result is then extended to a
(m, c)-network by using Lemma 2.

Step 1: We consider a torus of unit area. Let
k = min

(

c, n
8

)

. This implies that k ≤ c. Partition
the square area into n

8k
equal-sized square cells, and

place 8k nodes in each cell. Since the total area is 1,
each cell has an area of 8k

n
, and sides of length l =

√

8k
n

.

Step 2: The 8k nodes within each cell are distributed
by placing k nodes at each of the eight positions shown
in Figure 4. Nodes placed at locations S1, S2, S3, S4 act
as senders, and nodes placed at remaining locations act
as receivers. The sender locations S1 through S4 are at
a distance of r∆ from the center of the cell (recall that
∆ is the “guard” parameter from the protocol model of
interference), where r = l

2(1+2∆) = 1
(1+2∆)

√

2k
n

. The
receiver locations R1 through R4 are at a distance of
r(1 + ∆) from the center of the cell. Therefore, the
distance between S1-R1, S2-R2, S3-R3, and S4-R4 is
equal to r. Each receiver location is at a distance of r∆
from nearest edge of the cell, and each sender location is
at a distance of r(1+∆) from the nearest edge of the cell.

Step 3: Label the k nodes in any location (S1 through
S4, R1 through R4) as 1 through k. The jth node
in each sender location, 1 ≤ j ≤ k, communicates
with the jth node in the nearest receiver location (at
a distance of r) on channel j. Consider any pair of
communicating nodes A and B that are located at,
say, S1 and R1 respectively. Then, the nearest senders
within the cell, other than A (located at S1), which are
sending on the same channel as A are located at one
of S2, S3, S4, and are at least a distance of r(1 + ∆)
away from B (located at R1). Similarly, in every cell,

S2S1

R3

R4

R2

S4

S3

R1

rr∆ r∆

l = 2(1 + 2∆)r

r(1 + ∆)

Fig. 4. The placement of nodes within a cell

senders are at least r(1 + ∆) distance from the cell
boundary. Therefore, senders in adjacent cells of B are
at least a distance of r(1 + ∆) away from B as well.
Hence, under the protocol model of interference, the
transmission between A and B is not interfered with by
any other transmission in the network, and this property
holds for all communicating pairs.

From the above construction, there are n
2 pairs of

nodes in the (1, c)-network, each transmitting at a rate

of W
c

over a distance r = 1
(1+2∆)

√

2k
n

. Hence, the total
capacity of the network (summing over all n nodes) is
n
2

W
c

r = W
c

1
(1+2∆)

√

nk
2 bit-meters/sec. Recall that k =

min
(

c, n
8

)

. Substituting for k, we obtain the capacity

of a (1, c)-network to be Ω
(

MINO

(

W
√

n
c
,W n

c

))

bit-
meters/sec under channel model 1, since ∆ is a constant.

Using Lemma 2, the capacity of a (m, c)-network un-

der channel model 1 is Ω

(

MINO

(

W
√

n
b c

m
c ,W

n
b c

m
c

))

bit-meters/sec. Since 1
b c

m
c ≥ 1

c

m

, we have the capacity to

be Ω
(

MINO

(

W
√

mn
c

,W mn
c

))

bit-meters/sec, which
leads to the following theorem:

Theorem 2: The achievable network capacity of a
(m, c)-arbitrary network is as follows:

1) When c
m

is O(n), network capacity is

Ω
(

W
√

nm
c

)

bit-meters/sec under channel
model 1 and Ω(W

√
nmc) bit-meters/sec under

channel model 2.
2) When c

m
is Ω(n), network capacity is Ω

(

W nm
c

)

bit-meters/sec under channel model 1 and
Ω(Wnm) bit-meters/sec under channel model 2.
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The upper bound (Theorem 1) and lower bound (The-
orem 2) on the order of the capacity of arbitrary networks
match, indicating the bounds are tight.

C. Implications

A common scenario of operation is when the number
of channels is not too large ( c

m
= O(n)). Under this

scenario, the capacity of a (m, c)-network in the arbitrary
setting scales as Θ

(

W
√

nm
c

)

under channel model 1.
Similarly, under channel model 2, the capacity of the
network scales as Θ(W

√
nmc). Under either model,

the capacity of a (m, c)-network goes down by a factor
of 1 −

√

m
c

, when compared with a (c, c)-network.
Therefore, doubling the number of interfaces at each
node (as long as number of interfaces is smaller than
the number of channels) increases the channel capacity
by a factor of only

√
2. Further, the ratio between m and

c decides the capacity, rather than the individual values
of m and c. Increasing the number of interfaces may
result in a linear increase in the cost but only a sub-linear
(proportional to square-root of number of interfaces)
increase in the capacity. Therefore, the optimal number
of interfaces to use may be smaller than the number of
channels depending on the relationship between cost of
interfaces and utility obtained by higher capacity.

Different network architectures have been proposed
for utilizing multiple channels when the number of avail-
able interfaces is smaller than the number of available
channels [4], [6], [22]. The construction used in proving
lower bound implies that maximal capacity is achieved
when all channels are utilized. One architecture used in
the past [22] is to use only m channels when m interfaces
are available, leading to wastage of the remaining c−m
channels. That architecture results in a factor of 1 − m

c

loss in capacity which can be significantly higher than
the optimal 1 −

√

m
c

loss (when c
m

= O(n)). Hence,
in general, higher capacity may be achievable by archi-
tectures that use all channels, possibly by dynamically
switching channels.

IV. CAPACITY RESULTS FOR RANDOM NETWORKS

We assume that n nodes are randomly located on
the surface of a torus of unit area. Each node selects
a destination randomly to which it sends λ(n) bits/sec.
The highest value of λ(n) which can be supported by
every source-destination pair with high probability is
defined as the per-node throughput of the network. The
traffic between a source-destination pair is referred to as
a “flow”. Since there are a total of n flows, the network
capacity is defined to be nλ(n).

Note that each node picks a destination node
randomly, and so a node may be the destination of
multiple flows. Let D(n) be the maximum number of
flows for which a node in the network is a destination.
We use the following result to bound D(n).

Lemma 3: The maximum number of flows for which
a node in the network is a destination, D(n), is
Θ
(

log n
log log n

)

, with high probability.
Proof: The process of nodes selecting a random

destination may be mapped to the well-known “Balls into
Bins” problem [26]. Each source node may be viewed
as a “ball”, and each destination node may be viewed as
a “bin”. The process of selecting a destination node may
be viewed as randomly dropping a “ball” into a “bin”.
Based on this mapping, the proof of the lemma follows
from well-known results (cf. [26], Section 4).

A. Upper bound

The capacity of multi-channel random networks
is limited by three constraints, and each of them is
used to obtain a bound on the network capacity. The
minimum of the three bounds (the bounds depend on
ratio between the number of channels c and the number
of interfaces m) is an upper bound on the network
capacity. We derive the bounds under channel model 1,
and state the results under channel model 2.

Constraint 1 – Connectivity constraint: The capacity
of random networks is constrained by the need to
ensure the network is connected, so that every source-
destination pair can successfully communicate. Gupta
and Kumar [1] have presented a bound on the network

capacity of O

(

W
√

n
log n

)

bits/sec based on this

requirement. This bound is applicable to multi-channel
networks as well.

Constraint 2 – Interference constraint: The capacity
of multi-channel random networks is also constrained
by interference (this is same as constraint 1 listed for
arbitrary networks in Section III-A). This constraint
was already captured in the upper bound for arbitrary
networks, and we had obtained a bound of O

(

W
√

nm
c

)

bit-meters/sec. In a random network, each of the n
source-destination pairs are separated by an average
distance of Θ(1) meter. Consequently, the network
capacity of random networks is at most O

(

W
√

nm
c

)

bits/sec.
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Constraint 3 – Destination bottleneck constraint: The
capacity of a multi-channel network is constrained by the
data that can be received by a destination node. Consider
a node X which is the destination of the maximum
number (that is, D(n)) of flows. Recall that in a (m, c)-
network, each channel supports a data rate of W

c
bits/sec.

Therefore, the total data rate at which X can receive data
over m interfaces is Wm

c
bits/sec. Since X has D(n)

incoming flows, the data rate of the minimum rate flow is
at most Wm

cD(n) bits/sec. Therefore, by definition of λ(n),

λ(n) ≤ Wm
cD(n) , implying that network capacity (which

by definition is nλ(n)) is at most O
(

Wmn
cD(n)

)

bits/sec.
Substituting for D(n) from Lemma 3, the network
capacity is at most O

(

Wmn log log n
c log n

)

bits/sec.
The bound obtained from constraint 3 is applicable

to any network, including mobile networks, as long
as the destination of every flow is randomly chosen
among the nodes in the network. Even when m = c,
this bound implies that the per-flow throughput, λ(n),
is at most O

(

W log log n
log n

)

bits/sec. Previous results on
capacity of mobile networks [2], [9], [27] have stated
a per-flow throughput of O(W ) bits/sec is possible. In
our work, we choose the destination of a flow randomly
from among n − 1 possible destinations, similar to
Gupta and Kumar [1]. Considering our discussion
above, the O(W ) bits/sec bound with mobility cannot
apply when destination nodes are randomly chosen. The
previous results for mobile networks may hold under
other models of selecting destination nodes, wherein
each node is the destination of at most O(1) flows (for
example, such a constraint is satisfied when permutation
routing is used).

Combining the three bounds, the network capacity is

at most O

(

MINO

(

W
√

n
log n

,W
√

nm
c

, Wmn log log n
c log n

))

bits/sec under channel model 1. From this, we
have the following theorem on the upper bound on
capacity of random networks (Figure 2 has a pictorial
representation).

Theorem 3: The upper bound on the capacity of a
(m, c)-random network is as follows:

1) When c
m

is O(log n), network capacity is

O

(

W
√

n
log n

)

bits/sec under channel model 1 and

O

(

Wc
√

n
log n

)

bits/sec under channel model 2.

2) When c
m

is Ω(log n) and also O

(

n
(

log log n
log n

)2
)

,

network capacity is O
(

W
√

nm
c

)

bits/sec under
channel model 1 and O (W

√
nmc) bits/sec under

channel model 2.
3) When c

m
is Ω

(

n
(

log log n
log n

)2
)

, network capacity

is O
(

Wmn log log n
c log n

)

bits/sec under channel model

1 and O
(

Wmn log log n
log n

)

bits/sec under channel
model 2.

The interesting observation from this theorem is that
as long as c

m
is O(log n), the number of interfaces has no

impact on channel capacity. This implies that when the
number of channels is O(log n) (which is the common
case today), there is no loss in network capacity even if
each node has a single interface.

B. Lower bound

The lower bound is established by constructing a
routing scheme and a transmission schedule for any
random network. The lower bound matches the upper
bound implying that the bounds are tight. We will
provide a construction for a (1, c)-network (a network
wherein each node has a single interface) under channel
model 1, and then invoke Lemma 2 to extend the
result to a (m, c)-network. The steps involved in the
construction are described next.

Cell construction
The surface of the unit torus is divided using a square

grid into square cells (see Figure 5), each of area a(n),
similar to the approach used in [9]. The size of the cell,
a(n), has to be carefully chosen to meet multiple con-
straints (which are described later in the text). In particu-

lar, we set a(n) = min

(

max
(

100 log n
n

, c
n

)

,
(

1
D(n)

)2
)

,

where D(n) = Θ
(

log n
log log n

)

as described before. Intu-
itively, the three values that influence a(n) are based
on the three constraints that were described in the upper
bound proof: cell size needed to ensure connectivity, cell
size needed when capacity is constrained by interference,
and cell size needed when capacity is constrained by
the maximum number of flows to any destination node,
respectively.

We need to bound the number of nodes that are
present in each cell. We state the bound here, and
present a proof of the bound in Appendix II.

Lemma 4: If a(n) > 50 log n
n

, then each cell has
Θ(na(n)) nodes per cell, with high probability.
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S

D

1/a(n) cells each of area a(n)

Fig. 5. Routing through cells: Packets are routed through the cells
intersected by the line joining the source and the destination

By construction, we ensure that a(n) ≥ 100 log n
n

for

large n (as max
(

100 log n
n

, c
n

)

is at least 100 log n
n

, and
(

1
D(n)

)2
is asymptotically larger than 100 log n

n
). Thus,

with our choice of a(n), Lemma 4 holds for suitably
large n, and each cell has Θ(na(n)) nodes per cell, whp.

The transmission range2 of each node, r(n), is set
to be

√

8a(n). With this transmission range, a node in
one cell can communicate with any node in its eight
neighboring cells. Note that when the cell size a(n)
increases, larger transmission range is required, as r(n)
is dependent on a(n).

A transmission originating from a node S interferes
with another transmission from A to B, only if S is
within a distance of (1 + ∆)r(n) of receiver B (using
the interference definition of protocol model). Since the
distance between A to B is at most r(n), the distance
between the two transmitters, S and A, must be less
than (2 + ∆)r(n) if the transmissions were to interfere.
Thus, any transmission can possibly interfere with
only those transmissions from transmitters within a
distance of (2 + ∆)r(n). Therefore, nodes in a cell
can be interfered with by only nodes in cells within
a distance of (2 + ∆)r(n), and this interfering area
can be completely enclosed in a larger square of side
3(2 + ∆)r(n) (this is a loose bound). Consequently,
there are at most (3(2+∆)r(n))2

a(n) = 72(2 +∆)2 interfering

cells (recall r(n) =
√

8a(n)). Hence, the number of
interfering cells, kinter ≤ 72(2 + ∆)2, is a constant that
only depends on ∆ (and is independent of a(n) and n).

Routing Scheme
Packets are routed through the cells that lie along the

straight line joining the source and the destination node.

2Transmission range is defined to be the maximum distance over
which any node can communicate.

A node in each cell through which the line passes is
used to relay traffic along that flow (we will describe the
choice of the node later). Figure 5 shows an example of
the cells used to route data for a flow between source S
and destination D.

In previously proposed constructions for proving
lower bound on capacity [1], [9], it was immaterial
which node in a chosen cell forwarded packets for some
flow. However, such an approach may “overload” certain
nodes, leading to capacity degradation, when the number
of interfaces per node is smaller than the number of
channels. Consequently, it is important to ensure that
the routing load is distributed among the nodes in a cell.
This is a key extension to the routing procedure used in
earlier capacity results [1].

For each flow passing through a cell, one node in the
cell is “assigned” to the flow. The assigned node of a
flow in a cell is the only node in that cell which may
receive/transmit data along that flow. The assignment is
done using a flow distribution procedure as below:

Step 1 – Assign source and destination nodes: For
any flow that originates in a cell, the source node S is
assigned to the flow (S is necessarily in the originating
cell). Similarly, for any flow that terminates in a cell, the
destination node D is assigned to the flow. Since a single
node in each cell is allowed to receive or transmit data
for a flow, it is required that the source and destination
nodes be assigned to flows originating or terminating
from them.

Step 2 – Balance distribution of remaining flows: After
step 1 is complete, we are left with only those flows that
pass through a cell. Each such remaining flow passing
through a cell is assigned to the node in the cell that
has the least number of flows assigned to it so far. This
step balances the assignment of flows to ensure that all
nodes are assigned (nearly) the same number of flows.
The node assigned to a flow will receive packets from
some node in the previous cell and send the packet to a
node in the next cell.

Each node is the originator of one flow. Each node
is the destination of at most D(n) flows, which by
Lemma 3 is Θ

(

log n
log log n

)

. Therefore, step 1 of the flow
distribution procedure assigns to each node at most
1 + D(n) flows.

We use the following result to bound the number of
source-destination lines that pass through any cell; we
omit the proof as it has already been presented earlier
in [9].

Lemma 5: The maximum number of source-
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destination lines that intersect any cell (including lines
originating and terminating in the cell) is O

(

n
√

a(n)
)

,
with high probability.

Step 2 of the flow distribution procedure carefully
assigns the remaining flows among the nodes in the
cell to ensure all nodes end up with nearly same
number of flows. By Lemma 4, each cell has Θ(na(n))

nodes, and by Lemma 5 at most O
(

n
√

a(n)
)

flows
pass through a cell. Therefore, step 2 will assign to

any node in the network at most O

(

1√
a(n)

)

flows.

Therefore the total flows assigned to any node is at

most O

(

1 + D(n) + 1√
a(n)

)

. When choosing the size

of a(n) earlier, the maximum value of a(n) was at

most
(

1
D(n)

)2
, which implies 1√

a(n)
is at least D(n).

Hence, the total flows assigned to any node is always
asymptotically dominated by 1√

a(n)
, and is therefore

equal to O

(

1√
a(n)

)

flows.

Scheduling transmissions
The transmission scheduling scheme is responsible for

generating a transmission schedule for each node in the
(1, c)-network that satisfies the following constraints:

Constraint 1: When a node X transmits a packet to
a node Y over a channel j for some flow, X and Y
should not be scheduled to transmit/receive at the same
time for any other flow (since each node is assumed to
have a single interface).

Constraint 2: Any two simultaneous transmissions on
any channel should not interfere.

The multi-channel construction differs from the mech-
anisms used in earlier constructions [1], [9] in two ways.
First, the scheduling is on a per-node basis since flows
are distributed among nodes, whereas in the past work it
was sufficient to schedule on a per-cell basis. Second,
since there is a single interface, but c channels are
available (recall that we are assuming a (1, c)-network
for now), the schedule has to additionally ensure that a
single transmission/reception is scheduled for a node at
any time (constraint 1 above).

We build a suitable schedule using a two-step process.
In the first step, we satisfy constraint 1 by scheduling
transmissions in “edge-color” slots so that at every node
during any edge-color slot, at most one transmission
or reception is scheduled. In the second step, we
satisfy constraint 2 by dividing each edge-color slot
into “mini-slots”, and assigning mini-slots to channels

such that any scheduled transmission is interference-
free. By using the two-step process, each transmission
in a mini-slot satisfies both constraint 1 and constraint 2.

Step 1 – Build a routing graph: We build a graph,
called the “routing graph”, whose vertices are the nodes
in the network. One edge is inserted between all node
pairs, say A and B, for every flow on which A and B
are consecutive nodes (the routing scheme for selecting
nodes along a flow was described earlier). Therefore, by
this construction, every hop3 in the network along any
flow is associated with one edge in the routing graph.
The resulting routing graph is a multi-graph4 in which

each node has at most O

(

1√
a(n)

)

edges, since each

flow through a node can result in at most two edges,
one incoming and one outgoing, and we have already

shown that each node is assigned to at most O

(

1√
a(n)

)

flows. It is a well-known result [28] that a multi-graph
with at most e edges per vertex can be edge-colored5

with at most 3e
2 colors. Therefore, the routing graph can

be edge colored with at most O

(

1√
a(n)

)

colors.

We use edge coloring to ensure that when a
transmission is scheduled along a edge, the interfaces
on the nodes at either end of the edge are free, thereby
satisfying constraint 1. We divide every 1 second period

into O

(

1√
a(n)

)

“edge-color” slots each of length

Ω
(

√

a(n)
)

seconds, and each of these edge-color slots
is associated with an unique edge color. An edge is
scheduled for transmission in the slot associated with its
edge color. Since edge coloring ensures that at a vertex,
all edges connected to the vertex use different colors,
each node will have at most one transmission/reception
scheduled in any edge-color slot. By construction, each
edge corresponds to a hop in the network. Therefore
this scheme ensures that during every 1 second interval,
along any flow in the network, one transmission is
scheduled on each hop of a flow.

Step 2 – Build an interference graph: In step 2, each
edge-color slot is further sub-divided into “mini-slots”
as explained below, and every node has an opportunity
to transmit in some mini-slot. We develop a schedule
for using mini-slots, which satisfies constraint 2. The

3A hop is a pair of consecutive nodes on a flow.
4A graph with possibly multiple edges between a pair of nodes.
5Edge-coloring requires any two edges incident on a common

vertex to use different colors.
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schedule decides on which mini-slot within an edge-
color slot and on what channel a node may transmit,
and the same schedule is used in every edge-color slot.

We build another graph, called the “interference
graph”, wherein, vertices are nodes in the network, and
there is an edge between two nodes if they may interfere
with each other. Since every cell has at most some
constant kinter number of cells that may interfere with
each other, and each cell has Θ(na(n)) nodes, each
node has at most O (na(n)) edges in the interference
graph. It is well-known that a graph with maximum
degree e can be vertex-colored6 with at most e + 1
colors [28]. Therefore, the graph can be vertex-colored
with O (na(n)) colors, i.e., at most k1na(n) colors for
some constant k1. Transmissions of two nodes assigned
the same vertex-color do not interfere with each other.
Hence, they can be scheduled to transmit on the same
channel at the same time. On the other hand, nodes
colored with different colors may interfere with each
other, and need to be scheduled either on different
channels, or at different time slots on the same channel.

We divide each edge-color slot into
⌈

k1na(n)
c

⌉

mini-slots on every channel, and number the slots on
each channel from 1 to

⌈

k1na(n)
c

⌉

. There is a total of

c
⌈

k1na(n)
c

⌉

mini-slots across the c channels. Channels
are numbered from 1 to c. A node which is allocated
a color p, 1 ≤ p ≤ k1na(n) is allowed to transmit in
mini-slot

⌈p
c

⌉

on channel (p mod c) + 1. The node
may actually transmit if the edge-coloring has allocated
an outgoing edge from the node to the corresponding
edge-color slot.

Figure 6 depicts a schedule of transmissions on the
network developed after the two-step scheduling process.
The first step allocates one edge-color slot for each
hop of every flow. The second step decides within each
edge-color slot when the transmitter node on a hop may
actually transmit a packet.

As seen in step 1, each edge-color slot is of length
Ω
(

√

a(n)
)

seconds. As seen in step 2, each edge-color

slot is sub-divided into
⌈

k1na(n)
c

⌉

mini-slots. Therefore,

each mini-slot is of length Ω

( √
a(n)

d k1na(n)

c
e

)

seconds. Each

channel can transmit at the rate of W
c

bits/second.

Hence, in each mini-slot, λ(n) = Ω

(

W
√

a(n)

cd k1na(n)

c
e

)

bits

6Vertex-coloring requires any two vertices sharing a common edge
to use different colors.

Mini−slot

1

2

c

c−1

One Second 

Edge−color slot

Fig. 6. Transmission schedule

can be transported. Since
⌈

k1na(n)
c

⌉

≤ k1na(n)
c

+ 1,

we have, λ(n) = Ω

(

W
√

a(n)

k1na(n)+c

)

bits/sec. Depend-

ing on the asymptotic order of c, either na(n) or
c will dominate the denominator of λ(n). Hence,

λ(n) = Ω

(

MINO

(

W

n
√

a(n)
,

W
√

a(n)

c

))

bits/sec. Since

each flow is scheduled to receive one mini-slot on
each hop during every 1 second interval, every source-
destination flow can support a per-node throughput of
λ(n) bits/sec, and therefore, the network capacity is

nλ(n) = Ω

(

MINO

(

W√
a(n)

,
Wn

√
a(n)

c

))

bits/sec.

Recall that we choose a(n) to be

min

(

max
(

100 log n
n

, c
n

)

,
(

1
D(n)

)2
)

, where

D(n) = Θ
(

log n
log log n

)

. Substituting for the three
values, and then applying Lemma 2 to extend the results
to an (m, c)-network, we have the following theorem.

Theorem 4: The achievable capacity of a (m, c)-
random network is as follows:

1) When c
m

is O(log n), a(n) = Θ
(

log n
n

)

, and the

network capacity is Ω

(

W
√

n
log n

)

bits/sec under

channel model 1 and Ω

(

Wc
√

n
log n

)

bits/sec un-

der channel model 2.
2) When c

m
is Ω(log n) and also O

(

n
(

log log n
log n

)2
)

,

a(n) = Θ
(

c
mn

)

, and the network capacity is

Ω
(

W
√

nm
c

)

bits/sec under channel model 1 and
Ω(W

√
nmc) bits/sec under channel model 2.

3) When c
m

is Ω

(

n
(

log log n
log n

)2
)

, a(n) =

Θ

(

(

log log n
log n

)2
)

, and the network capacity

is Ω
(

Wmn log log n
c log n

)

bits/sec under channel model
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1 and Ω
(

Wmn log log n
log n

)

bits/sec under channel
model 2.

The lower bound matches the upper bound (Theorem
3) implying that the bounds are tight. Recall that the
transmission range r(n) has been set to

√

8a(n). Hence,
the transmission range increases in case 2 and case
3 of Theorem 4 as compared to case 1 (since a(n)
increases). This implies that in multi-channel networks
with large number of channels, higher transmission
power is necessary for meeting capacity bounds.

C. Implications

The above result implies that the capacity of multi-
channel random networks with total channel data rate of
W is the same as that of a single channel network with
data rate W as long as the ratio c

m
is O(log n). When

the number of nodes n in the network increases, we can
also scale the number of channels (for example, by using
additional bandwidth, or by dividing available bandwidth
into multiple sub-channels). Even then, as long as the
channels are scaled at a rate not more than log n, there is
no loss in capacity even if a single interface is available
at each node. In particular, if the number of channels
c is a fixed constant, independent of the node density,
then as the node density increases beyond some threshold
density (at which point c ≤ log n), there is no loss in
capacity even if just a single interface is available per
node. Thus, this result may be used to roughly estimate
the number of interfaces each node has to be equipped
with for a given node density and a given number of
channels.

In a single channel random network, i.e., a (1, 1)-
network, the capacity bottleneck arises out of the channel
becoming fully utilized, and not because interface at any
node is fully utilized. On an average, the interface of a
node in a single channel network is busy only for 1

X

fraction of the time, where X is the average number
of nodes that interfere with a given node. In a (1, 1)-
random network with n nodes, each node on an average
has Θ(log n) neighbors to maintain connectivity [1]. This
implies that in a single channel network, each interface is
busy for only Θ

(

1
log n

)

time. Intuitively, our construction
above utilizes this slack time of interfaces to support up
to O(log n) channels without loss in capacity. In general,
there is no loss in capacity in a random network as long
as the number of channels is smaller than the average

number of nodes in the neighborhood7 of a node.
When the number of channels is large (specifically,

ω(log n)) and each node has a single interface, there
is a capacity loss when compared to a single channel
network. This capacity loss arises because the number
of channels is more than the number of interfaces in a
“neighborhood”. The lower bound construction suggests
that the cell size should be chosen such that the number
of nodes in each neighborhood is equal to the number
of channels. Thus, an optimal strategy for maximiz-
ing capacity when number of channels is large is to
sufficiently increase the cell size a(n), which implies
a larger transmission range r(n) is needed to allow
communication with neighboring cells. However, there
is still some capacity loss because larger transmission
range (than that is needed for connectivity alone) lowers
capacity by “consuming” more area.

D. Optimal routing and transmission scheduling ap-
proaches

The construction used in demonstrating that the lower
bound is achievable can be used to develop optimal rout-
ing and transmission scheduling approaches. The lower
bound construction suggests that load balancing (i.e.,
distributing flows) among nodes in a given neighborhood
is essential for full utilization of multiple channels. In
a single channel network, load balancing is sometimes
used to balance energy consumption across nodes, or to
improve resilience of the network. However, load bal-
ancing in the same neighborhood is not always required
in single channel networks for maximizing capacity.

For example, consider a simple scenario with two
flows from A to B and C to D as shown in Figure 7.
The flows pass through a cell with two nodes E and F.
Assume that node E is being used to forward data for
flow A-B. In a single channel network with channel rate
W , the per-flow throughput is the same whether node E
or node F is chosen to forward data along flow C-D. In
particular, the per-flow throughput is W

4 as the channel
rate is split between receiving and sending data at the in-
termediate nodes. This is because E and F interfere with
each other, and therefore cannot simultaneously transmit.
Now, consider the scenario wherein two channels of data
rate W

2 are available, but each node has a single interface.
In this scenario, if node E is chosen to forward data along
both flows A-B and C-D, the interface on node E can
transmit/receive at most W

2 bits/sec, leading to a lower

7The neighborhood of a node consists of all other nodes that may
interfere with it.
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FA B
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 D

E

Fig. 7. Need for balancing load among nodes in a neighborhood

per-flow throughput of W
8 . Instead, if node F is chosen

to forward data along C-D, and links A-E and E-B use
one channel, while C-F and F-D use the other channel,
a higher per-flow throughput of W

4 can be achieved.
This example highlights the need for distributing flows
(“load”). The routing protocol should therefore explicitly
try to balance load among nodes in every neighborhood,
and select routes with lower load.

In the transmission scheduling scheme used for lower
bound construction, it suffices for a node to always
transmit on a specific channel without requiring to switch
channels for different packets (recall that the same mini-
slot on a specific channel is used by a node in all
“edge-color” slots). However, a node may have to switch
channels for receiving data. An alternate construction
is to use a scheduling scheme which ensures that a
node receives all data on a specific channel, but may
have to switch channels when sending data. It can be
shown that the alternate construction is equivalent to
the lower bound construction by modifying the mini-slot
assignment to be done on a per-receiver basis instead of
a per-sender basis. This intuition can be used to develop
a practical scheme that uses two interfaces per node.
One interface can be used for receiving data and is
always fixed to a single channel. The second interface
can be used for sending data and is switched between
channels, as necessary. Existing multi-channel protocols
have often required tight synchronization among nodes.
The use of two interfaces, with a dedicated interface on
a fixed channel obviates the need for tight synchroniza-
tion as a node receives data on a well-known channel.
Furthermore, using a fixed channel for reception does
not degrade capacity since it is based on the (optimal)
alternate construction.

We have already used some of the insights gained from
this work to develop routing and channel assignment
protocols [6], [25] that are well-suited for multi-channel
networks.

V. IMPACT OF SWITCHING DELAY

The previous discussion on multi-channel capacity has
not considered the impact of interface switching delay.
When the number of interfaces at each node is smaller
than the number of channels, interfaces may have to
be switched between channels. Switching an interface
from one channel to another may incur a switching
delay, say S, as the interface hardware has to change
the frequency of operation. For example, existing IEEE
802.11-based wireless interfaces require [4] between
few tens to hundreds of microseconds to switch from
one channel to another. Switching delay is, however,
independent of the number of nodes in the network.

In the case of arbitrary networks, capacity bounds
are met without requiring interface switching at all (as
was shown in the construction used for lower bound).
Hence, switching delay will not impact the capacity of
arbitrary networks. Even in the case of random networks,
the upper bound proofs do not mandate interfaces to be
switched, and the bounds may be tight with switching
delay as well8. Hence, it appears that the tight capacity
upper bound in random networks is independent of the
interface switching delay.

In the construction used to prove lower bound in
random networks, interfaces may have to be switched
between channels (when receiving data). In the worst
case, an interface may have to be switched between
channels for every packet transmission. Each packet of
size L bits requires a transmission time of T = Lc

W

seconds (since channel data rate is W
c

bits/sec). One way
of hiding the interface switching delay S is to insert a
“guard” slot of duration S between two “edge-color”
slots (we call this the “guard slot” approach) to ensure
there is sufficient time for interface switching. However,
this approach degrades the network capacity by a factor
of S

T+S
. The capacity reduction can be minimized by

sending extremely large packets (L � λ) resulting in
T � S. However, this significantly increases end-to-end
latency. Hence, although switching delay will not in the
asymptotic sense affect the scaling properties of network
capacity, if there is an end-to-end delay constraint, then
switching delay may reduce the achievable network
capacity by a factor proportional to the magnitude of the
switching delay. We will next define the end-to-end delay
constraint, and describe an alternate approach that does
not lose capacity while meeting the end-to-end delay

8This is a conjecture that we have not yet proved. However, there
is no change in the lower bound with extra interfaces, and therefore,
we speculate that the conjecture may be true.
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constraint.
We use the end-to-end delay definition from [9]. Each

packet is assumed to have a size L, and L is scaled with
respect to the throughput obtained for each end-to-end
flow. If each flow can transport λ bits/sec, then each
flow is assumed to send packets of size L = λ. By the
lower bound construction provided before, if packet sizes
are set to λ bits, each packet traverses one hop in one
second. Therefore, the end-to-end delay of a flow will
be equal to the number of hops on the flow, when there
is no interface switching latency. Let us assume that the
minimum end-to-end delay in the absence of interface
switching latency is Dopt. A reasonable delay constraint
in the presence of switching latency is to require that the
end-to-end delay is at most a small constant multiple of
Dopt; otherwise applications may see a large increase in
the end-to-end delay.

We now describe an alternate approach that can
completely hide the impact of switching delay by
deploying multiple interfaces. This approach assumes
that each of the given interfaces has a switching delay
S, and uses the interfaces to simulate a virtual interface
having 0 switching delay. By this construction, the use
of additional interfaces per node can hide the switching
delay, leading to the same capacity and end-to-end
delay bounds derived earlier assuming no interface
switching delay.

Lemma 6: Suppose that the time required for packet
transmission in a (1, c)-network is T = Lc

W
. Then

a
(⌈

S
T

⌉

+ 1, c
)

-network built with interfaces having
switching delay S, can achieve the same capacity and
end-to-end delay as a (1, c)-network built with interfaces
having 0 switching delay.

Proof: Let us assume that each node has v =
⌈

S
T

⌉

+

1 interfaces, each having a switching delay S. We build
a virtual interface with zero switching delay by using the
v physical interfaces, as shown in Figure 8. We consider
any time interval of length vT . We divide this time into
v slots of length T , and only allow the ith interface,
1 ≤ i ≤ v, to transmit/receive in slot i. Thus, each
physical interface is used for transmission/reception in
one slot, and is idle for the next (v − 1) slots of total
duration (v−1)T seconds. Since v =

⌈

S
T

⌉

+1, we have:

(v − 1)T =

⌈

S

T

⌉

T

≥ S

Hence, between two successive operations of a physical
interface there is at least a gap of S, which ensures that

T TS1
2

(v−1) slots

(v−1) slots

v slots

v
v−1

Fig. 8. Constructing a virtual interface with zero switching delay

switching delay is provisioned for. By this construction,
the simulated virtual interface can continuously trans-
mit/receive, with 0 switching delay. Therefore, a network
using v interfaces having switching delay S, can mimic
the behavior of a (1, c)-network built with interfaces
having switching delay 0.

From the previous lemma, by increasing the number
of interfaces at each node by a factor of v, switching
delay is completely hidden. Suppose, each node cannot
be provisioned with v =

⌈

S
T

⌉

+1 interfaces. Then, if each
node has at least 2 interfaces, by using larger packets,
we can still achieve the same capacity as a network
built with interfaces having no switching delay. Suppose,
p interfaces are actually available, with 2 ≤ p < v.
Then we increase the packet size by a factor of

⌈

v
p

⌉

to increase packet transmission time T . This hides the
interface switching delay, and results in no capacity loss.
However, larger packet size increases end-to-end delay
by a constant factor of

⌈

v
p

⌉

. Note that the previously
discussed “guard slot” approach may increase the end-to-
end delay by an arbitrarily large factor, or lose capacity
when at most a constant increase in the end-to-end delay
can be tolerated. Therefore, by our construction, as long
as each node has at least two interfaces, there is no loss
in network capacity, although there may be a increase in
the end-to-end latency by a constant factor independent
of n. It is an open question if switching delay can be
successfully hidden with only one interface per node.

VI. CONCLUSIONS

In this paper, we have derived the lower and upper
bounds on the capacity of static multi-channel wireless
networks. We have shown that in an arbitrary network,
there is a loss in network capacity when the number
of interfaces per node is smaller than the number of
channels. However, we have shown that surprisingly, in a
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random network, a single interface suffices for utilizing
multiple channels, as long as the number of channels
is not too large. We have also shown that interface
switching delay has no impact on capacity, provided
each node is provisioned with a few extra interfaces.
It is part of our ongoing work to extend these results
to mobile networks as well. We also plan to apply the
insights gained from this work to build practical routing
and MAC algorithms that approach the capacity limit.
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APPENDIX I
UPPER BOUND IN ARBITRARY NETWORKS

Theorem 5: The capacity of a (m, c)-network is
O
(

W
√

nm
c

)

bit-meters/sec under channel model 1, and
O (W

√
nmc) bit-meters/sec under channel model 2.

Proof: We prove the result under channel model
1. The proof is based on a proof in [1]. We assume
that nodes are synchronized, and slotted transmissions of
duration τ are used. We assume that each source node
originates λ bits/sec. Let the average distance between
source and destination pairs be L̄. Therefore, the capacity
of the network is λnL̄ bit-meters/sec.

We consider any time period of length one second.
In this time interval, consider a bit b, 1 ≤ b ≤ λn. We
assume that bit b traverses h(b) hops on the path from
its source to its destination, where the h-th hop traverses
a distance of rh

b . Since the distance traversed by a bit
from its source to its destination is at least equal to the
length of the line joining the source and the destination,
by summing over all bits we obtain,

λn
∑

b=1

h(b)
∑

h=1

rh
b ≥ λnL̄ (1)
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Let us define H to be the total number of hops
traversed by all bits in a second, i.e. H =

∑λn
b=1 H(b).

Therefore, the number of bits transmitted by all nodes
in a second (including bits relayed) is equal to H . Since
each node has m interfaces, and each interface transmits
over a channel with rate W/c (assuming channel model
1), the total bits that can be transmitted by all nodes
over all interfaces is at most Wmn

2c
(Transporting a bit

across one hop requires two interfaces, one each at the
transmitting and the receiving nodes). Hence, we have,

H ≤ Wmn

2c
(2)

Under the protocol model, a transmission over a hop
of length r is successful only if there is no transmitter
within a distance of (1+∆)r. Suppose node A is trans-
mitting a bit to node B, while node C is simultaneously
transmitting a bit to node D, and both the transmissions
are over a common channel. Then, using the interfer-
ence model, we have d(C,B) ≥ (1 + ∆)d(A,B) and
d(A,D) ≥ (1+∆)d(C,D). Adding the two expressions
together, and applying triangle inequality, we obtain,
d(B,D) ≥ ∆

2 (d(A,B) + d(C,D)). This implies that
the receivers of two simultaneous transmissions are sepa-
rated by a distance proportional to the distance from their
senders. This may be viewed as each hop consuming a
disk of radius ∆

2 times the length of the hop around each
receiver. Since the area “consumed” on each channel is
bounded above by the area of the domain (1 sq meter),
summing over all channels (which can in total potentially
transport W bits) we have the constraint,

λn
∑

b=1

h(b)
∑

h=1

π∆2

4
(rh

b )2 ≤ W (3)

which can be rewritten as,

λn
∑

b=1

h(b)
∑

h=1

1

H
(rh

b )2 ≤ 4W

π∆2H
(4)

Since the expression on the left hand side is convex,
we have,

(
λn
∑

b=1

h(b)
∑

h=1

1

H
rh
b )2 ≤

λn
∑

b=1

h(b)
∑

h=1

1

H
(rh

b )2 (5)

Therefore, from (4) and (5),

λn
∑

b=1

h(b)
∑

h=1

rh
b ≤

√

4WH

π∆2
(6)

Substituting for H from (2), and using (1) we have,

λnL̄ ≤ W

√

2mn

π∆2c
(7)

This proves that the network capacity of an arbitrary
network is O

(

W
√

nm
c

)

bit-meters/sec under channel
model 1. Replacing W by Wc, the network capacity
of an arbitrary network is O (W

√
nmc) bit-meters/sec

under channel model 2.

APPENDIX II
RESULTS FOR ESTABLISHING LOWER BOUND IN

RANDOM NETWORKS

Lemma 4: If a(n) > 50 log n
n

, then each cell has
Θ(na(n)) nodes per cell, with high probability.

Proof: A similar result was stated in [9] without
proof. Here we provide a proof based on VC-theory,
similar to the approach used by Gupta and Kumar [1].
The total number of square cells is 1

a(n) . Since nodes
are randomly located on the torus, the probability that
any given node will lie in a specific cell is a(n). We
want to derive bounds on number of nodes in every cell
in the square grid. The set of axis-parallel squares C are
known to have VC-dimension 3. By applying the Vapnik-
Chervonekis theorem, as in [1], we have the following
bound on the number of nodes NC in any cell C

Prob

(

sup
C∈C

∣

∣

∣

∣

NC

n
− a(n)

∣

∣

∣

∣

≤ 50 log n

n

)

> 1 − 50 log n

n
(8)

which implies that with high probability, we have

na(n) − 50 log n ≤ NC ≤ na(n) + 50 log n

provided a(n) > 50 log n
n

.
Hence, we can conclude that the number of nodes in

any cell is Θ(na(n)) with high probability, as long as
a(n) > 50 log n

n
.


