Byzantine Vector Consensus in Complete Graphs ~

Nitin H. Vaidya
Department of Electrical and Computer
Engineering
University of lllinois at Urbana-Champaign
Urbana, lllinois, U.S.A.
nhv@illinois.edu

ABSTRACT

Consider a network of n processes, each of which has a d-
dimensional vector of reals as its input. Each process can
communicate directly with all the processes in the system;
thus the communication network is a complete graph. All
the communication channels are reliable and FIFO (first-in-
first-out).

e We prove that in a synchronous system, n > max(3f+
1, (d+1)f+1) is necessary and sufficient for achieving
Byzantine vector consensus.

e In an asynchronous system, it is known that ezact con-
sensus is impossible in presence of faulty processes. For
an asynchronous system, we prove that n > (d+2)f +
1 is necessary and sufficient to achieve approzimate
Byzantine vector consensus.

Our sufficiency proofs are constructive. We prove suffi-
ciency by providing explicit algorithms that solve exact BVC
in synchronous systems, and approximate BVC in asyn-
chronous systems.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms, Theory

Keywords

Byzantine consensus, vector inputs, asynchronous and syn-
chronous systems

*This research is supported in part by National Science
Foundation awards CNS-1059540 and CNS-1115808 and the
Cullen Trust for Higher Education. Any opinions, find-
ings, and conclusions or recommendations expressed here
are those of the authors and do not necessarily reflect the
views of the funding agencies or the U.S. government.

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatctctipies are not
made or distributed for profit or commercial advantage aati¢dhpies bear

this notice and the full citation on the first page. Copyrigior components
of this work owned by others than ACM or the author must be hethoTo

copy otherwise, or republish, to post on servers or to néblige to lists,

requires prior specific permission and/or a fee.

PODC'13, July 22—-24, 2013, Montréal, Québec, Canada.

Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

Vijay K. Garg
Department of Electrical and Computer
Engineering
University of Texas at Austin
Austin, Texas, U.S.A.
garg@ece.utexas.edu

1. INTRODUCTION

This paper addresses Byzantine vector consensus (BVC),
wherein the input at each process is a d-dimensional vector
of reals, and each process is expected to decide on a deci-
sion vector that is in the conver hull of the input vectors
at the non-faulty processes. The system consists of n pro-
cesses in P = {p1,p2, - ,pn}. We assume n > 1, since
consensus is trivial for n = 1. At most f processes may be
Byzantine faulty, and may behave arbitrarily [13]. All pro-
cesses can communicate with each other directly on reliable
FIFO (first-in first-out) channels. Thus, the communica-
tion network is a complete graph. The input vector at each
process may also be viewed as a point in the d-dimensional
Euclidean space R¢, where d > 0 is a finite integer. Due
to this correspondence, we use the terms point and wvector
interchangeably. Similarly, we interchangeably refer to the
d elements of a vector as coordinates. We consider two ver-
sions of the Byzantine vector consensus (BVC) problem, Ez-
act BVC and Approximate BVC. Mendes and Herlihy have
independently obtained similar results for approzimate BVC
[15].

Exact BVC

Exact Byzantine vector consensus must satisfy the follow-
ing three conditions.

o Agreement: The decision (or output) vector at all the
non-faulty processes must be identical.

e Validity: The decision vector at each non-faulty pro-
cess must be in the convex hull of the input vectors at
the non-faulty processes.

o Termination: Each non-faulty process must terminate
within a finite amount of time.

The traditional consensus problem [14, 11] is obtained
when d = 1; we refer to this as scalar consensus. n > 3f +1
is known to be necessary and sufficient for achieving Byzan-
tine scalar consensus in complete graphs [13, 14]. We ob-
serve that simply performing scalar consensus on each di-
mension of the input vectors independently does not solve
the vector consensus problem. In particular, even if validity
condition for scalar consensus is satisfied for each dimen-
sion of the vector separately, the above wvalidity condition
of vector consensus may not necessarily be satisfied. For
instance, suppose that there are four processes, with one
faulty process. Processes pi,p2 and ps are non-faulty, and

have the following 3-dimensional input vectors, respectively:
X1 = [%7%7%]7 X2 = [%7%7%]7 X3 = [%7%7%] Process P4 is
faulty. If we perform Byzantine scalar consensus on each
dimension of the vector separately, then the processes may
possibly agree on the decision vector [%, %, %], each element
of which satisfies scalar validity condition along each dimen-
sion separately; however, this decision vector does not satisfy
the validity condition for BVC because it is not in the convex
hull of input vectors of non-faulty processes. In this exam-
ple, since every non-faulty process has a probability vector
as its input vector, BVC validity condition requires that the
decision vector should also be a probability vector. In gen-
eral, for many optimization problems [4], the set of feasible
solutions is a convex set in Euclidean space. Assuming that
every non-faulty process proposes a feasible solution, BVC
guarantees that the vector decided is also a feasible solution.
Using scalar consensus along each dimension is not sufficient
to provide this guarantee.

Approximate BVC

In an asynchronous system, processes may take steps at
arbitrary relative speeds, and there is no fixed upper bound
on message delays. Fischer, Lynch and Paterson [10] proved
that exact consensus is impossible in asynchronous systems
in the presence of even a single crash failure. As a way to
circumvent this impossibility result, Dolev et al. [5] intro-
duced the notion of approrimate consensus, and proved the
correctness of an algorithm for approximate Byzantine scalar
consensus in asynchronous systems when n > 5f 4+ 1. Sub-
sequently, Abraham, Amit and Dolev [1] established that
approximate Byzantine scalar consensus is possible in asyn-
chronous systems if n > 3f+1. Other algorithms for approx-
imate consensus have also been proposed (e.g., [3, 9]). We
extend the notion of approximate consensus to vector con-
sensus. Approrimate BV C must satisfy the following condi-
tions:

e c-Agreement: For 1 <[< d, the [-th elements of the
decision vectors at any two non-faulty processes must
be within € of each other, where ¢ > 0 is a pre-defined
constant.

e Validity: The decision vector at each non-faulty pro-
cess must be in the convex hull of the input vectors at
the non-faulty processes.

o Termination: Each non-faulty process must terminate
within a finite amount of time.

The main contribution of this paper is to establish the fol-
lowing bounds for complete graphs.

e In a synchronous system, n > max(3f+1,(d+1)f+1)
is necessary and sufficient for Ezact BVC in presence

of up to f Byzantine faulty processes. (Theorems 1
and 3).

e In an asynchronous system, n > (d + 2)f + 1 is neces-
sary and sufficient for Approximate BVC in presence
of up to f Byzantine faulty processes. (Theorems 4
and b).

Observe that the two bounds above are different when
d > 1, unlike the case of d = 1 (i.e., scalar consensus).
When d = 1, in a complete graph, 3f + 1 processes are
sufficient for exact consensus in synchronous systems, as well
as approximate consensus in asynchronous systems [1]. For
d > 1, the lower bound for asynchronous systems is larger
by f compared to the bound for synchronous systems.

In prior literature, the term vector consensus has also been
used to refer to another form of consensus, wherein the input
at each process is a scalar, but the agreement is on a vector
containing these scalars [7, 18]. Thus, our results are for a
different notion of consensus.

Many notations introduced throughout the paper are also
summarized in Appendix A. We use operator |.| to obtain
the size of a multiset or a set. We use operator || . || to
obtain the absolute value of a scalar.

2. SYNCHRONOUS SYSTEMS

In this section, we derive necessary and sufficient condi-
tions for exact BVC in a synchronous system with up to f
faulty processes. The discussion in the rest of this paper
assumes that the network is a complete graph, even if this is
not stated explicitly in all the results.

2.1 Necessary Condition for Exact BVC

THEOREM 1. n > max(3f 4+ 1,(d+1)f + 1) is necessary
for Exact BVC in a synchronous system.

PRrROOF. From [13, 14], we know that, for d = 1 (i.e.,
scalar consensus), n > 3f + 1 is a necessary condition for
achieving exact Byzantine consensus in presence of up to f
faults. If we were to restrict the d-dimensional input vectors
to have identical d elements, then the problem of vector
consensus reduces to scalar consensus. Therefore, n > 3f+1
is also a necessary condition for Ezact BVC for arbitrary d.
Now we prove that n > (d + 1)f + 1 is also a necessary
condition. Since the state of two processes may be identical,
in the discussion below, we use a multiset to represent the
collection of the states of a subset of processes.

First consider the case when f = 1, i.e., at most one pro-
cess may be faulty. Since none of the non-faulty processes
know which process, if any, is faulty, as elaborated in Ap-
pendix B, the decision vector must be in the convex hull of
each multiset containing the input vectors of n — 1 of the
processes (there are n such multisets).

Thus, this intersection must be non-empty, for all possible
input vectors at the n processes. (Appendix B provides fur-
ther clarification.) We now show that the intersection may
be empty when n = d 4 1; thus, n = d 4+ 1 is not sufficient
for f =1.

Suppose that n = d + 1. Consider the following set of
input vectors. The input vector of process p;, where 1 <
i < d, is a vector whose i-th element is 1, and the remaining
elements are 0. The input vector at process p4+1 is the all-0
vector (i.e., the vector with all elements 0). Note that the d
input vectors at pi,--- ,pas form the standard basis for the
d-dimensional vector space. Also, none of the d + 1 input
vectors can be represented as a convex combination of the
remaining d input vectors. For 1 <i < d+ 1, let Q; denote
the convex hull of the inputs at the n — 1 = d processes in
P — {p:}. We now argue that NI Q; is empty.

For 1 < i < d, observe that for all the points in Q;, the
i-th coordinate is 0. Thus, any point that belongs to the

intersection N ; Q; must have all its coordinates 0. That
is, only the all-0 vector belongs to N%_; Q;. Now consider
Qad+1, which is the convex hull of the inputs at the first d
processes. Due to the choice of the inputs at the first d
processes, the origin (i.e., the all-0 vector) does not belong
to Qa41. From the earlier observation on N&; Q;, it follows
that ﬂf;rll i = 0. Therefore, the Exact BVC problem for
f = 1 cannot be solved with n =d+ 1. Thus, n =d+ 1 is
not sufficient. It should be easy to see that n < d+1 is also
not sufficient. Thus, n > d + 2 is a necessary condition for
f=1

Now consider the case of f > 1. Using the commonly
used simulation approach [13], we can prove that (d + 1)f
processes are not sufficient. In this approach, f simulated
processes are implemented by a single process. If a correct
algorithm were to exist for tolerating f faults among (d+1) f
processes, then we can obtain a correct algorithm to tolerate
a single failure among d 4+ 1 processes, contradicting our
result above. Thus, n > (d+1)f+1 is necessary for f > 1.
(For f = 0, the necessary condition holds trivially.) [J

2.2 Sufficient Condition for Exact BVC

We now present an algorithm for Exact BVC in a syn-
chronous system, and prove its correctness in a complete
graph with n > max(3f + 1,(d + 1)f + 1). The algorithm
uses function I'(Y) defined below, where Y is a multiset of
points. H(T') denotes the convex hull of a multiset 7.

DY) = Nrcy, i1=jy|-5 H(T). (1)

The intersection above is over the convex hulls of all subsets
of Y of size |Y]| — f.

Exact BVC algorithm for n > max(3f+1, (d+1)f+1):

1. Each process uses a scalar Byzantine broadcast algo-
rithm (such as [13, 6]) to broadcast each element of
its input vector to all the other processes (each ele-
ment is a scalar). The Byzantine broadcast algorithm
allows a designated sender to broadcast a scalar value
to the other processes, while satisfying the following
properties when n > 3f + 1: (i) all the non-faulty pro-
cesses decide on an identical scalar value, and (ii) if
the sender is non-faulty, then the value decided by the
non-faulty processes is the sender’s proposed (scalar)
value. Thus, non-faulty processes can agree on the d
elements of the input vector at each of the n processes.

At the end of the this step, each non-faulty process
would have received an identical multiset S containing
n vectors, such that the vector corresponding to each
non-faulty process is identical to the input vector at
that process.

2. Each process chooses as its decision vector a point in
I'(S); all non-faulty processes choose the point identi-
cally using a deterministic function. We will soon show
that I'(S) is non-empty.

When n is larger than the lower bound, complexity of
the above algorithm may be improved by first performing
consensus among max(3f +1, (d+ 1) f + 1) of the processes,
with the remaining processes choosing majority vote on the

decision vectors received from any 2f + 1 of these processes
as their own decision.

We now prove that the above Exact BVC algorithm is
correct. Later, we show how the decision vector can be found
in Step 2 using linear programming. The proof of correctness
of the above algorithm uses the following celebrated theorem
by Tverberg [19]:

THEOREM 2. (Tverberg’s Theorem [19]) For any integer
f > 1, and for every multiset Y containing at least (d +
1)f +1 points in R4, there exists a partition Yi, - - - ,Yry1 of
Y into f+ 1 non-empty multisets such that ﬂlf;rll H(Y:) # 0.

The points in multiset Y above are not necessarily distinct
[19]; thus, the same point may occur multiple times in Y.
The partition in Theorem 2 is called a Twerberg partition,
and the points in N/, #(Y}) in Theorem 2 are called Tver-
berg points. Figure 1 illustrates a Tverberg partition of a set
of 7 vertices in 2-dimensions. The 7 vertices are at the cor-
ners of a heptagon. Thus, n = 7 here, and d = 2. Let f = 2.
Then, n = (d+1)f + 1, and Tverberg’s Theorem (Theorem
2) implies the presence of a Tverberg partition consisting of
f+ 1 = 3 subsets. Figure 1 shows the convex hulls of the
three subsets in the Tverberg partition: one convex hull is
a triangle, and the other two convex hulls are each a line
segment. In this example, the three convex hulls intersect
in exactly one point. Thus, there is just one Tverberg point.
In general, there can be multiple Tverberg points.

Figure 1: Illustration of a Tverberg partition (in-
spired by an illustration authored by David Eppstein

[8])-

The lemma below is used to prove the correctness of the
above algorithm, as well as the algorithm presented later in
Section 3.

LEMMA 1. For any multiset Y containing at least (d +
1)f + 1 points in R, T(Y) # 0.

Proor. Consider a Tverberg partition of Y into f+1 non-
empty subsets Y1,---,Ysy1, such that the set of Tverberg
points N/ H(Y}) # 0. Since |Y| > (d+1)f+1, by Theorem
2, such a partition exists. By (1) we have

DY) = Nrcy, iri=y|— H(T). (2)

Consider any T in (2). Since |T| = |Y| — f and there are
f + 1 subsets in the Tverberg partition of Y, T excludes
elements from at most f of these subsets. Thus, T contains

at least one subset from the partition. Therefore, for each
T, N/ H(Y)) C H(T). Hence, from (2), it follows that
NP H(Y) C D(Y). Also, because N/ H(Y;) # 0, it now
follows that T'(Y) # 0. O

We can now prove the correctness of our Exact BVC al-
gorithm.

THEOREM 3. n > max(3f +1,(d+ 1)f + 1) is sufficient
for achieving FExact BVC in a synchronous system.

PrOOF. We prove that the above Ezact BVC algorithm is
correct when n > max(3f+1, (d+1)f+1). The termination
condition holds because the Byzantine broadcast algorithm
used in Step 1 terminates in finite time. Since |S| = n >
(d+1)f +1, by Lemma 1, I'(S) # 0. By (1) we have

I(S) =Nres, ri=|s|-¢ H(T). (3)

At least one of the multisets 7" in (3), say T, must contain
the inputs of only non-faulty processes, because |T'| = |S| —
f = n — f, and there are at most f faulty processes. By
definition of I'(S), I'(S) € H(T™). Then, from the definition
of T, and the fact that the decision vector is chosen from
I'(S), the wvalidity condition follows.

Agreement condition holds because all the non-faulty pro-
cesses have identical S, and pick as their decision vector a
point in I'(S) using a deterministic function in Step 2. [

We now show how Step 2 of the Exact BVC algorithm
can be implemented using linear programming. The input
to the linear program is S = {s; : 1 < i < n}, a multiset of
d-dimensional vectors. Our goal is to find a vector z € I'(S);
or equivalently, find a vector z that can be expressed as a
convex combination of vectors in 71" for all choices T' C S
such that |T'| = n— f. The linear program uses the following

d+ (nff) (n — f) variables.

e 71,..74: variables for d elements of vector z.

e ar;: coefficients such that z can be written as convex
combination of vectors in 7. We include here only
those n — f indices ¢ for which s; € T'.

For every T, the linear constraints are as follows.

oz — ZSiET ar,is; (zis a linear combination of s; €
T)

° ZsiET ar,; = 1 (The sum of all coefficients for a

particular T is 1)

® QT >0 foralls; €T.

For every T', we get d+14n— f linear constraints, yielding a
total of (nff) (d4+14+n— f) constraints in d+ (nff) (n—1)
variables. Hence, for any fized f, a point in I'(S) can be
found in polynomial time by solving a linear program with
the number of variables and constraints that are polynomial
in n and d (but not in f). However, when f grows with
n, the computational complexity is high. Observe that we
are interested in any feasible vector z that satisfies above lin-
ear constraints and any deterministic optimization objective
function can be used in the linear program.

We note here that the above Exact BVC algorithm re-
mains correct if the non-faulty processes identically choose
any point in T'(S) as the decision vector. In particular, as

seen in the proof of Lemma 1, all the Tverberg points are
contained in I'(S), therefore, one of the Tverberg points for
multiset S may be chosen as the decision vector. It turns out
that, for arbitrary d, currently there is no known algorithm
with polynomial complexity to compute a Tverberg point
for a given multiset [2, 16, 17]. However, in some restricted
cases, efficient algorithms are known (e.g., [12]).

3. ASYNCHRONOUS SYSTEMS

We develop a tight necessary and sufficient condition for
approximate asynchronous BVC.

3.1 Necessary Condition for Approximate
Asynchronous BVC

THEOREM 4. n > (d+ 2)f + 1 is necessary for approxi-
mate BVC in an asynchronous system.

PRrROOF. We first consider the case of f = 1. Suppose that
a correct, algorithm exists for n = d + 2. Denote by xi the
input vector at each process px. Now consider a process p;,
where 1 < 4 < d+1. Since a correct algorithm must tolerate
one failure, process p; must terminate in all executions in
which process pg+2 does not take any steps. Suppose that
all the processes are non-faulty, but process p4i2 does not
take any steps until all the other processes terminate. At the
time when process p; terminates (1 < i < d+ 1), it cannot
distinguish between the following d + 1 scenarios:

e Process pg+2 has crashed: In this case, to satisfy the
validity condition, the decision of process p; must be in
the convex hull of the inputs of processes p1,- -+, Pi+1-
That is, the decision vector must be in the convex hull
of X2 defined below.

X = {xp s 1<k<d+1} (4)

X442 is not included above, because until process p;
terminates, pa+2 does not take any steps (so p; cannot
learn any information about xq42).

e Process p; (j #14, 1 < j < d+1) is faulty, and pro-
cess pa+2 is slow, and hence ps+2 has not taken any
steps yet: Recall that we are considering p; at the
time when it terminates. Since process p4+2 has not
taken any steps yet, process p; cannot have any infor-
mation about the input at pg42. Also, in this scenario
p; may be faulty, therefore, process p; cannot trust the
correctness of the input at p;. Thus, to satisfy the va-
lidity condition, the decision of process p; must be in
the convex hull of X7 defined below.

K3

ck#jand 1 <k<d+1} (5)

The decision vector of process p; must be valid indepen-
dent of which of the above d+ 1 scenarios actually occurred.
Therefore, observing that H(X?*?) D H(X7/), where j # i,
we conclude that the decision vector must be in

Nizin<i<a1 H(XT) (6)

Recall that € > 0 is the parameter of the e-agreement con-
dition in Section 1. For 1 < ¢ < d, suppose that the i-th
element of input vector x; is 2¢, and the remaining d — 1
elements are 0. Also suppose that x44+1 and X442 are both
equal to the all-0 vector.

Let us consider process pg+1. In this case, H(XéH) for
7 < d only contains vectors whose j-th element is 0. Thus,
the intersection of all the convex hulls in (6) only contains
the all-0 vector, which, in fact, equals x4+1. Thus, the de-
cision vector of process p4s+1 must be equal to x411. We
can similarly show that for each p;, 1 < i < d+ 1, the in-
tersection in (6) only contains vector x;, and therefore, the
decision vector of process p; must be equal to its input x;.
The input vectors at each pair of processes in p1,-- -, pat1
differ by 2¢ in at least one element. This implies that the
e-agreement condition is not satisfied. Therefore, n = d + 2
is not sufficient for f = 1. It should be easy to see that
n < d+ 2 is also not sufficient.

For the case when f > 1, by using a simulation similar to
the proof of Theorem 1, we can now show that n < (d+2)f is
not sufficient. Thus, n > (d+2)f + 1 is necessary for f > 1.
(For f = 0, the necessary condition holds trivially.) [J

3.2 Sufficient Condition for Approximate
Asynchronous BVC

We will prove that n > (d+ 2)f + 1 is sufficient by prov-
ing the correctness of an algorithm presented in this section.
Mendes and Herlihy have also independently obtained the
above necessary condition for approximate BVC, and devel-
oped a different algorithm [15].

The algorithm presented below executes in asynchronous
rounds. Each process p; maintains a local state v;, which is
a d-dimensional vector. We will refer to the value of v; at
the end of the t-th round performed by process p; as v;|t].
Thus, v;[t — 1] is the value of v; at the start of the ¢-th
round of process p;. The initial value of v;, namely v;[0], is
equal to p;’s input vector, denoted as x;. The messages sent
by each process anytime during its t-th round are tagged by
the round number ¢. This allows a process p; in its round
t to determine, despite the asynchrony, whether a message
received from another process p; was sent by p; in p;’s round
t.

The proposed algorithm is obtained by suitably modifying
a scalar consensus algorithm presented by Abraham, Amit
and Dolev [1] to achieve asynchronous approximate Byzan-
tine scalar consensus among 3f + 1 processes. We will re-
fer to the algorithm in [1] as the AAD algorithm. We first
present a brief overview of the AAD algorithm, and describe
its properties. We adopt our notation above when describ-
ing the AAD algorithm (the notation differs from [1]). One
key difference is that, in our proposed algorithm v;[t] is a
vector, whereas in AAD description below, it is considered
a scalar. The AAD algorithm may be viewed as consisting
of three components:

1. AAD component #1: In each round t, the AAD algo-
rithm requires each process to communicate its state
vi[t — 1] to other processes using a mechanism that
achieves the properties described next. AAD ensures
that each non-faulty process p; in its round ¢ obtains
a set B;[t] containing at least n — f tuples of the form
(pj, wj,t), such that the following properties hold:

e (Property 1)
pi and p;:

For any two non-faulty processes

|Bi[t] N B;[t]] > n— f (7)

That is, p; and p; learn at least n — f identical
tuples.

e (Property 2) If (pi;, wi,t) and (pr, Wk, t) are both
in B;[t], then p; # px. That is, B;[t] contains at
most one tuple for each process.

e (Property 3) 1If py is non-faulty, and (px, Wi, t) €
Bi[t], then wy, = vi[t — 1]. That is, for any non-
faulty process px, B;[t] may only contain the tuple
(pr, vi[t — 1],t). (However, it is possible that,
corresponding to some non-faulty process, B;t]
does not contain a tuple at all.)

2. AAD component #2: Process p;, having obtained set
Bi[t] above, computes its new state v;[t] as a function
of the tuples in B;[t]. The primary difference between
our proposed algorithm and AAD is in this step. The
computation of v;[t] in AAD is designed to be correct
for scalar inputs (and scalar decision), whereas our ap-
proach applies to d-dimensional vectors.

3. AAD component #38: AAD includes a sub-algorithm
that allows the non-faulty processes to determine when
to terminate their computation. Initially, the processes
cooperate to estimate a quantity § as a function of
the input values at various processes. Different non-
faulty processes may estimate different values for 9,
since the estimate is affected by the behavior of faulty
processes and message delays. Each process then uses
1 + [log, 2] as the threshold on the minimum num-
ber of rounds necessary for the non-faulty processes to
converge within € of each other. The base of the log-
arithm above is 2, because the range of the values at
the non-faulty processes is shown to shrink by a factor
of £ after each asynchronous round of AAD [1]. Sub-
sequently, when the processes reach respective thresh-
olds on the rounds, they exchange additional messages.
After an adequate number of processes announce that
they have reached their threshold, all the non-faulty
processes may terminate.

It turns out that the Properties 1, 2 and 3 hold even if
Component #1 of AAD is used with v;[t] as a vector. We ex-
ploit these properties in our algorithm below. The proposed
algorithm below uses a function ®, which takes a set, say
set B, containing tuples of the form (pr,w,t), and returns
a multiset containing the points (i.e., wy). Formally,

®(B) = {wi : (px, Wi, t) € B} (8)

A mechanism similar to that in AAD may potentially be
used to achieve termination for the approximate BVC algo-
rithm below as well. The main difference from AAD would
be in the manner in which the threshold on the number of
rounds necessary is computed. However, for brevity, we sim-
plify our algorithm by assuming that there exists an upper
bound U and a lower bound v on the values of the d el-
ements in the inputs vectors at non-faulty processes, and
that these bounds are known a priori. Thus, all the ele-
ments in each input vector will be < U and > v. This as-
sumption holds in many practical systems, because the input
vector elements represent quantities that are constrained.
For instance, if the input vectors are probability vectors,
then U = 1 and v = 0. If the input vectors represent lo-
cations in 3-dimensional space occupied by mobile robots,
then U and v are determined by the boundary of the region
in which the robots are allowed to operate. The advantage
of the AAD-like solution over our simple approach is that,

depending on the actual inputs, the algorithm may poten-
tially terminate sooner, and the AAD mechanism prevents
faulty processes from causing the non-faulty processes to run
longer than necessary. However, the simple static approach
for termination presently suffices to prove the correctness of
our approximate BVC algorithm, as shown later.

Asynchronous Approximate BVC algorithm
form>(d+2)f+1:

1. In the ¢-th round, each non-faulty process uses the
mechanism in Component #1 of the AAD algorithm
to obtain a set B;[t] containing at least n — f tuples,
such that B;|[t] satisfies properties 1, 2, and 3 described
earlier for AAD. While these properties were proved in
[1] for scalar states, the correctness of the properties
also holds when v; is a vector.

2. In the t-th round, after obtaining set B;[t], process p;
computes its new state v;[t] as follows. Form a multiset
Z; using the steps below:

e Initialize Z; as empty.

e For each C C Bj[t] such that |[C] = n— f >
(d+1)f+1, add to Z; one deterministically chosen
point from I'(®(C)). Since |®(C)| = |C| > (d +
1)f + 1, by Lemma 1, I'(®(C)) is non-empty.

Note that |Z;| = (‘fi[tf”) < (nff) Calculate

ZzeZi Z

Vi[t] = |Z1|

)

3. Each non-faulty process terminates after
L+ [logy/(1-+) =27 rounds, where v (0 < v < 1)
is a constant defined later in (11). Recall that € is the
parameter of the e-agreement condition.

THEOREM 5. n > (d+2) f+1 is sufficient for approximate
BVC in an asynchronous system.

Proor. Without loss of generality, suppose that m pro-
cesses pi1, P2, -+ Pm are non-faulty, where m > n — f, and
the remaining n — m processes are faulty. In the proof, we

will often omit the round index [t] in B;|t], since the index
should be clear from the context. In this proof, we consider
the steps taken by the non-faulty processes in their respec-
tive t-th rounds, where ¢ > 0. We now define a walid point.
The definition is used later in the proof.

DEFINITION 1. A point r is said to be valid if there exists
a representation of r as a convex combination of vi[t — 1],
1 < k < m. That is, there exist constants Br, such that
0<B<land Y, e, Be =1, and

ro= > Bewklt—1] (10)

1<k<m

Br is said to be the weight of vi[t — 1] in the above convex
combination.

In general, there may exist multiple such convex combina-
tion representations of a valid point r. Observe that at least
one of the weights in any such convex combination must be
> >

For the convenience of the readers, we break up the rest
of this proof into three parts.

Part1:.

At a non-faulty process p;, consider any C' C B; such that
|C| =n — f (as in Step 2 of the algorithm). Since |®(C)| =
ICl=n—f>(d+1)f+1, by Lemma 1, I'(®(C)) # 0. So
Z; will contain a point from I'(®(C)) for each C.

Now, C' C By, |®2(C)| = n — f, and there are at most f
faulty processes. Then Property 3 of B; implies that at least
one (n — 2f)-size subset of ®(C') must also be a subset of
{vi[t=1],va[t—1], -+ , v [t—1]}, i.e., contain only the state
of non-faulty processes. Therefore, all the points in I'(®(C'))
must be valid (due to (1) and Definition 1). This observation
is true for each set C' enumerated in Step 2. Therefore, all
the points in Z; computed in Step 2 must be valid. (Recall
that we assume processes pi1,-- -, Pm are non-faulty.)

Part 11:.

Consider any two non-faulty processes p; and p;.

e Observation 1: As argued in Part I, all the points in
Z; are valid. Therefore, all the points in Z; can be
expressed as convex combinations of the state of non-
faulty processes, i.e., {vi[t—1], -+, v, [t—1]}. Similar
observation holds for all the points in Z; too.

e Observation 2: By Property 1 of B; and Bj,
|B; N Bj| > n— f.

(As noted earlier, we omit the round index [t] when dis-
cussing the sets B;[t] and Bj[t] here.) Therefore, there
exists a set C;; C B; N Bj such that |Cy;| = n — f.
Therefore, Z; and Z; both contain one identical point
from T'(®(C5;)). Suppose that this point is named z;;.
As shown in Part I above, z;; must be valid. Therefore,
there exists a convex combination representation of z;;
in terms of the states {vi[t—1], va[t—1], - , v [t—1]}
of non-faulty processes. Choose any one such con-
vex combination. There must exist a non-faulty pro-
cess, say Pg(i,5), such that the weight associated with
Vg(i,5) [t — 1] in the convex combination for z;; is >
% > % Note that, to simplify the notation, the nota-
tion g(7,7) does not make the round index ¢ explicit.
However, it should be noted that g(i,j) for processes
pi and p; can be different in different rounds. We can
now make the next observation.

e Observation 3: Recall from (9) that v;[t] is computed
as the average of the points in Z;, and |Zl| = (Bi}) <

\

(nff) By Observations 1, all the points in Z; are
valid, and by Observation 2, z;; € Z;. These observa-
tions together imply that v;[t] is also valid, and there
exists a representation of v;[t] as a convex combina-
tion of {vi[t—1], -+, vin[t — 1]}, wherein the weight of
Vit — 1] is > #ij‘) > m Similarly, we can
show that there exists a representation of v;[t] as a con-
vex combination of {vi[t — 1], -, vn[t — 1]}, wherein

the weight of vg(; ;)[t — 1] is > n(+ Define

nts)
_

n (nﬁ f)
Consensus is trivial for n = 1, so we consider finite
n > 1. Therefore, 0 < v < 1.

v = (11)

Part I11:.

Observation 3 above implies that for any 7 > 0, v;[7] is a
convex combination of {vi[r —1],--+ ,vm[r — 1]}. Applying
this observation for 7 = 1,2,--- ¢, we can conclude that
vi[t] is a convex combination of {v1[0],- - ,v,[0]}, implying
that the proposed algorithm satisfies the validity condition
for approximate consensus. (Recall that v[0] equals process
pr’s input vector.)

Let v;;[t] denote the I-th element of the vector state v;[t] of
process p;. Define [t] = maxi<k<m Vwi[t], the maximum
value of I-th element of the vector state of non-faulty pro-
cesses. Define yy[t] = mini<k<m Vi[t], the minimum value
of [-th element of the vector state of non-faulty processes.
Appendix C proves, using Observations 1 and 8 above, that
for 1 <1 <d,

Qlt] = mlt] < (L=7) (Ut —1] = wlt-1]), (12)
By repeated application of (12) we get

Quft] —plt] < (1 =7)" (0] = pu0]) (13)
Therefore, for a given € > 0, if

2[0] — u[0
t > logy,_y %7 (14)

then
Ql[t] _Ml[t] < €. (15)

Since (14) and (15) hold for 1 <1 < d, and U > ©;[0] and
v < 0] for 1 <1 < d, if each non-faulty process terminates
after 1+ Dogl/(lf,y) %] rounds, e-agreement is ensured.
As shown previously, validity condition is satisfied as well.
Thus, the proposed algorithm is correct, and n > (d+2)f +
1 is sufficient for approximate consensus in asynchronous
systems. O

4. SUMMARY

This paper addresses Byzantine vector consensus (BVC)
wherein the input at each process, and its decision, is a vec-
tor. We derive tight necessary and sufficient bounds on the
number of processes required for Exact BVC in synchronous
systems, and Approxzimate BVC in asynchronous systems.

Acknowledgments:.

Nitin Vaidya acknowledges Eli Gafni for suggesting the
problem, Lewis Tseng for feedback, and Jennifer Welch for
answering queries on distributed computing. Vijay Garg
acknowledges John Bridgman and Constantine Caramanis
for discussions on the problem.

5. REFERENCES

[1] I. Abraham, Y. Amit, and D. Dolev. Optimal
resilience asynchronous approximate agreement. In
OPODIS, 2004.

[2] P. Agarwal, M. Sharir, and E. Welzl. Algorithms for
center and Tverberg points. In Proceedings of the
twentieth annual symposium on Computational
geometry, pages 61-67. ACM, 2004.

[3] M. Ben-Or, D. Dolev, and E. Hoch. Simple gradecast
based algorithms. arXiv preprint arXiv:1007.1049,
2010.

[4] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[5] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and
W. E. Weihl. Reaching approximate agreement in the
presence of faults. J. ACM, 33:499-516, May 1986.

[6] D. Dolev, R. Reischuk, and H. Strong. Early stopping
in byzantine agreement. Journal of the ACM (JACM),
37(4):720-741, 1990.

[7] A. Doudou and A. Schiper. Muteness detector for
consensus with Byzantine processes. In ACM PODC,
1998.

[8] D. Eppstein. A Tverberg partition of the seven points
of a regular heptagon into three subsets with
intersecting convex hulls, 2010. Available from
http://commons.wikimedia.org/wiki/File:Tverberg_
heptagon.svg.

[9] A. D. Fekete. Asymptotically optimal algorithms for
approximate agreement. In Proceedings of the fifth
annual ACM symposium on Principles of distributed
computing, PODC ’86, pages 73-87, New York, NY,
USA, 1986. ACM.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32:374-382, April 1985.

[11] J. Garay and Y. Moses. Fully polynomial byzantine
agreement for processors in rounds. SIAM Journal on
Computing, 27(1):247-290, 1998.

[12] S. Jadhav and A. Mukhopadhyay. Computing a
centerpoint of a finite planar set of points in linear
time. Discrete & Computational Geometry, 1994.

[13] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. Prog. Lang. Syst.,
4(3):382-401, July 1982.

[14] N. A. Lynch. Distributed algorithms. Morgan
Kaufmann Publishers, 1995.

[15] H. Mendes and M. Herlihy. Multidimensional
approximate agreement in byzantine asynchronous
systems. In 45th ACM Symposium on the Theory of
Computing (STOC), June 2013.

[16] G. Miller and D. Sheehy. Approximate centerpoints
with proofs. Computational Geometry, 43(8):647-654,
2010.

[17] W. Mulzer and D. Werner. Approximating Tverberg
points in linear time for any fixed dimension. In
Proceedings of the 2012 symposuim on Computational
Geometry, pages 303-310. ACM, 2012.

[18] N. Neves, M. Correia, and P. Verissimo. Solving vector
consensus with a wormhole. IEEE Trans. on Parallel
and Distributed Systems, December 2005.

[19] M. A. Perles and M. Sigron. A generalization of
Tverberg’s theorem, 2007. CoRR,
http://arxiv.org/abs/0710.4668.

APPENDIX
A. NOTATIONS

This appendix summarizes some of the notations and ter-
minology introduced in the paper.

e n = number of processes.

o P ={pi,p2, -+ ,pn} is the set of processes in the sys-

tem.

e f = maximum number of Byzantine faulty processes.

e d = dimension of the input vector as well as decision
vector at each process.

e x; = d-dimensional input vector at process p;. The
vector is equivalently viewed as a point in the Euclidean

space R.

e H(Y) denotes the convex hull of the points in multiset
Y.

e m : The proof of Theorem 5 assumes, without loss of
generality, that for m > n — f, processes pi,--- ,pm
are non-faulty, and the remaining n — m processes are
faulty.

e I'(.) is defined in (1).

e O(.) is defined in (8).

e v;[t] is the state of process p; at the end of its ¢-th round
of the asynchronous BVC algorithm, ¢ > 0. Thus, v;[t—
1] is the state of process p; at the start of its ¢-th round,
t > 0. v;[0] for process p; equals its input x;.

e v;[t] is the I-th element of v;[t], where 1 <1 < d.

e Bi[t] defined in Section 3.2, is a set of tuples of the
form (p;, wj,t), obtained by process p; in Step 1 of the
approximate consensus algorithm.

e Weight in a convex combination is defined in Definition
1

o v = m7 as defined in (11). Note that 0 < v < 1
for finite n > 1.

o Ot] = maxi<r<m Vi[t]

o ft] = mini<k<m Vii[t]

o puft] = Quft] — pult]

|Y| denotes the size of a multiset Y.

|| a || is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOF OF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f =1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n — 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.

Suppose that the input at process p; is x;, 1 < i <n. All
the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and wvalidity conditions both.

e With f = 1, any one process may potentially be faulty.
In particular, process p; (1 <4 < n) may possibly be
faulty. Therefore, the input x; of process p; cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process p; (j # 7)
must be in the convex hull of the inputs at the processes
in P —{p;} (ie., all processes except p;). Thus, the
decision vector of process p; (j # i) must be in the
convex hull of the points in multiset X* below.

X'={xp : k#i, 1 <k<n}.

e To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets X* (1 < i < n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(X") denotes the convex hull
of the points in multiset X*, and Q; denotes H(X*?).

Ny HXY) = Ny Qs (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART Il

vii[t] denotes the [-th element of the vector state v;[t] of
process p;, 1 <1 < d. Processes pi1,--- ,pm are non-faulty,
and processes Pm+1,- - ,Pn are faulty, where m > n — f.
Recall that, for 1 <1 < d,

Quft] = |max Vi [t] (17)
plt] = min vilt] (18)
Define o (19)
pult] = Qu[t] — pult] (20)
Equivalently,
pltl = max] vilt] —vilt] | (21)
where || . || operator yields the absolute value of the scalar

parameter.
Consider any two non-faulty processes p;,p; (thus, 1 <
i,7 <m). Consider 1 <1 < d. Then

Ml[t_ 1] < Vil[t— 1]

< <
mlt =1 < wvult=1] <

Observations 1 and & in Part III of the proof of Theorem
5, and the definition of ~, imply the existence of constants
ag’s and Si’s such that:

vilt] = Z ap vi[t—1] where (24)
k=1
ap>0for 1<k<m, and » ay=1(25)
k=1
Ag(ig) =Y (26)
vi[t] = Z Brvi[t —1] where (27)
k=1

Bp>0for 1<k<m, and Y pBj=1(28)

k=1

Ba(ig) = (29)

In the following, let us abbreviate g¢(i,j) simply as g.
Thus, ag(;, ;) is same as ay, and By ;) is same as 34. From

(24) and (27), focussing on just the operations on I-th ele-
ments, we obtain

V,‘L[t] = f: akvkl[t—l]

< agvgt—1] + (1 — aq) Ult —1] (30)
because vy [t — 1] < [t — 1], Vk
< yvalt—1] +
(g —Wvarlt = 1] + (1—) ult — 1]
< yvalt—1] +
(ag — MU~ 1] + (1—ag) Uft — 1]
because vy [t — 1] < Ut — 1] and ag > v
< yvalt=1 + (=) ft —1] 31)

le[t] = i ,Bkvkl[t—l]

> Bgvalt—1] + (1= Bg) pult — 1]
because vi[t — 1] > w[t — 1], Vk
> yvalt—1] +
(Bg = Mvalt =1 + (1= Bg) pult — 1]
> yvalt=1] +
(Bg =pult =1 + (1= By) pult — 1]
because vy [t — 1] > [t — 1], and By >~
> qvalt—1] + (1) uft - 1] (32)

Subtracting (32) from (31), we get
valt] = vilt] < (1 =) (ft =1 — [t —1]) (33)

By swapping the role of p; and p; above, we can also show
that

viltl — valt] < (1=7) (uft = 1] — ult - 1]) (34)
Putting (33) and (34) together, we obtain
[valt] =valtl | < (1 =) (Ut =1] — [t — 1)
because Qi[t — 1] > wi[t — 1]

< A=) plt—1]
by the definition of p;[t — 1]

A

Because the previous inequality holds for all 1 < 7,5 < m,
we get

(Jax valt] —val | < (A =9)alt —1]
= pft] < A-7plt—1 by (21)
= Q] —wlt] < @ —7)uft —1] — wlt - 1))

This proves (12).

