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Abstract

We consider the problem of reliable broadcast in a wireless network in which nodes are prone to failure. In the
failure mode considered in this paper, each node can fail independently with probability p. Failures are permanent.
The primary focus is on Byzantine failures, but we also handle crash-stop failures. We consider two network models:
a regular grid, and a random network. For the grid network model, we establish necessary and sufficient conditions
for the degree of each node as a function of the total number of nodes n in the network, and the failure probability p,
so as to ensure that reliable broadcast succeeds with probability 1, as n → ∞. Our necessary and sufficient conditions
for reliable broadcast with Byzantine failures indicate that failure probability should be less than 1

2 , and the critical

node degree is Θ
(

dmin + lnn
ln 1

2p +ln 1
2(1−p)

)

(where dmin is the minimum node degree associated with a non-empty

neighborhood, and is a small constant). For a random network we prove that, for failure probability less than 1
2 , the

critical average degree for reliable broadcast is Θ(lnn + lnn
ln 1

2p +ln 1
2(1−p)

). Our necessary and sufficient conditions for

crash-stop failures in a grid network yield a critical degree of Θ
(

dmin + lnn
ln 1

p

)

for p < 1, and our results improve
upon previously existing results for this model, when p approaches 0. We also identify an interesting similarity in the
structure of various known results in the literature pertaining to a set of related problems in the realm of connectivity
and reliable broadcast.

I. INTRODUCTION

Reliable broadcast in the presence of Byzantine and crash-stop failures has been extensively studied under different
network and failure models. A reliable broadcast mechanism may be of significant utility in large-scale sensor
network deployments. While the shared nature of the wireless medium is conducive to the broadcast operation, the
unreliability of the wireless channel, and the possibility of collisions can make it a difficult problem to solve. As a
first step towards addressing the issue, it is useful to focus on an idealized wireless channel. We consider the problem
of reliable broadcast in a such an idealized wireless network. We primarily focus on Byzantine failures, but have also
considered the case of crash-stop failures. The failures are permanent and are assumed to occur probabilistically, i.e.,

This report is a revised version of, and supercedes, an earlier report ”Reliable Broadcast in a Wireless Grid Network with Probabilistic
Failures”, dated October 2005, and also includes some new and tighter results. Many of the results in this report will appear in a paper in IEEE
INFOCOM 2007.
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each node can fail independently with a certain probability p. However, once failure has happened, the faulty nodes
can exhibit worst-case behavior. We present asymptotically tight bounds on the conditions under which reliable
broadcast is achievable.

We show that when nodes exhibit Byzantine failures, reliable broadcast in a grid network of n nodes requires that
p be less than half, and the critical node degree (defined in Section II) is Θ

(

dmin + lnn
ln 1

2p +ln 1
2(1−p)

)

for asymptotic

achievability of reliable broadcast. This may alternatively be stated as Θ
(

dmin + lnn
D(Q 1

2
||P)

)

where Q 1
2

denotes the

Bernoulli( 1
2) distribution, P denotes the Bernoulli(p) distribution, and D(Q||P) denotes the relative entropy (or

Kullback-Leibler distance) between distributions Q and P. We also prove that in a randomly deployed network with
Byzantine failures, the critical average node degree for reliable broadcast is Θ(lnn+ lnn

ln 1
2p +ln 1

2(1−p)

)(also expressible

as Θ
(

lnn
1
2−p+ 1

2 ln 1
2(1−p)

)

) when p < 1
2 .

We also consider the case of crash-stop failures in a grid network. For crash-stop failures, the problem of reliable
broadcast is equivalent to connectivity. For this case, we have results showing that the critical node degree is
Θ
(

dmin + lnn
ln 1

p

)

with p < 1, or alternatively stated, Θ
(

dmin + lnn
D(Q1||P)

)

, where Q1 is the Bernoulli(1) distribution.
Our results improve upon previous results proved in [1] when the failure probability p approaches 0.

We also identify an interesting but intuitive similarity in the structure of results (previously known results, as well
as the results derived in this paper) for a set of related problems pertaining to connectivity and reliable broadcast.
This is discussed in Section XX.

II. NOTATION AND TERMINOLOGY

We use the following asymptotic notation:
• O(g(n)) = { f (n)|∃c,No, such that f (n) ≤ cg(n) for n > No}
• o(g(n)) = { f (n)| lim

n→∞
f (n)
g(n) = 0}

• ω(g(n)) = { f (n)|g(n) = o( f (n))}
• Ω(g(n)) = { f (n)|g(n) = O( f (n))}
• Θ(g(n)) = { f (n)|∃c1,c2,No, such that c1g(n) ≤ f (n) ≤ c2g(n) for n > No}
We use d to denote node degree, r to denote transmission range, and D to denote network diameter. The

neighbor-set of a node u, including itself, is denoted by nbd(u). The set of neighbors minus itself is termed as
nbd′(u) = nbd(u)−{u}.

By critical transmission range for reliable broadcast, we imply a rcritical , such that
• For some constant c1 > 0, reliable broadcast fails with some positive probability if r < rcritical

• For some constant c2 > 0, reliable broadcast is achieved with probability 1 if r ≥ rcritical

Thus:
• rcritical is Ω( f (n, p)) =⇒ ∃c1 > 0, such that r ≤ c1 f (n, p) =⇒ lim

n→∞
Pr[reliable broadcast achievable] < 1

• rcritical is O( f (n, p)) =⇒ ∃c2 > 0, such that r ≥ c2 f (n, p) =⇒ lim
n→∞

Pr[reliable broadcast achievable] = 1
• rcritical = Θ( f (n, p)) implies that rcritical is Ω( f (n, p)) and O( f (n, p)).
In a grid network, and under the considered distance metric (discussed in Section III), the node degree is

exactly determined by specifying the transmission range. Hence, we can define the notion of critical degree dcritical

correponding to the transmission range rcritical . Thus:
• dcritical = Ω(g(n, p))∃c1 > 0, such that: d ≤ c1g(n, p) =⇒ lim

n→∞
Pr[reliable broadcast achievable] < 1

This yields a necessary condition. If lim
n→∞

Pr[reliable broadcast achievable] = 0, it is a strong necessary condition.



• dcritical = O( f (n, p)) =⇒ ∃c2 > 0, such that: d ≥ c2 f (n, p) =⇒ lim
n→∞

Pr[reliable broadcast achievable] = 1 This
yields a sufficient condition.

• dcritical is Θ( f (n, p)) implies that dcritical is Ω( f (n, p)) and O( f (n, p))

In a random network, the degrees of individual nodes can vary; however, it is possible to define a notion of
critical average degree davg

critical , which is the average degree corresponding to the range rcritical . Then davg
critical can

be expressed in asymptotic notation, similar to dcritical for a grid network.

III. PROBLEM MODEL

We consider a two network models, viz. a regular grid, where nodes are located on a two-dimensional square
grid (each grid unit is a 1×1 square), and a random network, where node locations are i.i.d. over the deployment
region. In both models, the network is assumed to be deployed over a

√
n x

√
n square region. The pre-failure

topology (i.e., node locations) of the deployed network is assumed to be known by all nodes.
Formal Definition of Reliable Broadcast: Any node in the entire network can originate a broadcast message. In

the Byzantine failure model, this source node may be faulty. Thus goal is to ensure that if the source is non-faulty,
every non-faulty node in the network should correctly receive and determine the broadcast value; if the source is
faulty, all non-faulty node should agree on some common value. In the crash-stop failure model, a message can only
be originated by a non-faulty node (as faulty nodes cease to function), and the goal is to ensure that all non-faulty
nodes receive this value.

If even one non-faulty node (in either model) fails to make a valid value determination, the broadcast is deemed
to have failed. Reliable broadcast is said to fail in a given fault configuration, if it fails for at least one possible
broadcast origin/source.

For a given broadcast instance, once an origin/source is designated, it is identified as (0,0). All nodes can then
be uniquely identified by their coordinate location (x,y) w.r.t. this origin. In the grid network model, the node
coordinates are always integers, while for random networks they are real numbers. All nodes have a common
transmission radius r(n, p). For grid networks, we assume that r(n, p) is an integer, and for random networks it is
allowed to be any real number. A message transmitted by a node (x,y) is heard by all nodes within distance r(n, p)

from it (where distance is defined in terms of the particular metric under consideration). The set of these nodes is
termed the neighborhood of (x,y).

In this paper, we consider two distance metrics: L∞ and L2. The L∞ metric is the metric induced by the L∞

norm [2], such that the distance between points (x1,y1) and (x2,y2) is given by max{|x1 − x2|, |y1 − y2|} in the
this metric. Thus nbd(a,b) comprises a square of side 2r with its centroid at (a,b), and the degree of a node is
4r2 +4r. In this metric, the minimum node degree dmin = 8 corresponding to r = 1. The L2 metric is induced by
the L2 norm [2], and is the Euclidean distance metric. The L2 distance between points (x1,y1) and (x2,y2) is given
by
√

(x1 − x2)2 +(y1 − y2)2, and nbd(a,b) comprises nodes within a circle of radius r centered at (a,b). The L∞

metric enables more tractable analysis, from which necessary and sufficient conditions for the L2 (Euclidean) metric
proceed. In Section XI, we further elaborate on this.

A random failure mode is assumed, wherein each node can fail with probability p independently of other nodes.
Failures are permanent. We primarily focus on Byzantine failures. In the Byzantine failure mode, a faulty node can
behave arbitrarily, in contrast to crash-stop failures, where a faulty node simply stops functioning. However, in our
model, the Byzantine nodes cannot spoof addresses or cause collisions, i.e., the MAC layer is assumed fault-free,
and the Byzantine faults reside only in higher layers of the protocol stack. 1. We assume that the channel is perfectly

1A methodology to handle a bounded number of collisions and address-spoofing was proposed in [3] for a locally bounded fault model. It
might be possible to adapt it to handle the random failure model. This requires further investigation.



reliable, and a local broadcast is correctly received by all neighbors. The same reliable local broadcast assumption
underlies the results in [4] and [5] for a locally bounded adversarial fault model. Note that while the occurrence of
the permanent failures is probabilistic, the failed Byzantine nodes can thereafter choose to behave in a worst-case
manner (i.e. modulate the messages they send to cause most confusion to non-faulty nodes). The non-faulty nodes
do not know which nodes have failed.

IV. SOME USEFUL MATHEMATICAL RESULTS

We state some mathematical results that have been used in our proofs:

FACT 1: ∀x ∈ [0,1] : ln 1
1−x ≥ x

FACT 2: If | f (n)| ≤ n
1
2−ε(0 < ε < 1

2 ):
(

1+
f (n)

n

)n

≤ e2 f for n ≥ 4

and
lim
n→∞

(

1+
f (n)

n

)n

= e
( lim
n→∞

f (n))

Proof: Let f (n) be such that | f (n)| ≤ n
1
2−ε, where 0 < ε < 1

2 . Let g(n) = (1+ f (n)
n )n. Then:

lng = n ln(1+
f (n)

n
) = n

(

f (n)

n
− 1

2(
f (n)

n
)2 +

1
3 (

f (n)

n
)3 − ....

)

[6]

= n
∞

∑
k=1

(−1)k−1 1
k
(

f (n)

n
)k = f +

∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 )

≤ f (n)+ f (n)
∞

∑
k=2

1
k
(

f (n)

n
)k−1 < f (n)+ f (n)

∞

∑
k=2

(
1√
n
)k−1

= f (n)

(

1+
∞

∑
k=1

(
1√
n
)k

)

= f (n)

(

1+
1

1− 1√
n

)

≤ 2 f for n ≥ 4

∴

(

1+
f (n)

n

)n

≤ e2 f (n) for n ≥ 4

lng = n ln(1+
f (n)

n
) = n

(

f (n)

n
− 1

2 (
f (n)

n
)2 +

1
3(

f (n)

n
)3 − ....

)

[6] = n
∞

∑
k=1

(−1)k−1 1
k
(

f (n)

n
)k

= f (n)+
∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 )

lim
n→∞

lng = lim
n→∞

f (n)+
∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 ) = lim
n→∞

f (n)

∴ lim
n→∞

g(n) = e
( lim
n→∞

f (n))

FACT 3: If c > 0 is a positive constant independent of n, and b ≥ 1 is another positive constant independent of
n, then ∃no ∈ N such that:
1− 1

(lnn)b ≤ 1
n

c
n

for n > no



Proof:

∵

1
1− 1

(lnn)b

≥ e
1

(lnn)b (from Fact 1 )

∴ 1− 1
(lnn)b

≤ e
− 1

(lnn)b =
1

e
1

(lnn)b

=
1

e
lnn

(lnn)(b+1)

=
1

n
1

(lnn)(b+1)

≤ 1
n

c
n

for large n

∵ ∃no ∈ N s.t. 1
(lnn)(b+1)

≥ c
n
,∀n > no

LEMMA 1: (Jogdeo & Samuels [7]) Given X = Y1 +Y2 + ...,+Yn where ∀i,Yi = Bernoulli(pi), and ∑ pi = np,
the median m of the distribution is either bnpcordnpe, i.e., Pr[X ≤ m] ≥ 1

2 and Pr[X ≥ m] ≥ 1
2 .

Corollary 1: Given X = Y1 +Y2 + ...,+Yn where ∀i,Yi = Bernoulli(p), the median m of the distribution is either
bnpcordnpe, i.e., Pr[X ≤ m] ≥ 1

2 and Pr[X ≥ m] ≥ 1
2 .

Proof: The proof proceeds by setting p1 = p2 = ... = pn = p and applying Lemma 1.

Corollary 2: Given X = Y1 +Y2 + ...,+Yn where n is even, and ∀i,Yi = Bernoulli(p) where p ≥ 1
2 , the median m

of the distribution satisfies m ≥ n
2 .

Proof: We know that m is either bnpcordnpe. When p = 1
2 , m = n

2 (as n is even). For p > 1
2 , m≥bnpc≥ b n

2c= n
2 .

LEMMA 2: (Chernoff Bound) If X =
n
∑

i=1
Xi, where each Xi is independent and Bernoulli(pi), then for 0 < β < 1:

Pr[X ≤ (1−β)E[X ]]≤ exp(−β2

2 E[X ]) (1)

LEMMA 3: (Relative Entropy Form of Chernoff-Hoeffding Bound[8]) If X =
n
∑

i=1
Xi, where each Xi is Bernoulli(p),

then for p ≤ β ≤ 1:
Pr[X ≥ βn] ≤ e−n(β ln β

p +(1−β) ln 1−β
1−p ) (2)

LEMMA 4: (Chernoff Bound [9]) Let X1, ...,Xn be independent Poisson trials, where Pr[Xi = 1] = pi. Let X =
n
∑

i=1
Xi. Then, for any β > 0:

Pr[X ≥ (1+β)E[X ]] <

(

eβ

(1+β)(1+β)

)E[X]

(3)

LEMMA 5: (Chernoff Upper Tail Bound [9]) Let X1, ...,Xn be independent Poisson trials, where Pr[Xi = 1] = pi.
Let X =

n
∑

i=1
Xi. Then, for 0 < β ≤ 1:

Pr[X ≥ (1+β)E[X ]]≤ exp(−β2

3 E[X ]) (4)

LEMMA 6: [10] If X1, X2,..., Xn are drawn i.i.d. from alphabet χ according to Q(x), then probability of sequence
x is given by:

Q(n)(x) = e−n(H(Px)+D(Px||Q)) (5)



where H and P denote the entropy and relative entropy functions (here considered w.r.t base e).

Also, for any distributions P and Q, the size of type class T (P) satisfies:
1

(n+1)|χ|
enH(P) ≤ |T (p)| ≤ enH(P) (6)

and, the probability of the type class T (P) under Q is governed by:
1

(n+1)|χ|
e−n(D(P||Q)) ≤ Q(n)(T (p)) ≤ e−n(D(P||Q)) (7)

LEMMA 7: Suppose S1 and S2 are sets of Bernoulli random variables, such that S1 = {I1, I1, ..., Im} and
S2 = {Ik+1, ..., Ik+m}, where ∀i, Ii = Bernoulli(p). If N1 = ∑

I j∈S1
I j and N2 = ∑

I j∈S2
I j then:

Pr[N2 < a|N1 < a] ≥ Pr[N2 < a] (8)

Proof: We know that S1 ∩S2 = {Ik+1, ..., Im}. Let M1 = ∑
I j∈S1∩S2

I j, and let T = ∑
I j∈(S2−S1)

I j. Then M1 = N1 −b

where b = ∑
I j∈(S1−S2)

I j ≥ 0. Thus N1 < a ⇒ M1 < a− b < a. Note that Pr[M1 < k|M1 < a] = Pr[M1<kandM1<a]
Pr[M1<a] ≥

Pr[M1 < k].

Pr[N2 < a|N1 < a]≥ P[N2 < a|M1 < a] =
a−1

∑
k=0

Pr[M1 < k|M1 < a]·Pr[T = a−1− k] (9)

≥
a−1

∑
k=0

Pr[M1 < k]·Pr[T = a−1− k] = Pr[N2 < a] (10)

LEMMA 8: For all 0 < x ≤ 1
2 :

ln 1
1− x

+ ln 1
1+ x

≥ x2

Proof:

ln 1
1− x

+ ln 1
1+ x

= −(ln(1− x)+ ln(1+ x)) = −
((

x− x2

2 +
x3

3 − ....

)

+

(

(−x)− (−x)2

2 +
(−x)3

3 − ....

))

= 2
(

x2

2 +
x4

4 +
x6

6 + ...

)

≥ x2

(11)

LEMMA 9: (Vapnik-Chervonenkis Theorem) Let S be a set with finite VC dimension VCdim(S). Let {Xi} be
i.i.d. random variables with distribution P. Then for ε,δ > 0:

Pr

(

sup
D∈S

| 1
N

N

∑
i=1

IXi∈D −P(D)| ≤ ε

)

> 1−δ

whenever N > max
(

8VCdim(S)

ε
log2

16e
ε

,
4
ε

log2
2
δ

)

LEMMA 10: Suppose we are given a region of area n, with n nodes located uniformly at random. Consider all
axis-parallel rectangles of area a(n). If a(n) ≥ 100α logn,1 ≤ α ≤ n

100logn , then each such rectangle has at least
100α lnn−50logn nodes, with high probability.



Proof: We know that the set of axis-parallel rectangles has VC-dimension 4. In our construction, we have the
set of all axis-parallel rectangles S of area 100α lnn. Then considering the n random variables Xi denoting node
positions, Pr[Xi ∈ D(D ∈ S ] = 100α lnn

n . Then, from the VC-theorem (Lemma 9):

Pr

(

sup
D∈S

|No. of nodes inD
n

− 100α lnn
n

| ≤ ε(n)

)

> 1−δ(n)

whenever n > max
(

32
ε

log2
16e

ε
,

4
ε

log2
2
δ

)

This is satisfied when ε(n) = δ(n) = 50lnn
n . Thus, with probability at least 1− 50lnn

n , the population Pop(D) of cell
D satisfies:

100α lnn−50lnn ≤ Pop(D)≤ 100α lnn+50lnn (12)

This completes the proof.
FACT 4: If we attempt to divide the

√
nx
√

n grid into disjoint neighborhoods (as in Fig. 1), then the number
of such disjoint neighborhoods that can be obtained is at least b√nc

(2r+1)2 ≥ (
√

n−1)2

4r2+4r+1 ≥ n
8r2 for large n. Observing that

d = 4r2 +4r, the number of such disjoint neighborhoods obtainable is at least b√nc
(2r+1)2 ≥ (

√
n−1)2

4r2+4r+1 ≥ n
2d for large n

Byzantine Failures

V. RELATED WORK

Reliable broadcast in radio networks has been studied in [11], [4], [5] and [12]. Crash-stop failures are considered
in [11] for finite networks comprising nodes located in a regular grid pattern and algorithms are described for
efficient broadcast to the part of the network that is reachable from the source. However this work does not
attempt to quantify the number of faults that render some nodes unreachable. In [4], a locally bounded model is
considered, where an adversary is free to place faults, as long as no neighborhood has more thasn t faults. It was
shown that for a network of nodes located on an infinite grid of unit squares and having transmission radius r,
reliable broadcast is not achievable for t ≥ d 1

2 r(2r + 1)e (in both L∞ and L2 metrics). This was established as an
exact threshold in L∞ by [5], and a protocol was described that achieved the threshold. An approximate threshold
was also established for the L2 metric (that is tight asymptotically, and corresponds to the same fraction of a
neighborhood as in L∞). A sufficient condition for reliable broadcast in general graphs with a locally bounded
adversarial model was described in [13], and a simpler protocol for the grid network case was also presented. In
[14], further study of the locally bounded fault model has been undertaken on arbitrary graphs. Upper and lower
bounds for achievability of reliable broadcast are presented based on graph-theoretic parameters, for arbitrary
graphs. However, no exact thresholds are established. It is also shown that there exist certain graphs in which
algorithms that work with knowledge of topology succeed in achieving reliable broadcast, while those that lack
this knowledge fail to do so.

In closely related work, [12] considers the case of message-passing and radio networks with random transient
failures. In our knowledge, the results in this paper are the first for radio networks exhibiting random but permanent
Byzantine failures.

VI. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that shall be used in this paper. Nodes can be identified by their
grid location i.e. (x,y) denotes the node at (x,y). The neighborhood of (x,y) comprises all nodes within distance r



of (x,y) and is denoted as nbd(x,y). The degree of each node is referred to as d. In L∞ metric, d = 4r2 +4r, while
the size of a neighborhood (including the neighborhood center) is d +1 = 4r2 +4r +1. Thus, the minimum degree
is dmin = 8, corresponding to r = 1. The diameter of the network (in terms of distance, and not number of hops)
is referred to as D. If n is a perfect square, D =

√
n. The source of the broadcast may be deemed to be situated

at (0,0), without affecting generality of the results. In general, we allow any node of the network to be the source
(with a corresponding shift of reference coordinates). For succint description, we define a term pnbd(x,y) where
pnbd(x,y) = nbd(x−1,y)∪nbd(x+1,y)∪nbd(x,y−1)∪nbd(x,y+1). Intuitively pnbd(x,y) denotes the perturbed

neighborhood of (x,y), obtained by perturbing the center of the neighborhood to one of the nodes immediately
adjacent to (x,y) on the grid. Besides, we use Bernoulli(p) to denote a Bernoulli random variable with parameter
p.

VII. NECESSARY CONDITIONS FOR RELIABLE BROADCAST

THEOREM 1: If a node u /∈ nbd(s) has at least half faulty neighbors, it can be made to commit to an erroneous
value with probability at least 1

2 .
Proof: Assume that the message is drawn from {0,1}. A node u which is not an immediate neighbor of the

source must rely on messages received from its neighbors.
First, consider any function that takes as argument messages received from all neighbors and outputs one of

0 or 1. Then corresponding to each fault configuration C1 with t ≥ d
2 or more faults in nbd′(u), there is another

configuration C2 with t faults in nbd′(u), such that all non-faulty nodes in C1 are faulty in C2, while the non-faulty
nodes in C2 were all faulty in C1. Then, the faulty nodes can modulate their message-sending behavior so that u is
unable to distinguish between the case where the correct broadcast value was 0 and configuration was C1 and the
case when the correct value was 1 and the configuration was C2 (recall that once failure has happened, the faulty
nodes can exhibit worst-case behavior). Thus, there are two equally likely possibilities for a given set of received
messages, and u cannot expect to choose the correct one with a probability greater than half. If the message can
have more than two possible vaues, it cannot increase the probability of correct choice.

Stated formally: suppose S1 ⊆ nbd(u) is the set of faulty neighbors in C1, and S c
1 = nbd′(u)−S1 is its complement,

i.e., the set of non-faulty neighbors. Then we know that |S1| ≥ |nbd′(u)|
2 ≥ S c

1 |. Consider a fault configuration C2 in
which the set of faulty neighbors is S2 = S c

1 ∪V where V ⊆ S1 is some subset of S1 that satisfies |V |= |S1|−|S c
1 |.

It is easy to see that |S1| = |S2|. Consider the case where the correct value is 0, and configuration is C1. Then all
nodes in S1 can behave as though the value were 1, while the nodes in S c

1 will always act according to value 0.
Now suppose the correct value is 1, and configuration is C2. Then the faulty nodes in S c

1 ⊆ S2 behave as though
the value were 0, while nodes in V = S2 − S c

1 act as per the correct value 1. The non-faulty nodes in S c
2 always

act as per value 1. From the viewpoint of node u, the two situations are indistinguishable.
Let us also consider the use of any function that takes as argument message values from a random subset of

neighbors, and outputs one of 0 or 1 (since the faulty nodes are not known to the non-faulty node, this is the best
it can do). We show that the output will be wrong with probability at least half. Consider a node u. Denote by
P (nbd(u)) the power set of nbd(u), i.e., the set of all possible subsets of neighbors. Suppose, it is known to u that
half or more of its neighbors are faulty. Since failures are i.i.d., we obtain that:

Pr[v ∈ nbd(u) is faulty|nbd(u) has half+ faults] > 1
2 (13)

Consider any set S ∈ P (nbd(u)). Then Pr[ at least half nodes in S faulty] ≥ 1
2 (from Lemma 1). If this is so, then

by the same argument as above, there are two configurations that are indistinguishable. Hence for any subset S, the
probability of obtaining an erroneous value from S is at least 1

2 . Applying a function iteratively to a sequence of



Fig. 1. Division of network into disjoint neighborhoods

different subsets would also not help, since half or more of the outcomes obtained will be incorrect, with probability
at least half.

THEOREM 2: When failure probability p satisfies 1
2 ≤ 1− 96

n , and n
d → ∞ (i.e., d = o(n)):

lim
n→∞

Pr[ reliable broadcast fails] > η > 0( for some positive constant η ≤ 1 )

In particular, if n(1−p)
d → ∞, then:

lim
n→∞

Pr[ reliable broadcast fails] = 1

When 1− p = o( 1
n), all nodes are faulty w.h.p., and the broadcast issue is irrelevant.

Proof: Suppose we consider a particular node j in the network. Then, if j is non-faulty, but more than half of
its neighbors are faulty, reliable broadcast fails with probability at least half. Given that there are d neighbors, and
each may fail independently with probability p, let Y j denote the number of failed neighbors of j. Then, Y j takes
values from 0,1, ...,d, and E[Y j] ≥ d

2 . Thus bE[Y ]c ≥ b d
2c = d

2 (since d = 4r2 + 4r is always even). Thus, Pr[Y ≥
d
2 ] ≥ Pr[Y ≥ bE[Y ]c] ≥ 1

2 (from Lemma 1). Let us call this probability q. When p ≤ 1− ε, we have 1− p ≥ ε > 0.
Thus:

Pr[ j alive; at least half nbd( j) faulty ] ≥ (1− p)q ≥ 1− p
2

lim n(1−p)
d ≥ 4: Let us mark out a subset of nodes j such that the neighborhoods of these nodes are all disjoint,

as in Fig. 1. Then from Fact 4, the number of such nodes that we may obtain is at least n
2d for large n.

Let I j be an indicator variable that takes value 1 if j is non-faulty but has at least half faulty neighbors, and
commits to the wrong value. Then Pr[I j = 1]≥ 1−p

2 , and all I j’s are independent.
Let X be a random variable indicating the number of non-faulty nodes with at least half faulty neighbors that

resultantly commit to the wrong value. Then E[X ] = ∑ j Pr[I j = 1] ≥ 1−p
2 ( n

2d ) = n(1−p)
4d .

Thus setting β = 1
2 in the Chernoff Bound in Lemma 2, when E n(1−p)

d → ∞,E[X ] = n(1−p)
4d → ∞:

lim
n→∞

Pr[X >
E[X ]

2 ] > lim
n→∞

(1− e−
E[X ]

8 ) = 1

Thus, as n → ∞, the number of non-faulty nodes isolated by half or more faulty neighbors, and which commit to
the wrong value, will also tend to infinity with probability 1. When n(1−p)

d → γ ≥ 4:

lim
n→∞

Pr[X ≥ 2] ≥ Pr[X ≥ E[X ]

2 ] > lim
n→∞

(1− e−
E[X ]

8 ) = 1− e−
1
4 > 0



A B C

uC

uA

Fig. 2. Division of network area into three segments

lim n(1−p)
d < 4, but 1− p ≥ 96

n : This implies that 1− p < 4d
n =⇒ p ≥ 3

4 > 1
2 for large n (since n

d → ∞). Then
the probability q of having half or more faulty neighbors is at least half (from Lemma 1). Consider a partition of
the network region into 3 segments A, B, and B, and C as in Fig. 2. Each segment has at least b√nc b

√
nc

3 ≥ n
6

nodes for large n. Let pA be the probability that segment A has at least one node uA that is non-faulty. Let pC and
uC be the corresponding probability and node for segment C. If such uA and uC exist, and one of them (say uC)
has half or more faulty neighbors, then a broadcast from uA cannot be received by uC, with any probability better
than half (from Theorem 1).

Let XA be the total number of nodes in segment A that satisfy the desired property. Then XA = ∑
j∈A

I′j, where I′j

are i.i.d. Bernoulli(p) random variables denoting whether j is faulty. Likewise, let XC be the corresponding random
variable for segment C. Then, it can be easily verified that E[XA] ≥ n(1−p)

6 . Similarly E[XC] ≥ n(1−p)
6 . Then by

setting β = 1
2 in Lemma 2, it can be seen that:

Pr[XA < 1] ≤ Pr[XA ≤ n(1− p)

12 ] ≤ Pr[XA ≤ E[XA]

2 ] ≤ e−
E[XA]

8 ≤ e−
n(1−p)

48 (14)

If there exist such nodes, let us select from them an uA.

Pr[XC < 1] ≤ Pr[XC <
n(1− p)

24 ] ≤ Pr[XC ≤ E[XC]

2 ] ≤ e−
E[XC ]

8 ≤ e−
n(1−p)

48 (15)

If there exist such nodes, let us select from them an uC.
Then by applying a union bound over the events that either one of uA,uC does not exist, or uC does not have

half or more faulty neighbors, it proceeds that:

Pr[∃uA,∃uC and uC has half or more faulty neighbors] = pb ≥ 1− e−
n(1−p)

48 − e−
n(1−p)

48 −q (16)

lim
n→∞

pb ≥ 1− 1
e2 − 1

e2 − 1
2 > 0 (17)

Thus uC will make an erroneous decision about any messages broadcast by uA with probability at least half, and
reliable broadcast will fail with a positive probability at least pb

2 > 0.

a) 1− p = o( 1
n) :

Pr[All nodes faulty;broadcast issue moot] = pn (18)

≥ (1− (1− p)))n = (1−g(n))n where g(n)

1/n
= ng(n)→ 0 (19)



lim
n→∞

Pr[All nodes faulty; broadcast issue moot] (20)

≥ lim
n→∞

(1−g(n)))n = lim
n→∞

(

1− ng(n)

n
)

)n

(21)

= e− lim(ng(n)) = 1 from Fact 2 (22)

THEOREM 3: When p ≤ 1
2 − 1

lnn , and node degree d ≤ lnn
ln 1

2p +ln 1
2(1−p)

, reliable broadcast asymptotically fails with
probability 1.

Proof: Any failure probability p ≤ 1
2 − 1

lnn can be expressed as p = 1
2 − y for suitable 1

lnn ≤ y ≤ 1
2 . Thus:

ln 1
2p

+ ln 1
2(1− p)

= ln 1
2( 1

2 − y)
+ ln 1

2( 1
2 + y)

= ln 1
1−2y

+ ln 1
1+2y

≥ (2y)2 = 4y2 ≥ 4
(lnn)2 ( setting x = 2y in Lemma 8 )

(23)

Resultantly:

d ≤ lnn
4

(lnn)2
=

(lnn)3

4 < (lnn)3 (24)

lnn
2 +6lnlnn ≤ lnn−4lnlnn for large enough n (25)

Consider a particular node j in the network. Then, if j is non-faulty, but more than half of its neighbors are faulty,
reliable broadcast fails with probability at least half (from Theorem 1). Given that there are d neighbors, and each
may fail independently with probability p, let I jk(1 ≤ k ≤ d) denote the indicator variable corresponding to neighbor
k of j (enumerated in some order), such that I jk = 1 if k is faulty, and 0 otherwise. Then Y j = ∑ I jk denotes the

number of failed neighbors of j. Y takes values from 0,1, ...,d, and E[Y ] = pd. Pr[Y j ≥ d
2 ] =

d
∑

i= d
2

(d
i

)

pi(1− p)(d−i).

Let us simply consider the event Y j = d
2 . Then we can apply the lower bound from Lemma 6. The variables

I jk(1 ≤ k ≤ d) are drawn from χ = {0,1} as per distribution P = Bernoulli(p), and the distribution corresponding to
Yj = d

2 is Bernoulli( 1
2) (we shall refer to this as Q 1

2
). |χ|= 2, and 1

(d+1)|χ|
= 1

(d+1)2 > 1
3
2 d2 = 2

3 e−2lnd (since d ≥ 8).
Thus, we obtain:

Pr[Yj ≥
d
2 ] ≥ Pr[Y j =

d
2 ] ≥ 1

(d +1)|χ|
e
−d(D(Q 1

2
||P))

=
1

(d +1)2 e
−d(D(Q 1

2
||P))

>
2
3e

−d(D(Q 1
2
||P))−2lnd

>
2
3e

−(c lnn
ln 1

2p +ln 1
2(1−p)

)( 1
2 ln 1

2p + 1
2 ln 1

2(1−p)
)−6lnlnn

from Eqn. (23)

=
2
3e−

c
2 lnn−6lnlnn ≥ 2(lnn)4

3n
from Eqn. (25)

(26)

Let us call this probability q.

Pr[ j non-faulty; at least half nbd( j) faulty ] ≥ (1− p)q (27)

>
1
2

2(lnn)4

3n
=

(lnn)4

3n
(28)

Let us mark out a subset of nodes j such that the neighborhoods of these nodes are all disjoint, as in Fig. Fig.
1. Then, as noted earlier, the number of such nodes that we may obtain is k ≥ n

2d for large n. Let I j be an indicator
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Fig. 3. Depiction of qnbdA, qnbdB, qnbdC , qnbdD
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Fig. 4. Depiction of qnbdA′ , qnbdB′ , qnbdC′ , qnbdD′

variable that takes value 1 if j is non-faulty but has at least half faulty neighbors. Then Pr[I j = 1] = (lnn)4

3n , and all
I j’s are independent. Let I′j be an indicator variable that takes value 1 if j is non-faulty but commits to a wrong
value. From Theorem 1, we know that if a non-faulty node has half or more faulty neighbors, it will commit to
the wrong value with probability at least 1

2 . Thus Pr[I′j = 1] ≥ 1
2 Pr[I j = 1] ≥ (lnn)4

6n .
Let X be a random variable indicating the number of non-faulty nodes with half or more faulty neighbors that

commit to the wrong value. Then X = ∑ I′j, and E[X ] = ∑Pr[I′j = 1]≥ (lnn)3

6n

(

n
2d

)

=
(lnn)4

12d > lnn
12 → ∞ (as d < (lnn)3

from Eqn. (24)). Thus we can choose any 0 < β < 1 (e.g. β = 1
2 ) and apply the Chernoff bound in Lemma 2 to

obtain:

lim
n→∞

Pr[X > (1−β)E[X ]] > lim
n→∞

1− e−
β2E[X ]

2 = 1 ∵ E[X ] → ∞ (29)

Thus, as n → ∞, the probability that some non-faulty node(s) fail to commit to the correct value tends towards 1:

lim
n→∞

Pr[ reliable broadcast fails] → 1

VIII. SUFFICIENT CONDITION FOR RELIABLE BROADCAST

We now present a sufficient condition for the asymptotic achievability of reliable broadcast.

THEOREM 4: When p < 1
2 , and node degree d ≥ max{dmin,16 lnn

ln 1
p +ln 1

2(1−p)

}= max{dmin,8 lnn
D(Q 1

2
||P)

)} (recall that
dmin = 8 corresponding to r = 1), reliable broadcast is asymptotically achievable with probability 1.
Note that when ln 1

2p + ln 1
2(1−p) ≤

16lnn
n , the degree exceeds total network size n, and thus the sufficient condition

ceases to be relevant, merely indicating that having a single-hop network suffices for reliable broadcast (which is
the trivial sufficient condition for the assumed radio network model). Thus the sufficient condition is of interest
only so long as ln 1

2p + ln 1
2(1−p) > 16lnn

n .

a) p ≤ o( 1
n): When the failure probability is so small as to fall in this range, the probability of even a single

node failing approaches 0 asymptotically, and thus reliable broadcast is trivially ensured even with the minimum
transmission range of 1. This may be seen thus:

Pr[No failures;trivial broadcast] = (1− p)n (30)



Region x-extent y-extent
qnbdA(a,b) a ≤ x ≤ (a+ r) (b− r) ≤ y ≤ (b−1)

qnbdB(a,b) (a− r) ≤ x ≤ (a−1) (b− r) ≤ y ≤ b

qnbdC(a,b) (a− r) ≤ x ≤ a (b+1) ≤ y ≤ (b+ r)

qnbdD(a,b) (a+1) ≤ x ≤ (a+ r) b ≤ y ≤ (b+ r)

qnbdA′ (a,b) (a+1) ≤ x ≤ (a+ r) (b− r) ≤ y ≤ b

qnbdB′ (a,b) (a− r) ≤ x ≤ a (b− r) ≤ y ≤ (b−1)

qnbdC′ (a,b) (a− r) ≤ x ≤ (a−1) b ≤ y ≤ (b+ r)

qnbdD′ (a,b) a ≤ x ≤ (a+ r) (b+1) ≤ y ≤ (b+ r)

TABLE I

SPATIAL EXTENTS OF QUARTER NEIGHBORHOODS

lim
n→∞

Pr[No failures;trivial broadcast] ≥ lim
n→∞

(1− p)n = e− lim(np) = 1 from Fact 2 (31)

b) p = Ω( 1
n ): We define a term called quarter-neighborhood of a node (x,y), and denote it by qnbd(x,y).

We associate eight quarter-neighborhoods with each node: qnbdA, qnbdB, qnbdC, qnbdD, qnbdA′, qnbdB′, qnbdC′,
qnbdD′. The quarter-neighborhoods for a node (a,b) are depicted in Fig. 3 and 4, and their spatial extents are
tabulated in Table I. Observe that qnbdB(a,b) = qnbd′

A(a− r − 1,b), qnbdC(a,b) = qnbdA(a− r,b + r + 1), and
qnbdD(a,b) = qnbd′

A(a,b+ r+1). Similarly, qnbdB′(a,b) = qnbdA(a− r−1,b), qnbdC′(a,b) = qnbdA′(a− r−1,b+

r), and qnbdD′(a,b) = qnbdA(a,b+ r +1) Thus if we simply consider qnbdA(u) and qnbdA′(u)∀ nodes u, we will
have considered all quarter-neighborhoods, i.e. the number of distinct (but not disjoint) quarter-neighborhoods is
2n. Henceforth, we shall sometimes use Q(x,y) to refer to qnbdA(x,y), and Q′(x,y) to refer to qnbdA′(x,y). The
population of any qnbd is r(r+1), and since d = 4r2 +4r = 4r(r+1), the qnbd population = d

4 . We now state and
prove the following result which is crucial to proving our sufficient condition for reliable broadcast:

THEOREM 5: If p < 1
2 , d ≥ max{dmin,16 lnn

ln 1
2p +ln 1

2(1−p)

} = max{dmin,8 lnn
D(Q 1

2
||P) )}, then:

lim
n→∞

Pr[ ∀(x,y) less than d
8 faults in

Q(x,y) and Q′(x,y)] → 1

Proof: As shown above, the population of any qnbd is d
4 . Each node may fail independently with probability

p.Let Y(x,y) be a random variable denoting the number of faulty nodes in Q(x,y). Then E[Y(x,y)] = p d
4 . Using

δ = 1
2p −1, we may then apply the relative entropy form of the Chernoff bound (Lemma 3) to Y(x,y) = ∑

j∈nbd(x,y)
I j.

Note that d ≥ max{dmin,16 lnn
ln 1

2p +ln 1
2(1−p)

} ≥ 16 lnn
ln 1

2p +ln 1
2(1−p)

. Thus, we obtain:

Pr[Y(x,y) ≥
d
8 ] ≤ e

− d
4 ( 1

2 ln 1
2p + 1

2 ln 1
2(1−p)

) (32)

≤ e
−( 16 lnn

4(ln 1
2p +ln 1

2(1−p)

))( 1
2 ln 1

2p + 1
2 ln 1

2(1−p)
)

(33)

= e−2lnn =
1
n2 (34)

Similarly, setting Y ′
(x,y) be a random variable denoting the number of faulty nodes in Q′(x,y), we obtain that:

Pr[Y ′
(x,y) ≥

d
8 ] ≤ 1

n2 (35)



The Y(x,y)’s and Y ′
(x,y)’s are not independent, as they are not all disjoint. However, it may be seen that where

dependence exists, it is that of positive correlation (Lemma 7). Thus Pr[Y(x′,y′) < d
8 |Y(x,y) < d

8 ]≥ Pr[Y(x′,y′) < d
8 ], and

Pr[Y(x′,y′) < d
8 |Y ′

(x,y) < d
8 ] ≥ Pr[Y(x′,y′) < d

8 ]. Similarly, we obtain that: Pr[Y ′
(x′,y′) < d

8 |Y(x,y) < d
8 ] ≥ Pr[Y ′

(x′,y′) < d
8 ], and

Pr[Y ′
(x′,y′) < d

8 |Y ′
(x,y) < d

8 ] ≥ Pr[Y ′
(x′,y′) < d

8 ] Hence:

Pr[∀(x,y),Y (x,y) <
d
8 and Y ′(x,y) <

d
8 ] (36)

≥ ∏Pr[Y(x′,y′) <
d
8 ]∏Pr[Y ′

(x′,y′) <
d
8 ] (37)

=

(

1− 1
n2

)n(

1− 1
n2

)n

(38)

=

(

1− 1
n2

)2n

(39)

∴ lim
n→∞

Pr[∀(x,y),Y (x,y) <
d
8 and Y ′(x,y) <

d
8 ] (40)

≥ lim
n→∞

(

1− 1
n2

)2
n = e− lim( 2

n ) = 1 from Fact 2 (41)

We now consider a simple broadcast protocol that is similar to the protocol described in [4] for the adversarial
model:

• Initially, the source does a local broadcast of the message.
• Each neighbor i of the source immediately commits to the the first value v it heard from the source, and then

locally broadcasts it once in a COMMIT T ED(i,v) message.
• Hereafter, the following protocol is followed by each node j /∈ nbd(s):

If 1
2 r(r +1)+1 = d

8 +1 COMMIT T ED(i,v) message are received for a certain value v, from neighbors i all
lying within a single qnbd, and not already committed to some value, commit to v, and locally broadcast a
COMMIT T ED( j,v) message.

THEOREM 6: (Probabilistic Correctness) The probability that a node shall commit to a wrong value by following
the above protocol diminishes to 0 asymptotically.

Proof: If all Q(x,y) and Q′(x,y) have strictly less than d
8 faults, the correctness of the protocol proceeds as

follows:
By the assumptions of reliable local broadcast, if s sends exactly one message, fault-free nodes in nbd(s) are

guaranteed to receive it correctly. If s is faulty and sends more than one version of the message, fault-free nodes
in nbd(s) receive both messages, and select the first one. Thus fault-free nodes in nbd(s) are guaranteed to commit
to the correct value.

The rest of the proof is by contradiction. Consider the first fault-free node, say j, that makes a wrong decision
to commit to a value v. From our previous assertion, j cannot be in nbd(s), and thus followed protocol rules for
nodes that are not s’s neighbors. This implies that d

8 + 1 of its neighbors within some qnbd must have broadcast
a COMMIT T ED message for v (the COMMIT T ED messages were directly heard, leaving no place for doubt).
All of these nodes cannot be faulty, as no more than d

8 nodes in any qnbd are faulty. Thus there was at least one
fault-free node that committed to v. Since j is the first fault-free node to make a wrong decision, none of the
fault-free nodes amongst the d

8 +1 nodes could have made a wrong decision. Thus v must indeed be the correct value.
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Fig. 5. Node at P has a qnbd in nbd(a,b)

We know that all Qnbd(x,y) have less than d
8 faults with probability 1 asymptotically, and hence the protocol also

functions correctly with probability 1 asymptotically.

THEOREM 7: (Probabilistic Completeness) Each node is eventually able to commit to the (probabilistically)
correct value.

Proof:

The proof proceeds by induction.

Base Case:

All honest nodes in nbd(0,0) are able to commit to the correct value. This follows trivially since they
hear the origin directly, and we assume that address-spoofing is impossible.

Inductive Hypothesis:

If all honest neighbors of a node located at (a,b) i.e. all honest nodes in nbd(a,b) are able to commit to
the correct value, then all honest nodes in pnbd(a,b) are able to commit to the correct value.

Proof of Inductive Hypothesis:

We show that each node P in pnbd(a,b)− nbd(a,b) has one of qnbdA(P), qnbdB(P), qnbdC(P), qnbdD(P),
qnbdA′(P), qnbdB′(P), qnbdC′(P), qnbdD′(P) fully contained in nbd(a,b). Since no more than d

8 of the nodes in
a qnbd are faulty with probability 1 (asymptotically), this guarantees that the node will become aware of d

8 + 1
nodes in nbd(a,b) having committed to a (the correct) value, and will also commit to it. The situation is depicted
in Fig. 5 for P ∈ {(a− r + l,b+ r +1)|1 ≤ l ≤ r}, for which qnbdA(P) lies in nbd(a,b). For all other locations, a
similar argument holds.



Fig. 6. Necessary Condition for Random Networks: cell S

IX. NECESSARY CONDITION FOR RANDOM NETWORKS

THEOREM 8: When failure probability p ≤ 1
2 −
√

lnn

n
1
32

, and r(n, p) ≤ 1
2

√

max{lnn, lnn
ln 1

2p +ln 1
2(1−p)

}:

Pr[ reliable broadcast fails] → 1

Proof: We separately consider the following two cases:
lnn > lnn

ln 1
2p +ln 1

2(1−p)

: We know from the results of [15] that in a failure-free random network, r(n) =
√

lnn
π is

necessary for connectivity (note that we are considering the network as being of area n leading to a scaling of the
result of [15]). When, lnn > lnn

ln 1
2p +ln 1

2(1−p)

, the condition in our theorem statement reduces to r(n, p) ≤ 1
2
√

lnn <
√

lnn
π . Thus, from the results of [15], the network is disconnected with some positive probability, and the necessary

condition holds.
lnn ≤ lnn

ln 1
2p +ln 1

2(1−p)

: As mentioned in the previous case, it is known from the results of [15], that even with

p = 0, the critical transmission range is greater than
√

logn
2 . Consider a subdivision of the network into disjoint

square cells of area a(n) = 81r2(n, p), where
√

logn
2 ≤ r(n, p) ≤ 1

2

√

lnn
ln 1

2p +ln 1
2(1−p)

.

Thus 81lnn
4 ≤ a(n) ≤ 81lnn

4(ln 1
2p +ln 1

2(1−p)
)
.

LEMMA 11: Each cell contains at least a(n)
2 and at most 3a(n)

2 nodes w.h.p.
Proof: Consider a particular cell S . Denote by Xi an indicator variable that is 1 if node i lies in S and is 0

otherwise. Then Pr[Xi = 1] = a(n)
n , and the Xi’s are all i.i.d. Let, X =

n
∑

i=1
Xi. Then E[X ] = a(n).

By applying the Chernoff bound from Lemma 2 (with β = 1
2 ), it follows that:

Pr[X ≤ a(n)

2 ] ≤ exp(−a(n)

8 ) ≤ exp(−81lnn
32 ) =

1
n

81
32

(42)

By applying the Chernoff bound from Lemma 5 (with β = 1
2 ), it follows that:

Pr[X ≥ 3a(n)

2 ] ≤ exp(−a(n)

12 ) ≤ exp(−81lnn
48 ) =

1
n

81
48

(43)



Thus the cell population ns is least a(n)
2 and at most 3a(n)

2 nodes with probability at least 1− 1
n

81
32

− 1
n

81
48

≥ 1− 2
n1.5 .

Applying union bound over all 1
a(n) < n cells, this holds for all cells with probability at least 1− 2√

n .
Event Eo: Denote by event Eo, the event that a(n)

2 ≤ ns ≤ 3a(n)
2 , for all cells. Then Pr[¬Eo] ≤ 2√

n

Suppose Eo holds. Fixing nsi for all cells Si in the network, events occurring entirely within each cell may
hereafter be treated as being independent.

Divide each such cell further into 9 square sub-cells of area A(n) = a(n)
9 = 9r2(n) each. Note that A(n) ≤

9lnn
4(ln 1

2p +ln 1
2(1−p)

)
and A(n) ≥ 9

4 lnn.

Consider a particular cell S , and focus on the center sub-cell of this cell (call it D). Then conditioned on the
cell populations:

Pr[D has no non-faulty node |Ns = ns,Eo] ≤ (1− (1− p)
A(n)

a(n)
)ns ≤ (1− (1− p)

A(n)

a(n)
)

a(n)
2 ≤ (1− A(n)

2a(n)
)

a(n)
2

≤ e−
A(n)

4 ≤ e−
9 lnn

16
1

n
9

16

(44)

Event E1: Denote by event E1, the event that in a given cell S , the center sub-cell D has at least one non-faulty
node. Then Pr[¬E1|Eo] ≤ 1

n
9

16
.

Assuming there is at least one non-faulty node in D, select one such node j. Consider its neighborhood, which
is guaranteed to fall entirely within the cell S (Fig. 6). Also the area of the neighborhood is A1(n) = πr2(n) ≤

π lnn
4(ln 1

2p +ln 1
2(1−p)

)
< lnn

ln 1
2p +ln 1

2(1−p)

. It is to be noted though that A1(n) = πr2(n) ≥ π lnn
4 . Let M be the number of nodes

other than j lying within this area (i.e., the number of neighbors of j). Thus E[M|Ns = ns,Eo] = (ns−1)
(

A1(n)
a(n)

)

≤
ns

(

A1(n)
a(n)

)

and thus A1(n)
2 − 1

a(n)
≤ (1 − ε)A(n)

2 ≤ E[M|Ns = ns,Eo] ≤ 3A1(n)
2 , for any arbitrarily small ε. Let us

set ε = (1− 3
π ), to get that E[M|Ns = ns,Eo] ≥ 3lnn

4 . Then, setting (1 + β)E[M|Ns = ns,Eo] = 4A1(n), we get
β ≥ 4A1(n)

E[M|Ns=ns,Eo]
−1 ≥ 8

3 −1 = 5
3 . Applying Lemma 4:

Pr[M ≥ 4A1(n)|Ns = ns,Eo] ≤ Pr[M ≥ 8E[M|Ns = ns,Eo]

3 ] ≤
(

eβ

(1+β)1+β

)E[M|Ns=ns,Eo]

≤
(

e
5
3

( 8
3 )

8
3

)(1−ε) A1(n)
2

≤
(

1
e

8
3 (3ln2−ln3)− 5

3

)
3 lnn

8
<

(

1
e

2
3

)
3 lnn

8
=

1
n

1
4

(45)

Event E2: Denote by event E2, the event that in a given cell S , the chosen non-faulty node (conditioned on
such a node existing) in center sub-cell D has m ≤ 4A1(n) neighbors. Then Pr[¬E2|Eo ∧E1] ≤ 1

n
1
4

.

Assuming that M = m ≤ 4A1(n), let us now consider the probability that half or more of these neighbors of j

are faulty.
If M = m = 0, then automatically the node j is isolated with probability 1. Thus, we only consider the case

M = m ≥ 1.
Given that there are M = m neighbors, and each may fail independently with probability p, let I jk(1 ≤ k ≤ m)

denote the indicator variable corresponding to neighbor k of j (enumerated in some order), such that I jk = 1 if k is
faulty, and 0 otherwise. Then Y j = ∑ I jk denotes the number of failed neighbors of j. Y takes values from 0,1, ...,m,
and E[Y ] = pd. Pr[Y j ≥ m

2 ] =
m
∑

i= m
2

(m
i

)

pi(1− p)(m−i). Let us simply consider the event Y j = m
2 . Then we can apply



the lower bound from Lemma 6. The variables I jk(1 ≤ k ≤ M) are drawn from χ = {0,1} as per distribution
P = Bernoulli(p), and the distribution corresponding to Y j = m

2 is Bernoulli( 1
2) (we shall refer to this as Q 1

2
).

|χ| = 2, and 1
(m+1)|χ|

= 1
(m+1)2 ≥ 1

4m2 = 1
4 e−2lnm (for all m ≥ 1).

Note that m ≤ 4A1(n) ≤ 4lnn
ln 1

2p +ln 1
2(1−p)

≤ 4lnn
4( 1

2−p)2 ≤ n
1
32 from Lemma 8.

Thus, we obtain:

q = Pr[Y j ≥
m
2 ] ≥ Pr[Y j =

m
2 ] ≥ 1

(m+1)|χ|
e
−m(D(Q 1

2
||P))

=
1

(m+1)2 e
−m(D(Q 1

2
||P))

=
1
4e

−m(D(Q 1
2
||P))−2lnm

>
1
4e

−( lnn
4(ln 1

2p +ln 1
2(1−p)

)
)( 1

2 ln 1
2p + 1

2 ln 1
2(1−p)

)− 1
16 lnn

=
1
4e−

2
16 lnn− 1

16 lnn ≥ 1
4n

3
16

Then, assuming that event Eo indeed held, the probability that one of events E1,E2,E3 did not occur can be
bounded as follows:

Pr[¬(E1 ∧E2 ∧E3)|Eo] ≤ Pr[¬E1|Eo]+Pr[E1)]Pr[E2|E1 ∧Eo]

+Pr[E1 ∧E2|Eo]Pr[¬E3|Eo ∧E1 ∧E2)]

≤ Pr[E1|Eo]+Pr[E2|Eo ∧E1]+Pr[E3|Eo ∧E1 ∧E2]

≤ 1
n

9
16

+
1

n
1
4

+(1− 1
4n

1
4
) = 1− (

1
4n

3
16

− 1
n

9
16

− 1
n

1
4
) ≤ 1− 1

8n
3
16

for large n

(46)

Thus, conditioned on Eo, with probability at least 1
8n

3
16

, there is such a node x which has half or more faulty
neighbors. Denote by I j, an indicator variable which is one if this event happens for a subsquare i. Then Pr[I j =

1] ≥ 1
8n

3
16

. Recall again, that once we fixed all the cell populations ni, the considered events in each subsquare are
independent of each other.

The number h of disjoint subsquares is at least
(

b√nc
9r(n)

)2
≥ n

2( 81 lnn
4 ln 1

2p +ln 1
2(1−p)

)
=

2n(ln 1
2p +ln 1

2(1−p)
)

81lnn for large n. From

Lemma 8, we can thus see that h ≥ 8n( 1
2−p)2

81lnn ≥ 8n1− 1
32

81 = 8n
31
32

81 .
Let I′x be an indicator variable that takes value 1 if a node j is non-faulty but commits to a wrong value. From

1, we know that if a non-faulty node has half or more faulty neighbors, it will commit to the wrong value with
probability at least 1

2 . Thus Pr[I′x = 1|Eo] ≥ 1
2 Pr[I j = 1|Eo] ≥ 1

16n
3

16
.

Let X be a random variable indicating the number of subsquares in which we were able to select a non-faulty
node x, and which happened to have half or more faulty neighbors, and which commit to the wrong value.

Then X = ∑ I′x, and E[X |Eo] = ∑Pr[I′j = 1|Eo] ≥ 1
16n

3
16

(h) = 1
16n

3
16

8n
31
32

81 ≥ n
25
32

162 . Also, since we are conditioning
on subsquare populations, the indicator variables I ′x are all independent.

Thus we can choose an appropriate constant 0 < β < 1 (e.g., set β = 1
2 ) and apply the Chernoff bound in Lemma

2 to obtain:

Pr[X <
E[X ]

2 |Eo] ≤ e−
E[X ]

8 ≤ e
− n

25
32

162(8)

Applying union bound over probability that Eo does not occur or that the above event does not hold, we obtain

that with probability at least 1− 2√
n − e

− n
25
32

162(8) → 1, some non-faulty node commits to an incorrect value.



Thus:
lim
n→∞

Pr[ reliable broadcast fails] → 1

Corollary 3: The critical average degree for reliable broadcast in a random network with Byzantine failure
probability p < 1

2 , is expressible as Ω( lnn
1
2−p+ 1

2 ln 1
2(1−p)

) or Ω( lnn
( 1

2−p)2 ).

Proof: Note that when p < 1
2 : 1

2 − p + 1
2 ln 1

2(1−p) = Θ(min{1, ln 1
2p + ln 1

2(1−p)}). Similarly, ( 1
2 −

p)2 = Θ(min{1, ln 1
2p + ln 1

2(1−p)}). In Theorem 8, we proved that dcritical = Ω(max{lnn, lnn
ln 1

2p +ln 1
2(1−p)

}) =

Ω( lnn
min{1,ln 1

2p +ln 1
2(1−p)

} ). The result thus follows.

X. SUFFICIENT CONDITION FOR RANDOM NETWORKS

We obtain a sufficient condition for a network of n randomly deployed nodes, based on the sufficient condition
for the grid network model. To maintain consistency with the grid network formulation, we assume a toroidal
region of area

√
n x

√
n, with n nodes located uniformly at random. The average degree of a node is the average

number of the remaining n− 1 nodes that fall within its neighborhood (recall we are using L∞ distance metric),
i.e., davg(n, p) = (n−1)(2r(n,p))2

n ≈ 4r2(n, p) for large n.

THEOREM 9: When failure probability p < 1
2 , and r(n, p)≥

√

100lnn
1
2−p+ 1

2 ln 1
2(1−p)

, reliable broadcast is asymptotically

achievable in the random network model with high probability.

Proof: At the outset, we make the observation that if r(n, p) =
√

n, all nodes are neighbors, and trivially
broadcast is achievable. Thus this result is of interest only so long as r(n, p) <

√
n.

In light of Fact 2:

D(Q 1
2
||p) =

1
2 ln 1

2p
+

1
2 ln 1

2(1− p)

≥ 1
2 (1−2p)+

1
2 ln 1

2(1− p)
=

1
2 − p+

1
2 ln 1

2(1− p)

(47)

Also, since p < 1
2 :

0 <
1
2 − p+

1
2 ln 1

2(1− p)
≤ 1

2 (1− ln2) < 1 (48)

Similar to grid networks, we use a notion of quarter-neighborhoods. For a given broadcast instance, we again
use relative coordinates by treating the source’s coordinates as (0,0). With some abuse of the grid network notation
introduced in Section II, we can extend the notion of nbd(x,y), to include all nodes within distance r of point (x,y)

(regardless of whether or not there is a node at (x,y)), where x and y are real numbers. The notion of pnd(x,y) is
also similarly extended to all points (x,y).

Note that in this model, a node’s (or point’s) coordinates are real numbers. We thus associate eight quarter-
neighborhoods with each node, with spatial extents as in Table I, except that now x and y must be treated as real
numbers. Also, now it is not possible to assert that there are only 2n distinct quarter-neighborhoods. Thus, all eight
quarter-neighborhoods of a node must be treated as distinct2, yielding 8n quarter-neighborhoods in all.

The quarter-neigborhoods are axis-parallel rectangles of area r(n, p)(r(n, p)−1)≥ r2(n,p)
2 (for r(n, p)≥ 2). Then, if

4r2(n, p)≥ 400lnn
1
2−p+ 1

2 ln 1
2(1−p)

, then we can apply Lemma 10 for all axis-parallel rectangles of area r(n, p)(r(n, p)−1)≥

2Note that distinct does not mean disjoint.



50lnn
1
2−p+ 1

2 ln 1
2(1−p)

≥ 100lnn
1−ln2 , to obtain that they all have at least 50lnn

1
2−p+ 1

2 ln 1
2(1−p)

−50lnn > 25lnn
1
2−p+ 1

2 ln 1
2(1−p)

> 50lnn
1−ln2 nodes,

with probability at least 1− 50lnn
n → 1.

Thus all such rectangles are non-empty. Also:
25lnn

1
2 − p+ 1

2 ln 1
2(1−p)

≥ 25lnn
D(Q 1

2
||p)

>
8lnn

D(Q 1
2
||p)

(49)

Hence all the quarter-neighborhoods have at least 8lnn
D(Q 1

2
||p) nodes (which is the quarter-neighborhood population in

the grid network case). Then using a proof argument similar to Theorem 5, one can prove the following theorem:

THEOREM 10: If p < 1
2 , and r(n, p) ≥

√

100lnn
1
2−p+ 1

2 ln 1
2(1−p)

, then

lim
n→∞

Pr[ all 8n qnbds have non-faulty majority] → 1
Thus, one can use a broadcast protocol similar to that for grid networks (a node commits to a value if it is

received from half or more nodes in some quarter-neighborhood), and, for all broadcast sources, and instances, the
correctness and completeness continue to hold, as follows:
Correctness: Relying on Theorem 10, we can apply a proof argument similar to Theorem 6.
Completeness: The proof uses the an inductive argument similar to the proof of Theorem 7, except that the terms
nbd(x,y), pnd(x,y) and quarter-neighborhood must be interpreted as per their re-definition in this section. In the
base case, all neighbors of the source (which is at (0,0)) commit to the correct value trivially. In the inductive step,
one can show that if all nodes in nbd(x,y) (as per the re-defined notation) have comitted to the correct value, all
nodes in pnd(x,y)−nbd(x,y) have some qnbd contained in nbd(x,y), and can thus commit to the value received
from a majority of nodes in this qnbd.

Since the area within range of a node is (2r)2 ≤ 4r2 (for the valid domain of r values) in the L∞ metric, the
result indicates that an average node degree davg of 400lnn

1
2−p+ 1

2 ln 1
2(1−p)

suffices for reliable broadcast. Hence the critical

average node degree davg
critical is O( lnn

1
2−p+ 1

2 ln 1
2(1−p)

). 3

Corollary 4: The critical average degree for reliable broadcast in a random network with Byzantine failure
probability p < 1

2 is O(max{lnn, lnn
ln 1

2p +ln 1
2(1−p)

}) or O( lnn
min{1,ln 1

2p +ln 1
2(1−p)

} ) or O( lnn
( 1

2−p)2 ).

Proof: Note that when p < 1
2 : 1

2 − p+ 1
2 ln 1

2(1−p)
= Θ(min{1, ln 1

2p + ln 1
2(1−p)

}) = Θ(( 1
2 − p)2). In Theorem

9, we proved that dcritical = O( lnn
1
2−p+ 1

2 ln 1
2(1−p)

). Thus, it follows that dcritical = O( lnn
min{1,ln 1

2p +ln 1
2(1−p)

} ) = O( lnn
( 1

2−p)2 ).
The result thus follows,

XI. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived for L∞ metric continue to hold for L2 metric, with only the constants in the
theta notation changing.

LEMMA 12: If reliable broadcast is achievable asymptotically in L∞ for all r ≥ rmin, then it is achievable
asymptotically in L2 for all r ≥ rmin

√
2.

Proof: The proof is by contradiction. Suppose that, for a given failure configuration, broadcast is asymptotically
achievable in L∞ for all r ≥ rmin but is not asymptotically achievable for all r ≥ rmin

√
2 in L2. Observe that it is

possible to circumscribe a L∞ neighborhood of range r by a L2 neighborhood of range r
√

2 (Fig. 7). Hence the
non-faulty nodes in an L2 network of transmission range r

√
2 can be made to simulate the operation of nodes in a

3A more intuitive way of viewing the result is that critical degree is O(max{ln n, lnn
D(Q 1

2
||P)

}).
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Fig. 7. Relationship between L∞ and L2 neighborhoods

L∞ network with range r (as the L∞ neighborhood is fully contained within the L2 neighborhood). Also, given that
this is a network of known topology, with no address spoofing allowed, the faulty nodes cannot gain any unfair
advantage, by not simulating the the L∞ network. This implies that if broadcast is achievable in the L∞ network
of range r , so must it be in the L2 network of range r

√
2. If there is some r ≥ rmin for which we can achieve

broadcast in the L∞ network asymptotically, but not in the the L2 network of range r
√

2, we obtain a contradiction,
as achievability in the L∞ network would imply achievability in the L2 network.

LEMMA 13: If reliable broadcast fails asymptotically in L∞ for all r ≤ rmin, then it fails asymptotically in L2 for
all r ≤ rmin.

Proof: The proof is by contradiction. Suppose that broadcast fails asymptotically in L∞ for range r, but does not
fail in L2 for range r. Observe that an L∞ neighborhood of transmission range r circumscribes an L2 neighborhood
of range r (Fig. 7). Thus, for any given failure configuration, if broadcast succeeds in the the L2 network of range
r, so can it in the L∞ network of radius r, as we could simply make the fault-free nodes in the L∞ network simulate
the behavior of nodes in the L2 network. Hence, if broadcast does not fail in the L2 network of range r ≤ rmin, it
will not fail in the L∞ network of range r ≤ rmin. This yields a contradiction.

XII. NON-TOROIDAL NETWORKS

We used the assumption that the network is toroidal to avoid edge effects. However, one can see that the results
would continue to hold even if the network were spread over a non-toroidal rectilinear domain. The necessary
condition would continue to hold, since the degree of nodes at the edges can be no more more than the degree of
nodes towards the center, and if reliable broadcast is impossible even with the assumption of equal degree for all
nodes, it must certainly be impossible when some nodes (those at the edges) have a smaller degree.

The sufficient condition continues to hold since the described protocol relies on information from quarter-
neighborhoods, and it can be seen that even the nodes at the edges have at least one quarter-neighborhood within
the network region.

Crash-Stop Failures/Connectivity

XIII. RELATED WORK

Conditions for connectivity and coverage have been formulated in the context of different network models. In
[15], it was proved that in a unit area network with uniformly distributed node placement, where nodes have a
common transmission radius r, such that πr2 = (logn+c(n))

n , the network is asymptotically connected with probability
one iff c(n) → ∞. In [16], an alternate model was considered whereby randomly deployed nodes may modulate
their transmission power (and hence range) to ensure that they have a certain number of neighbors. It was proved
that each node must be connected to Θ(logn) neighbors for asymptotic connectivity with probability one. Recently,



necessary and sufficient conditions for asymptotic connectivity in a network with low duty cycle sensors have been
formulated in [17].

A grid network model was considered in [1] where nodes are located at grid locations on a square grid, but may
fail independently. Nodes have a common transmission range r. The probability of not failing is specified as p,
and it is shown that a sufficient condition for connectivity and coverage is that transmission range r must be set to
ensure that node degree is c1(

logn
p ) (for some constant c1). It is also shown that a necessary condition for coverage

(and hence for joint coverage and connetivity) is that node degree be at least c2(
logn

p ) (for another constant c2. A
fallacy in the above necessary condition was pointed out by [18], and a subsequent correction [19] by the authors
of [1] presents examples illustrating that the necessary condition may fail to hold for certain subranges of p. The
issue of coverage has been examined in detail in [18] for random, grid, and poisson deployments. However, the
necessary and sufficient conditions formulated by them take a more complex form, and do not point to a single
f (n, p) such that a degree of Θ( f (n, p)) is both necessary and sufficient for asymptotic coverage. Besides, the
necessary condition is formulated for the specific case when lim

n→∞
p → 0.

Our results for crash-stop failures are closely related to the results of [1]. However, we prove that, given a
failure probability p, it is necessary and sufficient to have a degree of Θ(dmin + logn

log 1
p
) for both connectivity and

coverage. Expressed in the notation of [1], we stipulate a degree of Θ( logn
log 1

1−p
). Our results diverge considerably

from those of [1] when the failure probability becomes extremely small, and thus our necessary conditions would
hold in a certain subdomain where that of [1] would not. However, there is a small sub-domain of p in which our
necessary conditions also cease to hold, as with the conditions of [1]. Besides, we work in the L∞ distance metric,
and then map the results to L2. This yields much simpler proofs. We also remark that our joint sufficient condition
for connectivity and coverage is actually sufficient for 9-coverage and not merely 1-coverage (where k-coverage
implies that each point is covered by at least k non-faulty nodes). It is noteworthy that our results may be derived
from analysis presented in [20] regarding the feasible rate in a sensor network, although no statement has been
made in [20] in this regard.

XIV. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that shall be used in this paper. Nodes can identified by their
grid location i.e. (x,y) denotes the node at (x,y). The neighborhood of (x,y) comprises all nodes within distance
r of (x,y) and is denoted as nbd(x,y). The degree of each node is referred to as d. In L ∞ metric, d = 4r2 +4r,
while the size of a neighborhood (including the neighborhood center) is d +1 = 4r2 +4r +1. The diameter of the
network (in terms of distance, and not number of hops) is referred to as D. If n is a perfect square, D =

√
n.

XV. NECESSARY CONDITION FOR CONNECTIVITY

THEOREM 11: When p < 1 − 1
lnn , if r(n, p) < max{1, 1

4

√

lnn
ln 1

p
} (yielding node degree d(n, p) <

max{dmin,
lnn

2ln 1
p
}):

lim
n→∞

Pr[ disconnection] = 1

Proof: It is obvious that the minimum transmission range required for connectivity is 1, yielding d = dmin = 8
(in L∞ metric), else the degree of all nodes is 0 (except in the case when all nodes are faulty, and connectivity
becomes irrelevant). Thus, we only focus on the case where 1

4

√

lnn
ln 1

p
≥ 1.

We show that the network is asymptotically disconnected with probability 1 if r < 1
4

√

lnn
ln 1

p
, as long as p≤ 1− 1

lnn .

It is evident that r(n, p) ≤ max{1, 1
4

√

lnn
ln 1

p
} yields a node degree d(n, p) ≤ max{dmin,

lnn
2ln 1

p
}.



Fig. 8. Nodes having disjoint neighborhoods

a) p ≤ 1− 1
lnn : Consider a particular node j in the network. Then, if j is non-faulty, but all its neighbors are

faulty, we have a potential disconnection event. Given that there are d neighbors, and each may fail independently
with probability p, the probability that j does not fail, but all nodes in nbd( j) fail, is (1− p)pd.

Since p ≤ 1− 1
lnn , we obtain that 1

1−p ≥ lnn.

Pr[ A given node j is alive, but isolated] ≥ Pr[ j is alive and all neighbors of j are faulty ]

= (1− p)pd >
1

lnn
p

lnn
2 ln 1

p =
1

lnn
1√
n

=
1√

n lnn

≥ (lnn)3

n
for large n, from our choice of c

(50)

Note the following:

d <
lnn

2ln 1
p

≤ lnn
2(1− p)

≤ (lnn)2

2 ( from Fact 1) (51)

Let us mark out a subset of nodes j such that the neighborhoods of these nodes are all disjoint, as in Fig. 8.
Then, from Fact 4, the number of such nodes that we may obtain is at least n

2d for large n.
Let I j be an indicator variable that takes value 1 if j is alive but isolated. Then Pr[I j = 1] ≥ (lnn)3

n , and all I j’s
are i.i.d.

Let X be a random variable denoting the number of nodes from the chosen set that are alive and isolated. Then
X = ∑ I j, and E[X ]≥ (lnn)3

n
n

2d ≥ (lnn)3

(lnn)2 = lnn. We can thus set β = 1
2 in the Chernoff bound of Lemma 2, and obtain

that:

Pr[X >
lnn
2 ] ≥ 1− e−

lnn
8 = 1− 1

n
1
8

(52)

Thus, for p < 1− 1
lnn , lim

n→∞
Pr[ At least two alive nodes are isolated] = 1.

This result can actually be extended and shown to hold for a slightly larger range of p values.



b) 1− p = o
( 1

n

)

: When the failure probability becomes so high as to fall in this range, we obtain:

lim
n→∞

Pr[ Any node is alive] = 1− pn = lim
n→∞

1− (1− (1− p))n = 1− e− lim(n(1−p)) = e0 = 0 from Fact 2 (53)

Thus the issue of connectivity is irrelevant.

XVI. NECESSARY CONDITION FOR COVERAGE

Since the connectivity condition proof is easily adaptable to also provide a necessary condition for coverage, we
do so in this section. Recall that the network is considered covered if each point in the network region falls within
range of at least one non-faulty node.

We now show that for the network to be asymptotically covered with probability approaching 1, it is necessary
that the transmission range r satisfy: r ≥ max{ 1

2 ,Ω(
√

lnn
ln 1

p
)}.

THEOREM 12: For p < 1− 1
lnn , for a suitable constant 0 < c < 1, if r(n, p) < max{ 1

2 ,
√

c lnn
8ln 1

p
}, for a suitable

constant c < 8
9 , yielding d < c lnn

ln 1
p

:

lim
n→∞

Pr[Some point is not covered] → 1

Proof: Since the grid comprises unit squares, it is obvious that r must be at least 1
2 , else some points between

the lattice will not be covered. We handle two subranges of p separately.

a) p < 1− 1
lnn : The proof relies on subdivision of the network into disjoint neighborhoods, as in Fig. 8. From

Fact 4, the number of such neighborhoods obtained is at least n
2d for large n.

If there exists at least one neighborhood with absolutely no nodes alive (neither the neighborhood center nor its
neighbors), then the center of that neighborhood is not covered. Thus we seek to determine the probability of such
an event.

We begin by choosing a constant 0 < c < 8
9 such that 9

8 c lnn ≤ lnn−3lnlnn, for sufficiently large n. In general
any constant c ≤ 8

9 − ε will satisfy this property for large n.
This also ensures that 1

nc ≥ 1
n

9 lnn
8

≥ (lnn)3

n for large n. Set r ≤
√

c lnn
8ln 1

p
. Then d = 4r2 +4r ≤ 8r2 = c lnn

ln 1
p
≤ c(lnn)2 <

(lnn)2.
The neighborhood population is given by d +1 = 4r2 +4r+1≤ 4r2 +4r2 +r2 = 9r2, for n≥ 1. Thus d +1≤ 9c lnn

8ln 1
p

Let I j be an indicator variable that takes value 1 if there is no alive node in the neighborhood centered at node
j, and value 0 otherwise.

Then Pr[X j = 1] = pd+1 ≥ p
9
8 c lnn

ln 1
p = (lnn)3

n (from our choice of c).
Let X = ∑ I j be a random variable indicating the number of neighborhoods with no alive node. Then E[X ] ≥

(lnn)3

n
n

2d ≥ (lnn)3

2d ≥ (lnn)3

2(lnn)2 = lnn
2 .

Application of the Chernoff bound from Lemma 2 with β = 1
2 yields:

Pr[X ≤ lnn
4 ] ≤ Pr[X ≤ E[X ]

2 ] ≤ exp(−E[X ]

8 ) → 0 (54)

Thus there is some uncovered region with probability 1.
Hence r ≤

√

c lnn
8ln 1

p
=⇒ some uncovered area.

Similar to the necessary condition for connectivity, observe that the proof can be extended to hold for a somewhat
larger range of p values, with suitable adjustment to the constant.
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Fig. 9. Subdivision of network into cells

b) 1− p = o( 1
n ): Thus n(1− p) → 0. We obtain that Pr[ no nodes alive ] = pn = (1− (1− p))n. As n → ∞,

the following holds:

lim
n→∞

Pr[some point not covered] ≥ Pr[no node alive] (55)

= lim
n→∞

(1− (1− p))n = e− lim(n(1−p)) = e0 = 1 from Fact 2 (56)

Thus the network is trivially not covered, regardless of transmission range.

XVII. SUFFICIENT CONDITION FOR CONNECTIVITY AND COVERAGE

We now present a sufficient condition for the asymptotic existence of both connectivity and coverage. It is thus
also a sufficient condition for each of them individually.

THEOREM 13: When d ≥ max{dmin,32 lnn
ln 1

p
}, the network is asymptotically connected and covered with

probability 1.

Proof:

a) p = o( 1
n): When the failure probability is so small as to fall in this range, the probability of even a single

node failing approaches 0 asymptotically, and thus connectivity and coverage is trivially ensured even with the
minimum transmission range of 1. This may be seen thus:

lim
n→∞

Pr[No failures;full connectivity/coverage] ≥ lim
n→∞

(1− p)n = e− limnp = e0 = 1 from Fact 2 (57)

b) p = Ω( 1
n ): Consider the subdivision of the grid as depicted in Fig. 9, so that the resulting cells have x-

extents (y-extents) 0 to a, a+1 to a+b, a+b+1 to 2a+b+1, and so on. Here a = b r
2c and b = r−a = r−b r

2c.
Then, each node is within range of all other nodes in the cells adjoining its own. Thus it is obvious that if each
square has at least one non-faulty node, there exists a connected backbone that covers all points, and hence all
nodes. Thus all non-faulty nodes are connected to each other via this backbone. The dimensions of the cells thus
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obtained can be (a + 1)2, (a + 1)b or b2. Thus the population k of any cell satisfies k ≥ r2
4 , and the maximum

possible number of cells m ≤ 4n
r2 . Then:

Pr[ no node alive in a given cell ] = pk ≤ p
r2
4 (58)

Let us choose r ≥
√

8lnn
ln 1

p
. Then:

Pr[no node alive in a given cell] ≤ p
r2
4 ≤ p

2 lnn
ln 1

p (59)

= e−2lnn =
1
n2 (60)

The total number of cells = 4n
r2 ≤ n. Thus, by applying a union bound over all cells:

Pr[at least 1 node alive in each cell] ≥ 1− 1
n

(61)

Since this condition ensures connectivity and coverage, we obtain that:

lim
n→∞

Pr[network is connected and covered] → 1 (62)

XVIII. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived for L∞ metric continue to hold for L2 metric, with only the constants in the
theta notation changing.

LEMMA 14: If the network is asymptotically connected (covered) in L∞ for all r ≥ rmin, then the network is
connected (covered) asymptotically in L2 for all r ≥ rmin

√
2.

Proof: The proof is by contradiction. Suppose that, for a given failure configuration, the network is
asymptotically connected in L∞ for all r ≥ rmin but is not asymptotically connected for all r ≥ rmin

√
2 in L2.

Observe that it is possible to circumscribe a L∞ neighborhood of range r by a L2 neighborhood of range r
√

2 (Fig.
10). Hence the nodes in an L2 network of transmission range r

√
2 can be made to simulate the operation of nodes

in a L∞ network with range r (as the L∞ neigborhood is fully contained within the L2 neighborhood). This implies
that if the L∞ network of range r is connected (covered), so must be the L2 network of range r

√
2. If there is some

r ≥ rmin for which the L∞ network of range r is connected (covered) asymptotically, but the L2 network of range
r
√

2 is not, we obtain a contradiction, as connectedness (coverage) of the L∞ network would imply connectedness
(coverage) of the L2 network.



LEMMA 15: If the network is asymptotically disconnected (not covered) in L∞ for all r ≤ rmin, then the network
is disconnected (not covered) asymptotically in L2 for all r ≤ rmin.

Proof: The proof is by contradiction. Consider a failure configuration such that the network is asymptotically
disconnected (not covered) in L∞ for range r, but is not disconnected (not covered) in L2 for range r. Observe that
an L∞ neighborhood of transmission range r circumscribes an L2 neighborhood of range r (Fig. 10). Thus, for any
given random failure configuration, if the L2 network of range r were connected (covered), so would be the L∞

network of radius r, as we could simply make the nodes in the L∞ network simulate the behavior of nodes in the
L2 network, and obtain connectedness (coverage). Hence, if the L2 network of range r ≤ rmin is not asymptotically
disconnected (not covered), the L∞ network of range r ≤ rmin must also not be disconnected (not covered). This
yields a contradiction.

XIX. NON-TOROIDAL NETWORKS

We have made the assumption that the network is toroidal, so as to avoid edge effects. However, we can see that
the degree of any node at the outermost edge is no more than d, and at least d

4 (where d is the uniform degree
that each node would have in the toroidal case). Thus, the necessary condition would continue to hold as is (since
some nodes having a lesser degree can only increase the probability of disconnection). The construction used to
prove the sufficient condition also continues to hold as is, since all full-cells in the tiling will have at least one
active node each, and even if there are regions at the fringes left-over, they will still fall within range of some
active node in the nearest full tile (due to the chosen dimensions of the cells). Thus, the results are not affected. A
similar argument leads to the conclusion that the coverage results are not affected.

XX. DISCUSSION

An interesting observation is that the form of the results for Byzantine failures is very similar to the results for
crash-stop failures/connectivity. For Byzantine failures, we have obtained that the critical node degree for grid net-
works is Θ(dmin + lnn

ln 1
2p +ln 1

2(1−p)

), which may be re-stated as Θ(dmin + lnn
D(Q 1

2
||P)

) where Q 1
2

denotes the Bernoulli( 1
2)

distribution, P denotes the Bernoulli(p) distribution, and D(Q||P) denotes the relative entropy (or Kullback-
Leibler distance) between distributions Q and P. Similarly, the node degree for crash-stop failures/connectivity
is Θ(dmin + lnn

ln 1
p
), and may be viewed as as Θ(dmin + lnn

lim
q→1

D(Q||P)
), where Q is the Bernoulli(q) distribution, and P is

the Bernoulli(p) distribution.
Recall that we derive the necessary condition from isolated failure events, and this is found to match the sufficient

condition within a constant factor. Thus, possibly failure events involving isolated nodes not receiving correct
broadcast may be the dominant failure events 4.

Focusing on these isolated failure events, the obtained expressions for node degree can be explained in the
light of Sanov’s Theorem [10]. As per Sanov’s Theorem, the probability of occurrence of the event-set E =

{ half or more neighbors faulty} is dominated by the probability of the event in E closest in relative entropy
to the governing fault distribution P. Since we are considering the regime p < 1

2 , the closest event is that of
exactly half the neighbors faulty, corresponding to Q 1

2
. In light of this, the critical degree expression for Byzantine

failures is quite intuitive. One can similarly explain the crash-stop results.
The necessary and sufficient condition for connectivity in a sensor network where nodes sleep with probability

p was shown in [17] to be Θ(
ln(n(1−p))

1−p ) (when expressed in our notation) for the case of a randomly deployed
network. This problem is equivalent to that of crash-stop failures in random networks. Our sufficient condition for

4Note that in [15], it was found that the primary disconnection events in non-faulty random networks are those involving single isolated
nodes.



random networks with Byzantine failure probability p < 1
2 is O( lnn

1
2−p+ 1

2 ln 1
2(1−p)

). There is a similarity of form in

the two results, and one may interpret the critical node degree as being O(max{lnn(1− p), lnn(1−p)
D(Q||P) }) where q = 1

for the sleeping/crash-stop case in [17], and q = 1
2 for the Byzantine failure case.

Also note that both our grid network and random network results (for Byzantine failure) have similar structural
form, involving a minimum term required for connectivity without disruptive (Byzantine) behavior, and a second
term required to ensure broadcast even in presence of failure.

Additionally, it is evident that the expressions for the grid network and random network diverge when p → 0, but
are otherwise within a constant factor of each other (for p bounded away from 0). This difference is quite intuitive.
In a grid network, as failure probability p → 0, the network tends towards a deterministic topology, whereas in a
random network, if failure or sleep probability p → 0, the network can only tend towards a denser but still random
network. Thus, at small values of p, a very small degree will suffice for a grid network, but may not for a random
network. At larger p values, the grid network exhibits increasing randomness and begins to resemble a network
with random deployment. Thus, one may see that the two expressions are within a small range of each other when
p is large (given sufficiently large n), but diverge as p → 0.

XXI. CONCLUSIONS

We considered the problem of reliable broadcast in wireless networks with permanent probabilistic Byzantine
failures, and obtained tight bounds for asymptotic achievability of broadcast in grid and random deployments. We
also have results for crash-stop failure that are more accurate than earlier known results for this latter case.
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