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Abstract

We consider the problem of reliable broadcast in a wireless network in which nodes are prone to failure. In the
failure mode considered in this paper, each node can fail independentlywith probability p. Failures are permanent.
The primary focus is on Byzantine failures, but we also handle crash-stop failures. We consider two network models:
a regular grid, and a random network. For the grid network model, we establish necessary and sufficient conditions
for the degree of each node as a function of the total number of nodesn in the network, and the failure probabilityp,
so as to ensure that reliable broadcast succeeds with probability 1, asn→ ∞. Our necessary and sufficient conditions
for reliable broadcast with Byzantine failures indicate that failure probability should be less than12 , and thecritical

node degree isΘ
(

dmin+ lnn
ln 1

2p+ln 1
2(1−p)

)

(where dmin is the minimum node degree associated with a non-empty

neighborhood, and is a small constant). For a random network we prove that, for failure probability less than12 , the
critical average degree for reliable broadcast isΘ(lnn+ lnn

ln 1
2p+ln 1

2(1−p)

). Our necessary and sufficient conditions for

crash-stop failures in a grid network yield a critical degree ofΘ
(

dmin+ lnn
ln 1

p

)

for p < 1, and our results improve

upon previously existing results for this model, whenp approaches 0. We also identify an interesting similarity in the
structure of various known results in the literature pertaining to a set of related problems in the realm of connectivity
and reliable broadcast.

Index Terms

Byzantine failure, crash-stop failure, broadcast

I. I NTRODUCTION

Reliable broadcast in the presence of Byzantine and crash-stop failures has been extensively studied under different

network and failure models. A reliable broadcast mechanismmay be of significant utility in large-scale sensor

network deployments. While the shared nature of the wirelessmedium is conducive to the broadcast operation, the

unreliability of the wireless channel, and the possibilityof collisions can make it a difficult problem to solve. As a

first step towards addressing the issue, it is useful to focuson an idealized wireless channel. We consider the problem

of reliable broadcast in a such an idealized wireless network. We primarily focus on Byzantine failures, but have also
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dated January 2007. Note that this report contains additional results not in the identically titled paper in IEEE INFOCOM 2007.
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considered the case of crash-stop failures. The failures are permanent and are assumed to occur probabilistically, i.e.,

each node can fail independently with a certain probabilityp. However, once failure has happened, the faulty nodes

can exhibit worst-case behavior. We present asymptotically tight bounds on the conditions under which reliable

broadcast is achievable.

We show that when nodes exhibit Byzantine failures, reliable broadcast in a grid network ofn nodes requires that

p be less than half, and thecritical node degree (defined in Section II) isΘ
(

dmin+ lnn
ln 1

2p+ln 1
2(1−p)

)

for asymptotic

achievability of reliable broadcast. This may alternatively be stated asΘ
(

dmin+ lnn
D(Q1

2
||P)

)

whereQ1
2

denotes the

Bernoulli(1
2) distribution, P denotes theBernoulli(p) distribution, andD(Q||P) denotes therelative entropy(or

Kullback-Leibler distance) between distributionsQ andP. We also prove that in a randomly deployed network with

Byzantine failures, the critical average node degree for reliable broadcast isΘ(lnn+ lnn
ln 1

2p+ln 1
2(1−p)

)(also expressible

asΘ
(

lnn
1
2−p+ 1

2 ln 1
2(1−p)

)

) when p < 1
2.

We also consider the case of crash-stop failures in a grid network. For crash-stop failures, the problem of reliable

broadcast is equivalent to connectivity. For this case, we have results showing that the critical node degree is

Θ
(

dmin+ lnn
ln 1

p

)

with p < 1, or alternatively stated,Θ
(

dmin+ lnn
D(Q1||P)

)

, whereQ1 is theBernoulli(1) distribution.

Our results improve upon previous results proved in [1] whenthe failure probabilityp approaches 0.

We also identify an interesting but intuitive similarity inthe structure of results (previously known results, as well

as the results derived in this paper) for a set of related problems pertaining to connectivity and reliable broadcast.

This is discussed in Section XX.

II. NOTATION AND TERMINOLOGY

We use the following asymptotic notation:

• O(g(n)) = { f (n)|∃c,No, such that ∀n > No, f (n) ≤ cg(n)}
• o(g(n)) = { f (n)| lim

n→∞
f (n)
g(n) = 0}

• ω(g(n)) = { f (n)|g(n) = o( f (n))}
• Ω(g(n)) = { f (n)|g(n) = O( f (n))}
• Θ(g(n)) = { f (n)|∃c1,c2,No, such thatc1g(n) ≤ f (n) ≤ c2g(n) for n > No}
We used to denote node degree,r to denote transmission range, andD to denote network diameter. The

neighbor-set of a nodeu, including itself, is denoted bynbd(u). The set of neighbors minus itself is termed as

nbd′(u) = nbd(u)−{u}.

By critical transmission range for reliable broadcast, we imply arcritical , such that

• For some constantc1 > 0, reliable broadcast fails with some positive probabilityif r < rcritical

• For some constantc2 > 0, reliable broadcast is achieved with probability 1 ifr ≥ rcritical

Thus:

• rcritical is Ω( f (n, p)) =⇒ ∃c1 > 0, such thatr ≤ c1 f (n, p) =⇒ lim
n→∞

Pr[reliable broadcast achievable] < 1

• rcritical is O( f (n, p)) =⇒ ∃c2 > 0, such thatr ≥ c2 f (n, p) =⇒ lim
n→∞

Pr[reliable broadcast achievable] = 1

• rcritical = Θ( f (n, p)) implies thatrcritical is Ω( f (n, p)) andO( f (n, p)).

In a grid network, and under the considered distance metric (discussed in Section III), the node degree is

exactly determined by specifying the transmission range. Hence, we can define the notion ofcritical degreedcritical

correponding to the transmission rangercritical . Thus:

• dcritical = Ω(g(n, p))∃c1 > 0, such that:d≤ c1g(n, p) =⇒ lim
n→∞

Pr[reliable broadcast achievable]< 1 This yields

a necessarycondition. If lim
n→∞

Pr[reliable broadcast achievable] = 0, it is a strongnecessary condition.



• dcritical = O( f (n, p)) =⇒ ∃c2 > 0, such that:d≥ c2 f (n, p) =⇒ lim
n→∞

Pr[reliable broadcast achievable] = 1 This

yields asufficientcondition.

• dcritical is Θ( f (n, p)) implies thatdcritical is Ω( f (n, p)) andO( f (n, p))

In a random network, the degrees of individual nodes can vary; however, it is possible to define a notion of

critical average degreedavg
critical , which is the average degree corresponding to the rangercritical . Thendavg

critical can

be expressed in asymptotic notation, similar todcritical for a grid network.

III. PROBLEM MODEL

We consider a two network models, viz. a regular grid, where nodes are located on a two-dimensional square

grid (each grid unit is a 1×1 square), and a random network, where node locations are i.i.d. over the deployment

region. In both models, the network is assumed to be deployedover a
√

n x
√

n square region. The pre-failure

topology (i.e., node locations) of the deployed network is assumed to be known by all nodes.

Formal Definition of Reliable Broadcast:Any node in the entire network can originate a broadcast message. In

the Byzantine failure model, this source node may be faulty.Thus goal is to ensure that if the source is non-faulty,

every non-faulty node in the network should correctly receive and determine the broadcast value; if the source is

faulty, all non-faulty node should agree on some common value. In the crash-stop failure model, a message can only

be originated by a non-faulty node (as faulty nodes cease to function), and the goal is to ensure that all non-faulty

nodes receive this value.

If even one non-faulty node (in either model) fails to make a valid value determination, the broadcast is deemed

to have failed. Reliable broadcast is said to fail in a given fault configuration, if it fails for at least one possible

broadcast origin/source.

For a given broadcast instance, once an origin/source is designated, it is identified as(0,0). All nodes can then

be uniquely identified by their coordinate location(x,y) w.r.t. this origin. In the grid network model, the node

coordinates are alwaysintegers, while for random networks they arereal numbers. All nodes have a common

transmission radiusr(n, p). For grid networks, we assume thatr(n, p) is an integer, and for random networks it is

allowed to be any real number. A message transmitted by a node(x,y) is heard by all nodes within distancer(n, p)

from it (where distance is defined in terms of the particular metric under consideration). The set of these nodes is

termed the neighborhood of(x,y).

In this paper, we consider two distance metrics:L∞ and L2. The L∞ metric is the metric induced by theL∞

norm [2], such that the distance between points(x1,y1) and (x2,y2) is given by max{|x1 − x2|, |y1− y2|} in the

this metric. Thusnbd(a,b) comprises a square of side 2r with its centroid at(a,b), and the degree of a node is

4r2 +4r. In this metric, the minimum node degreedmin = 8 corresponding tor = 1. TheL2 metric is induced by

the L2 norm [2], and is the Euclidean distance metric. TheL2 distance between points(x1,y1) and(x2,y2) is given

by
√

(x1−x2)2 +(y1−y2)2, andnbd(a,b) comprises nodes within a circle of radiusr centered at(a,b). The L∞

metric enables more tractable analysis, from which necessary and sufficient conditions for theL2 (Euclidean) metric

proceed. In Section XI, we further elaborate on this.

A random failure mode is assumed, wherein each node can fail with probability p independently of other nodes.

Failures are permanent. We primarily focus on Byzantine failures. In the Byzantine failure mode, a faulty node can

behave arbitrarily, in contrast to crash-stop failures, where a faulty node simply stops functioning. However, in our

model, the Byzantine nodes cannot spoof addresses or cause collisions, i.e., the MAC layer is assumed fault-free,

and the Byzantine faults reside only in higher layers of the protocol stack.1. We assume that the channel is perfectly

1A methodology to handle a bounded number of collisions and address-spoofing was proposed in [3] for a locally bounded fault model. It
might be possible to adapt it to handle the random failure model. This requires further investigation.



reliable, and a local broadcast is correctly received by allneighbors. The samereliable local broadcastassumption

underlies the results in [4] and [5] for a locally bounded adversarial fault model. Note that while theoccurrenceof

the permanent failures is probabilistic, the failed Byzantine nodes can thereafter choose to behave in a worst-case

manner (i.e. modulate the messages they send to cause most confusion to non-faulty nodes). The non-faulty nodes

do not know which nodes have failed.

IV. SOME USEFUL MATHEMATICAL RESULTS

We state some mathematical results that have been used in ourproofs:

FACT 1: ∀x∈ [0,1] : ln 1
1−x ≥ x

FACT 2: If | f (n)| ≤ n
1
2−ε(0 < ε < 1

2):
(

1+
f (n)

n

)n

≤ e2 f for n≥ 4

and

lim
n→∞

(

1+
f (n)

n

)n

= e
( lim
n→∞

f (n))

Proof: Let f (n) be such that| f (n)| ≤ n
1
2−ε, where 0< ε < 1

2. Let g(n) = (1+ f (n)
n )n. Then:

lng = nln(1+
f (n)

n
) = n

(

f (n)

n
− 1

2
(

f (n)

n
)2 +

1
3
(

f (n)

n
)3− ....

)

[6]

= n
∞

∑
k=1

(−1)k−1 1
k
(

f (n)

n
)k = f +

∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 )

≤ f (n)+ f (n)
∞

∑
k=2

1
k
(

f (n)

n
)k−1 < f (n)+ f (n)

∞

∑
k=2

(
1√
n
)k−1

= f (n)

(

1+
∞

∑
k=1

(
1√
n
)k

)

= f (n)

(

1+
1

1− 1√
n

)

≤ 2 f for n≥ 4

∴

(

1+
f (n)

n

)n

≤ e2 f (n) for n≥ 4

lng = nln(1+
f (n)

n
) = n

(

f (n)

n
− 1

2
(

f (n)

n
)2 +

1
3
(

f (n)

n
)3− ....

)

[6] = n
∞

∑
k=1

(−1)k−1 1
k
(

f (n)

n
)k

= f (n)+
∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 )

lim
n→∞

lng = lim
n→∞

[

f (n)+
∞

∑
k=2

(−1)k−1 1
k
(

f (n)k

nk−1 )

]

= lim
n→∞

f (n)

∴ lim
n→∞

g(n) = e
( lim
n→∞

f (n))

FACT 3: For all 0≤ x < 1:

ln(1+x) ≤ x
1−x



Proof: When x = 0, this is trivially true. For 0< x < 1: ln(1+x) = x− x2

2 + x3

3 − ... = x(1− x
2 + x2

3 − ...) ≤
x(1+x+x2 + ...) = x

1−x, since 0< x < 1.

FACT 4: If c > 0 is a positive constant independent ofn, andb≥ 1 is another positive constant independent of

n, then∃no ∈ N such that:

1− 1
(lnn)b ≤ 1

n
c
n

for n > no

Proof:

∵

1

1− 1
(lnn)b

≥ e
1

(lnn)b (from Fact 1 )

∴ 1− 1
(lnn)b ≤ e

− 1
(lnn)b =

1

e
1

(lnn)b

=
1

e
lnn

(lnn)(b+1)

=
1

n
1

(lnn)(b+1)

≤ 1

n
c
n

for large n

∵ ∃no ∈ N s.t.
1

(lnn)(b+1)
≥ c

n
,∀n > no

LEMMA 1: (Jogdeo & Samuels [7]) GivenX = Y1 +Y2 + ...,+Yn where∀i,Yi = Bernoulli(pi), and ∑ pi = np,

the medianm of the distribution is either⌊np⌋or⌈np⌉, i.e., Pr[X ≤ m] ≥ 1
2 andPr[X ≥ m] ≥ 1

2.

Corollary 1: Given X = Y1 +Y2 + ...,+Yn where∀i,Yi = Bernoulli(p), the medianm of the distribution is either

⌊np⌋or⌈np⌉, i.e., Pr[X ≤ m] ≥ 1
2 andPr[X ≥ m] ≥ 1

2.

Proof: The proof proceeds by settingp1 = p2 = ... = pn = p and applying Lemma 1.

Corollary 2: Given X = Y1 +Y2+ ...,+Yn wheren is even, and∀i,Yi = Bernoulli(p) wherep≥ 1
2, the medianm

of the distribution satisfiesm≥ n
2.

Proof: We know thatm is either⌊np⌋or⌈np⌉. Whenp= 1
2, m= n

2 (asn is even). Forp> 1
2, m≥⌊np⌋≥ ⌊n

2⌋= n
2.

LEMMA 2: (Chernoff Bound) IfX =
n
∑

i=1
Xi , where eachXi is independent andBernoulli(pi), then for 0< β < 1:

Pr[X ≤ (1−β)E[X]] ≤ exp(−β2

2
E[X]) (1)

LEMMA 3: (Relative Entropy Form of Chernoff-Hoeffding Bound[8]) IfX =
n
∑

i=1
Xi , where eachXi is Bernoulli(p),

then for p≤ β ≤ 1:

Pr[X ≥ βn] ≤ e−n(β ln β
p+(1−β) ln 1−β

1−p) (2)

LEMMA 4: (Chernoff Bound [9]) LetX1, ...,Xn be independent Poisson trials, wherePr[Xi = 1] = pi . Let X =
n
∑

i=1
Xi . Then, for anyβ > 0:

Pr[X ≥ (1+β)E[X]] <

(

eβ

(1+β)(1+β)

)E[X]

(3)



LEMMA 5: (Chernoff Upper Tail Bound [9]) LetX1, ...,Xn be independent Poisson trials, wherePr[Xi = 1] = pi .

Let X =
n
∑

i=1
Xi . Then, for 0< β ≤ 1:

Pr[X ≥ (1+β)E[X]] ≤ exp(−β2

3
E[X]) (4)

LEMMA 6: [10] If X1, X2,..., Xn are drawn i.i.d. from alphabetχ according toQ(x), then probability of sequence

x is given by:

Q(n)(x) = e−n(H(Px)+D(Px||Q)) (5)

whereH andP denote the entropy and relative entropy functions (here considered w.r.t basee).

Also, for any distributionsP andQ, the size of type classT(P) satisfies:

1

(n+1)|χ|
enH(P) ≤ |T(p)| ≤ enH(P) (6)

and, the probability of the type classT(P) underQ is governed by:

1

(n+1)|χ|
e−n(D(P||Q)) ≤ Q(n)(T(p)) ≤ e−n(D(P||Q)) (7)

FACT 5: For all 0< x < 1:

ln
1

1−x
+ ln

1
1+x

≥ x2

Proof:

ln
1

1−x
+ ln

1
1+x

= −(ln(1−x)+ ln(1+x)) = −
((

x− x2

2
+

x3

3
− ....

)

+

(

(−x)− (−x)2

2
+

(−x)3

3
− ....

))

= 2

(

x2

2
+

x4

4
+

x6

6
+ ...

)

≥ x2
(8)

FACT 6: For all 0< x < 1:

ln
1

2p
+ ln

1
2(1− p)

≥ 4(
1
2
− p)2

Proof: Setx = 1−2p. Then: ln 1
2p + ln 1

2(1−p) = ln 1
1−x + ln 1

1+x ≥ (1−2p)2 = 4(1
2 − p)2 by application of Fact

5.

LEMMA 7: (Vapnik-Chervonenkis Theorem) Let S be a set with finite VC dimensionVCdim(S). Let {Xi} be

i.i.d. random variables with distributionP. Then forε,δ > 0:

Pr

(

sup
D∈S

| 1
N

N

∑
i=1

IXi∈D −P(D)| ≤ ε

)

> 1−δ

wheneverN > max

(

8VCdim(S)

ε
log2

16e
ε

,
4
ε

log2
2
δ

)

LEMMA 8: Suppose we are given a region of arean, with n nodes located uniformly at random. Consider all

axis-parallel rectangles of areaa(n). If a(n) ≥ 100α logn,1 ≤ α ≤ n
100logn, then each such rectangle has at least

100α lnn−50logn nodes, with high probability.



Proof: We know that the set of axis-parallel rectangles has VC-dimension 4. In our construction, we have the

set of all axis-parallel rectanglesS of area 100α lnn. Then considering then random variablesXi denoting node

positions,Pr[Xi ∈ D(D ∈ S ] = 100α lnn
n . Then, from the VC-theorem (Lemma 7):

Pr

(

sup
D∈S

|No. of nodes inD
n

− 100α lnn
n

| ≤ ε(n)

)

> 1−δ(n)

whenevern > max

(

32
ε

log2
16e

ε
,
4
ε

log2
2
δ

)

This is satisfied whenε(n) = δ(n) = 50lnn
n . Thus, with probability at least 1− 50lnn

n , the populationPop(D) of cell

D satisfies:

100α lnn−50lnn≤ Pop(D) ≤ 100α lnn+50lnn (9)

This completes the proof.

FACT 7: If we attempt to divide the
√

n x
√

n grid into disjoint neighborhoods (as in Fig. 1), then the number

of such disjoint neighborhoods that can be obtained is at least ⌊√n⌋
(2r+1)2 ≥ (

√
n−1)2

4r2+4r+1
≥ n

8r2 for largen. Observing that

d = 4r2 +4r, the number of such disjoint neighborhoods obtainable is atleast ⌊√n⌋
(2r+1)2 ≥ (

√
n−1)2

4r2+4r+1
≥ n

2d for large n

Byzantine Failures

V. RELATED WORK

Reliable broadcast in radio networks has been studied priorwork such as [11], [4], [5] and [12]. Crash-stop

failures are considered in [11] for finite networks comprising nodes located in a regular grid pattern and algorithms

are described for efficient broadcast to the part of the network that is reachable from the source. However this

work does not attempt to quantify the number of faults that render some nodes unreachable. In [4], a locally

bounded model is considered, where an adversary is free to place faults, as long as no neighborhood has more

thasnt faults. It was shown that for a network of nodes located on an infinite grid of unit squares and having

transmission radiusr, reliable broadcast is not achievable fort ≥ ⌈1
2r(2r +1)⌉ (in both L∞ and L2 metrics). This

was established as anexact thresholdin L∞ by [5], and a protocol was described that achieved the threshold. An

approximate threshold was also established for theL2 metric (that is tight asymptotically, and corresponds to the

same fraction of a neighborhood as inL∞). In [13], a tight bound for tolerablet using the broadcast protocol of [4]

was established. In [14], further study of the locally bounded fault model has been undertaken on arbitrary graphs.

Upper and lower bounds for achievability of reliable broadcast are presented based on graph-theoretic parameters,

for arbitrary graphs. However, no exact thresholds are established. It is also shown that there exist certain graphs in

which algorithms that work with knowledge of topology succeed in achieving reliable broadcast, while those that

lack this knowledge fail to do so.

Scenarios involving a collision-causing adversary are addressed in [3], [15], [16].

In closely related work, [12] considers the case of message-passing and radio networks with random transient

failures. In our knowledge, the results in this paper are thefirst for radio networks exhibiting random but permanent

Byzantine failures.

VI. N OTATION AND TERMINOLOGY

We briefly describe here notation and terminology that shallbe used in this paper. Nodes can be identified by their

grid location i.e.(x,y) denotes the node at(x,y). The neighborhood of(x,y) comprises all nodes within distancer

of (x,y) and is denoted asnbd(x,y). The degree of each node is referred to asd. In L∞ metric, d = 4r2 +4r, while



the size of a neighborhood (including the neighborhood center) is d+1 = 4r2 +4r +1. Thus, the minimum degree

is dmin = 8, corresponding tor = 1. The diameter of the network (in terms of distance, and not number of hops)

is referred to asD. If n is a perfect square,D =
√

n. The source of the broadcast may be deemed to be situated

at (0,0), without affecting generality of the results. In general, we allow any node of the network to be the source

(with a corresponding shift of reference coordinates). Forsuccint description, we define a termpnbd(x,y) where

pnbd(x,y) = nbd(x−1,y)∪nbd(x+1,y)∪nbd(x,y−1)∪nbd(x,y+1). Intuitively pnbd(x,y) denotes theperturbed

neighborhoodof (x,y), obtained by perturbing the center of the neighborhood to one of the nodes immediately

adjacent to(x,y) on the grid. Besides, we useBernoulli(p) to denote a Bernoulli random variable with parameter

p.

VII. N ECESSARYCONDITIONS FORRELIABLE BROADCAST

THEOREM 1: If a non-faulty nodeu /∈ nbd(s) has at least half faulty neighbors, and all message values are

equally likely, it can be made to commit to an erroneous valuewith probability at least12.

Proof: Assume that the message is drawn from{0,1}. A non-faulty nodeu which is not an immediate neighbor

of the source must rely on messages received from its neighbors. Recall thatnbd′(u) = nbd(u)−{u}.

First consider any deterministic function that takes as argument messages received from all neighbors and outputs

one of 0 or 1. Then corresponding to each fault configurationC1 with t ≥ d
2 or more faults innbd′(u) (this also

implies t faults innbd(u) asu is non-faulty), there is another configurationC2 with t faults innbd′(u), such that all

non-faulty nodes inC1 are faulty inC2, while the non-faulty nodes inC2 were all faulty inC1. Then, the faulty nodes

can modulate their message-sending behavior so thatu is unable to distinguish between the case where the correct

broadcast value was 0 and configuration wasC1 and the case when the correct value was 1 and the configuration

wasC2 (recall that once failure has happened, the faulty nodes canexhibit worst-case behavior).

Stated formally: supposeS1 ⊆ nbd′(u) is the set of faulty neighbors inC1, andSc
1 = nbd′(u)−S1 is its complement,

i.e., the set of non-faulty neighbors. Then we know that|S1| ≥ ⌈ |nbd′(u)|
2 ⌉ ≥ |Sc

1|. Consider a fault configurationC2 in

which the set of faulty neighbors isS2 = Sc
1 ∪V whereV ⊆ S1 is some subset ofS1 that satisfies|V |= |S1|− |Sc

1|.
It is easy to see that|S1| = |S2|. Consider the case where the correct value is 0, and configuration is C1. Then all

nodes inS1 can behave as though the value were 1, while the nodes inSc
1 will always act according to value 0.

Now suppose the correct value is 1, and configuration isC2. Then the faulty nodes inSc
1 ⊆ S2 behave as though

the value were 0, while nodes inV = S2−Sc
1 act as per the correct value 1. The non-faulty nodes inSc

2 always

act as per value 1. From the viewpoint of node u, the two situations are indistinguishable.

Now let us consider the possibility of using a probabilisticdecision rule. Given a certain set of messages

received from neighbors, we need to consider the conditional probability that the value is 0 or 1. Then, from

the above discussion it is clear that for a given set of received messages from neighbors, there exists a pair of fault

configurations, and associated faulty-node behavior, withthe same number of faulty neighbors, where the correct

message values are different. Since failures are i.i.d. with probability p, and each value 0 or 1 is equiprobable,u

cannot expect to choose the correct one with a probability greater than half.

It is not hard to see that if the message can have more than two possible (equiprobable) values, it cannot increase

the probability of correct choice.

THEOREM 2: When failure probabilityp satisfies1
2 ≤ 1− 96

n , and n
d → ∞ (i.e., d = o(n)):

lim
n→∞

Pr[ reliable broadcast fails] > η > 0( for some positive constantη ≤ 1 )

In particular, if n(1−p)
d → ∞, then:

lim
n→∞

Pr[ reliable broadcast fails] = 1



Fig. 1. Division of network into disjoint neighborhoods

When 1− p = o(1
n), all nodes are faulty w.h.p., and the broadcast issue is irrelevant.

Proof: Suppose we consider a particular nodej in the network. Then, ifj is non-faulty, but more than half

of its neighbors are faulty, reliable broadcast fails with probability at least half. Given that there ared neighbors,

and each may fail independently with probabilityp, let Yj denote the number of failed neighbors ofj. Then,Yj

takes values from 0,1, ...,d, and E[Yj ] ≥ d
2 . Thus ⌊E[Y]⌋ ≥ ⌊d

2⌋ = d
2 (since d = 4r2 + 4r is always even). Thus,

Pr[Y ≥ d
2 ] ≥ Pr[Y ≥ ⌊E[Y]⌋] ≥ 1

2 (from Lemma 1). Let us call this probabilityq.

Pr[ j alive; at least halfnbd( j) faulty ] ≥ (1− p)q≥ 1− p
2

lim
n→∞

n(1−p)
d = γ ≥ 4: Let us mark out a subset of nodesj such that the neighborhoods of these nodes are all

disjoint, as in Fig. 1. Then from Fact 7, the number of such nodes that we may obtain is at leastn
2d for large n.

Let I j be an indicator variable that takes value 1 ifj is non-faulty but has at least half faulty neighbors, and

commits to the wrong value. ThenPr[I j = 1] ≥ 1−p
2 , and all I j ’s are independent.

Let X be a random variable indicating the number of non-faulty nodes with at least half faulty neighbors that

resultantly commit to the wrong value. ThenE[X] = ∑ j Pr[I j = 1] ≥ 1−p
2 ( n

2d) = n(1−p)
4d .

Thus settingβ = 1
2 in the Chernoff Bound in Lemma 2:

Pr[X ≤ E[X]

2
] ≤ e−

β2E[X]
2 = e−

E[X]
8

When n(1−p)
d → ∞,E[X] = n(1−p)

4d → ∞:

lim
n→∞

Pr[X >
E[X]

2
] > lim

n→∞
(1−e−

E[X]
8 ) = 1

Thus, asn→ ∞, the number of non-faulty nodes isolated by half or more faulty neighbors, and which commit to

the wrong value, will also tend to infinity with probability 1.

When n(1−p)
d → γ ≥ 4:

lim
n→∞

Pr[X ≥ 2] ≥ Pr[X ≥ E[X]

2
] > lim

n→∞
(1−e−

E[X]
8 ) = 1−e−

1
4 > 0



A B C

uC

uA

Fig. 2. Division of network area into three segments

lim
n→∞

n(1−p)
d < 4, but 1− p≥ 96

n : This implies that 1− p < 4d
n =⇒ p≥ 3

4 > 1
2 for largen (since n

d → ∞). Then

the probabilityq of having half or more faulty neighbors is at least1
2 (from Lemma 1). Consider a partition of

the network region into 3 segments A, B, and C as in Fig. 2. Eachsegment has at least⌊√n⌋ ⌊
√

n⌋
3 ≥ n

6 nodes for

large n. Let pA be the probability that segment A has at least one nodeuA that is non-faulty. LetpC and uC be

the corresponding probability and node for segment C. If such uA anduC exist, then it is evident that they are not

mutual neighbors (sincend → ∞). Thus, if one of them (sayuC) has half or more faulty neighbors, then a broadcast

from uA cannot be received byuC, with probability more than1
2 (from Theorem 1).

Let XA be the total number of nodes in segment A that satisfy the desired property. ThenXA = ∑
j∈A

I ′j , whereI ′j

are i.i.d. Bernoulli(p) random variables denoting whetherj is faulty. Likewise, letXC be the corresponding random

variable for segment C. Then, it can be easily verified thatE[XA] ≥ n(1−p)
6 . Similarly E[XC] ≥ n(1−p)

6 . Then by

settingβ = 1
2 in Lemma 2, it can be seen that:

Pr[XA < 1] ≤ Pr[XA ≤ n(1− p)

12
] ≤ Pr[XA ≤ E[XA]

2
] ≤ e−

E[XA]
8 ≤ e−

n(1−p)
48 (10)

If there exist such nodes, let us select from them anuA.

Pr[XC < 1] ≤ Pr[XC <
n(1− p)

12
] ≤ Pr[XC ≤ E[XC]

2
] ≤ e−

E[XC]
8 ≤ e−

n(1−p)
48 (11)

If there exist such nodes, let us select from them anuC.

Then by applying a union bound over the events that either oneof uA,uC does not exist, oruC does not have

half or more faulty neighbors, it proceeds that:

Pr[∃uA,∃uC anduC has half or more faulty neighbors] = pb ≥ 1−e−
n(1−p)

48 −e−
n(1−p)

48 −q (12)

Sincen(1− p) ≥ 96, we obtain:

lim
n→∞

pb ≥ 1− 1
e2 − 1

e2 − 1
2

> 0 (13)

Thus uC will make an erroneous decision about any messages broadcast by uA with probability at least half, and

reliable broadcast will fail with a positive probability atleast pb
2 > 0.

1− p = o(1
n) :

Pr[All nodes faulty;broadcast issue moot] = pn (14)

≥ (1− (1− p)))n = (1−g(n))n where
g(n)

1/n
= ng(n) → 0 (15)



lim
n→∞

Pr[All nodes faulty; broadcast issue moot] (16)

≥ lim
n→∞

(1−g(n)))n = lim
n→∞

(

1− ng(n)

n
)

)n

(17)

= e− lim(ng(n)) = 1 from Fact 2 (18)

THEOREM 3: When p≤ 1
2 − 1

lnn, and node degreed ≤ lnn
ln 1

2p+ln 1
2(1−p)

, reliable broadcast asymptotically fails with

probability 1.

Proof: Any failure probability p≤ 1
2 − 1

lnn can be expressed asp = 1
2 −y for suitable 1

lnn ≤ y≤ 1
2. From Fact

6, ln 1
2p + ln 1

2(1−p) = 4(1
2 − p)2 ≥ 4

(lnn)2 .

Resultantly:

d ≤ lnn

ln 1
2p + ln 1

2(1−p)

≤ lnn
4

(lnn)2

=
(lnn)3

4
< (lnn)3 (19)

Furthermore, one may see that:

lnn
2

+6ln lnn≤ lnn−4ln lnn for large enoughn (20)

Consider a particular nodej in the network. Then, ifj is non-faulty, but more than half of its neighbors are

faulty, reliable broadcast fails with probability at leasthalf (from Theorem 1). Given that there ared neighbors,

and each may fail independently with probabilityp, let I jk(1≤ k≤ d) denote the indicator variable corresponding

to neighbork of j (enumerated in some order), such thatI jk = 1 if k is faulty, and 0 otherwise. ThenYj =

∑ I jk denotes the number of failed neighbors ofj. Y takes values from 0,1, ...,d, and E[Y] = pd. Pr[Yj ≥ d
2 ] =

d
∑

i= d
2

(d
i

)

pi(1− p)(d−i). Let us simply consider the eventYj = d
2 . Then we can apply the lower bound from Lemma 6.

The variablesI jk(1≤ k ≤ d) are drawn fromχ = {0,1} as per distributionP = Bernoulli(p), and the distribution

corresponding toYj = d
2 is Bernoulli(1

2) (we shall refer to this asQ1
2
). |χ| = 2, and 1

(d+1)|χ|
= 1

(d+1)2 > 1
3
2d2 =

2
3e−2lnd (recall that inLin f ty metric, d is always even, andd ≥ 8). Thus, we obtain:

Pr[Yj ≥
d
2
] ≥ Pr[Yj =

d
2
] ≥ 1

(d+1)|χ|
e
−d(D(Q1

2
||P))

=
1

(d+1)2 e
−d(D(Q1

2
||P))

>
2
3

e
−d(D(Q1

2
||P))−2lnd

>
2
3

e
−( lnn

ln 1
2p+ln 1

2(1−p)

)( 1
2 ln 1

2p+ 1
2 ln 1

2(1−p)
)−6ln lnn

from Eqn. (19)

=
2
3

e−
1
2 lnn−6ln lnn ≥ 2(lnn)4

3n
from Eqn. (20)

(21)

Let us denote the L.H.S. of the above equation byq.

Pr[ j non-faulty; at least halfnbd( j) faulty ] ≥ (1− p)q (22)

>
1
2

2(lnn)4

3n
=

(lnn)4

3n
(23)

Let us mark out a subset of nodesj such that the neighborhoods of these nodes are all disjoint,as in Fig. 1.

Then, as noted earlier, the number of such nodes that we may obtain is k≥ n
2d for large n. Let I j be an indicator

variable that takes value 1 ifj is non-faulty and has at least half faulty neighbors. ThenPr[I j = 1] = (lnn)4

3n , and all

I j ’s are independent. LetI ′j be an indicator variable that takes value 1 ifj is non-faulty but commits to a wrong
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Fig. 3. Depiction ofqnbdA, qnbdB, qnbdC, qnbdD
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Fig. 4. Depiction ofqnbdA′ , qnbdB′ , qnbdC′ , qnbdD′

value. From Theorem 1, we know that if a non-faulty node has half or more faulty neighbors, it will commit to

the wrong value with probability at least1
2. ThusPr[I ′j = 1] ≥ 1

2Pr[I j = 1] ≥ (lnn)4

6n .

Let X be a random variable indicating the number of non-faulty nodes with half or more faulty neighbors that

commit to the wrong value. ThenX = ∑ I ′j , andE[X] = ∑Pr[I ′j = 1]≥ (lnn)4

6n

(

n
2d

)

= (lnn)4

12d > lnn
12 → ∞ (asd < (lnn)3

from Eqn. (19)). Thus we can choose a suitable constant 0< β < 1 (e.g.,β = 1
2) and apply the Chernoff bound in

Lemma 2 to obtain:

lim
n→∞

Pr[X > (1−β)E[X]] ≥ lim
n→∞

1−e−
β2E[X]

2 = 1 ∵ E[X] → ∞ (24)

Thus, asn→ ∞, the probability that some non-faulty node(s) fail to commit to the correct value tends towards 1:

lim
n→∞

Pr[ reliable broadcast fails] → 1

VIII. SUFFICIENT CONDITION FOR RELIABLE BROADCAST

We now present a sufficient condition for the asymptotic achievability of reliable broadcast.

THEOREM 4: When p< 1
2, and node degreed≥ max{dmin,16 lnn

ln 1
p+ln 1

2(1−p)

}= max{dmin,8 lnn
D(Q1

2
||P) )} (recall that

dmin = 8 corresponding tor = 1), reliable broadcast is asymptotically achievable with probability 1.

Note that when ln1
2p + ln 1

2(1−p) ≤
16lnn

n , the degree exceeds total network sizen, and thus the sufficient condition

ceases to be relevant, merely indicating that having a single-hop network suffices for reliable broadcast (which is

the trivial sufficient condition for the assumed radio network model). Thus the sufficient condition is of interest

only so long as ln1
2p + ln 1

2(1−p) > 16lnn
n .

a) p≤ o(1
n): When the failure probability is so small as to fall in this range, the probability of even a single

node failing approaches 0 asymptotically, and thus reliable broadcast is trivially ensured even with the minimum

transmission range of 1. This may be seen thus:

Pr[No failures;trivial broadcast] = (1− p)n (25)

lim
n→∞

Pr[No failures;trivial broadcast] ≥ lim
n→∞

(1− p)n = e− lim(np) = 1 from Fact 2 (26)



Region x-extent y-extent
qnbdA(a,b) a≤ x≤ (a+ r) (b− r) ≤ y≤ (b−1)

qnbdB(a,b) (a− r) ≤ x≤ (a−1) (b− r) ≤ y≤ b

qnbdC(a,b) (a− r) ≤ x≤ a (b+1) ≤ y≤ (b+ r)

qnbdD(a,b) (a+1) ≤ x≤ (a+ r) b≤ y≤ (b+ r)

qnbdA′ (a,b) (a+1) ≤ x≤ (a+ r) (b− r) ≤ y≤ b

qnbdB′ (a,b) (a− r) ≤ x≤ a (b− r) ≤ y≤ (b−1)

qnbdC′ (a,b) (a− r) ≤ x≤ (a−1) b≤ y≤ (b+ r)

qnbdD′ (a,b) a≤ x≤ (a+ r) (b+1) ≤ y≤ (b+ r)

TABLE I

SPATIAL EXTENTS OFQUARTER NEIGHBORHOODS

b) p = Ω(1
n): We define a term called quarter-neighborhood of a node(x,y), and denote it byqnbd(x,y).

We associate eight quarter-neighborhoods with each node:qnbdA, qnbdB, qnbdC, qnbdD, qnbdA′ , qnbdB′ , qnbdC′ ,

qnbdD′ . The quarter-neighborhoods for a node(a,b) are depicted in Figs. 3 and 4, and their spatial extents are

tabulated in Table I. Observe thatqnbdB(a,b) = qnbd′A(a− r − 1,b), qnbdC(a,b) = qnbdA(a− r,b+ r + 1), and

qnbdD(a,b) = qnbd′A(a,b+ r +1). Similarly, qnbdB′(a,b) = qnbdA(a− r −1,b), qnbdC′(a,b) = qnbdA′(a− r −1,b+

r), andqnbdD′(a,b) = qnbdA(a,b+ r +1) Thus if we simply considerqnbdA(u) and qnbdA′(u)∀ nodesu, we will

have considered all quarter-neighborhoods, i.e. the number of distinct (butnot disjoint) quarter-neighborhoods is

2n. Henceforth, we shall sometimes useQ(x,y) to refer to qnbdA(x,y), and Q′(x,y) to refer to qnbdA′(x,y). The

population of anyqnbd is r(r +1), and sinced = 4r2+4r = 4r(r +1), theqnbd population =d
4 . We now state and

prove the following result which is crucial to proving our sufficient condition for reliable broadcast:

THEOREM 5: If p < 1
2, d ≥ max{dmin,16 lnn

ln 1
2p+ln 1

2(1−p)

} = max{dmin,8 lnn
D(Q1

2
||P) )}, then:

lim
n→∞

Pr[ ∀(x,y) less than
d
8

faults in

Q(x,y) andQ′(x,y)] → 1

Proof: As shown above, the population of anyqnbd is d
4 . Each node may fail independently with probability

p.Let Y(x,y) be a random variable denoting the number of faulty nodes inQ(x,y). Then E[Y(x,y)] = pd
4 . Using

δ = 1
2p −1, we may then apply the relative entropy form of the Chernoffbound (Lemma 3) toY(x,y) = ∑

j∈nbd(x,y)
I j .

Note thatd ≥ max{dmin,16 lnn
ln 1

2p+ln 1
2(1−p)

} ≥ 16 lnn
ln 1

2p+ln 1
2(1−p)

. Thus, we obtain:

Pr[Y(x,y) ≥
d
8
] ≤ e

− d
4 ( 1

2 ln 1
2p+ 1

2 ln 1
2(1−p)

)
(27)

≤ e
−( 16lnn

4(ln 1
2p+ln 1

2(1−p)

))( 1
2 ln 1

2p+ 1
2 ln 1

2(1−p)
)

(28)

= e−2lnn =
1
n2 (29)

Similarly, settingY′
(x,y) be a random variable denoting the number of faulty nodes inQ′(x,y), we obtain that:

Pr[Y′
(x,y) ≥

d
8
] ≤ 1

n2 (30)



By application of union bound over all 2n distinct quarter-neighborhoods:

∴ lim
n→∞

Pr[∀(x,y),Y(x,y) <
d
8

andY′(x,y) <
d
8
] (31)

≥ 1−2n

(

1
n2

)

= 1− 2
n
→ 1 (32)

We now consider a simple broadcast protocol that is similar to the protocol described in [4] for the adversarial

model:

• Initially, the source does a local broadcast of the message.

• Each neighbori of the source immediately commits to the the first valuev it heard from the source, and then

locally broadcasts it once in aCOMMITTED(i,v) message.

• Hereafter, the following protocol is followed by each nodej /∈ nbd(s):

If 1
2r(r +1)+1 = d

8 +1 COMMITTED(i,v) message are received for a certain valuev, from neighborsi all

lying within a singleqnbd, and not already committed to some value, commit tov, and locally broadcast a

COMMITTED( j,v) message.

THEOREM 6: (Safety (Correctness))The probability that a node shall commit to a wrong value by following

the above protocol diminishes to 0 asymptotically.

Proof: If all Q(x,y) and Q′(x,y) have strictly less thand8 faults, the correctness of the protocol proceeds as

follows:

By the assumptions ofreliable local broadcast, if s sends exactly one message, fault-free nodes innbd(s) are

guaranteed to receive it correctly. Ifs is faulty and sends more than one version of the message, fault-free nodes

in nbd(s) receive both messages, and select the first one. Thus fault-free nodes innbd(s) are guaranteed to commit

to the correct value.

The rest of the proof is by contradiction. Consider the first fault-free node, sayj, that makes a wrong decision

to commit to a valuev. From our previous assertion,j cannot be innbd(s), and thus followed protocol rules for

nodes that are nots’s neighbors. This implies thatd8 +1 of its neighbors within someqnbd must have broadcast

a COMMITTED message forv (the COMMITTED messages were directly heard, leaving no place for doubt).

All of these nodes cannot be faulty, as no more thand
8 nodes in anyqnbd are faulty. Thus there was at least one

fault-free node that committed tov. Since j is the first fault-free node to make a wrong decision, none of the

fault-free nodes amongst thed8 +1 nodes could have made a wrong decision. Thusv must indeed be the correct value.

We know that allQnbd(x,y) have less thand8 faults with probability 1 asymptotically, and hence the protocol also

functions correctly with probability 1 asymptotically.

THEOREM 7: (Liveness (Completeness))Each node is eventually able to commit to the (probabilistically) correct

value.

Proof:

The proof proceeds by induction.

Base Case:

All honest nodes innbd(0,0) are able to commit to the correct value. This follows trivially since they

hear the origin directly, and we assume that address-spoofing is impossible.
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Fig. 5. Node at P has aqnbd in nbd(a,b)

Inductive Hypothesis:

If all honest neighbors of a node located at(a,b) i.e. all honest nodes innbd(a,b) are able to commit to

the correct value, then all honest nodes inpnbd(a,b) are able to commit to the correct value.

Proof of Inductive Hypothesis:

We show that each nodeP in pnbd(a,b)− nbd(a,b) has one ofqnbdA(P), qnbdB(P), qnbdC(P), qnbdD(P),

qnbdA′(P), qnbdB′(P), qnbdC′(P), qnbdD′(P) fully contained innbd(a,b). Since no more thand8 of the nodes in

a qnbd are faulty with probability 1 (asymptotically), this guarantees that the node will become aware ofd
8 + 1

nodes innbd(a,b) having committed to a (the correct) value, and will also commit to it. The situation is depicted

in Fig. 5 for P∈ {(a− r + l ,b+ r +1)|1≤ l ≤ r}, for which qnbdA(P) lies in nbd(a,b). For all other locations, a

similar argument holds.

IX. N ECESSARYCONDITION FOR RANDOM NETWORKS

THEOREM 8: When failure probabilityp≤ 1
2 −
√

lnn

n
1
32

, andr(n, p) ≤ 1
2

√

max{lnn, lnn
ln 1

2p+ln 1
2(1−p)

}:

Pr[ reliable broadcast fails] → 1

Proof: We separately consider the following two cases:

lnn > lnn
ln 1

2p+ln 1
2(1−p)

: We know from the results of [17] that in a failure-free randomnetwork, r(n) =
√

lnn
π is

necessary for connectivity (note that we are considering the network as being of arean to maintain consistency

with the grid network formulation; this leads to a scaling ofthe result of [17]). When, lnn > lnn
ln 1

2p+ln 1
2(1−p)

, the

condition in our theorem statement reduces tor(n, p)≤ 1
2

√
lnn<

√

lnn
π . Thus, from the results of [17], the network

is disconnected with some positive probability, and the necessary condition holds.

lnn≤ lnn
ln 1

2p+ln 1
2(1−p)

: As mentioned in the previous case, it is known from the results of [17], that even with

p= 0, thecritical transmission range is greater than
√

lnn
2 . Consider a subdivision of the network into disjoint square



D

Cell S

Fig. 6. Necessary Condition for Random Networks: cellS

cells of areaa(n) = 81r2(n, p), where
√

lnn
2 ≤ r(n, p) ≤ 1

2

√

lnn
ln 1

2p+ln 1
2(1−p)

.

Thus 81lnn
4 ≤ a(n) ≤ 81lnn

4(ln 1
2p+ln 1

2(1−p)
)

for the rest of the discussion.

LEMMA 9: Each cell contains at leasta(n)
2 and at most3a(n)

2 nodes w.h.p.

Proof: Consider a particular cellS . Denote byXi an indicator variable that is 1 if nodei lies in S and is 0

otherwise. ThenPr[Xi = 1] = a(n)
n , and theXi ’s are all i.i.d. Let,X =

n
∑

i=1
Xi . ThenE[X] = a(n).

By applying the Chernoff bound from Lemma 2 (withβ = 1
2), it follows that:

Pr[X ≤ a(n)

2
] ≤ exp(−a(n)

8
) ≤ exp(−81lnn

32
) =

1

n
81
32

(33)

By applying the Chernoff bound from Lemma 5 (withβ = 1
2), it follows that:

Pr[X ≥ 3a(n)

2
] ≤ exp(−a(n)

12
) ≤ exp(−81lnn

48
) =

1

n
81
48

(34)

Thus the cell populationns is leasta(n)
2 and at most3a(n)

2 nodes with probability at least 1− 1

n
81
32

− 1

n
81
48

≥ 1− 2
n1.5 .

Applying union bound over all 1
a(n) < n cells, this holds for all cells with probability at least 1− 2√

n.

EventEo: Denote by eventEo, the event thata(n)
2 ≤ ns ≤ 3a(n)

2 , for all cells. ThenPr[¬Eo] ≤ 2√
n

SupposeEo holds. Fixing nsi for all cells Si in the network, events occurring entirely within each cell may

hereafter be treated as being independent.

Divide each such cell further into 9 square sub-cells of areaA(n) = a(n)
9 = 9r2(n) each. Note that94 lnn≤ A(n)≤

9lnn
4(ln 1

2p+ln 1
2(1−p)

)
.

Consider a particular cellS , and focus on the center sub-cell of this cell (call itD). Then conditioned on the

cell populations:



Pr[D has no non-faulty node|Ns = ns,Eo] ≤ (1− (1− p)
A(n)

a(n)
)ns ≤ (1− (1− p)

A(n)

a(n)
)

a(n)
2

≤ (1− A(n)

2a(n)
)

a(n)
2 (∵ p <

1
2
)

≤ e−
A(n)

4 ≤ e−
9lnn
16 =

1

n
9
16

(35)

EventE1: Denote by eventE1, the event that in a given cellS , the center sub-cellD has at least one non-faulty

node. ThenPr[¬E1|Eo] ≤ 1

n
9
16

.

Assuming there is at least one non-faulty node inD, select one such nodej. Consider its neighborhood, which

is guaranteed to fall entirely within the cell S (Fig. 6). Also the area of the neighborhood isA1(n) = πr2(n) ≤
π lnn

4(ln 1
2p+ln 1

2(1−p)
)
< lnn

ln 1
2p+ln 1

2(1−p)

. It is to be noted though thatA1(n) = πr2(n) ≥ π lnn
4 . Let M be the number of nodes

other thanj lying within this area (i.e., the number of neighbors ofj). ThusE[M|Ns = ns,Eo] = (ns−1)
(

A1(n)
a(n)

)

≤
ns

(

A1(n)
a(n)

)

.

It is not hard to see that(1−ε)A1(n)
2 ≤ (a(n)

2 −1)A1(n)
a(n) = A1(n)

2 − π
81 ≤E[M|Ns = ns,Eo]≤ 3A1(n)

2 , for any arbitrarily

small ε. Let us setε = (1− 3
π ), to get thatE[M|Ns = ns,Eo] ≥ (1−ε)A1(n)

2 ≥ 3lnn
8 . Then, setting(1+ β)E[M|Ns =

ns,Eo] = 4A1(n), we getβ ≥ 4A1(n)
E[M|Ns=ns,Eo]

−1≥ 8
3 −1 = 5

3. Noting that eβ

(1+β)1+β is a non-increasing function ofβ
for all β ≥ 0 2, we then apply Lemma 4:

Pr[M ≥ 4A1(n)|Ns = ns,Eo] ≤ Pr[M ≥ 8E[M|Ns = ns,Eo]

3
] ≤
(

eβ

(1+β)1+β

)E[M|Ns=ns,Eo]

≤
(

e
5
3

(8
3)

8
3

)(1−ε) A1(n)
2

≤
(

1

e
8
3(3ln2−ln3)− 5

3

)
3lnn

8

<

(

1

e
2
3

)
3lnn

8

=
1

n
1
4

(36)

EventE2: Denote by eventE2, the event that in a given cellS , a chosen non-faulty node (if one exists) in

center sub-cellD hasm≤ 4A1(n) neighbors. ThenPr[¬E2|Eo∧E1] ≤ 1

n
1
4

.

Assuming thatM = m≤ 4A1(n), let us now consider the probability that half or more of these neighbors ofj

are faulty.

If M = m = 0, then automatically the nodej is isolated with probability 1. Thus, we only consider the case

M = m≥ 1.

Given that there areM = m neighbors, and each may fail independently with probability p, let I jk(1≤ k ≤ m)

denote the indicator variable corresponding to neighbork of j (enumerated in some order), such thatI jk = 1 if k is

faulty, and 0 otherwise. ThenYj = ∑ I jk denotes the number of failed neighbors ofj. Y takes values from 0,1, ...,m,

and E[Y] = pd. Pr[Yj ≥ m
2 ] =

m
∑

i=⌈m
2 ⌉

(m
i

)

pi(1− p)(m−i). Let us simply consider the eventYj = ⌈m
2 ⌉. Then we can

apply the lower bound from Lemma 6. The variablesI jk(1≤ k≤ M) are drawn fromχ = {0,1} as per distribution

P= Bernoulli(p), and the distribution corresponding toYj = ⌈m
2 ⌉ is Bernoulli(

⌈m
2 ⌉
m ) = Bernoulli(q) whereq=

⌈m
2 ⌉
m ,

i.e., 1
2 ≤ q≤ 1

2 + 1
2m (we shall refer to this asQq). Let us denote theBernoulli(1

2) distribution asQ1
2
.

2Let f = eβ

(1+β)1+β . Set g = ln f = β− (1+ β) ln(1+β). Then: dg
dβ = 1− 1+β

1+β − ln(1+β) = − ln(1+β) ≤ 0 forall β ≥ 0. Since f = eg, this

implies that f is a non-increasing function ofβ for β ≥ 0



Since lnn≤ lnn
ln 1

2p+ln 1
2(1−p)

, it follows that:

lnn≤ lnn

ln 1
2p + ln 1

2(1−p)

=⇒ ln
1

2p
+ ln

1
2(1− p)

< 1 =⇒ p(1− p) >
1
4e

=⇒ p >
1
4e

(37)

Whenm= 1:

Pr[Yj = ⌈m
2
⌉] = Pr[Yj = 1] = p≥ 1

4e
≥ 1

4e2n
3
16

(38)

Whenm= 3, noting that 3p2(1− p) is an increasing function ofp for p < 1
2:

Pr[Yj = ⌈m
2
⌉] = Pr[Yj = 2] =

(

3
2

)

p2(1− p) = 3p2(1− p) ≥ 3
1

16e2 (1− 1
4e

) ≥ 9
64e2 ≥ 1

4e2n
3
16

for large n (39)

When m is even, it is trivially true thatD(Qq||P) = D(Q1
2
||P) ≤ D(Q1

2
||P)+ 2

m. For all oddm≥ 5, it can be

shown thatD(Qq||P) ≤ D(Q1
2
||P)+ 2

m as follows:

D(Qq||P) = (
1
2

+
1

2m
) ln

1
2 + 1

2m

p
+(

1
2
− 1

2m
) ln

1
2 − 1

2m

1− p

=
1
2
(1+

1
m

)(ln
1

2p
+ ln(1+

1
m

))+
1
2
(1− 1

m
)(ln

1
2(1− p)

+ ln(1− 1
m

))

=

[

1
2

ln
1

2p
+

1
2

ln
1

2(1− p)

]

+

[

1
2m

ln
1

2p
− 1

2m
ln

1
2(1− p)

]

+

[

1
2
(1+

1
m

) ln(1+
1
m

)+
1
2
(1− 1

m
) ln(1− 1

m
)

]

=

[

1
2

ln
1

2p
+

1
2

ln
1

2(1− p)

]

+
1

2m
ln

1− p
p

+

[

1
2

ln(1+
1
m

)(1− 1
m

)+
1

2m
ln

(1+ 1
m)

(1− 1
m)

]

= D(Q1
2
||P)+

1
2m

ln
1− p

p
+

1
2

ln(1− 1
m2 )+

1
2m

ln(
m+1
m−1

)

≤ D(Q1
2
||P)+

ln(4e)
2m

+
1

2m
ln(1+

2
m−1

) from Eqn.(37))

≤ D(Q1
2
||P)+

1+ ln4
2m

+
1

2m

(

2
m−3

)

(∵ ln(1+
2

m−1
) ≤

2
m−1

1− 2
m−1

(from Fact 3)

≤ D(Q1
2
||P)+

ln4+2
2m

(∵
2

m−3
≤ 1)

≤ D(Q1
2
||P)+

2
m

(40)

We are applying Lemma 6 to Bernoulli variables. Hence|χ| = 2, and 1
(m+1)|χ|

= 1
(m+1)2 ≥ 1

4m2 =
1
4e−2lnm (for all m≥ 1).

Note thatm≤ 4A1(n) ≤ 4lnn
ln 1

2p+ln 1
2(1−p)

≤ 4lnn
4( 1

2−p)2 ≤ n
1
32 from Fact 5.



Thus, we obtain that form 6= 1,3:

Pr[Yj ≥ ⌈m
2
⌉] ≥ Pr[Yj = ⌈m

2
⌉]

≥ 1

(m+1)|χ|
e−m(D(Qq||P))

≥ 1

(m+1)|χ|
e
−m(D(Q1

2
||P)+ 2

m)

≥ 1

(m+1)|χ|
e
−m(D(Q1

2
||P)−2

=
1

(m+1)2e2 e
−m(D(Q1

2
||P))

≥ 1
4e2 e

−m(D(Q1
2
||P))−2lnm

>
1

4e2 e
−( lnn

4(ln 1
2p+ln 1

2(1−p)
)
)( 1

2 ln 1
2p+ 1

2 ln 1
2(1−p)

)− 1
16 lnn

=
1

4e2 e−
2
16 lnn− 1

16 lnn ≥ 1

4e2n
3
16

(41)

From Eqns. 38, 39, and 41, we obtain that, for allm≥ 1:

Pr[Yj ≥ ⌈m
2
⌉] ≥ Pr[Yj = ⌈m

2
⌉] ≥ 1

4e2n
3
16

(42)

EventE3: Denote by eventE3, the event that in a given cellS , a chosen non-faulty node (if one exists) in

center sub-cellD has half or more faulty neighbors. ThenPr[¬E3|Eo∧E1∧E2] ≤ 1− 1

4e2n
3
16

.

Then, assuming that eventEo indeed held, the probability that one of eventsE1,E2,E3 did not occur can be

bounded as follows:

Pr[¬(E1∧E2∧E3)|Eo] ≤ Pr[¬E1|Eo]+Pr[E1|Eo]Pr[¬E2|E1∧Eo]+Pr[E1∧E2|Eo]Pr[¬E3|Eo∧E1∧E2)]

≤ Pr[¬E1|Eo]+Pr[¬E2|Eo∧E1]+Pr[¬E3|Eo∧E1∧E2]

≤ 1

n
9
16

+
1

n
1
4

+(1− 1

4e2n
3
16

)

= 1− (
1

4e2n
3
16

− 1

n
9
16

− 1

n
1
4

) ≤ 1− 1

8e2n
3
16

for large n

(43)

Thus, conditioned onEo, with probability at least 1

8e2n
3
16

, there is such a nodex which has half or more faulty

neighbors. Denote byI j , an indicator variable which is 1 if this event happens for the centre-subcellD of a given

cell S j . Then Pr[I j = 1|Eo] ≥ 1

8e2n
3
16

. Recall again, that once we fixed all the cell populationsni , the considered

events in each cell are independent of each other.

The numberh of disjoint cellsS j is at least
(

⌊√n⌋
9r(n)

)2
≥

n
2

( 81lnn
4ln 1

2p+ln 1
2(1−p)

)
=

2n(ln 1
2p+ln 1

2(1−p)
)

81lnn for largen. Substituting

from Fact 6, we can thus see thath≥ 8n( 1
2−p)2

81lnn ≥ 8n1− 1
32

81 = 8n
31
32

81 (since p≤ 1
2 −
√

lnn

n
1
32

.

Let I ′j be an indicator variable that takes value 1 if the nodex in center subcell of cellS j is non-faulty but

commits to a wrong value. From Theorem 1, we know that if a non-faulty node has half or more faulty neighbors,

it will commit to the wrong value with probability at least1
2. ThusPr[I ′j = 1|Eo] ≥ 1

2Pr[I j = 1|Eo] ≥ 1

16e2n
3
16

.

Let X be a random variable indicating the number of cellsS j in which we were able to select a non-faulty node

x, which happened to have half or more faulty neighbors, and which commits to the wrong value.

ThenX = ∑ I ′j , andE[X|Eo] = ∑Pr[I ′j = 1|Eo]≥ 1

16e2n
3
16

(h) = 1

16e4n
3
16

8n
31
32

81 ≥ n
25
32

162e2 . Also, since we are conditioning

on cell populationsnS j , the indicator variablesI ′j are all independent, once thenS j are fixed.



Thus we can choose an appropriate constant 0< β < 1 (e.g., setβ = 1
2) and apply the Chernoff bound in Lemma

2 to obtain:

Pr[X <
E[X|Eo]

2
|Eo] ≤ e−

E[XEo|Eo]
8 ≤ e

− n
25
32

162(8e2)

Applying union bound, we obtain that:

Pr[X ≥ E[X]

2
] ≥ 1− (Pr[¬Eo]+Pr[X <

E[X]

2
|Eo] ≥ 1− 2√

n
−e

− n
25
32

162(8e2)

Thus, the probability that some non-faulty nodes commit to an incorrect value will tend to 1 as n tends to infinity.

Resultantly:

lim
n→∞

Pr[ reliable broadcast fails] → 1

Corollary 3: The critical average degree for reliable broadcast in a random network with Byzantine failure

probability p < 1
2, is expressible asΩ( lnn

1
2−p+ 1

2 ln 1
2(1−p)

) or Ω( lnn
( 1

2−p)2 ).

Proof: Note that when p < 1
2, 1

2 − p + 1
2 ln 1

2(1−p) = Θ(min{1, ln 1
2p + ln 1

2(1−p)}). Similarly, (1
2 −

p)2 = Θ(min{1, ln 1
2p + ln 1

2(1−p)}). In Theorem 8, we proved thatdcritical = Ω(max{lnn, lnn
ln 1

2p+ln 1
2(1−p)

}) =

Ω( lnn
min{1,ln 1

2p+ln 1
2(1−p)

} ). The result thus follows.

X. SUFFICIENT CONDITION FOR RANDOM NETWORKS

We obtain a sufficient condition for a network ofn randomly deployed nodes, based on the sufficient condition

for the grid network model. To maintain consistency with thegrid network formulation, we assume a toroidal

region of area
√

n x
√

n, with n nodes located uniformly at random. The average degree of a node is the average

number of the remainingn−1 nodes that fall within its neighborhood (recall we are using L∞ distance metric),

i.e., davg(n, p) = (n−1)(2r(n,p))2

n ≈ 4r2(n, p) for large n.

THEOREM 9: When failure probabilityp< 1
2, andr(n, p)≥

√

100lnn
1
2−p+ 1

2 ln 1
2(1−p)

, reliable broadcast is asymptotically

achievable in the random network model with high probability.

Proof: At the outset, we make the observation that ifr(n, p) =
√

n, all nodes are neighbors, and trivially

broadcast is achievable. Thus this result is of interest only so long asr(n, p) <
√

n.

In light of Fact 1:

D(Q1
2
||p) =

1
2

ln
1

2p
+

1
2

ln
1

2(1− p)

≥ 1
2
(1−2p)+

1
2

ln
1

2(1− p)

=
1
2
− p+

1
2

ln
1

2(1− p)

(44)

Also, sincep < 1
2:

0 <
1
2
− p+

1
2

ln
1

2(1− p)
≤ 1

2
(1− ln2) < 1 (45)

Similar to grid networks, we use a notion of quarter-neighborhoods. For a given broadcast instance, we again

use relative coordinates by treating the source’s coordinates as(0,0). With some abuse of the grid network notation

introduced in Section II, we can extend the notion ofnbd(x,y), to include all nodes within distancer of point (x,y)



(regardless of whether or not there is a node at(x,y)), wherex andy are real numbers. The notion ofpnd(x,y) is

also similarly extended to all points(x,y).

Note that in this model, a node’s (or point’s) coordinates are real numbers. We thus associate eight quarter-

neighborhoods with each node, with spatial extents as in Table I, except that nowx andy must be treated as real

numbers. Also, now it is not possible to assert that there areonly 2n distinct quarter-neighborhoods. Thus, all eight

quarter-neighborhoods of a node must be treated as distinct3, yielding 8n quarter-neighborhoods in all.

The quarter-neigborhoods are axis-parallel rectangles ofarear(n, p)(r(n, p)−1)≥ r2(n,p)
2 (for r(n, p)≥ 2). Then,

if 4r2(n, p)≥ 400lnn
1
2−p+ 1

2 ln 1
2(1−p)

, then we can apply Lemma 8 for all axis-parallel rectangles of arear(n, p)(r(n, p)−1)≥
50lnn

1
2−p+ 1

2 ln 1
2(1−p)

≥ 100lnn
1−ln2 , to obtain that they all have at least 50lnn

1
2−p+ 1

2 ln 1
2(1−p)

−50lnn> 25lnn
1
2−p+ 1

2 ln 1
2(1−p)

> 50lnn
1−ln2 nodes,

with probability at least 1− 50lnn
n → 1.

Thus all such rectangles arenon-empty. Also:

25 lnn
1
2 − p+ 1

2 ln 1
2(1−p)

≥ 25lnn
D(Q1

2
||p)

>
8lnn

D(Q1
2
||p)

(46)

Hence all the quarter-neighborhoods have at least8lnn
D(Q1

2
||p) nodes (which is the quarter-neighborhood population in

the grid network case). Then using a proof argument similar to Theorem 5, one can prove the following theorem:

THEOREM 10: If p < 1
2, andr(n, p) ≥

√

100lnn
1
2−p+ 1

2 ln 1
2(1−p)

, then

lim
n→∞

Pr[ all 8n qnbdshave non-faulty majority] → 1

Thus, one can use a broadcast protocol similar to that for grid networks (a node commits to a value if it is

received from half or more nodes in some quarter-neighborhood), and, for all broadcast sources, and instances, the

correctness and completeness continue to hold, as follows:

Safety (Correctness): Relying on Theorem 10, we can apply a proof argument similarto Theorem 6.

Liveness (Completeness): The proof uses the an inductive argument similar to the proof of Theorem 7, except that

the termsnbd(x,y), pnd(x,y) and quarter-neighborhood must be interpreted as per their re-definition in this section.

In the base case, all neighbors of the source (which is at(0,0)) commit to the correct value trivially. In the inductive

step, one can show that if all nodes innbd(x,y) (as per the re-defined notation) have comitted to the correctvalue,

all nodes inpnd(x,y)−nbd(x,y) have someqnbdcontained innbd(x,y), and can thus commit to the value received

from a majority of nodes in thisqnbd.

Since the area within range of a node is(2r)2 ≤ 4r2 (for the valid domain ofr values) in theL∞ metric, the

result indicates that an average node degreedavg of 400lnn
1
2−p+ 1

2 ln 1
2(1−p)

suffices for reliable broadcast. Hence thecritical

average node degreedavg
critical is O( lnn

1
2−p+ 1

2 ln 1
2(1−p)

). 4

Corollary 4: The critical average degree for reliable broadcast in a random network with Byzantine failure

probability p < 1
2 is O(max{lnn, lnn

ln 1
2p+ln 1

2(1−p)

}) or O( lnn
min{1,ln 1

2p+ln 1
2(1−p)

} ) or O( lnn
( 1

2−p)2 ).

Proof: Note that whenp< 1
2: 1

2 − p+ 1
2 ln 1

2(1−p) = Θ(min{1, ln 1
2p + ln 1

2(1−p)}) = Θ((1
2 − p)2). In Theorem 9,

we proved thatdcritical = O( lnn
ln 1

2p+ln 1
2(1−p)

). Thus, it follows thatdcritical = O( lnn
min{1,ln 1

2p+ln 1
2(1−p)

} ) = O( lnn
( 1

2−p)2 ). The

result thus follows,

3Note that distinct does not mean disjoint.
4A more intuitive way of viewing the result is thatcritical degree isO(max{lnn, lnn

D(Q 1
2
||P)}).
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XI. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived forL∞ metric continue to hold forL2 metric, with only the constants in the

theta notation changing.

LEMMA 10: If reliable broadcast is achievable asymptotically inL∞ for all r ≥ rmin, then it is achievable

asymptotically inL2 for all r ≥ rmin
√

2.

Proof: The proof is by contradiction. Suppose that, for a given failure configuration, broadcast is asymptotically

achievable inL∞ for all r ≥ rmin but is not asymptotically achievable for allr ≥ rmin
√

2 in L2. Observe that it is

possible to circumscribe aL∞ neighborhood of ranger by a L2 neighborhood of ranger
√

2 (Fig. 7). Hence the

non-faulty nodes in anL2 network of transmission ranger
√

2 can be made to simulate the operation of nodes in a

L∞ network with ranger (as theL∞ neighborhood is fully contained within theL2 neighborhood). Also, given that

this is a network of known topology, with no address spoofing allowed, the faulty nodes cannot gain any unfair

advantage, by not simulating the theL∞ network. This implies that if broadcast is achievable in theL∞ network

of ranger , so must it be in theL2 network of ranger
√

2. If there is somer ≥ rmin for which we can achieve

broadcast in theL∞ network asymptotically, but not in the theL2 network of ranger
√

2, we obtain a contradiction,

as achievability in theL∞ network would imply achievability in theL2 network.

LEMMA 11: If reliable broadcast fails asymptotically inL∞ for all r ≤ rmin, then it fails asymptotically inL2 for

all r ≤ rmin.

Proof: The proof is by contradiction. Suppose that broadcast failsasymptotically inL∞ for ranger, but does not

fail in L2 for ranger. Observe that anL∞ neighborhood of transmission ranger circumscribes anL2 neighborhood

of ranger (Fig. 7). Thus, for any given failure configuration, if broadcast succeeds in the theL2 network of range

r, so can it in theL∞ network of radiusr, as we could simply make the fault-free nodes in theL∞ network simulate

the behavior of nodes in theL2 network. Hence, if broadcast does not fail in theL2 network of ranger ≤ rmin, it

will not fail in the L∞ network of ranger ≤ rmin. This yields a contradiction.

XII. N ON-TOROIDAL NETWORKS

We used the assumption that the network is toroidal to avoid edge effects. However, one can see that the results

would continue to hold even if the network were spread over a non-toroidal rectilinear domain. The necessary

condition would continue to hold, since the degree of nodes at the edges can be no more more than the degree of

nodes towards the center, and if reliable broadcast is impossible even with the assumption of equal degree for all

nodes, it must certainly be impossible when some nodes (those at the edges) have a smaller degree.



The sufficient condition continues to hold since the described protocol relies on information from quarter-

neighborhoods, and it can be seen that even the nodes at the edges have at least one quarter-neighborhood within

the network region.

Crash-Stop Failures/Connectivity

XIII. R ELATED WORK

Conditions for connectivity and coverage have been formulated in the context of different network models. In

[17], it was proved that in a unit area network with uniformlydistributed node placement, where nodes have a

common transmission radiusr, such thatπr2 = (logn+c(n))
n , the network is asymptotically connected with probability

one iff c(n) → ∞. In [18], an alternate model was considered whereby randomly deployed nodes may modulate

their transmission power (and hence range) to ensure that they have a certain number of neighbors. It was proved

that each node must be connected toΘ(logn) neighbors for asymptotic connectivity with probability one. Recently,

necessary and sufficient conditions for asymptotic connectivity in a network with low duty cycle sensors have been

formulated in [19].

A grid network model was considered in [1] where nodes are located at grid locations on a square grid, but may

fail independently. Nodes have a common transmission ranger. The probability of not failing is specified asp,

and it is shown that a sufficient condition for connectivity and coverage is that transmission ranger must be set to

ensure that node degree isc1(
logn

p ) (for some constantc1). It is also shown that a necessary condition for coverage

(and hence for joint coverage and connetivity) is that node degree be at leastc2(
logn

p ) (for another constantc2. A

fallacy in the above necessary condition was pointed out by [20], and a subsequent correction [21] by the authors

of [1] presents examples illustrating that the necessary condition may fail to hold for certain subranges ofp. The

issue of coverage has been examined in detail in [20] for random, grid, and poisson deployments. However, the

necessary and sufficient conditions formulated by them takea more complex form, and do not point to a single

f (n, p) such that a degree ofΘ( f (n, p)) is both necessary and sufficient for asymptotic coverage. Besides, the

necessary condition is formulated for the specific case whenlim
n→∞

p→ 0.

Our results for crash-stop failures are closely related to the results of [1]. However, we prove that, given afailure

probability p, it is necessary and sufficient to have a degree ofΘ(dmin+ logn
log 1

p
) for both connectivity and coverage.

Expressed in the notation of [1], we stipulate a degree ofΘ(dmin+ logn
log 1

1−p
). Our results diverge considerably from

those of [1] when the failure probability becomes extremelysmall, and thus our necessary conditions would hold in

a certain subdomain where that of [1] would not. However, there is a small sub-domain ofp (when p tends towards

1) in which our necessary conditions also cease to hold, as with the conditions of [1]. Besides, we work in theL∞

distance metric, and then map the results toL2. This yields much simpler proofs. We also remark that our joint

sufficient condition for connectivity and coverage is actually sufficient for 9-coverage and not merely 1-coverage

(wherek-coverage implies that each point is covered by at leastk non-faulty nodes). It is noteworthy that similar

results may be derived from analysis presented in [22] regarding the feasible rate in a sensor network, although no

statement has been made in [22] in this regard.

XIV. N OTATION AND TERMINOLOGY

We briefly describe here notation and terminology that shallbe used in this paper. Nodes can identified by their

grid location i.e.(x,y) denotes the node at(x,y). The neighborhood of(x,y) comprises all nodes within distance

r of (x,y) and is denoted asnbd(x,y). The degree of each node is referred to asd. In L∞ metric, d = 4r2 + 4r,

while the size of a neighborhood (including the neighborhood center) isd+1 = 4r2 +4r +1. The diameter of the

network (in terms of distance, and not number of hops) is referred to asD. If n is a perfect square,D =
√

n.



XV. N ECESSARYCONDITION FOR CONNECTIVITY

THEOREM 11:When p < 1 − 1
lnn, if r(n, p) < max{1, 1

4

√

lnn
ln 1

p
} (yielding node degreed(n, p) <

max{dmin,
lnn

2ln 1
p
}):

lim
n→∞

Pr[ disconnection] = 1

Proof: It is obvious that the minimum transmission range required for connectivity is 1, yieldingd = dmin = 8

(in L∞ metric), else the degree of all nodes is 0 (except in the case when all nodes are faulty, and connectivity becomes

irrelevant). Thus, we only focus on the case where1
4

√

lnn
ln 1

p
> 1. In this scenarior(n, p) < max{1, 1

4

√

lnn
ln 1

p
} =⇒

r(n, p) < 1
4

√

lnn
ln 1

p
.

We show that the network is asymptotically disconnected with probability 1 if r < 1
4

√

lnn
ln 1

p
, as long asp≤ 1− 1

lnn.

It is evident that in theL∞ metric, havingr(n, p) < 1
4

√

lnn
ln 1

p
yields a node degreed(n, p) = 4r2+4r ≤ 8r2 < lnn

2ln 1
p
.

Consider a particular nodej in the network. Then, ifj is non-faulty, but all its neighbors are faulty, we have a

potential disconnection event. Given that there ared neighbors, and each may fail independently with probability

p, the probability thatj does not fail, but all nodes innbd( j) fail, is (1− p)pd.

Since p≤ 1− 1
lnn, we obtain that:

1− p≥ 1
lnn

(47)

Pr[ A given node j is non-faulty, but isolated] ≥ Pr[ j is non-faulty and all neighbors ofj are faulty]

= (1− p)pd ≥ 1
lnn

p
lnn

2ln 1
p =

1
lnn

1√
n

=
1√

nlnn

≥ (lnn)3

n
for large n

(48)

Note the following:

d <
lnn

2ln 1
p

≤ lnn
2(1− p)

≤ (lnn)2

2
( from Fact 1 and Eqn. (47)) (49)

Let us mark out a subset of nodesj such that the neighborhoods of these nodes are all disjoint,as in Fig. 8.

Then, from Fact 7, the number of such nodes that we may obtain is at least n
2d for large n.

Let I j be an indicator variable that takes value 1 ifj is non-faulty but isolated. ThenPr[I j = 1] ≥ (lnn)3

n , and all

I j ’s are i.i.d.

Let X be a random variable denoting the number of nodes from the chosen set that are non-faulty and isolated.

Then X = ∑ I j , andE[X] ≥ (lnn)3

n ( n
2d) ≥ (lnn)3

(lnn)2 = lnn. We can thus setβ = 1
2 in the Chernoff bound of Lemma 2,

and obtain that:

Pr[X >
lnn
2

] ≥ 1−e−
lnn
8 = 1− 1

n
1
8

(50)

Thus, for p < 1− 1
lnn:

lim
n→∞

Pr[ At least two non-faulty nodes are isolated] = 1.

Hence a broadcast from one such node will not be received by the other node. This result can actually be extended

and shown to hold for a slightly larger range ofp values.



Fig. 8. Nodes having disjoint neighborhoods

We also briefly touch upon the range fop values satisfying 1− p = o
(

1
n

)

. When the failure probabilityp is so

high, we obtain the following:

lim
n→∞

Pr[ Any node is non-faulty] = lim
n→∞

1− pn = lim
n→∞

1− (1− (1− p))n = 1−e− lim(n(1−p)) = e0 = 0 from Fact 2

(51)

Thus the issue of connectivity is irrelevant.

XVI. N ECESSARYCONDITION FOR COVERAGE

Since the connectivity condition proof is easily adaptableto also provide a necessary condition for coverage, we

do so in this section. Recall that the network is considered covered if each point in the network region falls within

range of at least one non-faulty node.

THEOREM 12:When p < 1− 1
lnn, if r(n, p) < max{1

2,
√

clnn
8ln 1

p
}, wherec < 8

9 is a suitably chosen constant:

lim
n→∞

Pr[Some point is not covered] → 1

When 1− p = o(1
n), all nodes are faulty w.h.p., and the network is trivially not covered.

Proof: Since the grid comprises unit squares, it is obvious thatr must be at least12, else some points between

the lattice will not be covered. We handle two subranges ofp separately.

a) p< 1− 1
lnn: The proof relies on subdivision of the network into disjointneighborhoods, as in Fig. 8. From

Fact 7, the number of such neighborhoods obtained is at leastn
2d for large n.

If there exists at least one neighborhood with absolutely nonodes alive (neither the neighborhood center nor its

neighbors), then the center of that neighborhood is not covered. Thus we seek to determine the probability of such

an event.

We begin by choosing a positive constantc such that98clnn≤ lnn−3ln lnn, for sufficiently largen. In general

any constant 0< c≤ 8
9 − ε will satisfy this property for largen.



Supposer <
√

clnn
8ln 1

p
. Thend = 4r2 +4r ≤ 8r2 = clnn

ln 1
p

< c(lnn)2 < (lnn)2 (from Fact 1).

The neighborhood population is given byd+1= 4r2+4r +1≤ 4r2+4r2+ r2 = 9r2, for n≥ 1. Thusd+1≤ 9clnn
8ln 1

p

Let I j be an indicator variable that takes value 1 if there is no alive node in the neighborhood centered at node

j, and value 0 otherwise.

ThenPr[Xj = 1] = pd+1 ≥ p
9
8c lnn

ln 1
p ≥ (lnn)3

n (from our choice ofc).

Let X = ∑ I j be a random variable indicating the number of these disjointneighborhoods with no alive node.

From Fact 7, there are at leastn
2d such neighborhoods for largen. ThenE[X] ≥ (lnn)3

n ( n
2d) ≥ (lnn)3

2d ≥ (lnn)3

2(lnn)2 = lnn
2 .

Application of the Chernoff bound from Lemma 2 withβ = 1
2 yields:

Pr[X ≤ lnn
4

] ≤ Pr[X ≤ E[X]

2
] ≤ exp(−E[X]

8
) → 0 (52)

Thus there is are some uncovered points with probability 1, as n→ ∞.

Similar to the necessary condition for connectivity, observe that the proof can be extended to hold for a somewhat

larger range ofp values, with suitable adjustment to the constant.

b) 1− p = o(1
n): Thus n(1− p) → 0. We obtain thatPr[ no nodes alive] = pn = (1− (1− p))n. As n→ ∞,

the following holds:

lim
n→∞

Pr[some point not covered] ≥ Pr[no node alive] (53)

= lim
n→∞

(1− (1− p))n = e− lim(n(1−p)) = e0 = 1 from Fact 2 (54)

Thus the network is trivially not covered, regardless of transmission range.

XVII. SUFFICIENT CONDITION FOR CONNECTIVITY AND COVERAGE

We now present a sufficient condition for the asymptotic existence of both connectivity and coverage. It is thus

also a sufficient condition for each of them individually.

THEOREM 13:When r(n, p) ≥ max{1,
√

8lnn
ln 1

p
}:

lim
n→∞

Pr[ the network is connected and covered] → 1

Proof:

a) p= o(1
n): When the failure probability is so small as to fall in this range, the probability of even a single

node failing approaches 0 asymptotically, and thus connectivity and coverage is trivially ensured even with the

minimum transmission range of 1. This may be seen thus:

lim
n→∞

Pr[No failures;full connectivity/coverage] ≥ lim
n→∞

(1− p)n = e− lim np = e0 = 1 from Fact 2 (55)

b) p = Ω(1
n): Consider the subdivision of the grid as depicted in Fig. 9, sothat the resulting cells have

x-extents (and also y-extents) 0 toa, a+1 to a+b, a+b+1 to 2a+b+1, 2a+b+2 to 2a+2b+1, and so on,

wherea= ⌊ r
2⌋ andb= r −a= r −⌊ r

2⌋. Then, each node is within range of all other nodes in the cells adjoining its

own. Thus it is obvious that if each square has at least one non-faulty node, there exists a connected backbone that

covers all points, and hence all nodes. Thus all non-faulty nodes are connected to each other via this backbone. The
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Fig. 10. Relationship betweenL∞ andL2 neighborhoods

dimensions of the cells thus obtained can be(a+1)2, (a+1)b or b2. Sincea+1= ⌊ r
2⌋+1≥ r

2, andb= r−⌊ r
2⌋ ≥ r

2,

the populationk of any cell satisfiesk≥ r2

4 , and the maximum possible number of cellsm≤ 4n
r2 . Then:

Pr[ no non-faulty node in a given cell] = pk ≤ p
r2
4 (56)

Let us chooser ≥
√

8lnn
ln 1

p
. Then:

Pr[no non-faulty node in a given cell] ≤ p
r2
4 ≤ p

2lnn
ln 1

p = e−2lnn =
1
n2 (57)

The total number of cells is at most4n
r2 ≤ n. Thus, by applying a union bound over all cells:

Pr[at least 1 non-faulty node in each cell] ≥ 1− 1
n

(58)

Since this condition ensures connectivity and coverage, weobtain that:

lim
n→∞

Pr[network is connected and covered] → 1 (59)

XVIII. C ONDITIONS IN EUCLIDEAN METRIC

We show that our results derived forL∞ metric continue to hold forL2 metric, with only the constants in the

theta notation changing.

LEMMA 12: If the network is asymptotically connected (covered) inL∞ for all r ≥ rmin, then the network is

connected (covered) asymptotically inL2 for all r ≥ rmin
√

2.



Proof: The proof is by contradiction. Suppose that, for a given failure configuration, the network is

asymptotically connected inL∞ for all r ≥ rmin but is not asymptotically connected for allr ≥ rmin
√

2 in L2.

Observe that it is possible to circumscribe aL∞ neighborhood of ranger by a L2 neighborhood of ranger
√

2 (Fig.

10). Hence the nodes in anL2 network of transmission ranger
√

2 can be made to simulate the operation of nodes

in a L∞ network with ranger (as theL∞ neigborhood is fully contained within theL2 neighborhood). This implies

that if theL∞ network of ranger is connected (covered), so must be theL2 network of ranger
√

2. If there is some

r ≥ rmin for which theL∞ network of ranger is connected (covered) asymptotically, but theL2 network of range

r
√

2 is not, we obtain a contradiction, as connectedness (coverage) of theL∞ network would imply connectedness

(coverage) of theL2 network.

LEMMA 13: If the network is asymptotically disconnected (not covered) in L∞ for all r ≤ rmin, then the network

is disconnected (not covered) asymptotically inL2 for all r ≤ rmin.

Proof: The proof is by contradiction. Consider a failure configuration such that the network is asymptotically

disconnected (not covered) inL∞ for ranger, but is not disconnected (not covered) inL2 for ranger. Observe that

an L∞ neighborhood of transmission ranger circumscribes anL2 neighborhood of ranger (Fig. 10). Thus, for any

given random failure configuration, if theL2 network of ranger were connected (covered), so would be theL∞

network of radiusr, as we could simply make the nodes in theL∞ network simulate the behavior of nodes in the

L2 network, and obtain connectedness (coverage). Hence, if the L2 network of ranger ≤ rmin is not asymptotically

disconnected (not covered), theL∞ network of ranger ≤ rmin must also not be disconnected (not covered). This

yields a contradiction.

XIX. N ON-TOROIDAL NETWORKS

We have made the assumption that the network is toroidal, so as to avoid edge effects. However, we can see that

the degree of any node at the outermost edge is no more thand, and at leastd4 (whered is the uniform degree

that each node would have in the toroidal case). Thus, the necessary condition would continue to hold as is (since

some nodes having a lesser degree can only increase the probability of disconnection). The construction used to

prove the sufficient condition also continues to hold as is, since all full-cells in the tiling will have at least one

active node each, and even if there are regions at the fringesleft-over, they will still fall within range of some

active node in the nearest full tile (due to the chosen dimensions of the cells). Thus, the results are not affected. A

similar argument leads to the conclusion that the coverage results are not affected.

XX. D ISCUSSION

An interesting observation is that the form of the results for Byzantine failures is very similar to the results for

crash-stop failures/connectivity. For Byzantine failures, we have obtained that the critical node degree for grid net-

works isΘ(dmin+ lnn
ln 1

2p+ln 1
2(1−p)

), which may be re-stated asΘ(dmin+ lnn
D(Q1

2
||P) ) whereQ1

2
denotes theBernoulli(1

2)

distribution, P denotes theBernoulli(p) distribution, andD(Q||P) denotes therelative entropy(or Kullback-

Leibler distance) between distributionsQ and P. Similarly, the node degree for crash-stop failures/connectivity

is Θ(dmin+ lnn
ln 1

p
), and may be viewed as asΘ(dmin+ lnn

lim
q→1

D(Q||P) ), whereQ is theBernoulli(q) distribution, andP is

the Bernoulli(p) distribution.

Recall that we derive the necessary condition from isolatedfailure events, and this is found to match the sufficient

condition within a constant factor. Thus, possibly failureevents involving isolated nodes not receiving correct

broadcast may be the dominant failure events5.

5Note that in [17], it was found that the primary disconnectionevents in non-faultyrandom networks are those involving single isolated
nodes.



Focusing on these isolated failure events, the obtained expressions for node degree can be explained in the

light of Sanov’s Theorem [10]. As per Sanov’s Theorem, the probability of occurrence of the event-setE =

{ half or more neighbors faulty} is dominated by the probability of the event inE closest in relative entropy

to the governing fault distributionP. Since we are considering the regimep < 1
2, the closest event is that of

exactly half the neighbors faulty, corresponding toQ1
2
. In light of this, the critical degree expression for Byzantine

failures is quite intuitive. One can similarly explain the crash-stop results.

The necessary and sufficient condition for connectivity in asensor network where nodes sleep with probability

p was shown in [19] to beΘ( ln(n(1−p))
1−p ) (when expressed in our notation) for the case of a randomly deployed

network. This problem is equivalent to that of crash-stop failures in random networks. Our sufficient condition for

random networks with Byzantine failure probabilityp < 1
2 is O( lnn

1
2−p+ 1

2 ln 1
2(1−p)

). There is a similarity of form in

the two results, and one may interpret the critical node degree as beingO(max{lnn(1− p), lnn(1−p)
D(Q||P) }) whereq = 1

for the sleeping/crash-stop case in [19], andq = 1
2 for the Byzantine failure case.

Also note that both our grid network and random network results (for Byzantine failure) have similar structural

form, involving a minimum term required for connectivity without disruptive (Byzantine) behavior, and a second

term required to ensure broadcast even in presence of failure.

Additionally, it is evident that the expressions for the grid network and random network diverge whenp→ 0, but

are otherwise within a constant factor of each other (forp bounded away from 0). This difference is quite intuitive.

In a grid network, as failure probabilityp→ 0, the network tends towards a deterministic topology, whereas in a

random network, if failure or sleep probabilityp→ 0, the network can only tend towards a denser but still random

network. Thus, at small values ofp, a very small degree will suffice for a grid network, but may not for a random

network. At largerp values, the grid network exhibits increasing randomness and begins to resemble a network

with random deployment. Thus, one may see that the two expressions are within a small range of each other when

p is large (given sufficiently largen), but diverge asp→ 0.

XXI. C ONCLUSIONS

We considered the problem of reliable broadcast in wirelessnetworks with permanent probabilistic Byzantine

failures, and obtained tight bounds for asymptotic achievability of broadcast in grid and random deployments. We

also have results for crash-stop failure that are more accurate than earlier known results for this latter case.
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