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Abstract

We consider the problem of reliable broadcast in a wireless network inhaiicles are prone to failure. In the
failure mode considered in this paper, each node can fail independeitilyprobability p. Failures are permanent.
The primary focus is on Byzantine failures, but we also handle craghfailures. We consider two network models:
a regular grid, and a random network. For the grid network model, wabksh necessary and sufficient conditions
for the degree of each node as a function of the total number of nogethe network, and the failure probability,

S0 as to ensure that reliable broadcast succeeds with probabilitynt-as. Our necessary and sufficient conditions
for reliable broadcast with Byzantine failures indicate that failure praitatshould be less thar%, and thecritical

Inn
In 25+In 5515
neighborhood, and is a small constant). For a random network we pihat, for failure probability less tha%l, the

critical average degree for reliable broadcasi@nn+ mll%)' Our necessary and sufficient conditions for
2p 2(1-p)

node degree i© (dmin+ ) (where dmin is the minimum node degree associated with a non-empty

crash-stop failures in a grid network yield a critical degre Omin+ I':—E for p< 1, and our results improve

P
upon previously existing results for this model, whemapproaches 0. We also identify an interesting similarity in the
structure of various known results in the literature pertaining to a set deckfaroblems in the realm of connectivity
and reliable broadcast.

Index Terms

Byzantine failure, crash-stop failure, broadcast

I. INTRODUCTION

Reliable broadcast in the presence of Byzantine and ctaghfalures has been extensively studied under different
network and failure models. A reliable broadcast mechanisay be of significant utility in large-scale sensor
network deployments. While the shared nature of the wiretesdium is conducive to the broadcast operation, the
unreliability of the wireless channel, and the possibibfycollisions can make it a difficult problem to solve. As a
first step towards addressing the issue, it is useful to foousn idealized wireless channel. We consider the problem
of reliable broadcast in a such an idealized wireless nétve primarily focus on Byzantine failures, but have also

This report is a revised version of, and supercedes, areeadport "Reliable Broadcast in Wireless Networks with tibilistic Failures”,
dated January 2007. Note that this report contains additi®sults not in the identically titled paper in IEEE INFORIC2007.
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considered the case of crash-stop failures. The failuepamanent and are assumed to occur probabilistically, i.e
each node can fail independently with a certain probabpitiHowever, once failure has happened, the faulty nodes
can exhibit worst-case behavior. We present asymptofidaght bounds on the conditions under which reliable
broadcast is achievable.

We show that when nodes exhibit Byzantine failures, refidisbadcast in a grid network ofnodes requires that

p be less than half, and theritical node degree (defined in Section II)(ﬁ;(dmin+ mu% for asymptotic
2p" 7 2(1-p)

achievability of reliable broadcast. This may alterndtivee stated a®© (dm.n+ B( Q HP ) WhereQ% denotes the

Bernoulll(z) distribution, P denotes theBernoulli(p) distribution, andD(Q||P) denotes theelative entropy(or
Kullback-Leibler distance) between distributioRsandP. We also prove that in a randomly deployed network with

Byzantine failures, the critical average node degree flmlke broadcast i©(Inn+ M%)(also expressible
2p T 2(1-p)

asO( —M . ))whenp< 3.
5—P+3 In Pl ) ) ) ) )
We also consider the case of crash-stop failures in a gridar&t For crash-stop failures, the problem of reliable

broadcast is equivalent to connectivity. For this case, weehresults showing that the critical node degree is

O | dmin+ l':—z with p < 1, or alternatively stated? (dm.n+ B[P ) whereQ; is the Bernoulli(1) distribution.

Q HP
Our results ’i)mprove upon previous results proved in [1] whiemn failure probabilityp approaches 0.

We also identify an interesting but intuitive similarity the structure of results (previously known results, as well
as the results derived in this paper) for a set of relatedIpm$ pertaining to connectivity and reliable broadcast.
This is discussed in Section XX.

II. NOTATION AND TERMINOLOGY

We use the following asymptotic notation:

« O(g(n)) ={f(n)|3c,No, such that Vn> N, f(n) < cg(n)}

- o(g(m) = {f(n)|lim £ — 0}

o w(g(n) = {f(n)lg(n) =o(f(n))}

Q(g(m) = {f(mlg(n) = O(f(n))}
O(g(n)) = {f(n)|Fc1,c2,No, such thatcig(n) < f(n) < cpg(n) for n> Ny}

We used to denote node degree, to denote transmission range, abdto denote network diameter. The
neighbor-set of a node, including itself, is denoted bybd(u). The set of neighbors minus itself is termed as
nbd (u) = nbd(u) — {u}.

By critical transmission range for reliable broadcast, we impl&cal, such that

« For some constard; > 0, reliable broadcast fails with some positive probabiifty < reritical

« For some constart; > 0, reliable broadcast is achieved with probability I i reritical
Thus:

o Teritical 1S Q(f(n,p)) = 3Jc1 >0, such thatr <c;f(n,p) = rI1i_r>1?mPr[reIiabIe broadcast achievable 1

e Tgritical 1S O(f(n,p)) = 3¢z > 0, such thatr > cyf(n,p) = r!iLrgOPr[reIiable broadcast achievable 1

o Teritical = ©(f(n, p)) implies thatrcritical is Q(f(n, p)) andO(f(n, p)).

In a grid network, and under the considered distance metliscissed in Section Ill), the node degree is
exactly determined by specifying the transmission rangendd, we can define the notion aitical degreedgitical
correponding to the transmission ranggtica - Thus:

o deritical = Q(9(n, p))3cq >0, such thatd <cig(n, p) = rI}im)oPr[reliable broadcast achievable 1 This yields

a necessarycondition. If nIiﬁr?oPr[reliabIe broadcast achievable 0, it is astrong necessary condition.



o deritical = O(f(n, p)) = 3c2 >0, such thatd > caf(n, p) = r!im)Pr[reliable broadcast achievabtle 1 This
yields asufficientcondition.
o deritical 1S ©(f(n, p)) implies thatditicar is Q(f(n, p)) andO(f(n, p))
In a random network, the degrees of individual nodes can;MJaoyever, it is possible to define a notion of
critical average degred3d.,, which is the average degree corresponding to the raggea. Thend3., can
be expressed in asymptotic notation, similadtgica for a grid network.

Ill. PROBLEM MODEL

We consider a two network models, viz. a regular grid, whevdes are located on a two-dimensional square
grid (each grid unit is a ¥ 1 square), and a random network, where node locations ate dver the deployment
region. In both models, the network is assumed to be deployed a./n x /n square region. The pre-failure
topology (i.e., node locations) of the deployed networkdsusmed to be known by all nodes.

Formal Definition of Reliable Broadcast#ny node in the entire network can originate a broadcast aggsdn
the Byzantine failure model, this source node may be faiiltyis goal is to ensure that if the source is non-faulty,
every non-faulty node in the network should correctly reeeand determine the broadcast value; if the source is
faulty, all non-faulty node should agree on some commonevdluthe crash-stop failure model, a message can only
be originated by a non-faulty node (as faulty nodes ceasartctibn), and the goal is to ensure that all non-faulty
nodes receive this value.

If even one non-faulty node (in either model) fails to makeaidvvalue determination, the broadcast is deemed
to have failed. Reliable broadcast is said to fail in a givealtf configuration, if it fails for at least one possible
broadcast origin/source.

For a given broadcast instance, once an origin/source ignied, it is identified ag0,0). All nodes can then
be uniquely identified by their coordinate locatigr y) w.r.t. this origin. In the grid network model, the node
coordinates are alwaymtegers while for random networks they ameal numbers. All nodes have a common
transmission radius(n, p). For grid networks, we assume thdh, p) is an integer, and for random networks it is
allowed to be any real number. A message transmitted by a (ogeis heard by all nodes within distancén, p)
from it (where distance is defined in terms of the particulaatnic under consideration). The set of these nodes is
termed the neighborhood ¢k,y).

In this paper, we consider two distance metrits: and L,. The L., metric is the metric induced by thie,
norm [2], such that the distance between poiftgy1) and (xz,y2) is given by max|xs — Xz|,|y1 — ¥2|} in the
this metric. Thusnbd(a,b) comprises a square of side @ith its centroid at(a,b), and the degree of a node is
4r2 4 4r. In this metric, the minimum node degrelg, = 8 corresponding t@ = 1. TheL, metric is induced by
the L, norm [2], and is the Euclidean distance metric. Thedistance between pointgi,y1) and (X2, y2) is given
by /(X1 —X2)2+ (y1 — ¥2)2, andnbd(a,b) comprises nodes within a circle of radiuscentered a(a,b). The L
metric enables more tractable analysis, from which necessal sufficient conditions for thie, (Euclidean) metric
proceed. In Section XI, we further elaborate on this.

A random failure mode is assumed, wherein each node can ifdilprobability p independently of other nodes.
Failures are permanent. We primarily focus on Byzantinkifes. In the Byzantine failure mode, a faulty node can
behave arbitrarily, in contrast to crash-stop failuresewha faulty node simply stops functioning. However, in our
model, the Byzantine nodes cannot spoof addresses or callis®uos, i.e., the MAC layer is assumed fault-free,
and the Byzantine faults reside only in higher layers of tratqrol stack!. We assume that the channel is perfectly

1A methodology to handle a bounded number of collisions andemsdspoofing was proposed in [3] for a locally bounded fauldeholt
might be possible to adapt it to handle the random failure modak requires further investigation.



reliable, and a local broadcast is correctly received byaighbors. The sameliable local broadcasassumption
underlies the results in [4] and [5] for a locally bounded edarial fault model. Note that while theecurrenceof

the permanent failures is probabilistic, the failed Byramtnodes can thereafter choose to behave in a worst-case
manner (i.e. modulate the messages they send to cause mdéssioa to non-faulty nodes). The non-faulty nodes

do not know which nodes have failed.
IV. SOME USEFUL MATHEMATICAL RESULTS

We state some mathematical results that have been used pranfs:

FACT 1: ¥x € [0,1] : In % > X

FACT 2: If [f(n)| <nz (0 <e< 3):
n
(1+1‘(r1r1)) <& forn>4

and ¢ " _
lim (1+(n”)) — 1)

n—oo

Proof: Let f(n) be such thatf(n)| < nz—¢, where 0< € < 3. Letg(n) = (1+ @)”. Then:
f(n) 1 f(n 1 f(n
(m 1K ))2—1-3(())3—....)[6]

n

Ing=nin(1+ f(nn)) :n<

n 2'n

k=1 n k=2 k

<1 f(n) 1
< fm)”(”)k;R(T)k t<f(n)+ f(n)k;(%)k !

.1 1
= f(n) szl(n)k) = f(n) <1+l %>
<2fforn>4
g (1+f(n)n <e&'™ forn>4

n

limIng= lim

n—oo n—oo

R I(OLN B
f(n)+k;(—1)k lR( kI )] = lim f(n)

- limg(n) = e

n—oo

FACT 3: For all 0<x < 1:
In(1+x) < —



Proof: Whenx =0, this is trivially true. For 0< x < 1: In(1+x) = x— % + § - =x(1-3+%-.)
X(1+Xx+X2+...) = £, since 0< x < 1.

FACT 4: If c> 0 is a positive constant independentmfandb > 1 is another positive constant independent of
n, thendng € N such that:
1< njlﬁf for n>ng

" (nn)b
Proof:
1 1
P > e(nn® (from Fact 1)
~ (nn)d
1 _rT 1 1
1 <e (Inn)p — =
en®  a(nn®+D
1 1
= ——5— < — for largen
@0 N0
1 c
A eNsSt ———= > -, Vn>ng

(Inn)(e+1) = n

LEMMA 1: (Jogdeo & Samuels [7]) GiveX = Y1+ Y2+ ..., +Y, whereVi,Y; = Bernoulli(p;), and ¥ pi = np,
the mediamm of the distribution is eithetnp|orfnp], i.e., PrfiX <m| > J andPr[X > m| > 3.

Corollary 1: GivenX =Y1+Y2+...,+Y, whereVi,Y; = Bernoulli(p), the mediarm of the distribution is either
[nplor[np], i.e., PriX <m| > 3 andPr[X > m| > 3.

Proof: The proof proceeds by setting = p2 = ... = pn = p and applying Lemma 1. [ ]

Corollary 2: GivenX =Y+ Y2+ ...,+Y, wheren is even, and’i,Y; = Bernoulli(p) wherep > % the mediam

of the distribution satisfiesn> 3.

Proof: We know thatmis either[np|or[np|. Whenp= 3, m=J (asnis even). Fop> 3, m> [np| > [§] =

n
LEMMA 2: (Chernoff Bound) IfX = 3 X;, where eacl¥; is independent anBernoulli(p;), then for 0< < 1:
i=1

2
Pr{X < (1 B)EIX]] < exp(~ D E[X)) )

n

LEMMA 3: (Relative Entropy Form of Chernoff-Hoeffding Bound[8]f= S X;, where eackX; is Bernoulli(p),
i=1
then forp<p < 1: I
Pr{X > Bn] < & "PING AP L) ()
LEMMA 4: (Chernoff Bound [9]) LetXy,...,X, be independent Poisson trials, whégX = 1] = p;. Let X =
n
S Xi. Then, for anyp > 0O:

i=1

- E[X]
PriX > (1+B)E[X]] < (MW) (3



LEMMA 5: (Chernoff Upper Tail Bound [9]) LeKy, ..., X, be independent Poisson trials, whé&eX; = 1] = p.
n
Let X = 5 X;. Then, for 0< B < 1:
i=1

PriX > (1+B)EIX] < exp(~ S EIX) @

LEMMA 6: [10] If X3, X,..., X, are drawn i.i.d. from alphabet according toQ(x), then probability of sequence
X is given by:
Q(ﬂ)(x) — @ "(H(RJ+D(RIQ) (5)

whereH andP denote the entropy and relative entropy functions (heresidened w.r.t base).

Also, for any distributions® and Q, the size of type clas$ (P) satisfies:

1
W@H(P) <|T(p)| < ™P) o

and, the probability of the type claggP) underQ is governed by:

1

e Y < QT (p) < e 0P )

FACT 5: For all 0<x < 1:

Proof:

Iniﬂn 1 =—(In(1-x)+In(1+x)) =— ((X_X22+)§_”"> + ((—x)— (_;)2 + (_;()3 - ))
>

1-x 14X

X x* X ®
=2 (2 gt s + > X
[
FACT 6: For all 0< x< 1:
Inzleran(ll_p) 24(%fp)2
Proof: Setx=1—2p. Then: In2p +In 2(1 5 =In 5 +In 5 > (1-2p)? = 4(3 — p)? by application of Fact
5. |

LEMMA 7: (Vapnik-Chervonenkis Theorem) Let S be a set with finite V@elsionV Cdim(.§). Let {X} be
i.i.d. random variables with distributioR. Then fore, & > 0:

(ggﬂ Z\IX'ED_ (D)|§8> >1-9%

svCdims), ~16e 4 2
%'0927 —lo 926)

wheneverN > max(

LEMMA 8: Suppose we are given a region of argawith n nodes located uniformly at random. Consider all

axis-parallel rectangles of aresn). If a(n) > 100ulogn,1 < a < 100|09n, then each such rectangle has at least
1000 Inn—501logn nodes, with high probability.



Proof: We know that the set of axis-parallel rectangles has VC-dsion 4. In our construction, we have the
set of all axis-parallel rectangle$ of area 10@Inn. Then considering tha random variables( denoting node
positions,Pr[X € D(D € 5] = 19%In" Then, from the VC-theorem (Lemma 7):

br (suq No. of nodes iD 10(D(Inn| < s(n))
Des n n
> 1-9(n)
3 16e 4 2
whenevem > max<|ogz I 00, 5)

This is satisfied whes(n) = &(n) = 221" Thus, with probability at least £ 22", the populatiorPop(D) of cell
D satisfies:

1000 Inn—50Inn < Pop(D) < 100 Inn+501nn 9

This completes the proof. |
FACT 7: If we attempt to divide thg/n x /n grid into disjoint neighborhoods (as in Fig. 1), then the hem

of such disjoint neighborhoods that can be obtained is &t ”J> > 4r2+4r1fl 8r2 for large n. Observing that

d = 4r? 4 4r, the number of such disjoint neighborhoods obtainable isat (ZL\Q)Z > 4r‘2/;4r1+1 o for largen

Byzantine Failures

V. RELATED WORK

Reliable broadcast in radio networks has been studied grak such as [11], [4], [5] and [12]. Crash-stop
failures are considered in [11] for finite networks comprgsnodes located in a regular grid pattern and algorithms
are described for efficient broadcast to the part of the ndtwioat is reachable from the source. However this
work does not attempt to quantify the number of faults thatdex some nodes unreachable. In [4], a locally
bounded model is considered, where an adversary is freeaie faults, as long as no neighborhood has more
thasnt faults. It was shown that for a network of nodes located onrdimite grid of unit squares and having
transmission radius, reliable broadcast is not achievable tor [%r(2r+1)1 (in both L, and Ly metrics). This
was established as axact thresholdn L., by [5], and a protocol was described that achieved the toidsin
approximate threshold was also established forlthenetric (that is tight asymptotically, and corresponds te th
same fraction of a neighborhood aslig). In [13], a tight bound for tolerable using the broadcast protocol of [4]
was established. In [14], further study of the locally boeddault model has been undertaken on arbitrary graphs.
Upper and lower bounds for achievability of reliable broastcare presented based on graph-theoretic parameters,
for arbitrary graphs. However, no exact thresholds arebdisteed. It is also shown that there exist certain graphs in
which algorithms that work with knowledge of topology sueddn achieving reliable broadcast, while those that
lack this knowledge fail to do so.

Scenarios involving a collision-causing adversary arereskkd in [3], [15], [16].

In closely related work, [12] considers the case of mesgagsing and radio networks with random transient
failures. In our knowledge, the results in this paper arefitisé for radio networks exhibiting random but permanent
Byzantine failures.

VI. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that dallsed in this paper. Nodes can be identified by their
grid location i.e.(x,y) denotes the node &k,y). The neighborhood ofx,y) comprises all nodes within distance
of (x,y) and is denoted asbd(x,y). The degree of each node is referred tadasn L., metric, d = 4r2 4 4r, while



the size of a neighborhood (including the neighborhooderris d + 1 = 4r2+ 4r + 1. Thus, the minimum degree

is dmin = 8, corresponding t@ = 1. The diameter of the network (in terms of distance, and nwhlver of hops)

is referred to ad. If n is a perfect square) = /n. The source of the broadcast may be deemed to be situated
at (0,0), without affecting generality of the results. In generak allow any node of the network to be the source
(with a corresponding shift of reference coordinates). aecint description, we define a terpmbd(x,y) where
pnbdx,y) = nbd(x— 1,y) Unbd(x+ 1,y) Unbd(x,y — 1) Unbd(x,y+ 1). Intuitively pnbd(x,y) denotes theerturbed
neighborhoodof (x,y), obtained by perturbing the center of the neighborhood te ohthe nodes immediately
adjacent to(x,y) on the grid. Besides, we ugkernoulli(p) to denote a Bernoulli random variable with parameter

p.
VIl. NECESSARYCONDITIONS FORRELIABLE BROADCAST

THEOREM 1:If a non-faulty nodeu ¢ nbd(s) has at least half faulty neighbors, and all message values ar
equally likely, it can be made to commit to an erroneous valite probability at Ieast%.

Proof: Assume that the message is drawn frfonl}. A non-faulty nodeu which is not an immediate neighbor
of the source must rely on messages received from its neighBecall thanbd (u) = nbd(u) — {u}.

First consider any deterministic function that takes asiargnt messages received from all neighbors and outputs
one of 0 or 1. Then corresponding to each fault configura@erwith t > % or more faults innbd (u) (this also
impliest faults innbd(u) asu is non-faulty), there is another configurati®a with t faults innbd (u), such that all
non-faulty nodes ilC; are faulty inCy, while the non-faulty nodes i@, were all faulty inC;. Then, the faulty nodes
can modulate their message-sending behavior soutigtinable to distinguish between the case where the correct
broadcast value was 0 and configuration Wasand the case when the correct value was 1 and the configuration
wasC; (recall that once failure has happened, the faulty nodeseghibit worst-case behavior).

Stated formally: suppos& C nbd (u) is the set of faulty neighbors i@;, andS{ = nbd (u) — $1 is its complement,

i.e., the set of non-faulty neighbors. Then we know ttsat > [MZW] > |57]. Consider a fault configuratioB in
which the set of faulty neighbors i$ = SfU Y where?’ C $; is some subset of; that satisfieg?| = |S1| —|S5].

It is easy to see thdfs;| = |.S2|. Consider the case where the correct value is 0, and configaris C;. Then all
nodes inS: can behave as though the value were 1, while the node§ inill always act according to value 0.
Now suppose the correct value is 1, and configuratiogzisThen the faulty nodes igy C S, behave as though
the value were 0, while nodes i = S, — $; act as per the correct value 1. The non-faulty nodesSiralways
act as per value 1. From the viewpoint of node u, the two sduoatare indistinguishable.

Now let us consider the possibility of using a probabilistiecision rule. Given a certain set of messages
received from neighbors, we need to consider the conditipnabability that the value is 0 or 1. Then, from
the above discussion it is clear that for a given set of rexkimessages from neighbors, there exists a pair of fault
configurations, and associated faulty-node behavior, thithsame number of faulty neighbors, where the correct
message values are different. Since failures are i.i.ch wibbability p, and each value 0 or 1 is equiprobahle,
cannot expect to choose the correct one with a probabiliéatgr than half.

It is not hard to see that if the message can have more thandssiljle (equiprobable) values, it cannot increase
the probability of correct choice.

[ ]

THEOREM 2: When failure probabilityp satisfies; <1— %, and§ — « (i.e., d = o(n)):

rLiLTgOPr[ reliable broadcast fails> n > 0( for some positive constamf < 1)

In particular, if@ — oo, then:

r!irrl)Pr[ reliable broadcast fails= 1



Fig. 1. Division of network into disjoint neighborhoods

When 1-p= o(%), all nodes are faulty w.h.p., and the broadcast issue ikuaet.

Proof: Suppose we consider a particular noden the network. Then, ifj is non-faulty, but more than half
of its neighbors are faulty, reliable broadcast fails witlolmability at least half. Given that there adeneighbors,
and each may fail independently with probability let Y; denote the number of failed neighbors pfThen,Y;
takes values from @,...,d, and E[Yj] > %. Thus [E[Y]] > L%J = % (sinced = 4r? 4 4r is always even). Thus,
Priy > %] > Priy > |E[Y]]] > % (from Lemma 1). Let us call this probability.

1-p

Pr[ j alive; at least halhbd(j) faulty ] > (1— p)q> >

lim n(lep) =y >4 Let us mark out a subset of nodg¢such that the neighborhoods of these nodes are all

disjori]rﬁfoas in Fig. 1. Then from Fact 7, the number of suchesothat we may obtain is at leagf for large n.

Let I; be an indicator variable that takes value 1jifs non-faulty but has at least half faulty neighbors, and
commits to the wrong value. ThePr(l; = 1] > %, and alll’s are independent.

Let X be a random variable indicating the number of non-faultyesodith at least half faulty neighbors that
resultantly commit to the wrong value. Th&iX] = 3 Pr[lj = 1] > %(%) = %.

Thus setting3 = % in the Chernoff Bound in Lemma 2:

2
PriX < 7E[2X]] < e‘B 7 e‘%
When 220, o E[X] = 1L-B) _ oo;
E[X] : EX]

lim Pr[X > T] >lim(l-e 8 )=1

n—oo Nn—oo

Thus, asn — o, the number of non-faulty nodes isolated by half or moretfankighbors, and which commit to
the wrong value, will also tend to infinity with probability. 1
When @ —y>4

limPr[(X >2] > Pr[X >

n—oo 2 nN—oo



Fig. 2. Division of network area into three segments

lim "2 < 4, but1— p> %: This implies that - p< % — p> 3> 1 for largen (since ] — ). Then

the SE)OBablhtyq of having half or more faulty neighbors is at Iea%t(from Lemma 1). Consider a partition of
the network region into 3 segments A, B, and C as in Fig. 2. Ezsgiment has at least/n| @ > 2 nodes for
large n. Let pa be the probability that segment A has at least one ngdéhat is non-faulty. Letpc and uc be
the corresponding probability and node for segment C. lhaycand uc exist, then it is evident that they are not
mutual neighbors (sincg — «). Thus, if one of them (sayc) has half or more faulty neighbors, then a broadcast
from up cannot be received byc, with probability more than} (from Theorem 1).

Let Xa be the total number of nodes in segment A that satisfy theetbgiroperty. TherXa = Z I, wherel’

are i.i.d. Bernoulli(p) random variables denoting whethés faulty. Likewise, letXc be the correspondlng random

variable for segment C. Then, it can be easily verified tBgts] > T>- Similarly E[Xc] > %. Then by
setting3 = % in Lemma 2, it can be seen that:

PriXa < 1] < PriXa < n(11—2 P} < prixa < %] <o <o " (10)
If there exist such nodes, let us select from thermugn

PriXc < 1] < Pr[Xc < ”(11_2 P prixe < [XC]] <ot <o P (11)

If there exist such nodes, let us select from thenuan

Then by applying a union bound over the events that eitheraingé,uc does not exist, ouc does not have
half or more faulty neighbors, it proceeds that:

. _n(1-p) _n(1-p)
Pr[3ua, Juc anduc has half or more faulty neighbdrs- pp >1—e % —e % —q (12)
Sincen(1— p) > 96, we obtain:
1 1 1
li >1l——= - = —= 0 13
impp>21-5-5-5> (13)

Thusuc will make an erroneous decision about any messages brddagag with probability at least half, and
reliable broadcast will fail with a positive probability baast% > 0.

1-p=o(}):

Pr[All nodes faulty;broadcast issue moet p” (14)
g(n)

>(1-(1-p)"=1-gn)" Wherev =ng(n) —0 (15)



lim Pr[All nodes faulty; broadcast issue moot (16)

n—oo

n
> Jim (1~ g(m))" = fm (1 ")) a7)
= ¢ IM(gM) — 1 from Fact 2 (18)
[ |
THEOREM 3:Whenp§ Inn' and node degreg < M% reliable broadcast asymptotically fails with
7p 2(1-p)
probability 1. o
Proof: Any failure probabilityp <  — 1. can be expressed @s= 3 —y for suitable X <y < 3. From Fact
_ 2 4
6, In2p+ln ( 5= 4(3-p) > Tz
Resultantly: 5
Inn < Ian _ (Inn) < (Inn)? (19)
~Ing +1In5 e 4
2p (1 P (Inn)
Furthermore, one may see that:
I%n +6Ininn<Inn—4Ininn for large enoughm (20)

Consider a particular nodg in the network. Then, ifj is non-faulty, but more than half of its neighbors are
faulty, reliable broadcast fails with probability at ledsdlf (from Theorem 1). Given that there adeneighbors,
and each may fail independently with probabiliy let |, (1 < k < d) denote the indicator variable corresponding
to neighbork of j (enumerated in some order), such thagt= 1 if k is faulty, and 0 otherwise. Thelj =
> lix denotes the number of failed neighbors jofY takes values from (,...,d, and E[Y] = pd. Pr[Y; > %] =
%d( )p (1- p) . Let us simply consider the eve¥if = 5. Then we can apply the lower bound from Lemma 6.

The variabled (1 < k < d) are drawn fromx = {0,1} as per distributiorP = Bernoulh(p), and the distribution

d 1 1
corresponding tdfj = § is Bernoulli(3) (we shall refer to this an)' IX| =2, and (d+1) X = @inE Erri
2g2Ind (recall that inLinfry Metric, d is always even, and > 8). Thus, we obtain:
3 y
d d 1 —d(D(QyIP))
P ->—>PY-:—>7 2
1 o d(D QlHP - gefd(D(Q%HP))fZInd
(d+1)2 3
_( Inn )(l ll 1 )—6In|nn (21)
2 In AL +in -t 2Mgptzin 2(1-p)
>§e 2p" T 21-p) from Eqgn. (19)
2 1Inn—6Ininn (Inn)
>’
3e 2 3n from Eqn. (20)
Let us denote the L.H.S. of the above equationgby
Pr[ j non-faulty; at least halfbd(j) faulty ] > (1— p)q (22)
12(Inn)*  (Inn)*
= = 2
2 3n 3n (23)

Let us mark out a subset of nod¢ssuch that the neighborhoods of these nodes are all disjaénin Fig. 1.
Then, as noted earlier, the number of such nodes that we maynabk > 2 for largen. Let I be an indicator
variable that takes value 1 jfis non-faulty and has at least half faulty neighbors. TRejt; = 1] = (lnn> , and all
lj’s are independent. qu be an indicator variable that takes value 1jifs non-faulty but comm|ts to a wrong
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Fig. 3. Depiction ofgnbds, qnbds, qnbd:, gnbdy
Fig. 4. Depiction ofgnbdy, gnbdy, gnbd, gnbdy

value. From Theorem 1, we know that if a non-faulty node hdg dramore faulty neighbors, it will commit to
4
the wrong value with probability at leagt ThusPrl{ = 1] > 3Pr[l; = 1] > (nn”,
Let X be a random variable indicating the number of non-faultyesodith half or more faulty neighbors that

commit to the wrong value. The = 5 1{, andE[X] = 3 Pr[l} = 1] > (inn)* (2) = ('“2'3 >0 o (asd < (Inn)®

6n 2d
from Egn. (19)). Thus we can choose a suitable constanf3e< 1 (e.g.,p= j) and apply the Chernoff bound in

Lemma 2 to obtain:
r!im PriX > (1-B)E[X]] > I|m l1-e 2[ = =1 E[X]—o (24)
Thus, asn — o, the probability that some non-faulty node(s) fail to cornioi the correct value tends towards 1.:

rI]im Pr[ reliable broadcast fails— 1

VIII. SUFFICIENT CONDITION FORRELIABLE BROADCAST

We now present a sufficient condition for the asymptotic exdibility of reliable broadcast.

THEOREM 4:Whenp < 3 5, and node degre@ > max{dmin, 16%} max{dmin, 85 (Q HP )} (recall that
2(1
dmin = 8 corresponding tm = 1), reliable broadcast is asymptoucally acphlevable wntbhablhty 1.
Note that when In} +In Pl ) < 16'”” , the degree exceeds total network sizeand thus the sufficient condition

ceases to be relevant, merely mdlcatlng that having a esihgp network suffices for reliable broadcast (which is
the trivial sufficient condition for the assumed radio netkvanodel). Thus the sufficient condition is of interest

16Inn
only so long as I +1n 5zt 5 > 5

a) p< o(ﬁ): When the failure probability is so small as to fall in this renghe probability of even a single
node failing approaches 0 asymptotically, and thus rediddybadcast is trivially ensured even with the minimum
transmission range of 1. This may be seen thus:

Pr[No failures;trivial broadcagt= (1 p)" (25)

lim Pr[No failures;trivial broadcagt> lim (1—p)" = e 'm(P) — 1 from Fact 2 (26)

Nn—oo



Region x-extent y-extent
gnbch(a,b) | a<x<(a+r) (b—r)<y<(b-1)
gnbaks(a,b) | (a—r)<x<(a—1) | (b—r)<y<b
gnbd:(a,b) | (a—r)<x<a (b+1) <y<(b+r)
gnbcb(a,b) | (a+1) <x<(a+r) | b<y<(b+r)
gnbdy(a,b) | (a+1) <x<(a+r) | (b—r)<y<b
gnbdy(a,b) | (a—r)<x<a (b—r)<y<(b-1)
gnbd(a,b) | (a—r)<x<(a—1) | b<y<(b+r)
gnbdy (a,b) | a<x<(a+r) (b+1)<y<(b+r)
TABLE |

SPATIAL EXTENTS OF QUARTER NEIGHBORHOODS

b) p= Q(%): We define a term called quarter-neighborhood of a npdg), and denote it bygnbd(x,y).
We associate eight quarter-neighborhoods with each nmpaledy, gnbds, gnbd:, gnbdy, gnbdy, gnbdy, gnbd,
gnbdy. The quarter-neighborhoods for a nofeeb) are depicted in Figs. 3 and 4, and their spatial extents are
tabulated in Table I. Observe thghbds(a,b) = gnbd,(a—r — 1,b), gnbd:(a,b) = gnbch(a—r,b+r + 1), and
anbdb (a,b) = gnbd,(a,b+r +1). Similarly, gnbdy (a,b) = gnbdi(a—r —1,b), gnbd (a,b) = gnbdy (a—r —1,b+
r), andqnbdy (a,b) = qnbda(a,b+r + 1) Thus if we simply considegnbdy(u) and gnbdy (u)V nodesu, we will
have considered all quarter-neighborhoods, i.e. the nurabdistinct (butnot disjoin) quarter-neighborhoods is
2n. Henceforth, we shall sometimes ug¢x,y) to refer tognbda(x,y), and Q' (x,y) to refer toqnbdy (x,y). The
population of anygnbdis r(r +1), and sinced = 4r2 + 4r = 4r(r 4 1), the gnbd population :%. We now state and
prove the following result which is crucial to proving ourficient condition for reliable broadcast:

. 1 . Inn Inn .
THEOREM 5:1f p < 3, d > max{dmin, 167In Tonyls } = max{dmin, 85 Q%I\P>)}’ then:

IrI]im Pr[ V(x,y) less thang faults in
Q(xy) andQ'(x,y)] — 1

Proof: As shown above, the population of agybd is %. Each node may fail independently with probability

p.Let ny) be a random variable denoting the number of faulty nodeQ(Rry). Then E[Y (xy )] = p%. Using
5= 4 P —1, we may then apply the relative entropy form of the Cherafind (Lemma 3) to/) = 5 |j.
jenbd(x,y)
Note thatd > max{dmin, 16——""——} > 16— Thus, we obtain:
In T+In 219 In T+In (1 9
Pr{Yixy) > d}<e 43I g+3In 55t ) 27)
( 8% 8
(oM )(3In g5 +3In )
<e 4(In p-¢—In Tp 2p 27 2(1-p) p) (28)
_ 1
—e 2Inn — ? (29)

Similarly, settingY&y> be a random variable denoting the number of faulty node®'{m,y), we obtain that:

PriYy) = 3l S m (30)



By application of union bound over allnZistinct quarter-neighborhoods:

- lim Priv(x,y),Y(x,y) < g andY’(x,y) < g} (31)
1 2
212n<nz>1nﬂ1 (32)

|
We now consider a simple broadcast protocol that is simdathe protocol described in [4] for the adversarial
model:

« Initially, the source does a local broadcast of the message.

« Each neighbor of the source immediately commits to the the first valuié heard from the source, and then
locally broadcasts it once in@OMMITTEDQ(i,v) message.

« Hereatfter, the following protocol is followed by each nofég nbd(s):
If %r(r +1)+1= %+ 1 COMMITTED(,v) message are received for a certain valuérom neighbors all
lying within a singlegnbd, and not already committed to some value, commit,t@and locally broadcast a
COMMITTEDj,v) message.

THEOREM 6: (Safety (Correctnesshhe probability that a node shall commit to a wrong value bjofeing
the above protocol diminishes to 0 asymptotically.

Proof: If all Q(x,y) andQ'(x,y) have strictly less tharg faults, the correctness of the protocol proceeds as
follows:

By the assumptions atkliable local broadcastif s sends exactly one message, fault-free nodesbid(s) are
guaranteed to receive it correctly. ¢fis faulty and sends more than one version of the messagé;fifeelnodes
in nbd(s) receive both messages, and select the first one. Thus faalabdes imbd(s) are guaranteed to commit
to the correct value.

The rest of the proof is by contradiction. Consider the fieilf-free node, say, that makes a wrong decision
to commit to a valuev. From our previous assertior,cannot be imnbd(s), and thus followed protocol rules for
nodes that are nafs neighbors. This implies th% + 1 of its neighbors within somgnbd must have broadcast
a COMMITTED message forv (the COMMITTED messages were directly heard, leaving no place for doubt).
All of these nodes cannot be faulty, as no more tlganodes in anygnbd are faulty. Thus there was at least one
fault-free node that committed te Since j is the first fault-free node to make a wrong decision, nonehef t
fault-free nodes amongst tl’ge+1 nodes could have made a wrong decision. Thomist indeed be the correct value.

We know that allQnbd(x,y) have less tharg faults with probability 1 asymptotically, and hence thetpoml also
functions correctly with probability 1 asymptotically. [ ]

THEOREM 7: (Liveness (Completeneds3ich node is eventually able to commit to the (probabibidiyy correct
value.

Proof:
The proof proceeds by induction.

Base Case:

All honest nodes innbd(0,0) are able to commit to the correct value. This follows triliakince they
hear the origin directly, and we assume that address-sgpifirmpossible.
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Inductive Hypothesis:

If all honest neighbors of a node located @ b) i.e. all honest nodes imbd(a,b) are able to commit to
the correct value, then all honest nodespimbd(a, b) are able to commit to the correct value.

Proof of Inductive Hypothesis:

We show that each nodB in pnbda,b) — nbd(a,b) has one ofgnbd\(P), gnbds(P), gnbct(P), gnbd (P),
gnbdy (P), gnbdy (P), gnbd (P), gnbdy (P) fully contained innbd(a,b). Since no more tharg of the nodes in
a gnbd are faulty with probability 1 (asymptotically), this guatees that the node will become aware%)#l
nodes innbd(a,b) having committed to a (the correct) value, and will also cahtmit. The situation is depicted
in Fig. 5 forPe {(a—r+I,b+r+1)|1<I <r}, for which gnbdy(P) lies in nbd(a,b). For all other locations, a
similar argument holds. u

IX. NECESSARYCONDITION FOR RANDOM NETWORKS

THEOREM 8: When failure probabilityp < 3 — /1%, andr(n, p) < %\/max{lnn — 1.

) 1
n3z In 2—p+ln P

Pr[ reliable broadcast fails— 1

Proof: We separately consider the following two cases:

Inn> mu%: We know from the results of [17] that in a failure-free randoetwork,r(n) = 1/"‘?" is
2p 2(1-

necessary for connectivity (note that we are considerirgrtetwork as being of areato maintain consistency

with the grid network formulation; this leads to a scalingthé result of [17]). When, In > m%% the
2p " 2(1-p)

condition in our theorem statement reduces (tm p) < %\/Inn < ,/"‘?”. Thus, from the results of [17], the network
is disconnected with some positive probability, and theessary condition holds.

Inn< MH%: As mentioned in the previous case, it is known from the resoft[17], that even with
2p " 2(1-p)

p = 0, thecritical transmission range is greater th@. Consider a subdivision of the network into disjoint square
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Fig. 6. Necessary Condition for Random Networks: cgll

cells of areaa(n) = 81r?(n, p), Where‘/W <rinp <3 Ilnin
nT-&-In 2p)

Thus 84" < a(n) < ﬁlnn) for the rest of the discussion.
2(1-p)

LEMMA 9: Each cell contains at Ieagfzn—) and at mostsaT<n> nodes w.h.p.
Proof: Consider a particular celf. Denote byX; an indicator variable that is 1 if nodelies in § and is 0
n
otherwise. TherPr[X = 1] = @ and theX’s are all i.i.d. Let, X = 3 X;. ThenE[X] = a(n).
i=1

By applying the Chernoff bound from Lemma 2 (wifh= %), it follows that:

a(n) a(n) 8linn, 1
Prix < T] < exp(—T) < exp(— 3 )= 1y (33)

By applying the Chernoff bound from Lemma 5 (wifh= %), it follows that:

3a(n) a(n) 81Inn 1
> < — — -
Thus the cell populations is least=5* ( ) and at mosts— nodes with probability at Ieast—l— — % >1-— nTZS
n48
Applying union bound over alb < n cells, this holds for all cells with probability at Ieast—l\zf [ ]
EventE,: Denote by event,, the event tha% <ns< % for all cells. ThenPr[—%] < %

SupposeZ, holds. Fixingng for all cells 5 in the network, events occurring entirely within each cetiym
hereafter be treated as being independent.
Divide each such cell further into 9 square sub-cells of #@g = @ = 9r2(n) each. Note thag Inn<A(n) <

9Inn
4(In Z5+In fll_p)) '
Consider a particular celf, and focus on the center sub-cell of this cell (callZl}. Then conditioned on the
cell populations:



Pr[© has no non-faulty nod&Ns = ng, Fo] < (1— (1— p)L) s<(1-(1-p—=) 2

a(n) a(n)
<u-penFep<y @9
A(n) 9lnn 1

EventZ;: Denote by evenEl, the event that in a given cefl, the center sub-cefD has at least one non-faulty
node. TherPr(—%| %] < 5.

n1

ol

Assuming there is at least one non-faulty nodeZinselect one such node Consider its neighborhood, which
is guaranteed to fall entirely within the cell S (Fig. 6). Althe area of the neighborhood Ag(n) = 1r?(n) <

A0« s to be noted though tha¥y(n) = Tr2(n) > ™1 | et M be the number of nodes
An g5+Hn o) IngpHn 5 4

other thanj lying within this area (i.e., the number of neighborsjpf ThusE[M|Ns = ng, Zo] = (Nns— 1) ('21((;;)) <

A1(n)
ns ().
It is not hard to see thdtl—¢) A12(”> < (@ -1) Aal(;’;) = Alz(”) 7(8ﬂ E[M|Ns = ng, Zo| < 3A1( ) for any arbitrarily

smalle. Let us sete = (1— 32), to get thatE[M|Ns — N, Eo) > L2 > 3lon Then, settmg(1+ B)E[M|Ns =
Nns, £o] = 4A1(n), we getp > ﬁ% -1 2 —-1= 5 . Noting that a EB)HB is a non-increasing function @

for all B> 02, we then apply Lemma 4:

Pr[M > 4A1(n)|Ns = ns, Zo] < Pr[M > 3 +B)HHP

A (n) (3 6)

5 (1-¢) == 3Inn 3lnn
() )T
= (g)g - eg(3|n2—|n3) e% _n%

EventE,: Denote by eventE,, the event that in a given cell, a chosen non-faulty node (if one exists) in
center sub-cellD hasm < 4A;(n) neighbors. ThePr[~%,|Eo A Ey] < 5

I
n4

Assuming thatM = m < 4A;(n), let us now consider the probability that half or more of theeighbors of
are faulty.

If M =m=0, then automatically the nodgis isolated with probability 1. Thus, we only consider thesea
M=m>1.

Given that there arél = m neighbors, and each may fail independently with probabitit let I (1 <k <m)
denote the indicator variable corresponding to neighbof j (enumerated in some order), such that=1 if k is
faulty, and O otherwise. Thev = ¥ Ik denotes the number of failed neighborsjol takes values from @,...,m
and E[Y] = pd. PrlY; > 3] = gn] (Mp'(1—p)™m). Let us simply consider the evelj = [T]. Then we can

8E[MI|Ns = ns, fo]] < ( eP )E[Mlens’fo]
—\(

2
apply the lower bound from Lemma 6. The variablgg1 < k < M) are drawn fromx = {0,1} as per distribution
P = Bernoulli(p), and the distribution corresponding Yp= [ 7] is Bernoulli(%) = Bernoulli(q) whereq= %
ie., 2 <q< 3+ (we shall refer to this aQq). Let us denote th@ernoulli(3) distribution asQ;.

2let f = % Setg=Inf =B—(1+B)In(1+P). Then: —g - %E —In(1+B)=—In(1+B) <0 forall B > 0. Sincef = €Y, this
implies thatf is a non-increasing function ¢ for f >0



Since Im< — """ it follows that:

= Ini
In 2F,-&-In AP

Inn

Inn<—:>lni+ln <1l = p(1-p) i:> > —
“Ink+in, 2p ' 2(1-p) PE=P) =26 P>72
p (1 [3)
Whenm=1:
m 1 1
= | = = P = = > — >
PriY = [l =PrlYi =0 =p=z 2> ——
Whenm= 3, noting that $?(1— p) is an increasing function op for p < %:
3 1 1 9 1

PriY, = 1511 =PrlY, =2 = (31— p) = 3671 ) > 35 (1= 10) > g >

3
16

(37)

(38)

for largen (39)

Whenm is even, it is trivially true thatD(Qq||P) = D(Q%||P) < D(Q%|\P)+ 2 For all oddm > 5, it can be

shown thatD(Qq||P) < D(Q;/IP) + 2 as follows:

D(Qul|P) = (5 + ) I #2224 (5 — 5

1.1 1 1 1 1 1 1

1 1 1.1 1
:[Inp+ln ]+[2ml T ?nlnz(l p)]+{2(1+m)ln(1+m)+2(1—m)ln(l—m)

1, 1 1 1 1,.1-p |1 1 1. 1. (A+3)
=125t 2 ) e et |2 )
=D(QlHF’)Jr—ln;er—ln(l—i)jtiln(&1

2 p m’ 2m ‘m-1
<D(Q4IP) + In2(4e) +?n| (1+ é) from Eqn(37))
1+in4 1/ 2 2
2m +2m<m—3 m—1
In4+2 2

D(QyIP)+ o =(: —== <)
2

D(QyIP) + =

)

2

12"1 (from Fact 3)
m-1

)<

D(Qy/IP)+ ) (In(1+

We are applying Lemma 6 to Bernoulli variables. Henggd = 2, and m+1 e = (mil)Z >
ze72I'm (for all m> 1).

Note thatm < 4A¢(n) < ;- ijll:;l - < 4(%'2’;)2 < n% from Fact 5.

(40)

1
e



Thus, we obtain that fom=£ 1, 3:

m m
PrlY; > [51] > PrlY; = [5]]
> (m+11)|xem<D<Qq|P>>
L1 mDyIP+E)
~ (m+ 1)k
S 1 fm(D(Q%IlF’%2
= (m+ 1)k (41)
B 1 efm(D<Q%l|P>) S ie m(D(Qy[|P))~2Inm
~ (m41)2e2 — 42
Inn 1 1,1 1 1

S 4;6_(4“”71" +|n2(17{m)>(?|n7p+2|nm)_ﬁlnn
= iefl%lnnfl—lslnn > 1 .

4e? 4e2nts

From Egns. 38, 39, and 41, we obtain that, forral> 1:
1

PrlY Pr 42

Y = lzl] lYj = lzll A2 (42)

EventE;: Denote by eventEs, the event that in a given cell, a chosen non- faulty node (if one exists) in
center sub-celD has half or more faulty neighbors. Th&1[—E3|Ec A E1 A Ep) < 1— *f
Then, assuming that ever, indeed held, the probability that one of everis, Z2£3 d|d not occur can be

bounded as follows:

Pr[—(E1 A B2 A Es)| Eo) < Pr{—E1|Eo] + Pr{Ea| Eo)Pr[—Ez| Ex A o] + Pr[Er A Ep| Eo|Pr[—Es| o AN Er N E)]
< Pr[—Eq| o) + Pr[=E2| Eo A Ea] + Pr[—Es| Eo A E1 A Ep)

1 1 1
Sj‘l‘j‘l‘(l_ 3) “3)
nie na nie
1 1 1
=l (— - —3)<1- —for largen
4e2n6 nis  ni 8e2nts

Thus, conditioned orE,, with probability at Ieast#, there is such a node which has half or more faulty
8e2n16
neighbors. Denote bi;, an indicator variable which is 1 if this event happens fa tentre-subcelD of a given
cell 5j. Then Pflj = 1|%,] > —15. Recall again, that once we fixed all the cell populationsthe considered

. . 8e2n16
events in each cell are independent of each other.

2 2n(l In
The numberh of disjoint cells; is at Ieast(%) > ( 812nlnn = n(in 3 SIIn" ap) for largen. Substituting
4In7p+ln 21-p)

31
—p)® _ 8t 32 _ gn32 1 Inn
from Fact 6, we can thus see that > 81Inn > 802 — 8% (sincep < § - 5

Let If be an indicator variable that takes value 1 if the nodi center subcell of cells; is non-faulty but
commits to a wrong value. From Theorem 1, we know that if a feardty node has half or more faulty neighbors,
it will commit to the wrong value with probability at leagt Thus Pril{ = 1% > $Prllj =1 Eo] >

Let X be a random variable indicating the number of cellsn which we were able to select a ngezn faulty node
X, which happened to have half or more faulty neighbors, anul:lwbommns to the wrong value.

ThenX = If, andE[X|Zo] = 3 Pr(l = 1| o] > 1n3 (h) = 1nT36 8g31‘? > 1’2,)3;2 Also, since we are conditioning
on cell populations;, the indicator variablesj are all independent, once timg; are fixed.




Thus we can choose an appropriate constanfid< 1 (e.g., sef = %) and apply the Chernoff bound in Lemma

2 to obtain:
25

o Bl n32

[leo]

PriX < |Eo] < <e 16282)
Applying union bound, we obtain that:
25
E[X] E[X] 2 —_ns_
> —Uis 1o - —v >1_ " _ @ 1628&2)
Pr[X > > | >1— (Pr[—%) +Pr[X < > |Eo) > 1 Vi e

Thus, the probability that some non-faulty nodes commitrtangorrect value will tend to 1 as n tends to infinity.
Resultantly:
r!im Pr[ reliable broadcast fails— 1

|
Corollary 3: The critical average degree for reliable broadcast in a sanchetwork with Byzantine failure
probability p < 2, is expressible a@('r‘i") or Q("_).

p+%'n =) (3-p2
Proof: Note that whenp < ; 5= P+ 3ingiy = O(min{LIng; +Inygts}). Similarly, (3 -
p)?2 = O(min{1,In X 5 +n = p)}). In Theorem 8, we proved thatlyiica = Q(max{lnn,llﬁ‘fn“}) =
P
Inn ). The result thus follows. [ |

mln{lln7+ln P p)}

X. SUFFICIENT CONDITION FORRANDOM NETWORKS

We obtain a sufficient condition for a network nfrandomly deployed nodes, based on the sufficient condition
for the grid network model. To maintain consistency with #yéd network formulation, we assume a toroidal
region of area/n x 4/n, with n nodes located uniformly at random. The average degree ofla i®the average
number of the remainingg — 1 nodes that fall within its neighborhood (recall we are gsin, distance metric),
i.., davg(N, p) = w ~ 4r?(n, p) for largen.

THEOREM 9: When failure probabilityp < 1, andr (n, p) > % reliable broadcast is asymptotically
)

achievable in the random network model with high probapilit

Proof: At the outset, we make the observation that (ifi, p) = v/n, all nodes are neighbors, and trivially
broadcast is achievable. Thus this result is of interesg sollong asr(n, p) < 1/n.
In light of Fact 1:

l 1 l l
1
“(1-2 + 44
z31=2p 4550 (44)
1 +;.n;
> P3N0y
Also, sincep < 1:
1 1 1
0<§*p+§'”m<2( —In2) < (45)

Similar to grid networks, we use a notion of quarter-neighibods. For a given broadcast instance, we again
use relative coordinates by treating the source’s cootdas(0,0). With some abuse of the grid network notation
introduced in Section Il, we can extend the notiombti(x,y), to include all nodes within distanceof point (x,y)



(regardless of whether or not there is a nodéxay)), wherex andy are real numbers. The notion phd(x,y) is
also similarly extended to all poin{x,y).

Note that in this model, a node’s (or point’s) coordinates egal numbers. We thus associate eight quarter-
neighborhoods with each node, with spatial extents as iteTalexcept that nowk andy must be treated as real
numbers. Also, now it is not possible to assert that thereoahg 2n distinct quarter-neighborhoods. Thus, all eight
quarter-neighborhoods of a node must be treated as dfstiyietding & quarter-neighborhoods in alll.

The quarter-neigborhoods are axis-parallel rectanglesedr (n, p)(r(n,p) —1) > rz(%p) (for r(n,p) > 2). Then,

if 4r2(n, p) > 7’::20'“” then we can apply Lemma 8 for all axis-parallel rectangfesrear (n, p)(r(n,p) —1) >
50Inn 100Inn 50Inn 25Inn 50Inn
> agt—=r o —
Ayt = 1-n2 to obtain that they all have at le o T 50Inn > T > =5 hodes,

W|th probability at least - 010" _, 1,
Thus all such rectangles amon-empty Also:

25Inn > 25Inn 8Inn
T pt3inggty  DQlIP)  DQylIp)

(46)

Hence all the quarter-neighborhoods have at I%%PW nodes (which is the quarter-neighborhood population in

the grid network case). Then using a proof argument simdarhieorem 5, one can prove the following theorem:

THEOREM 10:1f p< %, andr(n,p) > /290" __ then
2 2-PtzIN o

r!i_r)rcl)oPr[ all 8n gnbdshave non-faulty majority— 1

Thus, one can use a broadcast protocol similar to that fat geitworks (a node commits to a value if it is
received from half or more nodes in some quarter-neighlmhcand, for all broadcast sources, and instances, the
correctness and completeness continue to hold, as follows:
Safety (CorrectnessRelying on Theorem 10, we can apply a proof argument sinbdafFheorem 6.
Liveness (Completenes3he proof uses the an inductive argument similar to the fpodd’heorem 7, except that
the termsnbd(x,y), pnd(x,y) and quarter-neighborhood must be interpreted as per thelefinition in this section.
In the base case, all neighbors of the source (which {9,&) commit to the correct value trivially. In the inductive
step, one can show that if all nodesribhd(x,y) (as per the re-defined notation) have comitted to the coualce,
all nodes inpnd(x,y) —nbd(x,y) have someinbd contained imbd(x,y), and can thus commit to the value received
from a majority of nodes in thignbd [ ]

Since the area within range of a node(&)? < 4r? (for the valid domain ofr values) in thelL,, metric, the

result indicates that an average node degkggof 1 piOOI:]”“ suffices for reliable broadcast. Hence tiréical
272 2(1-p)
average node degref:d | is O(m"‘ilg). 4
T2 20-p)
Corollary 4: The critical average degree for reliable broadcast in a samchetwork with Byzantine failure
il 1 Inn Inn Inn

probability p < 5 is O(max{Inn, In7+ln - }) or O(mm{llnrﬂn - p)}) or O(< e 5)-

Proof: Note that wherp < 3: 3 — p+3In z7t5 = ©(min{1,In 55 +1In 5 e a5 ) =©((3—p)?). In Theorem 9,
we proved thatlitical :O(In%ﬁ'?ﬁ). Thus, it follows thatditical = O(mln{lln ;Tm - )}) o( 2'““) ). The
result thus follows, u

SNote that distinct does not mean disjoint.
4A more intuitive way of viewing the result is thatitical degree isO(max{Inn, %}).
2
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Fig. 7. Relationship between, and L, neighborhoods

Xl. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived fag, metric continue to hold fok, metric, with only the constants in the
theta notation changing.

LEMMA 10: If reliable broadcast is achievable asymptotically Lig for all r > rmin, then it is achievable
asymptotically inL for all r > rminyv/2.

Proof: The proof is by contradiction. Suppose that, for a giverufailconfiguration, broadcast is asymptotically
achievable inL., for all r > rpmin but is not asymptotically achievable for al>> rminy/2 in Lp. Observe that it is
possible to circumscribe h., neighborhood of range by a L, neighborhood of rangeyv/2 (Fig. 7). Hence the
non-faulty nodes in ah, network of transmission range/2 can be made to simulate the operation of nodes in a
L., network with range (as thelL., neighborhood is fully contained within tHe neighborhood). Also, given that
this is a network of known topology, with no address spoofilignaed, the faulty nodes cannot gain any unfair
advantage, by not simulating the the network. This implies that if broadcast is achievable in thenetwork
of ranger , so must it be in thd., network of rangery/2. If there is some& > rmi, for which we can achieve
broadcast in thé., network asymptotically, but not in the the network of rangev/2, we obtain a contradiction,
as achievability in the.,, network would imply achievability in thé, network. [ ]

LEMMA 11: If reliable broadcast fails asymptotically In, for all r < rmin, then it fails asymptotically i, for
all r < rmin.

Proof: The proof is by contradiction. Suppose that broadcast &sijsnptotically inL for ranger, but does not
fail in L, for ranger. Observe that ah, neighborhood of transmission range&ircumscribes ath, neighborhood
of ranger (Fig. 7). Thus, for any given failure configuration, if brazdt succeeds in the the network of range
r, so can it in theL., network of radius, as we could simply make the fault-free nodes in lthenetwork simulate
the behavior of nodes in thie; network. Hence, if broadcast does not fail in the network of ranger < rpjp, it
will not fail in the L. network of ranger < rpin. This yields a contradiction. [ ]

XIl. NON-TOROIDAL NETWORKS

We used the assumption that the network is toroidal to avdgkesffects. However, one can see that the results
would continue to hold even if the network were spread overom-toroidal rectilinear domain. The necessary
condition would continue to hold, since the degree of nodakeedges can be no more more than the degree of
nodes towards the center, and if reliable broadcast is isipleseven with the assumption of equal degree for all
nodes, it must certainly be impossible when some nodesgthbthe edges) have a smaller degree.



The sufficient condition continues to hold since the desctilprotocol relies on information from quarter-
neighborhoods, and it can be seen that even the nodes atdhe bdve at least one quarter-neighborhood within
the network region.

Crash-Stop Failures/Connectivity

XIll. RELATED WORK

Conditions for connectivity and coverage have been fortedlan the context of different network models. In
[17], it was proved that in a unit area network with uniforndjstributed node placement, where nodes have a
common transmission radius such thatr? = ('C’L:C(”)), the network is asymptotically connected with probability
one iff ¢(n) — . In [18], an alternate model was considered whereby rangataployed nodes may modulate
their transmission power (and hence range) to ensure tegththve a certain number of neighbors. It was proved
that each node must be connected®ttogn) neighbors for asymptotic connectivity with probabilityerRecently,
necessary and sufficient conditions for asymptotic corwvigcin a network with low duty cycle sensors have been
formulated in [19].

A grid network model was considered in [1] where nodes aratkedt at grid locations on a square grid, but may
fail independently. Nodes have a common transmission randée probability of not failing is specified gg,
and it is shown that a sufficient condition for connectivitydacoverage is that transmission ramgmust be set to
ensure that node degreedﬁ('c’%) (for some constant;). It is also shown that a necessary condition for coverage
(and hence for joint coverage and connetivity) is that noegrele be at Ieasig('o%) (for another constant,. A
fallacy in the above necessary condition was pointed out20y, [and a subsequent correction [21] by the authors
of [1] presents examples illustrating that the necessandition may fail to hold for certain subranges pf The
issue of coverage has been examined in detail in [20] foroandyrid, and poisson deployments. However, the
necessary and sufficient conditions formulated by them takeore complex form, and do not point to a single
f(n,p) such that a degree d@®(f(n,p)) is both necessary and sufficient for asymptotic coveragsidgs, the
necessary condition is formulated for the specific case V\rl1ilawrp—> 0.

Our results for crash-stop failures are closely relatecheoresults of [1]. However, we prove that, givefiadlure

probability p, it is necessary and sufficient to have a degre® @min+ l';’%) for both connectivity and coverage.
P
Expressed in the notation of [1], we stipulate a degre®@min+ m';i’f). Our results diverge considerably from
I-p

those of [1] when the failure probability becomes extrenmshall, and thus our necessary conditions would hold in
a certain subdomain where that of [1] would not. Howeverdghe a small sub-domain gf (when p tends towards

1) in which our necessary conditions also cease to hold, #stive conditions of [1]. Besides, we work in the
distance metric, and then map the resultd_to This yields much simpler proofs. We also remark that ountjoi
sufficient condition for connectivity and coverage is atjuaufficient for 9-coverage and not merely 1-coverage
(wherek-coverage implies that each point is covered by at l&asbn-faulty nodes). It is noteworthy that similar
results may be derived from analysis presented in [22] déggrthe feasible rate in a sensor network, although no
statement has been made in [22] in this regard.

XIV. NOTATION AND TERMINOLOGY

We briefly describe here notation and terminology that shalused in this paper. Nodes can identified by their
grid location i.e.(x,y) denotes the node &k y). The neighborhood ofx,y) comprises all nodes within distance
r of (x,y) and is denoted asbd(x,y). The degree of each node is referred todadn L. metric, d = 4r2 + 4r,
while the size of a neighborhood (including the neighbotheenter) isd 41 = 4r? 4 4r + 1. The diameter of the
network (in terms of distance, and not number of hops) isrrefeto asD. If n is a perfect square) = \/n.



XV. NECESSARYCONDITION FOR CONNECTIVITY
THEOREM 11:When p < 1 —

e if r(np) < max{1,3 I':—%} (vielding node degreed(n,p) <
max{dmin, ZIIHTn%}):
r!im Pr[ disconnectioh= 1

Proof: It is obvious that the minimum transmission range requi@dcbnnectivity is 1, yieldingd = dmin =8
(in L, metric), else the degree of all nodes is 0 (except in the chsaall nodes are faulty, and connectivity becomes
irrelevant). Thus, we only focus on the case Whér l'”—” > 1. In this scenaria (n, p) < max{l,;l1 /':—f} =

1 1
"o ng
1 /1
rnp) <z, /i1
P

We show that the network is asymptotically disconnecteth wibbability 1 ifr < }1 /I':—Q, aslongap<1l—&.
P

Inn

Itis evident that in thé.., metric, havingr (n, p) < % l':—g yields a node degreg(n, p) = 4r2 4 4r < 8r? < 2I|nTnl
P P
Consider a particular nodgin the network. Then, iff is non-faulty, but all its neighbors are faulty, we have a

potential disconnection event. Given that there éneeighbors, and each may fail independently with probabilit
p, the probability thatj does not fail, but all nodes inbd(j) fail, is (1— p)p°.

Sincep < 1— 1., we obtain that:

D> —

1=p= Inn (47)

Pr[ A given nodej is non-faulty, but isolatdd> Pr[j is non-faulty and all neighbors df are faulty]

Inn

—(1_ppis g 11

(I=p)p “nP 7 Inny/n  /ninn (48)
3
> (Innn) for largen
Note the following:
Inn Inn (Inn)?

d< < ( from Fact 1 and Eqgn. (47) (49)

2In% ~2(1-p) ~ 2

Let us mark out a subset of nod¢ssuch that the neighborhoods of these nodes are all disjgénin Fig. 8.
Then, from Fact 7, the number of such nodes that we may otsaa leasty for large n.

Let I; be an indicator variable that takes value Jj iis non-faulty but isolated. TheRr[l; = 1] >
lj’s are i.i.d.

Let X be a random variable denoting the number of nodes from theerheet that are non-faulty and isolated.
ThenX =5 1j, andE[X] > ('”:)3(%) > g:mz = Inn. We can thus seB =  in the Chernoff bound of Lemma 2,
and obtain that:

('”:)3 , and all

I nn 1
Prix> W >1 e o1 o (50)
2 !

Thus, forp < 1— L
Aim Pr[ At least two non-faulty nodes are isolated1.
Hence a broadcast from one such node will not be receivedepttier node. This result can actually be extended

and shown to hold for a slightly larger range pfvalues. ]



Fig. 8. Nodes having disjoint neighborhoods

We also briefly touch upon the range fovalues satisfying + p= o(%). When the failure probabilityp is so
high, we obtain the following:

lim Pr[ Any node is non-faulty= lim1—p" = lim1—(1-(1-p))"=1- e m(1-p) — " — 0 from Fact 2
(51)

Thus the issue of connectivity is irrelevant.

XVI. NECESSARYCONDITION FOR COVERAGE

Since the connectivity condition proof is easily adaptablalso provide a necessary condition for coverage, we
do so in this section. Recall that the network is consideraied if each point in the network region falls within
range of at least one non-faulty node.

THEOREM 12:Whenp < 1— (L, if r(n,p) < max{3, /1% }, wherec < § is a suitably chosen constant:
P

rI]irrloPr[Some point is not coveréd- 1
When 1-p= o(%), all nodes are faulty w.h.p., and the network is triviallyt movered.

Proof: Since the grid comprises unit squares, it is obvious thaust be at Ieas%, else some points between
the lattice will not be covered. We handle two subrangep skparately.

a) p<l- ﬁ: The proof relies on subdivision of the network into disjongighborhoods, as in Fig. 8. From

Fact 7, the number of such neighborhoods obtained is at Bafir large n.

If there exists at least one neighborhood with absolutelynodes alive (neither the neighborhood center nor its
neighbors), then the center of that neighborhood is notrealerhus we seek to determine the probability of such
an event.

We begin by choosing a positive constansuch that%clnn <Inn-3Ininn, for sufficiently largen. In general
any constant & ¢ < g — & will satisfy this property for largen.



Supposer <, /S0 Thend = 4r? 4 4r < 8% = &0 < ¢(Inn)? < (Inn)? (from Fact 1).
p p

The neighborhood population is given ty- 1= 4r? +4r + 1< 4r? + 4r? 4 r> = 9r?, forn> 1. Thusd +1< zﬁ:]”f
Let Ij be an indicator variable that takes value 1 if there is noeafiede in the neighborhood centered at node

j, and value 0 otherwise.

9.inn
ThenPr[Xj = 1] = pd*1 > p’ "p > “”r:‘)g (from our choice ofc).

Let X =S| be a random variable indicating the number of these disjo@ighborhoods with no alive node.
3 3 3
From Fact 7, there are at Ieaﬁf such neighborhoods for large ThenE[X] > ('”:) (%) > ('”23) > (nn)° '”7”

= 2(Inn)2
Application of the Chernoff bound from Lemma 2 wifh= % yields:

prix < ™ < prix < EX)) < e EX]) g (52)
4 2 8

Thus there is are some uncovered points with probabilitysln a co.

Similar to the necessary condition for connectivity, olbsahat the proof can be extended to hold for a somewhat

larger range ofp values, with suitable adjustment to the constant.

b) 1—p=o0(%): Thusn(1-p)— 0. We obtain thaPr[ no nodes alivg = p" = (1—(1—p))". As n— o,
the following holds:

rLim Pr[some point not coveréd Pr[no node alivé (53)
=lim (1—(1—p))"=e mn@-P) —ed =1 from Fact 2 (54)

n—oo

[ ]
Thus the network is trivially not covered, regardless ohsimission range.

XVIIl. SUFFICIENT CONDITION FOR CONNECTIVITY AND COVERAGE

We now present a sufficient condition for the asymptotic texise of both connectivity and coverage. It is thus
also a sufficient condition for each of them individually.

THEOREM 13:Whenr(n, p) > max{1, %”%"}:

lim Pr[ the network is connected and covered- 1

n—oo

Proof:

a) p= o(%): When the failure probability is so small as to fall in this renghe probability of even a single
node failing approaches 0 asymptotically, and thus coiwigciand coverage is trivially ensured even with the
minimum transmission range of 1. This may be seen thus:

lim Pr[No failures;full connectivity/coverage> lim (1 p)" = e 'mnP— &0 — 1 from Fact 2 (55)

n—oo

b) p= Q(%): Consider the subdivision of the grid as depicted in Fig. 9tlst the resulting cells have
x-extents (and also y-extents) O&ga+1toa+b, a+b+1to2a+b+1, 2a+b+2 to2a+2b+1, and so on,
wherea= | 5] andb=r—a=r—|5|. Then, each node is within range of all other nodes in thes @aljoining its
own. Thus it is obvious that if each square has at least ondandty node, there exists a connected backbone that
covers all points, and hence all nodes. Thus all non-faudyes are connected to each other via this backbone. The
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Fig. 9. Subdivision of network into cells
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Fig. 10. Relationship betwedn, andL; neighborhoods

dimensions of the cells thus obtained can(ae- 1), (a+1)b or b% Sincea+1=[5]|+1> 5, andb=r—|5] > &,
the populatiork of any cell satisfiek > %, and the maximum possible number of cetis< %. Then:

2
Pr[ no non-faulty node in a given cdll= pX < p= (56)

Let us choose > %. Then:

Rl

2 2 1
Pr[no non-faulty node in a given cel p7 < p"p =e 2= — (57)

|
o
|

The total number of cells is at mo$§ <n. Thus, by applying a union bound over all cells:

. 1
Pr[at least 1 non-faulty node in each ¢efl1— o (58)
Since this condition ensures connectivity and coverageobtain that:

r!irr(!o Pr[network is connected and covefed 1 (59)

XVIIl. CONDITIONS IN EUCLIDEAN METRIC

We show that our results derived fag, metric continue to hold fokL, metric, with only the constants in the
theta notation changing.

LEMMA 12: If the network is asymptotically connected (covered)Lin for all r > rpin, then the network is
connected (covered) asymptotically lin for all r > rminy/2.



Proof: The proof is by contradiction. Suppose that, for a givenufail configuration, the network is
asymptotically connected ih., for all r > rmin but is not asymptotically connected for all> rminv/2 in L.
Observe that it is possible to circumscribé.a neighborhood of range by a L, neighborhood of rangeyv2 (Fig.

10). Hence the nodes in dn network of transmission range/2 can be made to simulate the operation of nodes
in a L, network with range (as thelL, neigborhood is fully contained within thHe, neighborhood). This implies
that if theL., network of range is connected (covered), so must be thenetwork of range'v/2. If there is some

r > rmin for which the L, network of ranger is connected (covered) asymptotically, but thenetwork of range
rv/2 is not, we obtain a contradiction, as connectedness (agepmf thel., network would imply connectedness
(coverage) of thd, network. [ ]

LEMMA 13: If the network is asymptotically disconnected (not coveriad.., for all r < rpin, then the network
is disconnected (not covered) asymptoticallyLinfor all r < rpin.

Proof: The proof is by contradiction. Consider a failure configimmatsuch that the network is asymptotically
disconnected (not covered) in, for ranger, but is not disconnected (not covered)Lip for ranger. Observe that
an L. neighborhood of transmission rangeircumscribes amh., neighborhood of range (Fig. 10). Thus, for any
given random failure configuration, if thie, network of ranger were connected (covered), so would be the
network of radiusr, as we could simply make the nodes in the network simulate the behavior of nodes in the
L, network, and obtain connectedness (coverage). Henceg Ifstmetwork of range < rmin is not asymptotically
disconnected (not covered), the network of ranger < rmin must also not be disconnected (not covered). This
yields a contradiction. |

XIX. NON-TOROIDAL NETWORKS

We have made the assumption that the network is toroidals$o avoid edge effects. However, we can see that
the degree of any node at the outermost edge is no moredhand at Ieast‘}1 (whered is the uniform degree
that each node would have in the toroidal case). Thus, thessacy condition would continue to hold as is (since
some nodes having a lesser degree can only increase thebpitybaf disconnection). The construction used to
prove the sufficient condition also continues to hold asiisces all full-cells in the tiling will have at least one
active node each, and even if there are regions at the frilefesver, they will still fall within range of some
active node in the nearest full tile (due to the chosen dimassof the cells). Thus, the results are not affected. A
similar argument leads to the conclusion that the coveragalts are not affected.

XX. DISCUSSION

An interesting observation is that the form of the resultsBgzantine failures is very similar to the results for
crash-stop failures/connectivity. For Byzantine failreve have obtained that the critical node degree for grid net

works is O(dmin+ ,1'”7”1), which may be re-stated &(dmin+ %) whereQ; denotes thBernouIIi(%)
N 35+ 215 1 H

distribution, P denotes theBernoulli(p) distribution, andD(Q||P) denotes therelative entropy (or Kullback-
Leibler distance) between distributior® and P. Similarly, the node degree for crash-stop failures/catiniy

is O(dmin+ I':—Q), and may be viewed as & dmin+ W??HP))’ whereQ is the Bernoulli(q) distribution, andP is
p q—1

the Bernoulli(p) distribution.

Recall that we derive the necessary condition from isoléédre events, and this is found to match the sufficient
condition within a constant factor. Thus, possibly faillreents involving isolated nodes not receiving correct
broadcast may be the dominant failure evehts

5Note that in [17], it was found that the primary disconnecti®rents in non-faultyrandom networks are those involving single isolated
nodes.



Focusing on these isolated failure events, the obtainedesgjns for node degree can be explained in the
light of Sanov’'s Theorem [10]. As per Sanov’'s Theorem, thebpbility of occurrence of the event-sét =
{ half or more neighbors faullyis dominated by the probability of the event i closest in relative entropy
to the governing fault distributior®. Since we are considering the reginpe< % the closest event is that of
exactly half the neighbors faulty, correspondingQ%). In light of this, the critical degree expression for Byzast
failures is quite intuitive. One can similarly explain theash-stop results.

The necessary and sufficient condition for connectivity iseasor network where nodes sleep with probability
p was shown in [19] to b@(%) (when expressed in our notation) for the case of a randompjogled
network. This problem is equivalent to that of crash-stdjufas in random networks. Our sufficient condition for

random networks with Byzantine failure probabilify< % is O(%)' There is a similarity of form in
27 P25y

Inn(1-p)
D(QI[P)

the two results, and one may interpret the critical node ele@s bein@d(max{lnn(1— p),
for the sleeping/crash-stop case in [19], ane % for the Byzantine failure case.

Also note that both our grid network and random network riss(for Byzantine failure) have similar structural
form, involving a minimum term required for connectivity thout disruptive (Byzantine) behavior, and a second
term required to ensure broadcast even in presence ofdailur

Additionally, it is evident that the expressions for thedgnietwork and random network diverge whpn- 0, but
are otherwise within a constant factor of each other (fditounded away from 0). This difference is quite intuitive.
In a grid network, as failure probabilitp — 0, the network tends towards a deterministic topology, wasrin a
random network, if failure or sleep probability— 0, the network can only tend towards a denser but still random
network. Thus, at small values @f a very small degree will suffice for a grid network, but mayt far a random
network. At largerp values, the grid network exhibits increasing randomnesk l@yins to resemble a network
with random deployment. Thus, one may see that the two esipres are within a small range of each other when
p is large (given sufficiently large), but diverge agp — 0.

}) whereq=1

XXI. CONCLUSIONS

We considered the problem of reliable broadcast in wirelestsvorks with permanent probabilistic Byzantine
failures, and obtained tight bounds for asymptotic actiditg of broadcast in grid and random deployments. We
also have results for crash-stop failure that are more ateuthan earlier known results for this latter case.
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