Optimal Run-Time Tracing of Message—Passing

Programs

Anish Karmarkar and Nitin Vaidya
Department of Computer Science, Texas A& M University,
College Station, Tx —77843.

Sept., 19951

Abstract

The widespread adoption of distributed computing has accentuated the need for an effective
set of support tool sto facilitate debugging and monitoring of distributed programs. Unfortu-
nately for distributed programs, thisisnot atrivial task. Distributed programsareinherently
non—deterministic in nature. Two runs of the same programs with the same input data do
not result in the same execution sequence. Cyclic debuggingisoneof the most common strat-
egies used in debugging. To allow cyclic debugging, messages are traced for repeatable
execution. Inthispaper we present a simple proof that it isimpossibleto have an algorithm,
whichwill produce an optimal messagetrace (Ieast number on messagestracde), ingeneral.
W\e then present two algorithms, Algorithm A and Algorithm B. Both the algorithms trace
messages at run-time, i.e., when a messageisreceived at a process. Algorithm A does opti-
mal tracing of messages, giventhefact that messagesaretraced at run—time, and noinforma-
tion about the future is available when these decisions are made. Algorithm B improveson
the storage requirement and execution time of Algorithm A, and isbased on the observation
that only (n—1) buffersarerequired per processfor optimal run—time decision making, where
nisthe number of processesin the system. Thisalgorithmisanimprovement over the algo-
rithm presented in [10], which does optimal tracing only when the races amongst messages

are transitive.

1. Originaly prepared as aterm paper for Distributed Algorithms (CS689) in Spring 1995.

1. Introduction

The widespread adoption of distributed computing has accentuated the need for an effective
set of support toolstofacilitate debugging and monitoring of distributed programs. Unfortu-
nately for distributed programs, thisisnot atrivial task. Distributed programsareinherently

non—deterministic in nature.

Debugging asingle sequential program itself isnot atrivial task. The added complexity of
debugging concurrent programs makesit even harder. Thereare several problemsin debug-
ging concurrent programs. The biggest problem being non—determinacy. This non—deter-
minacy givesriseto non—repeatability. Thesame programswhen executed onthe sameinput
may givedifferent resultson different runs. Another important factor that makesanalysis of
distributed programsdifficultisthelack of asynchronized global clock [1]. Without aglobal
clock it may bedifficult to determinethe precise order of eventsoccurring in distinct concur-

rently executing processors.

Theapproach usually usedindebugging sequential programsisto executetheprogramtill an
error occurs. Then, the same program is re—executed with breakpoints or debug statements
placed at strategic pointsin the program. The program is stopped during execution, its state
examined and then continued or re—executed. Thismethod iscalled cyclic debugging. Dis-

tributed programs do not, unfortunately, lend themselves easily to this style of debugging.

Consider asystem of three processes 1, 2 and 3 asshown infigure1l. Herethe messagesml
and m2 racewith each other. Depending on the scheduling and message latencies, m1 can be
received by process 2 before m2 as shown in figure 1, or m2 can be received before m1 by
process2 asshowninfigure2. Thisleadsto non—determinacy. Infact, itispossiblethat if the
undesirable behavior occurs with alow probability, the programmer may not be able to re-

produce the error situation.

1 Send
ml
2 a "
Recv Recv
m2
3
Send .
time —>»
Figure 1. Non-Determinism in Distributed System
1 Send
ml
2 a b
Recv Recv
m2
3
Send

time —»

Figure 2. Non-Determinism in Distributed System

To facilitate cyclic debugging, the event histories in distributed programs are recorded.

Events usually are the Send and Receive events. The event histories can then be used for

re—executing the programs, with the same execution sequence asin the original execution.
The event histories eliminate al the non—determinism. Re—executing the distributed pro-
grams under the control of event historiesiscalled ‘replay’. The event histories alow the
debugger to re—executethe programssuch that the order of eventsissameasthat intheorigi-
nal execution. The re—execution can be done in debug mode and more information can be
gathered. Additional debug statements can be added and the re—execution will still givethe
same results. For example, in figure 1, m1 isreceived by process 2 beforem2. Thisisre-
corded intheevent history. So, no matter what the scheduling delay, network traffic or mes-
sage delays, m1 will be delivered before m2 during the replay. 1f message m2 physically

arrives at processes 2 before ml, then it is held in abuffer and actually delivered after m1.

This added synchronization can dramatically slow down the programs. In fact some long
running programsthat send alot of messages may make cyclic debugging impossible.. For
replaying distributed message passing programs, thecommon strategy istotraceall themes-
sages between processes; so that the execution can be made repeatable. Thecritical costin
tracing and replaying programsisthe cost of tracing messages. In atypical trace and replay
scheme, the order in which messages are delivered isfirst traced during execution. These
tracesarethen used during replay to force each messageto bedelivered to the same operation

as during the traced execution[11].

The algorithms presented in this paper reduce the cost of message tracing, by reducing the
messages traced. The basic ideawas first proposed by Netzer and Miller [10]. However,
their algorithm produces optimal message trace only when the message races are transitive.
We improve on this by making the best tracing decisions, given the fact that messages are
traced when they arereceived. Inthat sense, our message tracing algorithmisoptimal. We
also improve on the storage requirement for each process, in spite of the fact that, the mes-
sage tracing decision is made by looking at the complete past history of aprocess. We also

show asimple proof that, no algorithm can exist which will give an optimal tracein general,

If messages are traced by looking only at the past history. To our knowledge these results

have not been presented before.

2. System Model

The system consists of multiple processes that communicate only through messages. Each
process in the system has a unique id which is known to all other processes in the system.
The only synchronization events are Send and Recv. A Send operation can send messages
to other process(es), e.g, aunicast or abroadcast. A Recv operation canreceiveasinglemes-
sage from another process. The Send event specifies the process id to which the message
isto be sent inthe case of aunicast, or thelist of processidsin case of amulticast. Thedelay
in delivering messages is not known. For each processi that can send messages to process
j, thereisaone-way FIFO channel ¢, from processi to processj. A Recv event, canreceive
messages only from the channels that are specified in the event. e.g.; Recv(all) can receive
messages over any channel incident on and directed towards the process executing the Recv
event, Recv(j,k) can receive messages only from processesj and k. All the channelsin the
system are first—in—first—out (FIFO). If two messages m1 and m2 are sent by processi to
process j, and m1 was sent before m2 then m1 will be received before m2 at processj, al-

though the delay between them is non—deterministic.

The eventsin the distributed system follow Lamport’s[1] ‘ happened—before’ relationships.
Thisrelationship denoted by ‘ —, isanirreflexivetransitiveclosure. Thedefinition of arace
between two messagesisthe sameasin [10]. Informally, two messagesraceif either could
have been accepted first by somereceive event, dueto variationsin messagelatenciesor pro-
cess scheduling. More formally, amessage from send event ato receive event b raceswith
message from send event c to receive event d, if and only if there is afrontier that can be

drawn, that leads to a frontier race. For details on frontier and frontier races refer [10].

3. Motivation and Related Work

Thereisplenty of work donein the area of distributed debugging and replaying distributed
programs. For replaying distributed message passing programs, the common strategy isto
trace all the messages between processes so that the execution can be made repeatable. Le-
Blanc and Mellor—Crummey [7] suggest amethod for distributed debugging called ‘ Instant
Replay’, which differsfrom the strategy of trace and replay. Inthismethod, during program
execution, the relative order of significant events is saved as they occur, and not the data
associated with such events. Asaresult, thisrequireslesstime and space. The assumption
made hereisthat all the processes are piece-wise deterministic. When the relative order of
different IPC events or access of shared objects is saved, then the same data is generated,
during replay. Itisthen guaranteed to reproduce the program behavior during the debugging
cycle by using the sameinput from the external environment and by imposing thesamerela
tive order on eventsduring replay that occurred during the original program execution. This
technique does not depend on any form of interprocess communication. No centralized bott-
lenecksareintroduced, nor doesit requireasynchronized global clock. But, asingle process

cannot bereplayedinisolation, all the processeshaveto berun, astheactual dataisnot saved.

Netzer and Miller [10] present atechniquefor tracing and replaying message passing distrib-
uted programs, that hasagood performance, but isoptimal (least number of messagestraced)
only when the message races are transitive. Their algorithm reduces the messages traced
based on the facts that, only messages that race have to be saved and if two messages race,
tracing only one of them is sufficient. Run—time tracing decisions are madeto trace only a
fraction of thetotal number of messages. Thisdecreasestheexecutiontimeoverhead, aswell

as the space requirements.

Thecritical cost intracing and replaying programsisthe cost of tracing messages. Inatypi-
cal trace and replay scheme, the order in which messages are delivered (but not their con-

tents) isfirst traced during execution[11]. Thesetraces are then used during replay to force

each message to be delivered to the same event as during the traced execution. In the tech-
nigue presentedin[10], acheck ismadefor each messageto determineif it raceswith another
message, and only one of the racing messagesistraced. When amessageisreceived arace
check isperformed by analyzing the execution order between the previousreceive operation
in the same process and the message sender. The ordering information necessary for this

check ismaintained during execution by appending vector time-stamps onto user messages.

Given that tracing decisionis made when the message arrives, the algorithm in [10] does not
resultin optimal trace, for the general case. Thealgorithm resultsin optimal tracing of mes-
sagesonly if al theracesaretransitive. Wecall thisalgorithmasN& M agorithm. Itisrepro-

duced herein figure 3.

1. Send = event that sent Msg.

2. PrevRecv = previous event (in the sane process) willing to receive
fromthe channel over which Msg was sent.

3. if (PrevRecv [not —] Send)

trace the nmessage delivered from Send to Recv.

Figure 3. N&M Algorithm

Consider the examplein figure 1. Messages m1 and m2 race with each other. Now if itis
recorded that message m1 was delivered to process 2 during the first Recv and message m2
wasdelivered during the second Recv; thisinformationissufficient to replay theprocesses 1,
2 and 3. However, it is not necessary to record both the messages. If mlisrecorded asthe
messagethat wasdelivered during thefirst Recv, then m2 hasnowhereto go but to the second
Recv. Itiseasly seenthat it isoptimal (minima number of messages traced) to trace only
onemessageinthisexample. Itisprovedin[10], that only racing messagesneed to betraced,
and we need trace only one message in each race. Non—acing messages cannot introduce

non—determinacy and thus their deliveries need not be enforced during replay.

Though this[10] technique provides optimal messagetracingin most cases, it isnot optimal
inall cases. Consider the exampleinfigure4. The N&M a gorithm will trace messages m2
and m3. Whereas, the optimal tracing iswhen only m2 istraced, asm1 and m3 do not race
with each other. Thisnon-optimality manifestsitself becausein step 3 of N& M algorithm, a
blind check is performed irrespective of whether the message received at PrevRecv was

traced or not.

Send

Recv(3,4)

Recv(4)

Send

Figure 4. Non—Optimality of N&M Algorithm

In [10] it is shown that the minimum vertex cover problem can be reduced to the problem
of finding the optimal message trace. Here each vertex represents a message, and an edge
represents arace between two messages. e.g., an edge between vertices A and B meansthe
message represented by A races with the message represented by B. The minimum vertex
cover problemisknow to be NP—compl ete, and therefore soisthe problem of finding an opti-

mal message trace.

4. Impossibility of Obtaining Optimal Trace with Run—Time Trac-

ing Decisions

It isimpossibleto come up with an algorithmthat will givean optimal trace of any execution,
under the constraint that tracing decisionsare made at theinstant messagesarereceived, i.e.,
when amessage istraced, no knowledge about the futureisavailable. Also, thismeansthat
if amessage is not traced when it is delivered, it will never betraced. A decision is made
at run—timewhether amessageistraced or not. Onceadecisionismadeit cannot be changed

in the future.

A simple proof (by contradiction) to support thisimpossibility claim is given next. Let us
assume that such an algorithm exists and gives an optimal trace, let us cal it Opt_Alg. It
issufficient to givean examplethat contradictsthisassumption. Consider theexamplegiven
in figure 5. Figure 5.A. shows the execution of process 2. At event b, message mlisre-
ceived. Now Opt_Alg will make atracing decision at event b without the knowledge of the

future. The decision has abinary value, either to trace or not to trace.

Case 1. Opt_Alg traces message m1. Now let the future after event b unfold as shown in
figure 5.A. Asshown in figure 5A, the minimum vertex cover isjust vertex m2. Opt_Alg
has traced m1 already, so to remove the non—determinacy, it will have to either trace m2 or

m3. Either choice results in a non—optimal trace leading to a contradiction.

Case2: Opt_Algdoesnot traceml. Now let thefutureafter event b unfold asshowninfigure
5.B. Asshowninfigure5.B., the minimum vertex cover isjust vertex m1. Opt_Alg hasnot
traced m1, so to remove the non—determinacy, it will have to trace m2 and m3 resulting in

anon—optimal trace, leading to a contradiction.

Thus, we conclude that Opt_Alg cannot exist.

1 2 3 1 2 3
Recv(1,3,6)
a Y aRecv(l,le) b
ml m2 c ml 5 C
d <@ -<— 1< ¢
Recv(any) d Recv(3)
5 6
m3
.e >.f &.f
Recv(4,5) Recv(6)
A. mltraced B. m1 not traced
m2
ml m1l m2
m3 m3

Figure5. Impossibility of Obtaining Optimal Trace, with Run—Time Decision.

5. Algorithms for Run-Time Tracing

Thebasicideasbehind our algorithm are: 1) A message hasto betraced only if itisinvolved
In arace with another message. 2) If amessage istraced, then it should not be considered

for future races.

The algorithm is based on the fact that, if two messages race with each other then only one

of them needsto betraced, for replay of programs[10]. If amessage does not race with any

10

other message then it need not be traced. If two messages m1 and m2 (refer figure 1) race
with each other then for repeatable execution of the programi it is sufficient to trace just one
of them[10]. If mlistraced, thenduringreplay, if m2 arrivesbeforeml (because of schedul-
Ing and message delays) the receive event a will not accept m2. 1t will wait till m1 arrives,

accept m1 and then m2 will be accepted at event b.

If m2istraced, then during replay, if m2 arrives before m1 (because of scheduling and mes-
sagedelays) m2 again will not be accepted at event a. Thereceiveevent will wait till another

untraced message (m1) arrives.

Theabove can beimplemented asfollows: when amessageistracedits Send Sequence Num-
ber (SSN) and Receive Sequence Number (RSN) are recorded. During replay, if amessage
was traced then the corresponding send event is modified, so that the message sent during
replay istagged with its SSN and RSN. At thereceiver end, the receive event is also modi-
fied, so that it receives a message with the same RSN asin the original execution. Now, if
the tagged message arrives early, other receive events will not receive the message because
the RSN will not match. If the message arrives|ate, its corresponding receive event will be

waiting for this message, and will reject all other messages with incorrect SSN.

Wewill first present anaivealgorithmcalled Algorithm A, that incorporatesthe aboveidess,
and thenimproveonitin Algorithm B. Algorithm A has excessive storage storage require-

ment and along execution time, which are eliminated in Algorithm B.
5.1 Algorithm A

To describe thisagorithm, we need to first define some data structure. The system consists
of n processes communicating with each other through messages. Each processi, can there-
fore, receive messages from (n—1) processes over (n—1) channels. Each processi maintains
(n=1) linked listsLLj, (1<j<n,j #i) for each channel j, from processj to processi. When
amessage mlisreceived by processi at receive event el, thereceive event isadded to some

of the linked lists depending on the event el that received that message. For al j, (1<j <

11

n,j #1i), if thereceive event el could have received a message over channel j, then event el
isinserted at the head of linked list LLj. For example, if thereceive event el was Recv(dl),
insert el in al the linked lists, whereas if the receive event was Recv(j,k,l), then insert el

inLLj, LLg, LL;. Algorithm A isgivenintheform of aC-ike pseudo—codeinfigure 6 and

explained below.

Al gorithm A (NewSend, NewRecv) {
/* NewMsg is the nessage sent by event NewSend
* to event NewRecv
*/

trace = FALSE
for j =1to n-1
i f (NewMsg coul d have been received over channel j)
trace_decision(j, NewRecv, NewSend)
insert NewRecv in LL;j
end for

if trace = TRUE
{trace NewMsg}

trace_decision(j, NewRecv, NewSend) {
PrevRecv = head of LL;
do until tail of LLj is reached
if (PrevRecv — NewSend)
br eak;
else if PrevRecv not traced
trace = TRUE
br eak;
el se
PrevRecv = next elenent of LL;

Figure 6. Algorithm A.

The algorithm is invoked by any process i, whenever a message NewM sg sent by event
NewSend at processk (k # i) isreceived by event NewRecv at processi. Thevariabletrace
isused to store the tracing decision which hasabinary value. For each channel j over which
NewM sg could have been received at event NewRecv, the function trace_decision() is

called and the NewRecv event is inserted in the corresponding LL;. In the function

12

trace_decision(), a check is performed for a ‘ happened—before’ relation between events
PrevRecv and NewSend, where PrevRecv is the receive event at process i, which ‘hap-
pened—before’ NewRecv. ThisPrevRecv event isobtained from the head of the linked-ist
LL;. If PrevRecv ‘happened-before’ NewSend, it implies that the NewM sg does not race
with any message on channel j and need not betraced. If thereisno * happened-before’ rela-
tion and if the message received at event PrevRecv was not traced, then NewM sg istraced.
If the message received at PrevRecv wastraced, then the algorithm does the same check for

the previous element in the linked lit, till the tail of thelist.
5.2 Example 1

Consider the previous example of figure 4, when ml isreceived, the corresponding receive
eventisinsertedinLLq and LL3at process 2. mlisnot traced asthere are no PrevRecvs.
When m2 isreceived, thereisno ‘ happened—before’ relation between thereceive at m1 and
the send of m2, and since m1 is not traced, m2 istraced. The receive event of m2 is also
inserted in LL3 and LL 4 at process 2 and marked astraced. When m3isreceived, it isseen
that m3 raceswith m2, but m2 isalready traced. Also, m3 doesnot racewith any other mes-
sageinthelinked list LL 4, SO m3isnot traced. Thereceive event at m3isinsertedin LL4.
At the end of receive of m3 the linked lists at process 2 are as shown below.

LL1: ml; LL3 m2—mi,; LL4: m3-m2;

The difference between N& M and this algorithm is that when two messages race, the new
algorithm checks whether the previous message was traced. If it was traced then the algo-

rithm goesback intimeto seeif the current messageraced with any other messageinthe past.
5.3 Example 2

Refer figure7. Whenmlisreceived, itisnot traced, asthereareno messagesreceived before
it. m2istraced asit raceswith m1 and mlisnot traced. When m3isreceived, arace check
Is made with m2. Although m3 races with m2, m2 was traced therefore, the race between

m2 and m3isignored. So we go back in past and see that m3 raced with m1 and m1 was

13

not traced; resulting in the tracing of message m3. Thisisagain an optimal trace given that
tracing decisions are made when the messages are received. The linked lists at the end of

the algorithm are as shown below:

LL1: m3—m2-mi,; LL3: m3-m2-mi,; LL4: m3-m2-mi,
Send
1
ml
5 Recv(any)

Recv(any)

Figure 7. Example 2.

The correctness of thealgorithm followsfrom [10] and the observation that traced messages

effectively do not race with any other message.
5.4 Algorithm B

For algorithm A, it can be seen that all the information about the past receive eventsis saved
inthelinked lists. Thiswill result in enormous wastage of memory. For long running pro-
gramsor programs with lot of message passing activity, this may render tracing and replay-
ingimpossible. If aconditionisfoundwhichwill alow past receiveeventsto bepurged from

the lists, without affecting the correctness or optimality of the algorithm, then the number

14

of recelve events stored in thelists can belimited. Asshownin Theorem 1, we need to keep
only onemessage per channel, per process. |.e., (n—1) linked listsper process can bereplaced

with just an array of size (n—1) for the past receive events.

Theorem 1: For a message passing system, given that tracing decisions are made at the
Instant when a messageisreceived at a process, for optimal tracing of messages, a check has
to be made only with C number of receive events, in the worst case, where C is the number

of channelsincident on and directed towards the process.
In other words, only C receive events need to be stored per process, for optimal tracing.

Assumptions:

A1l. There are n processes in the message passing system.

A2. Tracing decision ismade at each processi, when it receives amessage (decisionismade
with no information about the future).

A3. All channels are FIFO.

A4. A processi can receive messages from (n—1) processes over (n—1) channels. Where 1

<i<gn.

Lemma 1: A message fromprocessj to processesi will not racewith any other message from
process| to processesi. Inother words, a message from processj to processi can racewith

messages from (n—2) processes only.

Thisresult followsdirectly from [1] and A3. Since all eventsin asingle process aretotally
ordered, if two messages are sent from process j to process i, there is a * happened before’
relation between the two send eventsin processj. From assumption A3, the message sent
at thefirst * Send’ event will always be delivered before the message from the second * Send’
event. Infigure 8, m1will awaysbe delivered before m2. Thus, amessage from a process

races only with messages from (n—2) processes.

15

Recv(2)

Recv(2)
ml

m2

Send Send

Figure 8. Messages from the same process do not race with each other.

Lemma 2: If a messageistraced, effectively, it does not race with any other message.

If amessage istraced, then in the replay, the corresponding Receive event will not receive
messages from any other Send event but the one from which it received the messagein the
original execution, which wastraced. This meansthat for the algorithm, a traced message

need not be considered for race checks.

Lemma 3: A message fromprocessj to processi can race with a message from process k to
processi, onlyif at |least onereceive event (out of thetwo Receive events) wasready toreceive

a message from either process.

Thisis based on the functionality of the function ‘Recv’. It is obvious from the fact that if
areceiveevent wasRecv(j), it will not receive messagesfrom any other channel but that from
process| to processi, whereas amessage received at the event Recv(j, k, ...) can potentialy

race with messages from other processes.

Proof of the Theorem:

L et us assume that message my from process| to processi races with t messages (mg, my, ...,
mt_1)) from process k to processi. (We are considering messages that were received only
inthepast from assumption A2). All t messagesare not traced (if they were, then by Lemma
2 above, they will not race with m;). By assumption A2, tracing decision is made at the

instant the message arrives; thisimplies that mg, my, ..., M1 will never be traced (asthey

16

belong to the past). The decision to be made is: should m; be traced or not? The decision
is*YES' if m; raced withany of themg, mg, ..., m_1) messageselseitis'NO’ (unlessit races
with a message from some other process). Without loss of generality we can assume that
the messages received from process k be in the time order mg, my, ... ,M(—y). It will never
happen that m raceswith any of { mg, my, ..., M_2)}, but not with m_y). Thiscanbe proved

by contradiction.

L et usassumethat m raceswith at least oneof { mg, my, ..., M(_2)} say Mg, but not with me_y)
(a<t=1). By thisassumption we have Receive of m_1) — Send of m, because m(_y) and
my do not race and Receive of m; could NOT have occurred before that of m_1). But, Re-
ceive of my— Receive of m¢_1). By transitivity Receive of my — Send of my Leading to

a contradiction that m; did not race with m,

Thetracing decision dependsonly onwhether m; raceswith m_y). i.e., weneedtokeep only

one untraced receive event per channel per process.

For algorithm A, we keep (n-1) linkedists, onefor each channel, in every process. Ineach
list we keep all the Receive events that recelved a message with a potential race condition
over that channel. From the above result, we never need keep more than (n-1) Receive

eventsin each list, one for a message from each process.

Ineachlist therewill never be morethan (n—1) Receive eventsas proved above, but the mes-
sages corresponding to the Receive event are from different processes and they race with
each other. But, if they race with each other, then all of them (but one) would have been
traced. Therefore, therewill never bemorethan oneReceiveeventineachlist. Thusproving
theorem 1. It followsthat each process will have maximum of (n—1) Receive events stored
from its past.

[

17

5.5 Example 3

One may tend to think that the above result isincorrect, asit isnot very intuitive. Consider
the example showninfigure 9. It can be easily seen that if m3 raceswith m2, it may or may
not race with m1. But, if m3 does not race with m2 (there is a‘happened before’ relation
between receive of m2 and that if m3), then m3 does not racewithml either. Thusitissuffi-
cient to determine if m3 races with m2. We therefore do not need to save the receive event
of m1. Thus, arace check with m2 will result in tracing of message m3. If for somereason
m2 raced with another message (received beforem3, e.g. m') and wastraced, then we do not
need to save the receive event of m2 as it does not race with any message (by Lemma 2).
When m3isreceived, arace check is performed with receive event of m1, which will again

lead to the tracing of m3.

[ERN

m3

ml

m2

Figure 9. Example 3

Algorithm B isgivenin figure 10. The algorithm isinvoked by any processi, whenever a
message NewM sg sent by event NewSend at processk (k #1) isreceived by event NewRecv
at processi. Thevariabletraceisused to store thetracing decision which isabinary value.
For each channel j over which NewM sg could have beenreceived at event NewRecv, acheck
iIsmadefor a‘ happened—before’ relation between thethepreviousreceiveevent (LL[j]) and

theNewSend event. If thereisa’ happened—before’ relationthenitimpliesthat the NewM sg

18

Al gorithm B (NewSend, NewRecv) {
/* NewMsg is the nmessage sent by event NewSend to event

* NewRecv

*/
trace = FALSE
for j =1 to n-1

if (NewMsg coul d have been received over channel j)
if LL[j] — NewSend
LL[j]

NewRecv

el se

trace TRUE
end for
if trace = TRUE

{trace NewMsg}

Figure 10. Algorithm B.

does not race with any message on the channel j and need not betraced. ThevariableLL[j]
is updated to the NewRecv event. If thereisno ‘happened-before’ relation, then NewM sg
istraced and LL[j] isleft untouched.

5.6 Example 4

In section 4 we showed that itsimpossibleto obtain an optimal trace, given thefact that trac-
ing decision is made at the instant a message arrives at the destination. Thisexampleillus-
tratesthe non—optimality of algorithm B. Infigure7, if the second Receive event ischanged
to Recv(1,3) and the third Receive event is changed to Recv(1,4), then the trace obtained by
algorithm B is non—optimal. The optimal trace would be to trace just message m1, as ml
races with m2 and m3 but m2 does not race with m3. Algorithm B will not trace m1 asthere

are no ‘PrevRecv’s. Instead it will trace m2 and m3 leading to a non—optimal trace.

19

6. Summary and Future Research Directions

In this paper we have presented an agorithm that traces messages optimally, given the
constraint that tracing decisions are made at the instant amessage is received by a process.
We have also improved on the memory requirements for this algorithm. Using this tech-
nique, message traces required for distributed debugging can be significantly reduced. This
will lead to less debugging overheads, which include reduced memory, storage, and execu-
tiontime. For long running distributed programsthisisvery critical. 1f the debugging over-
heads are high, it is not possible to debug the programs using cyclic debugging techniques
if every message istraced. We have also shown that if tracing decisions are to be made at
run—time (i.e., at the instant amessage is received by a process), it isimpossible to have an

algorithm which will trace messages optimally.

Finding an algorithm that will give an optimal trace under every possibility is equivalent to
finding the minimum vertex cover, which is known to be NP-complete. Oneway to do this
can beto save all the message that are received by the process. At the end of the execution
run an algorithm (whichwill runin exponential time) to cal cul ate the optimal trace and trace
only those message. This can be done even if the process crashed (because of abug), asthe
node it is running on has not failed (as opposed to situation occurring for requirements of
fault—tolerance). But, thisdefeatsthe purpose of producing optimal messagetrace. Thetime
required by thisoptimal algorithmwill be very large and we are better off instead, by tracing
al the messages.

Future work includes implementation of the algorithm given in this paper to see how it af-
fects the number of messages traced for different classes of application and the amount of
actual timesaved. Thiscanthen becompared withtheimplementationresultsin[10]. Better
tracing strategies include considering algorithms which make tracing decisions with the
knowledge about the eventsin afuturewindow, wherethe futurewindow isof fixed (or va-

rying for adaptive algorithms) size. The size of thewindow will haveto be determined from

20

experimental resultsor some heuristics. For example, when atracing decisionis made about
areceiveevent‘a inprocessi, n number (wherenisthesize of thefuture window) of events
inprocessi that occurred after event ‘& have aready occurred. Inother words, tracing deci-

sion for event ‘& is made at an event which is separated by n eventsin the future.

References

[1] Leslie Lamport, *‘ Time, Clocks, and the Ordering of Eventsin a Distributed System,”
Communication of ACM, vol 21, no 7, July 1978.

[2] AllenD. Maony and Daniel A. Reed, ** Modelsfor Performance Perturbation Analysis,”
ACM/ONR Workshop on Parallel and Distributed Debugging, pp 15-25, Santa Cruz, CA,
May 1991.

[3] J. P. Black and M. H. Coffin and D. J. Taylor and T. Kunz and T. Basten, *‘Linking
Specification, Abstraction, and Debugging,” University of Waterloo, Canada, Tech Report
TR-94-02, November 1993.

[4] Stuart |. Feldman and Channing B. Brown, *1IGOR: A System for Program Debugging
via Reversible Execution,” Proceedings of the SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, ppl112-123, Madison, WI, May 1988.

[5] Perry Emrath and Sanjoy Ghosh and David Padua, ““ Detecting Non—determinacy in
Parallel Programs,” |EEE Software 9,1, pp.69—77, January 1992.

[6] Charles E. McDowell and David P. Helmbold, ** Debugging Concurrent Programs,”
ACM Computing Surveys, vol 21, no 4, pp 593-622, December 1989.

[7] ThomasJ. LeBlanc and John M. Méellor—Crummey, ** Debugging Parallel Programswith
Instant Replay,” |EEE Transactions on Computers, C-36, 4, pp 471-482, April 1987.

[8] Colin Fidge, ‘' Fundamentals of Distributed System Observation,” The University of
Queensland, Australia, Tech Report 93-15, November 1993.

21

[9] Z Yang and T.A. Mardand, ““ Globa Snapshots for Distributed Debugging: An Over-
view,” University of Alberta CS, Tech Report TR 9203, 1992.

[10] Robert H. B. Netzer and Barton P. Miller, ** Optimal Tracing and Replay for Debugging
Message—Passing Parallel Programs,” Proceedings of Supercomputing ’92, Minneapolis,
MN, pp 502-511, November 1992.

[11] Larry D. Wittie, ““Debugging Distributed C Programs by Real Time Replay,”
Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed
Debugging, pp57-67, vol 24, no 1, January 1989.

[12] Robert H. B. Netzer, Sairam Subramanian and Jian Xu, ** Critical—Path—Based M essage
Logging for Incremental Replay of Message—Passing Programs,” International Conference
on Distributed Computing Systems, 1994.

22

