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Abstract—In this paper, we propose to reduce the effect of
rate-independent MAC overheads in random access protocols by
partitioning the transmission channel spectrum into a narrow
channel and a wide channel. The narrow channel is used for
transmitting the short packets (approximately 100 bytes long) and
the wide channel is used for transmitting the longer packets. We
intend to use multiple radios, one each for the different channel
partitions. Narrow width channels have a reduced capacity,
which lowers the maximum transmission rate achievable on these
channels. As a result, the channel wastage due to the rate-
independent MAC overheads can be reduced. We propose a
protocol called WiSP (channel Width Selection based on Packet
size) to estimate the appropriate channel widths depending on the
relative traffic load involving short and long packets in the net-
work. We evaluate our protocol using extensive simulations and
demonstrate its effectiveness in achieving higher throughputs. We
propose our algorithm to complement the frame aggregation (an
existing approach that aggregates multiple packets to be sent in
a single transmit opportunity) technique. We show that there
are scenarios during which the frame aggregation can perform
poorly, and show that our proposed algorithm can provide a
good performance even in those situations when used along with
frame aggregation.

I. INTRODUCTION

The modern day communication networks predominantly
involve packets of smaller sizes. For instance, a 2008 study [1]
showed that more than 55% of the packets in the internet are
of sizes smaller than 100 bytes. This is not surprising given
that many of the traffic such as, those generated by VoIP or
the ACKs generated by TCP (used commonly by the HTML
traffic) are typically smaller than 100 bytes. Even though the
transmission time associated with such short packets are small,
the channel wastage due to bandwidth-independent overheads
of the MAC protocol is significant for these packets. The
bandwidth-independent (or rate-independent) overhead is the
channel time consumed independent of the transmission rate
used for data packets.

In most of the present day wireless communication tech-
niques that follow a random access scheme, the channel is
first assessed to be free before a packet transmission to avoid
collisions (e.g., DIFS in IEEE 802.11). If the channel is sensed
to be busy, the nodes backoff until the channel becomes free
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again. The associated overhead due to the time spent in backoff
or channel sensing are independent of the packet size or
the transmission rate, and are hence termed rate/bandwidth
independent. If, for instance, Pl (in bits) denotes the packet
payload size, T (in seconds) denotes the channel time con-
sumed by the rate-independent overhead associated with each
transmission, and R (in bits per second) denotes the transmis-
sion rate, then TR

Pl+TR fraction of channel capacity is wasted
as the rate-independent overhead [2]. Observe that the channel
wastage is higher when the packet payload size is small or
when we use higher rates of transmission. The wastage in
capacity becomes significant when short packets (∼ 100 bytes)
are queued in front of longer packets (∼ 1000 bytes), as the
long packets have to unnecessarily wait for the short packets
whose significant portion of transmission time is spent on the
overheads.

Current approaches for reducing the bandwidth independent
overhead include frame aggregation [3], [4], where multiple
MAC frames are combined into a larger frame and sent using
a single transmission opportunity. While frame aggregation is
in general effective for reducing the effect of the overheads,
there are some situations when frame aggregation cannot be
adopted. For instance, in the case of voice flows, the packets
usually arrive at a low rate and aggregating the voice packets
before sending out the combined packets will incur a delay.
Moreover, because voice packets are typically only 100 bytes
long, multiple voice packets may have to be combined to
create a single MAC frame that is large enough to mitigate
the effect of MAC overheads. Therefore, the voice packets
may end up being delayed further before they are actually
transmitted over the network, which may result in a poor
voice quality at the receiver. Simply choosing to not aggregate
the voice packets may once again result in expensive channel
capacity to be wasted on the overheads. With the rapidly
growing rates of VoIP calls in the internet, this would imply
a significant wastage of capacity.

In this work, we propose to partition the channel into a
narrow channel and a wide channel. The narrow channel is
used for transmitting the short packets and the wide channel
is used for transmitting the longer packets. We intend to use
multiple radios, one each for the different channel partitions.
Narrow width channels have a reduced capacity, which as a re-
sult lowers the maximum transmission rate achievable on these



2

channels. As a result, the channel wastage in rate-independent
overhead can be reduced. However, it is not straightforward
as to how much bandwidth (we interchangeably use the term
bandwidth to imply the width of the channel) to allocate
for short packet transmissions. This is because, if a node
predominantly transmits long packets with very little short
packets, then the capacity lost for the long packets while
partitioning the channel may cause a negative effect on their
throughput. On the other hand, if the node generates more
short packets than long packets, then the bandwidth allocated
for the short packets, if not sufficient, may result in an eventual
packet loss due to buffer overflow at the sender side. This
suggests that it is important to determine the appropriate
bandwidth required for each of the packet sizes. Furthermore,
it is also important to understand when to partition the channel,
depending on the amount of short and long packets generated
in the network.

To decide the appropriate channel partitions, we develop
a protocol called WiSP (channel Width Selection based on
Packet size), where we use a simple heuristic to determine
the channel partition widths. WiSP estimates the relative load
of short and long packets in the network and calculates
the channel partition widths accordingly. We show that our
proposed protocol achieves a better performance in terms of
achieving higher network throughput when compared to a
situation where we do not partition. We also compare the
performance of our protocol with that of frame aggregation for
scenarios where frame aggregation does not provide effective
improvements, and show that our approach provides a signifi-
cant performance in those scenarios. Moreover, we show that
we can achieve even more performance gains when we use
our WiSP approach along with frame aggregation. Our results
suggest that the WiSP protocol can complement the frame
aggregation in reducing the MAC overheads during situations
when just the frame aggregation cannot be used.

II. PROBLEM MOTIVATION

In this section, we demonstrate the benefit of choosing
variable-width channels based on packet sizes. First, we wish
to understand the amount of capacity loss when higher rates
are used for short packets. For this, we generate packets of
various sizes ranging from 100 bytes to 1500 bytes and plot
the capacity loss calculated at various fractions of bandwidths.
If α is the fraction of bandwidth allocated for the packet trans-
mission and DIFS, SIFS represent the inter-frame spacing
in IEEE 802.11a (chosen to be 34 µs and 16 µs respectively,
considering a slot duration of 9µs), the capacity loss, Closs is
calculated using the following formula,

Closs =
(DIFS + SIFS) ∗ αR

Pl + (DIFS + SIFS) ∗ αR
In this equation, R is the maximum rate of transmission,

which at a bandwidth of 20 MHz (802.1la channel width) is
54 Mbps. We assume that the rate of a packet transmitted
at α fraction of the bandwidth is also scaled by α. The Closs

values for the different packet sizes are shown in Figure 1. We

observe from the plot that shorter packets experience higher
capacity loss when they are transmitted at higher fractions
of bandwidth than longer packets. In particular, we observe
that for a 100 byte packet transmitted at the full bandwidth
(α = 1), the capacity loss is above 80%, whereas it is lower
than 20% for a 1500 byte packet. We also observe that shorter
packets experience a lower capacity loss when they are sent at
narrower bandwidths. This suggests that choosing bandwidth
based on packet sizes can lower capacity loss.

Next, we show that the percentage of channel partitioned
for the short packets be proportional to the amount of short
packets in the network. For this, we used ns-2 to simulate an
802.11a wireless link between two nodes and generated two
constant bit rate UDP flows from one of the nodes to the other.
One of the UDP flow generates 1000 byte packets at the rate
24 Mbps. The other UDP flow generates 100 byte packets. The
packet generation rate of the 100 byte packets is varied so that
the percentage of short packets in the network (calculated by
dividing the packet generation rate of the 100 byte UDP flow
by the total packet generation rate of both the UDP flows) is in
the range of 10% up to 50% in steps of 10% (accordingly, the
packet generation rates for the 100 byte packets are evaluated
to be 2.5 Mbps, 6 Mbps, 10 Mbps, 16 Mbps, and 24 Mbps).
In each case we varied the percentage of channel allocated to
short packets from 10% to 50% and measured the combined
throughput of the both the flows in each case. The throughput
values are plotted in Figure 2. We first observe that the
throughput values peak at the channel percentage value that
is same as the percentage of short packets. Furthermore, we
observe that the throughput falls if the percentage of channel
allocated to short packets goes beyond the actual percentage of
short packets in the network, as this will reduce the amount
of channel allocated to the long packet flows. We use this
motivation for developing our channel partitioning algorithm.

III. NETWORK MODEL

We assume a single hop infrastructure network consisting
of a set of static wireless clients controlled by an access point
(AP). We consider a small to medium network consisting of 5
to 25 clients that are typical of a home or an office network. We
assume that the available spectrum can be split into multiple
sub-channels, each of varying widths. The center frequency of
the sub-channel depends on the width of that channel. For all
of our evaluations in this paper, we only consider situations
where a channel is split into two sub-channels. Furthermore,
we consider IEEE 802.11a channels and protocols. However,
our algorithm is more generic and can be extended to any
wireless technologies and for any number of sub-channels.
Figure 3 shows an example where a 20 MHz channel is split
in two possible ways, (a) two 10 MHz channels, and (b) a 5
MHz and a 15 MHz channel. Note that the center frequencies
of the sub-channels change depending on their widths.

We assume that the clients and the AP are equipped with
multiple radios. The wireless radios in a node are capable of
transmitting over any one of the sub-channels at any instant
of time, and are capable of switching across sub-channels.
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Fig. 1. Percentage of capacity loss as a function of fraction of bandwidth
used. Fig. 2. Illustration on technique used for partitioning the channels.

We assume that the sub-channels have sufficient guard band
between them, so that the interference due to transmissions on
adjacent channels is reduced.

Fig. 3. An example showing a 20 MHz channel split into (a) two 10 MHz
channels, and (b) a 5 MHz and a 15 MHz channel.

IV. THE WISP PROTOCOL

The WiSP protocol is a centralized approach, where the
bandwidth partition values are decided by the AP. The AP
chooses a certain percentage of channel for the short packets,
and the remaining channel is used for the long packets (after
discounting for a guard band of Wguard in either cases).
The mechanism used for deciding the percentage of channel
partitions will be discussed shortly.

Partitioning a channel in to varying widths will affect
the timing parameters of the 802.11 as observed in [5].
Accordingly, the maximum transmission rate achievable on
each of the channel partitions will also be different, as the
number of data bits per symbol will not change with the
channel width [5]. For instance, the duration of an 802.11a
OFDM symbol, which is 4 µs when transmitted over a 20
MHz channel, becomes 40 µs when only 10% of the channel
(2 MHz) is used. Accordingly, the maximum data rate of
54 Mbps achieved using a 64-QAM modulation using a 3/4
coding rate on a 20 MHz channel, will be reduced to 5.4

Mbps on the 2 MHz channel with same 216 data bits per
symbol in the both the cases. The data rate within each channel
partitions can be adapted between a minimum and a maximum
rate automatically based on the channel conditions. One such
algorithm has been proposed by the authors of [5]. We do not
scale the slot size, DIFS, SIFS, and other system parameters.

The authors of [5] also observed that narrower channels
have longer transmission ranges than that of a wider channel.
One of the key observations on this regard is that for a given
total transmit power, the wireless radios can transmit at a
higher power per unit Hz on a narrow channel. We observed
that this effect may result in different length transmission links
for each of the channel partitions. This is not desired for our
system as this may cause a link asymmetry between the clients
and the AP for the short and long packets. For example, the
short packets may end up contending over a larger area than
the long packets. In order to overcome this asymmetry, we
scale the transmission power by the same factor as the fraction
of channel allocated. Thus, narrower channels transmit at a
lower power than a wider channel to provide the same SNR
at the receiver. We also scale the carrier sense thresholds of
the wireless radios accordingly.

Because the AP decides the channel partition for all the
clients in the network, all the clients use the same channel
widths. As a result, the clients can carrier sense each other
independently on each of the partitions. We now proceed to
our algorithm description.

a) Algorithm: The channel partitions are decided by the
AP based on the overall knowledge of the packet size mix in
the network. The WiSP protocol achieves this by letting the
clients individually estimate the overall incoming arrival rate
of the packets from the application, in addition to the fraction
of packets that are smaller than a certain threshold, Pth. The
clients then periodically transmit the arrival rate estimate and
the fraction of short packets to the AP. An alternative approach
will be for the AP to estimate the fraction of short packets
based on its local packet receptions. However, this estimate
may not be accurate as some of the packets may be lost due to
collisions, and few others may be lost due to buffer overflows
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at the clients. These lost packets will not be accounted in the
AP’s estimate.

The fraction of short packets along with the overall arrival
rate of packets at each client enables the AP to estimate the
individual arrival rates of short and long packets at each client.
Ideally, the AP can use this information to propose individual
channel partitions to each client proportionate to their packet
mixes. This may, for instance, result in a scenario where a
client sending only long packets or only short packets will be
transmitting on a whole un-partitioned channel, while those
that send an equal mix of both the packet sizes will be using
a half of the channel for each packet sizes. While this scenario
can intuitively provide a significant benefit with respect to min-
imizing the overheads, implementing this protocol in reality
may be hard. This is because, for successful communication
between a pair of nodes, they have to be communicating on
the same sub-channel (involving the same center frequency
and channel width), to establish proper frequency lock and
synchronization in the RF hardware. ( This restriction is true
only for the commodity 802.11 hardware, and is not the case
with the software defined radios.) In order to achieve this,
the AP has to timeshare across clients, each time using a
different channel partition for the short and long packets. This
approach may require stringent time synchronization across
nodes. Furthermore, when each client uses a different channel
partition, there can be additional difficulties with respect to
carrier sensing. We briefly discuss this in Section VI.

For simplicity, we propose that a single unified channel
partition chosen by the AP, be used by all the clients in
its network. The AP calculates this partition by estimating
the network wide fraction of the short packets using, β∗ =∑

i

βiλi∑
i

λi

, where betai and lambdai are the fraction of short

packets and the overall arrival rate of packets, respectively
at client i. The AP then evaluates and communicates the
percentage of channel to be used for short and long packets
based on β∗. Intuitively, our mechanism recommends that the
percentage of channel chosen (for both short and long packets)
be proportional to the actual arrival rate of packets.

The pseudocode of our algorithm is as follows:

WISP: Channel Partitioning Algorithm:
Parameters: Total channel width - Wtotal

Small packet Threshold - Pth

Guard band - Wguard

// Algorithm executed at client i

a. // Initialize current width for short packets
b. Wcurr ←Wtotal

——————————————

1. // During each probing interval Tcl

2. if Wcurr = Wtotal OR Wcurr = 0
3. Send packets using Wtotal to AP
4. Go to Line 12.
5. // size(packet) gives the size of packet in bits
6. if size(packeti) ≤ Pth{
7. Send packets using (Wcurr −Wguard) to AP
8. numShortBitsi+ = size(packeti)
9. } else {
10. Send packets using (Wtotal −Wcurr −Wguard) to AP
11. numLongBitsi+ = size(packeti)}
12. // At the end of interval Tcl

13. λi = (numShortBitsi+numLongBitsi)
Tcl

14. βi = numShortBitsi
(numShortBitsi+numLongBitsi)

15. sendToAP(λi, βi)
16. return

——————————————
17. recvFromAP(w)
18. if(Wcurr 6= w)
19. Wcurr ← w
20. return

——————————————
// Algorithm executed at the AP

21. //From each client j, receive λj and βj

22. recvFromClient(λj , βj)
23. // Calculate the network wide % of short packets

24. β∗ =

∑
i

βiλi∑
i

λi

25. // dxe5 rounds x to the nearest multiple of 5.
26. wpercent = dβ∗e5
27. sendToClient(wpercent ∗Wtotal)

In the above algorithm, each of the segments (demarcated by
a line) is executed at different instants of time. The algorithm
starts by sending both the short and long packets on the same
channel (using a single radio) using the full channel width
Wtotal. Every client i then estimates the arrival rate of packets
at its side, λi and computes the percentage of short packets
βi using the formula, βi = No. of packets of size ≤ Pth

Total no. of packets ,
where Pth is a packet size threshold, such that packets smaller
than Pth are considered short and are otherwise considered
long. The clients then send the estimate of arrival rate and the
percentage of short packets to the AP periodically every Tcl

seconds. The AP, after receiving the arrival rate and β values
from all the clients, calculates the aggregate percentage of

short packets in the network, using β∗ =

∑
i

βiλi∑
i

λi

. The AP

then chooses the percentage of channel for the short packets
to the closest multiple of 5 using β∗, and broadcasts the
channel width to all the clients (using sendToClient()).
Once the new channel widths are received by the clients (in
recvFromAP()), they use the appropriate percentage of chan-
nels for the short and long packets. The percentage of channel
partition for the short packets is chosen at the granularity of
5% to simplify our evaluation. However, in reality this will
depend on the capability of the wireless hardware and the
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driver.
Observe that when all the packets in the network are short,

then Wcurr will be correctly estimated to be 100%, in which
case the nodes do not partition the channel. The same will
be the case when all the packets are long in the network
(see Line 2). To enable new clients that may later join the
AP’s network, the AP sends the beacon packets (or neighbor
advertisement packets) on the full bandwidth Wtotal along
with the information on the current bandwidth partition. Thus,
the new client can start using the new partitions right away.
The AP can then re-calculate the bandwidth partitions for
the whole network based on the packets that the new client
generates. If one of the channel queues is full at a client, then
the client can choose to send any additional packets arriving at
that channel queue through the other channel. Finally, the AP
also considers the packet size mix of any downlink packets
while evaluating the channel partitions. This is not shown in
the pseudocode, but we use this in our evaluations.

V. PERFORMANCE RESULTS

We divide the performance evaluation section in to two
parts. In the first part, we validate our WiSP algorithm to
show that our algorithm correctly estimates the percentage of
channel to allocate to short packets. We provide simulations
results that cover a variety of scenarios for this purpose. Later,
in the second part, we compare the performance of our algo-
rithm to that of frame aggregation for scenarios where frame
aggregation performs poorly. As we mentioned in Section I,
the main purpose of our algorithm is to not to replace frame
aggregation, but to complement it in scenarios where frame
aggregation cannot be performed (or performs poorly). All of
our simulations are performed using an IEEE 802.11a network
and the packet transmission rate is fixed at 54 Mbps to provide
a fair evaluation of our protocol. However, our protocol does
not restrict the use of any rate control algorithms, like the one
proposed in [5] within each channel widths. We use a guard
band of 5% between the sub-channels while partitioning the
channels. We also tried simulating other guard band sizes, and
we found that the results do not vary significantly. We use a
packet size threshold, Pth of 128 bytes to determine whether
a packet is short or long in all our simulations. This choice is
motivated by the study in [1], where the authors have identified
that most of the packets in the internet are wither of the order
of 100 bytes or 1000 bytes. Along with the transport protocol
headers, 128 seemed to be a good option for discriminating a
short packet from a long packet.

A. Algorithm Validation

To validate our WiSP algorithm, we first repeated the simu-
lation discussed is Section II using two UDP flows between a
pair of nodes and used our WiSP algorithm to choose the best
channel partitions for each of the percentage of short packets
generated. We then plot in Figure 4, the total throughput
obtained for the different percentages of the short packets. We
also plot the maximum throughput obtained in Figure 2, which
are labeled as ‘Fixed Partition’, as the partition values are fixed

manually and are not chosen by WiSP, and the throughput
obtained without using channel partitioning (using a single
radio and a single channel for both short and long packets),
which are labeled as ‘No Partition’. The plot also shows the
percentage improvement obtained using WiSP and the fixed
partition scheme over the no partition scheme, and the values
are displayed on top of the corresponding bars. We observe
that the WiSP protocol achieves almost the same throughput
as the maximum throughput obtained using fixed partition
values. Furthermore, we observe that partitioning the channels
improves the throughput performance significantly, and the
percentage of improvement is higher for higher percentage of
short packets in the network. We also found that the percentage
of improvement starts to decrease as the percentage of short
packets in the network is increased beyond 50% (we have not
shown those plots here to avoid cluttering the figure). This
is because, the benefit from partitioning the channel can be
useful only when there are a significant mix of long and short
packets in the network. When a network has predominantly
short packets, then there are not much long packets that can
benefit from the capacity saved by using channel partitioning.

We observe that the throughput achieved using the WiSP
algorithm is slightly lower than the throughput achieved using
a fixed partition. This is because, our WiSP algorithm initially
does not partition the channels, as it has no estimate of the
amount of short and long packets in the network. Later, as
the clients start estimating the percentage of short packets and
reporting them to AP, they start to use different sub-channels
for the two packet sizes. The associated latency involved in
estimating the percentage of short packets and getting the
amount of channel form AP, therefore creates a throughput
difference. There is also latency involved in estimating the
throughput values when the percentage of short packets vary
within a flow depending on the flow dynamics, such as in the
case of TCP or variable bit rate UDP flows. Before proceeding
to evaluate the performance of our protocol for these cases,
we first show that our algorithm can correctly estimate the
percentage of short packets even when they vary.

For this, we generated two UDP flows, as before between
a client and the AP. One of the UDP flows generates constant
bit rate traffic of 24 Mbps consisting of 1000 byte packets.
The other UDP flow generates 100 byte packets. However, the
rate of this flow is varied at intervals of 15 seconds starting
from 24 Mbps to 10 Mbps, and then to 3 Mbps before finally
increased to 16 Mbps. We plot the actual percentage of short
packets as evaluated using these rates, and that estimated by
our algorithm in Figure 5. The interval at which the clients
send the reports on percentage of packets is set to 5 seconds.
We, therefore observe that except for a latency of 5 seconds,
our algorithm correctly tracks the percentage of short packets.

Next, we further validate our protocol using TCP flows. For
this, we considered a network where the number of clients
is varied from 5 to 25 in steps of 5. Each client generates
a TCP flow towards the AP for 60 seconds; the TCP frame
size is fixed at 1000 bytes, so that the TCP ACKs (which
are 40 bytes long) are the only short packets in the network.
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Fig. 4. Validation of WiSP algorithm.
Fig. 5. Effectiveness of WiSP in estimating the percentage of short
packets.

We then plot the aggregate throughput obtained using WiSP
algorithm, the throughput obtained using fixed partitions, and
that obtained without partitioning the channel. For the case
of fixed partitions, we observed that the channel partition at
which the maximum throughput was achieved was different
for different number of clients. We therefore, plot only the
maximum throughput achieved across multiple partitions. The
plots are shown in Figure 6. We once again observe that
the WiSP algorithm achieves a throughput that is close to
the maximum throughput achieved using the fixed partition
case. Furthermore, we observe that, except for the 5 clients
case, partitioning the channels consistently offers a throughput
improvement of around 10 to 12%. This is because, in the case
of TCP flows that we generated the performance improvement
can be achieved only from the ACK packets, which are
relatively fewer than the amount of data packets sent. The
throughput improvement in the case of 5 clients may be
high because of lower contention due to fewer clients in the
network, which may have resulted in more data packets and
ACKs.

Finally, we wish to validate our protocol for the case of
variable bit rate UDP flows. For this, we once again consider
a network consisting of 5 to 25 clients. Each client generates a
constant bit rate UDP flow at 24 Mbps rate consisting of 1000
byte packets, and a variable bit rate UDP flow consisting of
100 byte packets. The rates for the variable bit rate traffic
is chosen randomly form the set {2.5 Mbps, 6 Mbps, 10
Mbps, 16 Mbps, 24 Mbps}. Furthermore, the rate of packet
generation is varied every 15 seconds. The simulation time
is set to 60 seconds. Figure 7 plots the throughput values
averaged over 10 different runs of our simulation (where the
rates for the variable bit rate flows are randomly chosen each
time) obtained using WiSP, the maximum throughput obtained
using the fixed partition algorithm, and the throughput when
the channel is not partitioned. We observed that the percentage
of channel at which the maximum throughput was achieved
varied for each run of our simulation. However, in each case
our WiSP algorithm correctly estimated the percentage of short
packets, as we can observe from the plots. Furthermore, we

observe that unlike the case of TCP, we achieve throughput
improvement of at least 25% and up to 79% using our WiSP
algorithm. This shows that a significant percent of channel
capacity has been saved using our algorithm.

B. Comparison With Frame Aggregation

In Section I, we discussed an example scenario in the
case of VoIP flows where frame aggregation cannot be used.
We now provide throughput results for such a scenario both
using frame aggregation and WiSP. Additionally, we also
provide results for WiSP used along with frame aggregation
(henceforth termed as FA+WiSP). In the case of FA+WiSP,
in addition to sending the short packets and long packets on
two different partitions, the packets in each of the partitions
are aggregated whenever possible.

For the first set of simulations, we considered a network
consisting of 5 clients, each of which sends constant bit rate
UDP packets to the AP. Some of the clients are made to send
1000 byte packets at a rate of 24 Mbps, while the remaining
clients sent 100 byte packets at a rate of 1 Mbps. The 1 Mbps
flows are intended to simulate voice traffic. The number of
clients sending short and long packets is varied from 1 to 5
accordingly. In each case, we measure the throughput obtained
without using frame aggregation or WiSP, the throughput
obtained using WiSP, that obtained using frame aggregation
(we used the code shared with us by the authors of [6]
for frame aggregation), and finally the throughput using the
FA+WiSP mechanism. Because the largest packet size used
in our simulations is 1000 bytes, we set the maximum frame
size for frame aggregation also to be 1000 bytes to get a fair
comparison.

Figure 8 shows the corresponding results. First, we observe
that WiSP outperforms frame aggregation when the number
of clients sending short packets is more than those sending
long packets. In particular we observe that WiSP is better
than frame aggregation by 69% in the case of 4 clients
sending short packets and 28% in the case of 3 clients sending
short packets(see (1,4) and (1,3) in Figure 8). This shows
that WiSP can help in minimizing the MAC overheads in
these cases. However, when the number of clients sending
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Fig. 6. Performance of WiSP for TCP flows. Fig. 7. Performance of WiSP for variable bit rate UDP flows.

Fig. 8. Performance comparison for Uplink UDP flows. Fig. 9. Performance comparison for Downlink UDP flows.

short packets is lower than those sending long packets, we
observed that WiSP does not performs almost as much as
frame aggregation. Upon analyzing the data we observed that
the reason for this mainly due to a reduction of the long packet
throughput in the case of WiSP when compared to that of
frame aggregation. This may be because of a reduced spectrum
for the long packets. We also observe that FA+WiSP always
has the best performance except for the (4,1) case (where
it is comparable with the frame aggregation scheme). The
reason for this performance improvement is mainly because
the frame aggregation algorithm maintains a FIFO ordering
on the interface queue from which the packets are combined.
This FIFO ordering is maintained per destination, rather than
per flow. Therefore, rather than benefiting from combining the
100 byte packets after buffering them for a while, the frame
aggregation algorithm aggregates the packets as they arrive.
When frame aggregation is performed along with WiSP, the
short and long packet queues are first segregated, enabling
better packet aggregation.

Next, we consider a downlink scenario where the AP sends
a mixture of long and short UDP packets to each of the clients.
Some of the clients receive long packets (1000 bytes), while
the rest receive short packets (100 bytes). The rates of the long
and short packets are set to 24 Mbps and 1 Mbps, respectively

as before. Figure 9 shows the corresponding throughputs.
Again in this case, the performance of WiSP, though always
better than the case the channel is not partitioned, deterio-
rates when compared to frame aggregation as the number of
clients short packets reduce. The effect is more pronounced
here because there is just one sender (the AP) whose long
packet transmission queue keeps building up as the number
of clients receiving long packets increase. As a result, the
reduction in available spectrum due to channel partitioning
in WiSP becomes more pronounced. However, we once again
observe that FA+WiSP performs consistently better than both
WiSP and frame aggregation. Moreover, the improvement in
FA+WiSP is more significant than the earlier scenario as WiSP
enables more opportunity for aggregation in this case owing
to the transmission queues being at a single sender.

Finally, we simulate a scenario where a user attempts to
open multiple web sessions. Web pages are TCP connections
where the associated HTTP packets are transferred within
a few seconds. To emulate this scenario, we simulated five
different TCP flows every 5 seconds, each lasting for just 5
seconds. We varied the number of clients in the network from
5 to 25 in steps of 10. Every client in the network is made to
simulate the same number of TCP connections as explained.
We then plot in Figure 10 the combined throughput of all the
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TCP connections across all clients for the case where no WiSP
or frame aggregation is used, and for WiSP, frame aggregation,
and FA+WiSP. We observe that WiSP performs either better
or almost as much as frame aggregation. Furthermore, we
observe that both WiSP and frame aggregation do not provide
significant throughput improvements over the case where
neither is performed. This is because, as the number of clients
in the network increase, the number of long TCP data packets
also increase. Therefore, partitioning the channel for sending
the ACKs, in the case of WiSP will only reduce the available
spectrum for the long data packets. Eventually, the nodes end
up not adopting WiSP at all, resulting in not much throughput
improvement. In the case of frame aggregation, on the other
hand, the ACKs generated at the AP will be for different
clients. Along with the FIFO ordering problem mentioned
earlier, the result essentially is that not many ACKs are
aggregated. We however, observe that FA+WiSP consistently
outperforms all the schemes. This is partly due to the increased
aggregation opportunity provided by the WiSP and the fact
that all the ACKs are sent from the same node (the AP in this
case).

Fig. 10. Performance comparison for TCP flows.

The above simulation results corroborate the fact that WiSP
can help improve the performance of frame aggregation even
in scenarios when frame aggregation does not provide as much
benefit.

VI. EXTENSIONS TO A DISTRIBUTED SCENARIO

Our centralized algorithm can be easily modified to a
distributed setting suitable for a multihop network. In the
distributed case, the bandwidth partitions are estimated by
the receive nodes, which for instance, may be the next hop
node for a flow. However, the nodes that send the packets to
a common next-hop node j, have to send their estimate of
the arrival and transmission rates of the packets of only those
flows that are sent through j. Thus, different flows in a node
can be assigned different bandwidth values depending on the
next-hop of a flow. The nodes, therefore, may have to switch
across different bandwidth pairs for transmitting the packets
belonging to the different flows. Furthermore, every hop of a

given flow may be using a different bandwidth values. Note
that a single flow targeted at a given next-hop node have to use
two different bandwidths, one for the short packets in the flow
and the other for the long packets in the flow. Thus, two radios
are required for simultaneously transmitting the packets of a
flow on the two bandwidths. Furthermore, two more radios are
required per node for receiving packets sent by other nodes
on two bandwidths. Thus, our distributed algorithm requires
that every node is equipped with at least four radios. This is
not impractical given the decreasing hardware cost.

Few interesting problems arise in the case of a distributed
setting as summarized below:

b) Carrier sensing across different bandwidths:: The
nodes in the case of a distributed setting may be using different
bandwidths on the same channel spectrum. An important
aspect, therefore, that needs to be considered in a distributed
setting is the means for carrier sensing transmissions on all the
possible bandwidth pairs. One straightforward heuristic will be
to carrier sense every possible bandwidth pair before initiating
a transmission. The carrier sense thresholds, of course, have
to be scaled according to the bandwidth, as mentioned in the
centralized case. This mechanism, however, can be expensive
due to the associated latencies. We wish to explore effective
alternatives to this simple approach.

Fig. 11. An example to illustrate interference-aware bandwidth selection.
The portion of bandwidth used by the transmissions is shaded black. A
cross mark indicates that the transmissions cannot take place simulta-
neously and a check mark indicates that the two transmissions can be
scheduled simultaneously.

c) Interference-aware bandwidth selection:: We illus-
trate this problem using the example in Figure 11. The figure
(a) shows two transmissions on the same frequency spectrum,
one from node A to B, and the other from node D to C.
The transmissions, however use only the bandwidths that
are shaded black. These two transmissions cannot take place
simultaneously (indicated by a cross mark), as otherwise they
will interfere with each other since their bandwidths overlap.
If however, the bandwidth is chosen as in (b), then the
two transmissions can be scheduled simultaneously without
interfering with each other, as their bandwidths do not overlap.
Thus, (b) can achieve a higher system throughput than (a).
We wish to explore more on interference-aware channel width
selection algorithms.

VII. RELATED WORK

The bandwidth independent MAC overheads limit the max-
imum achievable throughput despite the various physical layer
approaches used to improve the wireless network perfor-
mance [7]. Frame aggregation, is a popular approach that is
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currently being used to address the bandwidth independent
overhead problem [3]. In this section, we describe some of
the approaches used to improve system throughput using frame
aggregation.

The IEEE 802.11n standard proposes two approaches to
frame aggregation, namely the MAC service data unit (MSDU)
aggregation, and the MAC protocol data unit (MPDU) aggre-
gation [8]. MSDU aggregation is the more efficient of the
two aggregation methods, where the packets, belonging to the
same destination, are aggregated into a single 802.11 frame
with a common MAC header and checksum. This scheme
is useful for aggregating multiple small user packets such as
TCP ACKs or other control oriented data. MPDU concatenates
normal 802.11 MAC frames each having its own MAC header
and checksum. The MPDU approach is less efficient than
MSDU because of the added overhead of the individual MAC
headers of the constituent 802.11 frames. However, MPDU
supports a block ACK scheme by which individual subframes
are acknowledged separately, which allows the re-transmission
of only those subframes in error.

Several variants of the basic MSDU and MPDU scheme
have been proposed in the literature. For instance, Skordoulis
et al [4] proposed a two-level frame aggregation scheme that
mixes the two aggregation methods. This scheme increases the
maximum aggregation size compared to using MSDUs and
reduces MAC header overheads compared to using MPDUs.
It allows the block ACK scheme to be applied to the MSDUs.
Kim et al. [9] proposed a multi-layer scheme that provides
aggregation at both the MAC and PHY layers. The MAC
aggregates multiple MAC frames into an MPDU, and then
the PHY aggregates a series of MPDUs into a single physical
frame. Within the physical frame, an additional physical
delimiter precedes each of the MPDUs. The physical delimiter
contains modulation and coding scheme information for each
MPDU, and thus allows each MPDU to be transmitted at
a different rate. Unlike the other existing approaches, this
scheme also supports multi-destination aggregation because
each MPDU can be addressed to a different destination.

Sadeghi et al. [10] proposed the opportunistic autorate
(OAR) method, which uses frame aggregation to take advan-
tage of favorable channel conditions. When the underlaying
rate adaptation algorithm shows that a frame can be sent at
higher than base-rate, the MAC attempts to aggregate frames
so that the time spent sending the frame at the higher rate
equals the time to send a single frame at base-rate. This pre-
serves the basic fairness capabilities of the 802.11 MAC while
taking advantage of higher rates and the overhead reduction
of frame aggregation. In [11], the authors propose a cross-
layer approach for frame aggregation by which both broadcast
and unicast packets can be aggregated into a single frame.
The authors use this approach for combining ACK packets
(which are considered to be broadcast frames as they do not
require link level ACKs) with TCP data packets traveling in the
opposite direction. In [12], the authors propose to use frame
aggregation, not just to improve the TCP throughputs, but also
to improve fairness and reduce the end-to-end delays in the

network.
While frame aggregation can be though of as a time-based

approach, where frames belonging to different time instants are
aggregated, the bandwidth partition approach that we propose
is a frequency-based approach. Our scheme can therefore be
used to complement the frame aggregation scheme. Further-
more, our scheme can benefit from frame aggregation, as
multiple short packets sent on the narrow channel can be
combined to a single large frame and sent on the wide channel
whenever the bandwidth allocation for the short packets is not
sufficient. However, we do not exploit this possibility in our
current approach.

VIII. CONCLUSION

In this work, we have proposed to partition a channel
into a narrow and a wide sub-channel for overcoming MAC
overheads. The narrow sub-channel is used for sending short
packets and the wide channel is used for sending long packets.
We have proposed a centralized algorithm for determining
the channel partitions. We have studied the performance of
our algorithm using extensive simulations and show that our
algorithm can provide significant improvements even in cases
where frame aggregation performs poorly. Furthermore, we
also show results where our mechanism can be used with
frame aggregation to obtain significant performance benefits.
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