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Abstract— We consider the problem of reliable broad-
cast in an infinite (or finite toroidal) radio network under
Byzantine and crash-stop failures. We present bounds on
the maximum number of failures that may occur in any
given neighborhood without rendering reliable broadcast
impossible. We improve on previously proved bounds for
the number of tolerable Byzantine faults (presented in
a PODC 2004 paper [1]). Our results indicate that it
is possible to achieve reliable broadcast if slightly less
than one-fourth fraction of nodes in any neighborhood
are faulty, and impossible otherwise. We also show that
reliable broadcast is achievable with crash-stop failures if
slightly less than half the nodes in any given neighborhood
may be faulty. In particular, we establish exact thresholds
under a specific distance metric.

Index Terms— Byzantine faults, Crash-stop faults,
Broadcast, Fault Tolerance, Radio Network, Broadcast
Channel, Possibility/Impossibility

I. INTRODUCTION

Reliable broadcast in the presence of crash-stop and
Byzantine failures is a well-studied problem with nu-
merous practical implications. With the proliferation
of wireless networks, there has been interest in the
achievability of reliable broadcast in radio networks,
which are characterized by a shared wireless medium
where every node can talk to all nodes within its
transmission radius (deemed as neighbors) and a sent
message is heard by all the neighbors. We consider
the problem of reliable broadcast in an infinite radio
network (with nodes situated on a unit square grid) under
Byzantine and crash-stop failures. The results also hold
for a finite toroidal network, as boundary anomalies are
eliminated. We present bounds on the maximum number
of failures that may occur in any given neighborhood
(to be formally defined later) without rendering reliable
broadcast impossible. For the case of Byzantine failures,
we improve on bounds presented in a PODC ’04 paper
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[1]. We also prove that reliable broadcast is possible with
crash-stop failures if slightly less than half the nodes in
any neighborhood are faulty. In particular, we establish
exact thresholds under a specific distance metric.

II. NETWORK MODEL

We consider the network model described in [2] and
[1]. Nodes are located on an infinite grid (each grid unit
is a 1×1 square). Nodes can be uniquely identified by
their grid location (x,y). All nodes have a transmission
radius r. A message broadcast by a node (x,y) is
heard by all nodes within distance r from it (where
distance is defined in terms of the particular metric
under consideration, and r is assumed to be an integer).
The set of these nodes is termed the neighborhood of
(x,y). Thus there is an assumption that the channel is
perfectly reliable, and a local broadcast is correctly
received by all neighbors. We call this the reliable
local broadcast assumption. In this paper, we consider
two distance metrics viz. L∞ and L2. The L∞ metric is
essentially the metric induced by the L∞ norm [3], such
that the distance between points (x1,y1) and (x2,y2)
is given by max{|x1 − x2|, |y1 − y2|} in the this metric.
Thus nbd(a,b) comprises a square of side 2r with its
centroid at (a,b). The L2 metric is induced by the L2
norm [3], and is the Euclidean distance metric. The L2
distance between points (x1,y1) and (x2,y2) is given by
√

(x1 − x2)2 +(y1 − y2)2, and nbd(a,b) comprises nodes
within a circle of radius r centered at (a,b).

As in [1], we assume that a node may not spoof
another node’s identity, and that no collisions are
possible, i.e., there exists a pre-determined TDMA
schedule that all nodes follow. Such schedules are easily
determined for the grid network under consideration [1]
(so long as time-optimality is not a concern). We shall
further discuss the impact of relaxing these assumptions
in Section X. A designated source (that is assumed
located at the origin of the grid coordinate system



w.l.o.g.) broadcasts a message with a binary value. The
aim is to propagate the correct value to all nodes in the
network. We seek to determine the maximum number of
faulty nodes t that may be present in the neighborhood
of any given node without rendering reliable broadcast
impossible.

III. RELATED WORK

Reliable broadcast has been extensively studied for
networks with point-to-point communication under var-
ious connectivity conditions [4]. The classic result of
Pease, Shostak and Lamport [5], [6] states that in case
of full connectivity, Byzantine agreement with f faulty
nodes is possible if and only if n ≥ 3 f + 1. Under
more general communication graphs, the requirements
for Byzantine agreement are that n ≥ 3 f + 1, and the
network be at least (2 f + 1)-connected [7]. Byzantine
agreement in k-cast channels has been considered in [8].
However this does not capture the spatially dependent
connectivity that characterizes radio networks. Reliable
broadcast in radio networks has been studied in [2]
and [1]. Crash-stop failures are considered in [2] for
finite networks comprising nodes located in a regular
grid pattern and algorithms are described for efficient
broadcast to the part of the network that is reachable
from the source. However this work does not attempt
to quantify the number of faults that render some nodes
unreachable. In [1], it is shown that for a network of
nodes located on an infinite grid of unit squares and
having transmission radius r, reliable broadcast is not
achievable for t ≥ d 1

2 r(2r + 1)e (in both L∞ and L2
metrics). Besides a protocol is described and it is proved
that it allows reliable broadcast to be achieved under the
following conditions:

• If t <
1
2(r(r +

√

r
2 +1))−2, then reliable broadcast

is achieved in the L∞ metric.
• If t <

1
4(r(r +

√

r
2 +1))−2, then reliable broadcast

is achievable in the L2 metric.
The considered protocol stipulates that nodes wait till
they hear the same value from t + 1 neighbors before
they commit to it, and re-broadcast it exactly once for
the benefit of other neighbors. Under this protocol,
no non-faulty node will ever accept the wrong value.
However, there is a possibility of some nodes never
being able to decide, and the achievability bounds do
not match the impossibility bound, leaving a region of
uncertainty.

We consider the network model described above,

and examine the possibility of achieving reliable
broadcast under Byzantine and crash-stop failures.
For a Byzantine failure model, we present a protocol
(utilizing a notion of indirect reports) that allows reliable
broadcast to be achieved under the same network model
in the L∞ metric whenever t <

1
2 r(2r + 1). This exactly

matches the impossibility bound of [1], and thus
establishes an exact threshold for Byzantine agreement
under this model. We also prove that reliable broadcast
is achievable under the crash-stop model iff the number
of faulty nodes t in any neighborhood is governed by
t < r(2r + 1) (in the L∞ metric). We present informal
arguments suggesting that in L2 i.e. Euclidean distance
metric, Byzantine agreement is possible if slightly less
than one-fourth of the nodes in any given neighborhood
may be faulty, while it is possible to tolerate crash-stop
failures that are slightly less than half the neighborhood
population. Finally, we consider the issue of tolerable
faults when using a simple protocol that does not use
indirect reports (i.e. the protocol of [1]). We present
an asymptotically tighter bound (than that in [1]) for
achievability with Byzantine failures by proving that
reliable broadcast is achievable for t ≤ 2

3 r2 using the
simple protocol.

In a very recent work [9], further study of the
locally bounded fault model has been undertaken. The
paper focuses on arbitrary graphs instead of using a
specific network model. It also claims to hold generally
for both radio and message-passing networks. However
there is an assumption that duplicity (sending different
messages to different neighbors) is impossible, which
seems to stem from the radio network model. Upper
and lower bounds for achievability of reliable broadcast
are presented based on graph-theoretic parameters,
for arbitrary graphs. However, no exact thresholds are
established. The paper considers two algorithms for
broadcast. One is the simple algorithm of [1] that they
refer to as the Certified Propagation Algorithm (CPA).
Another algorithm, termed as the Relaxed Propagation
Algorithm (RPA), is informally described and involves
a notion of indirect reports similar to the protocol we
describe in Section VI. It is shown that RPA is a more
powerful algorithm, as there exist graphs for which RPA
succeeds but CPA does not. It is also shown that there
exist certain graphs in which algorithms that work with
knowledge of topology succeed in achieving reliable
broadcast, while those that lack this knowledge fail to
do so. Our work differs substantially from theirs, in
that we focus on a specific network model and obtain



an exact threshold for byzantine as well as crash-stop
fault-tolerance. We also present a specific algorithm for
byzantine agreement in the considered model, which
localizes the circulation of indirect reports, and thus
reduces communication overhead.

IV. NOTATION/TERMINOLOGY

We briefly describe here notation and terminology
that shall be used in this paper. Nodes are identified by
their grid location i.e. (x,y) denotes the node at (x,y).
The neighborhood of (x,y) comprises all nodes within
distance r of (x,y) and is denoted as nbd(x,y). For
succint description, we define a term pnbd(x,y) where
pnbd(x,y) = nbd(x − 1,y) ∪ nbd(x + 1,y) ∪ nbd(x,y −
1)∪nbd(x,y+1). Intuitively pnbd(x,y) denotes the per-
turbed neighborhood of (x,y) obtained by perturbing the
center of the neighborhood to one of the nodes immedi-
ately adjacent to (x,y) on the grid. Besides, throughout
this paper, a non-faulty node shall be variously alluded
to as an honest or correct node, while a node exhibiting
byzantine failure shall occasionally be referred to as a
malicious node.

V. BYZANTINE AGREEMENT IN A RADIO NETWORK

Radio networks present a special case for the Byzan-
tine agreement problem due to the broadcast nature of
the channel. In the absence of address-spoofing and
deliberate collisions (discussed further in Section X),
this significantly simplifies the problem, and relaxes the
requirements for agreement. Under our assumptions (also
in [1]), if a node transmits a value, all its neighbors
hear the transmission, and are certain of the identity
of the sender. The transmitting node is thus incapable
of duplicity, beause if it were to attempt sending con-
tradicting messages, they would be heard by all its
neighbors, and its duplicity would stand detected. Thus
any protocol could stipulate that if the neighbors of a
node hear it transmitting multiple contradictory versions
of a message, they should accept only the first message,
and ignore the rest. Thus, in a fully connected network, it
is possible to tolerate an arbitrary number of Byzantine
faults. In a more general network, the absence of du-
plicity implies a relaxation of the requirements proved
in [7] in that it is no longer required that n ≥ 3 f + 1
for tolerating f faults. If only f Byzantine faults were
allowed in the whole network, the necessary and suffi-
cient condition for reliable broadcast would be exactly
the same as the connectivity condition of [7] viz. that the
graph be (2 f +1)-connected. Since we consider a model
in which an adversary may place upto t faults in any
single neighborhood, a general sufficient condition that

may be stated for an arbitrary network graph G = (V,E)
is that for each pair of nodes (v1,v2) s.t. v1,v2 ∈ V ,
either (v1,v2) ∈ E, else ∃S ⊆ V such that the adversary
may place at most f faults in S without violating the
constraint, and v1 be connected to v2 via 2 f + 1 node-
disjoint paths that lie entirely within S. Note that this
requires knowledge of network topology. The protocol
we present in this paper is based on a localized variant
of this sufficient condition.

VI. RELIABLE BROADCAST WITH BYZANTINE
FAILURES

As discussed in Section III, it was proved in [1] that
reliable broadcast is impossible in L∞ as well as L2
metrics if t ≥ d 1

2 r(2r +1)e. We prove the following:

THEOREM 1: If t <
1
2 r(2r +1), reliable broadcast is

achievable in the L∞ metric.

This is an exact match to the impossibility bound for L∞,
and thus establishes the threshold for achieving reliable
broadcast in the square grid network under consideration.
We present a protocol that achieves this objective. With-
out loss of generality we assume the message to comprise
a binary value (say 0 or 1). A node that is not the source
is said to commit to a value when it becomes certain
that it is indeed the value originated by the source. The
protocol requires maintenance of state by each node
pertaining to nodes within its three-hop neighborhood.
This state may be reduced further by earmarking exact
messages that a node should lookout for, and this shall
become clear from our constructive proof for the viability
of reliable broadcast with t <

1
2 r(2r +1). However, at a

basic level, the protocol operates as follows:
• Initially, the source broadcasts the message.
• Each neighbor i of the source re-broadcasts the first

value it heard from the source (and committed to)
once in a COMMIT T ED(i,v) message.

• Hereafter, the following protocol is followed by
each node j (including those involved in the
previous two steps):

On receipt of a COMMIT T ED(i,v) message
from neighbor i, record the message, and broadcast
a HEARD( j, i,v) message.

On receipt of a HEARD(k, i,v) message from
a neighbor k, record the message, and broadcast a
HEARD( j,k, i,v) message.

On receipt of a HEARD(l,k, i,v) message, record



the message, and broadcast a HEARD( j, l,k, i,v)
message.

On receipt of a HEARD(g, l,k, i,v) message,
record the message, but do not re-propagate.

A node j commits to a value v if it reliably
determines that at least t + 1 nodes lying in some
single neighborhood have committed to v. A
node is said to have reliably determined the value
committed to by node i if:

– i is its neighbor, and so j heard COMMIT (i,v)
directly. In this case, there is no cause for doubt
as to what value was committed to by node i,
since no other node is capable of spoofing i’s
address, and collisions are ruled out.

– j heard indirect reports of i having committed
to a particular value v through t + 1 node-
disjoint paths that all lie within some single
neighborhood. The indirect reports are obtained
via the HEARD messages that propagate via
upto three intermediate nodes, and the path
information is obtained from these messages
(as each forwarding node affixes its identifier
to the message). Observe that as the t +1 node-
disjoint paths all lie within a single neighbor-
hood, and as no more than t nodes in the
neighborhood may be faulty, all the (t + 1)
paths cannot have a faulty node each, and it
is therefore impossible for the node to arrive at
a wrong conclusion by following this rule.

THEOREM 2: (Correctness) No node shall commit to
a wrong value by following the above rule.

Proof: The proof is by contradiction. Consider
the first node, say j, that makes a wrong decision to
commit to value v. This implies it reliably determined
that t +1 already committed nodes lying in some single
neighborhood N1 had committed to v. Since reliable
determination of a node i having committed to a value
v involves hearing i directly or hearing indirect reports
(that i committed to v) via at least t + 1 node-disjoint
paths lying in some single neighborhood N2, and since
the number of faults in N2 may be at most t, it implies
that all these paths cannot have relayed the wrong value,
and so v must indeed be the value committed to by
i. Thus no node can make a wrong determination of
what value each of the t + 1 nodes in N1 committed
to; they must all indeed have committed to v. Since j
is the first node to make a wrong decision, the t + 1

nodes could not have made a wrong decision. Also, all
of these nodes cannot be faulty, as no more than t nodes
in any neighborhood may exhibit Byzantine failure. Thus
v must indeed be the correct value.

THEOREM 3: (Completeness) Each node is eventu-
ally able to commit to the correct value.

Proof: We prove that each node will be able
to meet the conditions stipulated by the protocol
for committing to the correct value. The proof also
clarifies the operation of the protocol, and in fact
would allow one to stipulate exactly which messages
each node should act upon (given that the topology of
the network is completely known), thereby reducing
the state maintained at each node. The essence of
the proof lies in showing that each node j (except
the direct neighbors of (0,0)) is connected to at least
2t + 1 nodes that lie in some single neighborhood
N1, such that the connectivity to each such node
is through 2t + 1 node-disjoint paths that all lie in
some neighborhood N2, and the nodes in N1 are able
to commit to the correct value before node j has done so.

The proof proceeds by induction.

Base Case:

All honest nodes in nbd(0,0) are able to commit
to the correct value. This follows trivially since they
hear the origin directly, and we assume that address-
spoofing is impossible.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b)
i.e. all honest nodes in nbd(a,b) are able to commit to
the correct value, then all honest nodes in pnbd(a,b)
are able to commit to the correct value.

Proof of Inductive Hypothesis:
We show that each node in pnbd(a,b) is able to reliably
determine the value committed to by 2t + 1 nodes in
nbd(a,b). Since no more than t of these can be faulty,
this guarantees that the node will become aware of t +1
nodes in nbd(a,b) having committed to a (the correct)
value, and will also commit to it. In order to show
this, we show that each node is connected to at least
2t + 1 nodes in nbd(a,b) either directly, or through
2t + 1 node disjoint paths that all lie entirely within
some single neighborhood. Thus at least t + 1 of these
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Fig. 1. Nodes in nbd(a,b) whose committed values P can
reliably determine
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Fig. 2. Nodes in nbd(a,b) P can hear directly
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paths are guaranteed to be fault-free and shall allow
communication of the correct value.

We show this for a corner node in pnbd(a,b) i.e.
the node marked P (which is located at (a−r,b+r+1))
in Fig. 1, which represents the worst case. For all other
nodes in pnd(a,b), the condition can be seen to be
achieved via a similar argument, but even more easily.
We omit the proof for the sake of brevity.

We show that node P is able to reliably determine the
values committed to by the nodes in the shaded region
in Fig. 1 which comprises r(2r + 1) + 2r > r(2r + 1)
nodes. The first observation is that P can directly hear
the nodes in the shaded region in Fig. 2, and so is certain
of the value they committed to. We now explicitly prove
existence of suitable node-disjoint paths for nodes that lie
in the upper triangular region shaded in Fig. 3. Consider

a node N located at (a + p,b + q) (Fig. 4). Observe
that q ≥ p ≥ 1 in this region. We show the existence
of r(2r + 1) node-disjoint paths between N and P, that
all lie within the same single neighborhood (centered
at (a,b + r + 1), and indicated by the square with dark
outline in Fig. 5). The region marked A comprises
{(x,y)|(a + p − r) ≤ x ≤ a;(b + 1) ≤ y ≤ (b + q + r)},
and nodes in this region are neighbors of both N
and P. Thus, there are (r − p + 1)(r + q) paths of the
form N → A → P that comprise one intermediate node
each. The region B1 comprises {(x,y)|(a + 1) ≤ x ≤
(a + p − 1);(b + 1) ≤ y ≤ (b + q + r)}, and falls in
nbd(N) (recall that N is located at (a + p,b + q)).
The region B2 comprises {(x,y)|(a + 1 − r) ≤ x ≤
(a + p− 1− r);(b + 1) ≤ y ≤ (b + q + r)}, and falls in
nbd(P). As may be seen, B2 is obtained by a translation
of B1 to the left by r units. Thus there is a one-to-one
correpondence between a point (x,y) in B1 and a point
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(x − r,y) in B2, such that the points in each pair are
neighbors. This yields (p− 1)(r + q) paths of the form
N → B1 → B2 → P.

Region C1 comprises {(x,y)|(a + p + 1) ≤ x ≤
(a+r);(b+q+1)≤ y≤ (b+r+1)} and thus falls within
nbd(N). Region C2 comprises {(x,y)|(a + p + 1− r) ≤
x ≤ a;(b + q + 1 + r) ≤ y ≤ (b + 1 + 2r)} and falls
within nbd(P). It may be seen that there is a one-to-one
correspondence between any point (x,y) in C1 and point
(x−r,y+r) in C2, with the paired points being neighbors.
Hence there exist (r − p)(r − q + 1) paths of the form
N → C1 → C2 → P that comprise two intermediate
nodes each. Region D1 comprises {(x,y)|(a + p) ≤ x ≤
(a+ r + p−q),(b+ r +q− p+2)≤ y ≤ (b+ r +q+1)},
and falls in nbd(N). Region D2 comprises
{(x,y)|(a + 1) ≤ x ≤ (a + p);(b + 1 + r + q) ≤ y ≤
(b+1+2r)} . Region D3 comprises {(x,y)|(a+1−r)≤
x ≤ (a + p− r);(b + 1 + r + q) ≤ y ≤ (b + 1 + 2r)}, and

falls in nbd(P). We note that regions D1, D2 and D3
have exactly the same number of nodes each. Besides,
the regions D1 and D2 are mutually located in a manner
that each node in D2 is a neighbor of each node in
D1 (maximum distance between any two nodes < r).
Hence, any one-to-one pairing of nodes in D1 with
nodes in D2 is valid. Further, a node located at (x,y)
in D2 has a one-to-one correpondence with a node
(x− r,y) in D3. Thus, there are p(r − q + 1) paths of
the form N → D1 → D2 → D3 → P that comprise three
intermediate nodes each (Fig. 5). Thus the r(2r + 1)
node-disjoint paths are obtained.

For the nodes in the lower region of Fig. 3, a
similar construction will yield the required paths, as
indicated in Fig. 6.

Observe that the inductive hypothesis along with
the base case suffice to show that every honest node



will eventually commit to the correct message, since
starting at (0,0), one can cover the entire infinite grid by
moving up, down, left and right. Thus the neighborhood
of every grid point can be shown to have decided i.e.
every honest node will have decided on the correct value.

We note that the connectivity condition proved
above is also sufficient to prove that upto 2t < r(2r +1)
crash-stop failures are tolerable in L∞ metric. We shall
elaborate further in Section VII.

VII. CRASH-STOP FAILURES

We first note that when only crash-stop failures are
admissible, no special protocol is required. Each node
that receives a value, commits to it, re-broadcasts it once
for the benefit of others, and then may terminate local
execution of the protocol. Thus the sole criterion for
achievability is reachability. In this failure mode, we
establish an exact threshold for tolerable faults in L∞
metric.

THEOREM 4: If t ≥ r(2r + 1) , it is impossible to
achieve reliable broadcast in L∞ metric.

Proof: We present a construction with t = r(2r+1)
that renders reliable broadcast impossible. Consider the
network in Fig. 7. The nodes in the designated region
{(x,y)|a ≤ x < a+ r} are all faulty while all other nodes
are correct. As may be seen, the maximum number of
faulty nodes in any given neighborhood is ≤ r(2r + 1).
However this configuration partitions all nodes in the
half-plane x ≥ a+ r from the source and they are unable
to receive the broadcast.

THEOREM 5: If t < r(2r + 1), it is possible to
achieve reliable broadcast in L∞ metric.

Proof: One possible proof proceeds from the proof
of Theorem 1, as was noted earlier. Since, we showed
that each node is connected to each of r(2r +1) already
committed nodes lying in some single neighborhood,
via r(2r+1) node-disjoint paths that all lie within some
single neighborhood, it follows that upto t < r(2r + 1)
crash-stop faults may be tolerated, as each node would
still be connected to at least one non-faulty committed
node, via at least one fault-free path. However, we also
present a simpler proof that indicates achievability of
reliable broadcast. This proof presents a clearer picture
of the progress of the broadcast in the network. The
proof is by induction, similar to the inductive argument
for Byzantine agreement.

x=a+r−1x=a

(0, 0)

Fig. 7. Network Partition due to Crash Stop Failures

Base Case:

When (0,0) initially broadcasts the message, all
correct nodes in nbd(0,0) hear it directly, and thereby
receive the broadcast.

Inductive Hypothesis:

If all correct nodes in nbd(a,b) have received the
broadcast, then all correct nodes in pnbd(a,b) will also
receive the broadcast.

Proof of Inductive Hypothesis:

Consider the situation as in Fig. 8. All correct
nodes in nbd(a,b) (depicted by square ABCD) have
received the broadcast. We consider the partition of
ABCD into two rectangles by the horizontal axis
through (a,b). These regions are depicted as ABFE
and EFCD in Fig. 8. The nodes on the partitioning
axis i.e. on EF may be included in any one region or
split between the two. It does not affect the proof, as
these nodes do not play a role in the proof argument.
A similar partitioning by the vertical axis through
(a,b) yields AGHD and GBCH, with nodes along GH
assigned arbirarily to either region. Since the number of
faulty nodes in ABCD < r(2r + 1), one of the regions
ABFE and EFCD has ≤ 1

2 r(2r + 1) = r2 + r
2 faults i.e.

strictly less than r(r + 1) faults 1. Similarly one of the
regions AGHD and GBCH has ≤ 1

2 r(2r + 1) = r2 + r
2

faults. Without loss of generality we assume that the

1If t items are split between two regions, one will get ≤ t
2 and the

other will get ≥ t
2 .
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regions satisfying the condition are ABFE and AGHD.
Then every node in {(x,a + r + 1)|(a− r ≤ x ≤ a + r}
i.e. along line segment PQ in the figure has at least
r(r +1) neighbors in nbd(a,b) and these neighbors fall
entirely in region ABFE. Given that the number of
faults in ABFE is strictly less than r(r + 1) each node
on PQ is able to hear the broadcast from at least one
correct neighbor in nbd(x,y). By a similar argument,
every node in {(a − r − 1,y)|b − r ≤ y ≤ b + r}, i.e.,
along segment VW, has at least r(r + 1) neighbors in
AGHD, and is thus able to receive the broadcast from
at least one correct neighbor in nbd(a,b).

Given that ABFE has strictly less than r(r + 1) faulty
nodes, it follows that GBFO (being a subset of ABFE)
also has strictly less than r(r + 1) faults. Thus each
node in {(a+ r +1,y)|b ≤ y ≤ b+ r} (segment RR’) has
at least one correct neighbor belonging to nbd(a,b) and
can receive the broadcast. By a similar argument, every
node in {(x,b− r− 1)|a− r ≤ x ≤ a} (segment TT’) is
able to receive the broadcast. Therefore all those nodes
belonging to pnbd(a,b) − nbd(a,b) that lie along in
these regions (depicted by the dark line segments in
Fig. 8) receive the broadcast. We know need to show
that the remaining nodes will also be able to do so.
These remaining nodes are the ones along line segment
U’U and segment S’S. We explicitly consider the nodes
along segment U’U. The same argument holds for S’S.

d

(a, b) N

QP
D

Fig. 10. Illustrating an Approximate Argument for Euclidean Metric

Now consider the nodes in the shaded region
{(x,y)|a ≤ x ≤ a + r,b − r ≤ y < b}. If even one
of these nodes is correct, then the nodes along U’U
are guaranteed to receive the broadcast. If all these
nodes are faulty then these faulty nodes number r2 + r.
Therefore, if we consider the neighborhood centred
at (a,b − r − 1) (Fig. 9), only r2 more nodes can be
faulty in this entire neighborhood apart from those
in the shaded region. This number of faulty nodes is
not sufficient to completely partition a correct node in
WH’T’T from all correct nodes in TT’J’J. Then at least
one correct node in region TT’J’J should be able to
hear from at least one correct node in region WH’T’T,
and in turn all other correct nodes in TT’J’J should
be able to receive the broadcast. Similarly, at least one
correct node in region U’UK’K should be able to hear
from at least one correct node in TT’J’J, and in turn all
correct nodes along U’U should be able to receive the
broadcast. A symmetric argument holds for the nodes
along S’S.

Thus, if all nodes in nbd(a,b) receive the broadcast,
then all nodes in pnbd(a,b) also receive the broadcast.
Since the considered failures are only of crash-stop
kind, the received value is guaranteed to be correct.

VIII. RELIABLE BROADCAST IN EUCLIDEAN
METRIC

We now briefly consider the issue of reliable
broadcast in the L2 i.e. Euclidean metric. We refrain
from establishing exact thresholds as it is difficult
to precisely determine lattice points falling in areas
bounded by circular arcs. We do however present
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Fig. 11. Approximate Construction depicting Node-Disjoint Paths
(PQ from Fig. 10 rotated to x-axis)

informal arguments that suggest that reliable broadcast
in L2 is definitely achievable if slightly less that one-
fourth fraction of nodes in any neighborhood exhibit
Byzantine faults. We work with the value t < 0.23πr2.
The basis for the argument is that for sufficiently large
r, the number of nodes that lie in various subregions
(having area A) of a circle of radius r (elaborated
later) are approximately A ± O(r). Thus, we expect
the argument to hold well for large values of r. The
argument proceeds by induction, as in the previous
section.

Base Case:

All honest nodes in nbd(0,0) are able to commit
to the correct value. This follows trivially since they
hear the origin directly.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b)
are able to commit to the correct value, then all honest
nodes in pnbd(a,b) are able to commit to the correct
value.

Justification of Inductive Hypothesis:
We show that each node in pnbd(a,b) should be able
to reliably determine the value committed to by 2t + 1
nodes in nbd(a,b). Since no more than t of these can be
faulty, this would guarantee that the node will become
aware of t +1 nodes in nbd(a,b) having committed to a
(the correct) value, and will also commit to it. In order

to show this, we show that each node is connected
to at least 2t + 1 nodes in nbd(a,b) either directly, or
through 2t + 1 node disjoint paths that all lie entirely
within some single neighborhood. Thus at least t + 1
of these paths are guaranteed to be fault-free and shall
allow communication of the correct value.

Consider the node at (a,b), as in Fig. 10. Let d
be the distance between the node at (a,b) (we call
it node N) and any node in (pnbd(a,b) − nbd(a,b))
(we call it node Q). Then d ≤ r + 1. Consider the
half-neighborhood of (a,b) demarcated by the medial
axis perpendicular to NQ (not counting the points
falling on the medial axis). Then, as the number of
faults t < 0.23πr2, it implies that there must be at least
2t +1 nodes lying in this half-neighborhood. We attempt
to quantify the number of node-disjoint paths between
any node P in this half-neighborhood, and the node Q.
Observe that in the worst case, the distance D between
P and Q is ≈ r

√
2. We consider the situation in Fig.

11 with PQ rotated to the horizontal axis. The distance
PQ is r

√
2. We attempt to construct node-disjoint

paths that all lie within the neighborhood centred at
M (the midpoint of PQ). The set of nodes marked
A are common neighbors of P and Q and constitute
two-hop PQ paths (P → A → Q). A set of three-hop
paths P → B1 → B2 → Q and P → D1 → D2 → Q is
also formed where each point (x,y) in region B1 has
a corresponding point (x + r,y) in B2. Similarly there
is a set of three-hop paths P → C1 → C2 → Q and
P → D1 → D2 → Q, since each point (x,y) in C1 (D1)
has a correponding point (x+ 1√

2 r,y) in C2 (D2). Finally,
there is a set of paths P → E1 → E2 → Q such that each
point in E1 has a one-to-one correpondence with its
mirror image with respect to axis OO’ which lies in E2.
The number of such paths is approximately equal to the
sum of the areas A, B1, C1, D1, and E1 which turns out to
be approximately 1.47r2 = 0.47πr2 > (2(0.23πr2)+ 1).
Thus approximately 0.23πr2 Byzantine faults may be
tolerated.

We also argue similarly that reliable broadcast is
not possible if t ≥ 0.3πr2. The argument is based on a
construction identical to that presented in [1] for L∞,
which is depicted in Fig. 12. As already argued in [1],
this arrangement of faults renders reliable broadcast
impossible. Note that the maximum number of faults
lying in any single neighborhood is given by the
number of faulty nodes in the circled region (Fig. 12).
The relevant area under the circle is approximately



x=a x=a+r−1

(0, 0) (0, 0)

x=a+r−1x=a

r odd r even

PP

Fig. 12. Impossibility Construction for Byzantine Failues in Eu-
clidean metric

0.6πr2, and we expect approximately 0.6πr2 ± O(r)
nodes to lie in it. Of these around 0.3πr2 ± O(r) are
expected to be faulty. This concludes the argument
that if t ≥ 0.3πr2 (approximately), reliable broadcast
would be unachievable. Thus the critical threshold for
L2 metric seems to lie between a 0.23 and a 0.3 fraction
i.e. close to one-fourth fraction of faults.

Observe that the above argument also leads to the
conclusion that upto 2t = 0.46πr2 crash-stop failures
may be tolerated, while around 0.6πr2 failures would
render reliable broadcast impossible. Thus, for crash-
stop failures, the threshold is expected to be somewhere
around half the number of nodes in a neighborhood.

IX. RELIABLE BROADCAST WITH A SIMPLER
BYZANTINE PROTOCOL

We present bounds for tolerable faults when an ex-
tremely simple protocol (described in [1]) is used. In
this protocol, initially the source transmits the value,
and its immediate neighbors are able to commit to
that value instantly. They then re-broadcast the value
committed to and terminate protocol operation. Any
other node that has heard the same value reported by
at least t + 1 neighbors, commits to it, re-broadcasts
it, and then terminates. Thus the protocol proceeds till
either all nodes have terminated, or a situation is reached
where no further progress is possible. We present an
asymptotically tighter bound for the number of tolerable
Byzantine faults in the L∞ metric (using this protocol)
than that presented in [1] viz. we claim and prove that
reliable broadcast is always possible for t ≤ 2

3 r2 which
dominates the bound of t <

1
2(r(r+

√

r
2 +1))−2, proved

in [1], for all sufficiently large r.

THEOREM 6: If t ≤ 2
3 r2, it is possible to achieve

reliable broadcast, in the L∞ metric, with the given
protocol.
The proof is presented in the Appendix.

X. IMPACT OF ADDRESS-SPOOFING AND
COLLISIONS

The presence of a broadcast channel introduces
numerous difficulties by way of the possibility of a
malicious node spoofing another node’s address and
sending spurious messages under guise, as well as
the possibility of disruption of communication via
deliberate collisions. The results presented in this paper
assume that neither problem exists.

When the adversary has control over low-level
networking functions, reliable broadcast is extremely
diffcult to achieve. If address spoofing is allowed,
any malicious node may attempt to impersonate any
honest node. Similarly, reliable broadcast is rendered
impossible if the adversary can cause an unbounded
number of collisions, since a faulty node can cause
collision with any transmission made by a good node in
its vicinity. When the number of collisions is bounded, it
may be possible to come up with protocols that achieve
reliable broadcast. If the adversary uses collisions to
merely disrupt communication, the problem is trivially
solved by re-transmitting messages a sufficient number
of times. However, the adversary might use it to send
contradicting messages to different parts of the network
(a situation briefly discussed in [1]). This situation might
be remediable via a protocol that involves consultation
between the neighbors of a node as to the value they
heard it transmit, as well as any detected collisions, and
requires further investigation.

XI. CONCLUSIONS

We have presented results regarding the number of
Byzantine and crash-stop failures that may be tolerable
in a radio network without rendering reliable broadcast
impossible. We have considered an adversarial model
where the adversary is free to choose faulty nodes as
long as the placement satisfies the constraint that no
neighborhood has more than t faults. Another useful
model to consider would be that of random failure,
whereby each node has a probability of failure p f , and
nodes fail independently of each other. Observe that in
case of crash-stop failures, the problem is similar to the
problem of site percolation [10].

Another aspect that requires further attention is



that of efficient implementation of a reliable broadcast
service in a real wireless network. In the presence of
channel errors etc., the basic reliable local broadcast
requirement is by itself not trivial to achieve. A
mechanism for reliable broadcast in a multi-hop mobile
network is described in [11]. However, only temporary
and non-Byzantine node failures are taken into account,
and the mechanism primarily relies on a clustering
scheme with unicast messages (where link errors are
handled via retransmissions). There is need for further
work on efficient Byzantine fault-tolerant protocols for
multi-hop wireless networks, in order to bridge the gap
between theory and practice.
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APPENDIX

Proof of Theorem 6 (by induction)

Base Case:

All honest nodes in nbd(0,0) are able to commit
to the correct value. This follows trivially since they
hear the origin directly.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b)

i.e. all honest nodes in nbd(a,b) are able to commit,
then all honest nodes in pnbd(a,b) are able to commit.

Proof of Inductive Hypothesis:

A sufficient condition for a node to be able to
commit to the correct message value is that at least
2t + 1 = 4

3 r2 + 1 of its neighbors must have committed
and broadcast their committed value before it. Assume
that all honest neighbors of node (a,b) have arrived at a
decision. Then after all these nodes have broadcast their
committed value, a certain number of other nodes will
definitely be able to commit as the sufficient condition
is satisfied for them. We consider a subset of these
nodes which are indicated in Fig. 13 i.e. 2d r

2e + 1
such nodes along each edge of the central square are
definitely able to commit, for all r > 1. That these
nodes are able to commit is evident by observing that
the number of committed neighbors of these nodes is
≥ (r + 1 + r

2)r >
3
2 r2 + r >

4
3 r2 + 1 = 2· 2

3 r2 + 1 (shaded
region in Fig. 13). Once these nodes have broadcast their
committed value, the adjacent row of 2d r

2e+ 1 nodes
(Fig. 14) will be able to commit and so on, till the stack
of committed nodes adjoining each edge of the central
square reaches a size of b r

3c rows. This may be seen as
follows: we have already argued that row 1 will be able
to commit. Given that row(i− 1) has committed, row
i can commit if (d 3

2 re+ 1)(r + 1− i) + (i− 1)(2d r
2e+

1)+(i−1)(d r
2e− i+1) ≥ 4

3 r2 +1. This condition holds
for all i ≤ b r√

6c, when r ≥ 2. This implies that the
stack can grow to at least r

3 rows , since
√

6 < 3 (Fig. 15).

Once this first stage is over, we show that the remaining
nodes would be able to commit. As Fig. 16 depicts, after
the first stage completes, there are 8 more nodes which
will definitely be able to commit since their committed
neighbors ≥ (r + 1 + d r

2e)r + 2d r
2eb r

3c ≥ 11r2

6 ≥ 4r2

3 (for
all r ≥ 2). Thereafter all the other remaining nodes will
be in a position to commit since the minimum number
of committed neighbors that any of these nodes has is
≥ (r + 1)r + 2d r

2eb r
3c+ 4 >

4r2

3 (see shaded region in
Fig. 16). Thus the inductive hypthesis stands proven.

The inductive hypothesis along with the base case
suffice to show that every honest node will eventually
commit to the correct message.
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Fig. 14. Progress of First Stage
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Fig. 15. Completion of First Stage
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Fig. 16. Second Stage: Step 1
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