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Abstract

Significant research effort has been directed towards the desigpeafmmance analysis of imperfect scheduling policies
for wireless networks. These imperfect schedulers are of inteesgiité being sub-optimal, as they allow for more tractable
implementation at the expense of some loss in performance. Howewdr afuhis prior work takes a uniform scaling approach
to analyzing scheduling performance, whereby the performance swhaduling policy is characterized in terms of a single
scalar quantity, the efficiency-ratio. While suitable for characterizingstvoaise performance, this approach limits one’s ability
to understand the different extents of performance degradation thatbe experienced by different links in a network. Such
an understanding is very valuable when average performance iseafegrinterest than the worst-case, or when certain links
are more important than others. Furthermore, once one approacheduler design with non-uniform performance guarantees
in mind, one finds that simple modifications to well-known scheduling algosthan yield substantially improved non-uniform
scaling results compared to the original algorithms. In this paper, we makenprehensive case for adopting such an approach
by presenting non-uniform scaling results for a set of algorithms thetvariants of well-known algorithms from the class of
maximal schedulers.

I. INTRODUCTION

Substantial recent research effort has been directed dewtae design ofmperfectscheduling policies [1], [2], [3], [4]
for wireless networks, and analyzing their performancessehimperfect schedulers are of interest despite beingstimal,
as they allow for more tractable implementation at the egpesf some loss in performance. However, much of this prior
work takes a uniform scaling approach to analyzing schedyerformance whereby the performance of a schedulingypisi
characterized in terms of a single scalar quantity-efieiency-ratiot While this leads to a compact and simple characterization,
it ties down the performance criterion to the worst-caseatdgtion experienced by any link in the network. In a largegeaof
scenarios, it is likely that many or most links in the netwarky be able to achieve much better throughput. When the averag
experience of most links is more important than the worsecit is more relevant to consider the performance achibyed
each link, rather than use the performance of the worstigdsas a metric. Similarly, when all links are not equallygdortant,
one may care about trying to provide performance guaramemsortional to each link’s importance. In such scenaribis
important to be able to understand what kind of differeptiaguarantees a scheduling algorithm can provide to diffdieks.
Thus, it is very relevant to attempt performance analys@etaon arefficiency-vectdr rather than a scalafficiency-ratio

While most of the relevant prior work takes a uniform scalimgprach, it must be noted that some non-uniform scaling
bounds were indeed proved in [5] for a maximal schedulingréilgm. More recently, non-uniform scaling bounds for the
Longest Queue First scheduling algorithm were proved in [6]

In this paper, we make a much more comprehensive attemptke maase for efficiency-vector based performance analysis.
In particular, we show that simple modifications involvimgroduction of priorities to well known scheduling algarits from
the class of maximal schedulers, e.g., maximal schedulitty ttwesholds and centralized greedy maximal scheduéngbles
one to achieve improved non-uniform bounds. This suggéstisit may be possible to identify certain algorithm paraaret
(e.g., link priority), the careful adaptation of which canable one to achieve desired differentiated performanceagtees
over a range of scenarios.

This is a revised version of the technical repbifferentiated Performance Analysis of Maximal Schedylin a Wireless Networklated March 2009.
Revision was performed in December 2009/January 2010.
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1Th_e> efficiency-ratio of an imperfect scheduler is said toybe given any_I)oad vectorh such that the optimal scheduler can stabilize the network wit
load A, the imperfect scheduler can stabilize it for the scaled dweatoryA . The corresponding reduced rate region is referred to ag-thduced rate
region.

2Analogous to efficiency-ratio, we can say that an algorittuhieves an efficiency-vector of = [yi] if: given any Ioid vector?, such that the optimal
scheduler can stabilize the network with load the imperfect scheduler can stabilize it for the scaled deector Y e A ) where we definéX e y as the
componentwise product of andy, i.e., X ¢ Y = 7 wherez = x ;. The corresponding reduced rate region is referred to asythieduced rate region.



It must be noted that maximal schedulers are of practicatést, since they can potentially be approximately impleeud
using backoff schemes [7], [8], or probabilistic randoncess schemes [9]. These approaches can also be modifiedvo all
for prioritization through suitable modulation of backaftervals and/or access probabilities, and thus the eputisented in
this paper can provide useful insight for practical MAC pial design.

II. NOTATION AND TERMINOLOGY

We assume the availability of a single channel for commuidna The wireless network is viewed as a directed graph,
with each directed link in the graph representing an avhiléthirected) communication link between a node pair capaibl
communication with non-zero rate. We model interferendagua conflictrelation between links. Two links are said to conflict
with each other if it is only feasible to schedule at most ofithe links at any given time. The conflict relation is assunted
be symmetric. The conflict-based interference model pes/ia tractable approximation of reality — while it does nqitaee
the wireless channel precisely, it is more amenable to arsal$uch conflict-based interference models have also beeth
in past related work (e.g., [10], [11]), etc.

We assume a single channel of operation. Time is assumed stothed, with the slot duration being 1 unit time (i.e., we
use slot duration as the time unit). In each time slot, theduler used in the network determines which links shouldstrzt
in that time slot. We also adopt the following convention:tla¢ beginning of each time-slot, the scheduling decisiars a
taken, and transmissions occur. Then new arrivals occureaémnd of the slot.

We now introduce some notation and terminology.

« L denotes the set of directed links in the network.

« I(l) denotes the set of links that conflict with link As a matter of convention we assume thatl(l).

« K| denotes the maximum number of linkslifl) that can be scheduled simultaneously i§ not scheduled.
« K is the largest value dK; over all linksl, i.e.,K = mlax K.

o K =max{1,K}.

« K=max{1,K}.

° ImaX:maX“(I)|
leL

We limit our focus to single-hop flows. Thus, all traffic ovémrk | can be viewed as a single aggregated flow over that link.

We also use the following notational convention for coneece: given vectory = V1, Y2, -5 Ve, Y ! denotes the vector
11 1
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Ill. RELATED WORK

The seminal work of Tassiulas and Ephremides[12] yieldettiraughput-optimalscheduler (the Dynamic Backpressure
Scheduler), which can schedule all “feasible” traffic flowsghaut resulting in unbounded queues. However, such ammapti
scheduler is difficult to implement in practice. Hence, @as imperfect scheduling strategies that trade-off thinpudy for
simplicity have been proposed in [1], [2], [3], [4] amongshers. A queue-loading rule for maximal scheduling in multi
channel wireless networks is presented in [11].

Related to this work, [5] presents some non-uniform scatesyplts for a simple maximal scheduler with threshold-ritle
is shown that each link achieves a scaling—r%fx—@. In Section IV of this paper, we show how introducing priation in a

kel(l
maximal scheduler with threshold-rule helpes( i)mprove thiesi@@ble non-uniform scaling guarantees. In [13] unifocalisg
results are presented for certain maximal schedulers withifees. Their focus is on proving rate-stability. Whilkis paper
also considers certain maximal schedulers with priorities focus onnon-uniform boundsand provegueue-stability which
is a stronger condition.
More recently, non-uniform scaling results for Longest Quéirst scheduling have been presented in [6].

IV. LocAL K-PRECEDENCEBASED MAXIMAL SCHEDULER

A maximal scheduler much studied in prior work such as [30][15] for its potential amenability to distributed
implementation is the following:

Maximal Scheduler with Threshold Rule: At the beginning of each slat all those linksl with g (t) > r, participate in
the scheduling process for that slot. From amongst thegiaating links, a maximal schedule is computed, i.e., if dip@ating
link | is not scheduled, then some link conflicting wittmust be scheduled. The following uniform and non-unifornuros
are known for this scheduler:

« Uniform Bound:As proved in [3], [10], this scheduler can achieve an efficjeratio:

== )



« Non-uniform BoundAs proved in [5], this scheduler can achieve an efficienaytee

)

Y wherey; =

maxK
kel (1)
We now describe a simple variation on the maximal scheduitr threshold rule:
Local K-precedence based Maximal Scheduler: In each time slot, only those linksl with q(t) > r| participate in
scheduling. The scheduler computes a schedule with thewfiolfy property:

If link | participates in scheduling, the eithlers scheduled, or some conflicting linke I (1) with Ky > K; is scheduled.

An alternative description in terms of priority-assignménas follows:

Each link| has a priority valuap(l) = K — K| + 1, whereq(l) < @(k) implies | has higher priority thark. In each slot, a
maximal schedule is computed from amongst participatingsliby following the priority order. Thus, either a partiaimg
link I is scheduled, or some linke I(1)\ {I} with equal or higher priority must be scheduled.

An approximation to such a scheduler can be implementedjusibackoff based procedure, where each lirdhooses a
backoff value proportional om(l) (e.g., a linkl could choos&K — K + 1 as its backoff). Sinc& is typically a small constant
for most wireless networks, the overhead incurred by thddfaevindow would be small.

The following assumptions are made about the arrival andreflarate processes:

The arrival process for link is i.i.d. over all time-slots, and is denoted by{A(t)}, with E[A;(t)] = A;. We make no
assumption about independence of arrival processes folink®l, k. However, we consider only the class of arrival processes
for which E[A; (t)Ak(t)] is bounded, i.e.E[A(t)Ak(t)] <n for all | € L,k € £, wheren is a suitable constant. The rate
achievable on a link is assumed to be time-invariant.

Theorem 1:The localK-precedence based scheduler can achieve an efficienay-véct [wl,yiz,...,yiw] where:

_ 1 _ 1
- maq{1lK,} K.

Yi
The proof is presented in the appendix.

V. A GENERAL BOUND FORPRIORITIZED MAXIMAL SCHEDULERS WITHTHRESHOLDS

The scheduler described in Section IV involves assignmenptiorities to links. In this section, we make an effort tattee
understand the non-uniform scaling behavior of any gemeagimal scheduler with thresholds and priorities.

We consider any arbitrary priority assignment to links. ike[13], we do not assume that the priorities are unique sThwo
links may have equal priority. Moreover, the priorities dut Bven have to be locally unique, i.e., a linknd a linkk e 1 (1) \ {I}
may have the same priority. Though this complicates theyaisatlightly compared to the case of unique prioritiess ii$eful
to consider this more general case for the following reagopractice a prioritized scheduler might be implementeidgis
differentiated backoff mechanism. In such a scenario, timaber of slots in the backoff window must be at least as many as
the number of locally distinct priorities. Therefore, ggshg unique priorities to all links would implies that thendow-size
must increase linearly in the number of network links, orted very least linearly inmax In a large network with variable
node density, it may be more practical to allocate pricsifimm a smaller set. In fact, we remark that the schedulerritbes
in Section IV also assigns potentially non-unique priestisince many links (some of which may be mutually conflicting)
may have the same value Kf.

As in Section IV, we denote the priority of a linkby @(1). @() < @(k) implies thatl hashigher priority thank.

Let H(l) ={klke I(I),p(k) < @(1)}. Thus,H(l) is the set of links that have a conflict wittand have strictly higher priority
thanl.

LetZ(l) ={klkel(l),pk) =¢(1)}. Thus,Z(l) is the set of links irl (1) that have the same priority &sNote thatl € Z(1).
_ Let hy be the maximum number of links ikl (I) UZ(l) that can be concurrently scheduledlifis not scheduled, and
h=maq{lh}

LetH = ) |r(?)?|)4((|)hk' It is not hard to see that for any linke H(I)uZ(l), | €1(k)\ H(k), and therefore by definition:

(S

VKkeH()UZ(): He>hy (3)

Let T denote the vector of link-rates.

Consider the following scheduler:

In slot t, only links | with q(t) > r| participate, and a maximal schedule is computed from amagpaysicipating links
following priority order (equal priority links can be hardl in arbitrary mutual order). Thus, if a linkparticipates and is not
scheduled in slot, this implies that som&e H(I)UZ(I)\ {I} must be scheduled in slot

Note that a linkl that participates in scheduling can only be blocked by limk$i(I) UZ(I) since these have higher or
equal priority to it.



We make the same assumptions about the arrival and link rateegses as in Section IV.

Theorerl 2:Any prioritized maximal scheduler with thresholds havingippty—vector?ﬁ can stabilize any Ioad-vectoi>
for which A +¢&, T lies within they-reduced rate region, where<Qg, < 1 is a positive constant which can be chosen to be
arbitrarily small (e.g.go can be chosen to be 1%), andy; = Hil
The proof is presented in the appendix.

VI. A CENTRALIZED GREEDY MAXIMAL SCHEDULER WITH MODIFIED WEIGHTS

For the results in this section, we consider only the classrfal processes with bounded second momentsE[&(t)%] <n
for all | € £, wheren is a suitable constant. For simplicity, we retain the asdionf time-invariant link-rates, but the result
of this section can be generalized to a wider class of weibisged rate processes. For each link; < Ryax where Ryax is
some constant.

The centralized greedy maximal (CGM) scheduler is a weltlistd instance of the class of maximal schedulers. It opsrat
in the following manner:

In each time-slot:

1) For each link, compute link weightyy = q; (t)r,.

2) Sort the linksl in non-increasing order of;;.

3) Add the first link in the sorted list (i.e., the one with hégt weight) to the schedule for the time-slot, and removmfro
the list all links that are no longer feasible (due to cordlict

4) Repeat step 3 until the list is exhausted (i.e., no moikslican be added to the schedule).

For this scheduler, it is known that the efficiency-ratioﬁslast%.

We now describe a variant of the CGM Scheduler analogousetdoitel K-precedence based threshold maximal scheduler
for which it is possible to prove non-uniform guaranteessHcheduler computes the weight for each link in a slighitffiecent
manner to that used by the CGM scheduler. In time-slot

1) For each link, computew; = %)”.

2) Sort the linkd in non-increasinglj order ofj.
3) From the sorted list, select the first link, i.e., the on¢hwhaximum weight, and include it in the schedule; eliminate
all links conflicting with it

4) Repeat step 3 till no more links remain.

The rate allocated to a linkduring slott by the scheduler is denoted By(t). If a link is selected for scheduling in slot
thenx (t) =1, elsex (t) =0.

R denotes the set of all feasible rate-allocations (theseadesallocations that result from some conflict-free scited

Theorem 3:The centralized greedy maximal scheduler that uses linkive w, = %ﬂ)” = mg;(?l),rk} can achieve an
efficiency-vector ofy, wherey, = %I = m
To prove this, we first state and prove the following claim:

Lemma 1:If a scheduler selects the set of links to schedule, suchithatch slot, s o (t)x (t) > %1ax S o (t)%’ then this
leL €RleL

scheduler achieves an efficiency-vector pf wherey; = %
|
_
Proof: Let A be a traffic vector within the reduced rate-region. Giverteew , denote byy ~ the vector[v—ll, %""WZ]'

Then 7;107 lies within the convex-hull off_(recall the definition ofX e ¥ as the componentwise product af and y).
Hence, A lies within the convex hull off’ =V e . Therefore:

(1+&)(T- )< maxG -y @)
Ver’
The dynamics of the queues in the network is as follows:

a(t+21) = (at)—x()++Af(t) (5)

wherex (t) is eitherr; or 0 depending on whethéris scheduled or not.
Consider the following Lyapunov function:
Vo(t) = 5 (a(1))? (6)

leL

Noting that (g (t +1))% = (a1 (t) = x (1))« + A1 (1))* < max{(a (1) + (N (1) =3 (1))%, M ()%} < (@ (1) + M (1) —xi(1))* +



(Ai(1))?, we obtain the following:

0))Iq ()]
=E lz (ai(t+1))
leL

SE[ ((QI(t)+()\I(t)—)(I(t)))2+()\l( —qt )\ﬁ]
leL

= Yal) W ]

leL

<26 | Y a®) M) -x(1) [0 | +Ca
leL (7)
whereCy = n + R2 .,
= 2( =Y at)x(t ) +Cy
IeL leL
<—-eS NG () +C1
IeL
if Iequl (t)x(t) > gl% (Iequl ) (using (4))
[ ]

We remark that Lemma 1 can be viewed as the non-uniform analo§ Proposition 3 in [1].
Let Sy denote the set of links selected by the CGM scheduler withifieddweights. Consider anye Sy. Let us denote
by B(l) the maximum weight independent subset of linkd (h \ {I} that were still eligible in the step thnwas chosen

Evidently |B(1)| < K. Furthermore, ifSop is the set of links selected by a scheduler that mameeqi z gt
leL I€Sopt
then z q'i( N o< z max{ a®n z qkfzt)'k} since each link € Sy either also occurs i, and thereby contributes its
1€Sopt 1E3, kB
weight to it, or is the cause of blocking 6y a set of links that occur ip:, Whose weight cannot exceeoz q" )i by
keB()
definition.
From the greedy nature of the scheduler, it follows that:
AON S KO o a1 e spke B() ®)
g
K| Kk

Therefore:

q®n > K (qk}((t)”‘> for all | € Sg.ke B(1)

(e ) s

z B <K)
cB(l

SLL 2<> ()

In light of Lemma 1, this proves the result.

9)
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VIl. A CANONICAL TOPOLOGY. THE STAR

In this section, we compare and discuss the implicationauofesults for a canonical topology—where the link-intezfere
graph is a star (Fig. 1) with one center link akd> 1 radial links. This topology is often used as an example imkwemn
scheduling algorithms.

In Section IV, we proved that the locl-precedence scheduler achieves an eficiency vect %{}f Since the scheduler of
Section IV is also a priority based maximal scheduler, foeeeTheorem 2 also applies to it. Thué, this scheduler calvilste

any vector that lies in th%%‘} reduced region, or in the reduced region specified by The@&em



Fig. 1. A Star Topology

Let us consider what would happen when we use the Iepltecedence scheduler in the star topology. In this case, th
link m corresponding to the center vertex has priority 1 anchits= 1, while all other linksm' have priorityK, and their
respectiveh,y = 1. Therefore, for all linkg in the network, it follows thaH; = 1. Thus, the locaK-precedence based maximal
scheduler is within ag, 7" margin of the optimal for the star topology. Sinegcan be chosen to be extremely small, this
is near-optimal. Thus, our non-uniform scaling result® aleld a close-to-optimal uniform-scaling bound for thisrficular
topology.

Note that the vanilla maximal scheduler with thresholdsifrwhich the above scheduler is derived, can be shown to have
an efficiency-ratio no better thag in the case of the star topology. Thus, the use of precedeasedbonK, yields a very
substantial improvement in performance in this case.

It must be noted that for the special case of the star topolotiper prior work has also shown performance-improvement
when priority is given to the center link. In [13], it is showthat giving higher priority to the center link when perfongi
prioritized maximal scheduling allows one to achieve stability for all vectors within the rate-region. Note thair result
proves queue-stability, which is a much stronger resuthil&ily, in [9], it is shown that when using a random accessquol,
breaking ties in favor of the center link yields substahtidletter performance thaé.

VIIl. DI1sScUssION

The results presented in this paper are not only example®mfuniform performance analysis, but also highlight how it
may be possible to achieve desirable non-uniform guarantgeappropriate assignment of priorities to links. For anse,
our non-uniform performance bound for the loé¢&lprecedence based scheduler of Section IV is an improvement the
previous known uniform and non-uniform bounds for the danihaximal scheduler with thresholds [3], [5]. Our geneesult
for any prioritized scheduler (Theorem 2) can be helpfulétedmining suitable priority assignments for small knawpelogy
networks to achieve desired differentiated levels of penfnce.

It must also be noted that our result for the modified-weigBMCscheduler proves the same non-uniform bound as for the
local K-precedence scheduler; however, the two schedulers actiesvbound in different ways: the CGM variant effectively
gives precedence to links with lower K; by using weights inversely proportional t§, whereas the locaK-precedence
scheduler gives precedence to links with larier This is not surprising as the two algorithms operate quitferéntly. The
CGM approach gives precedence according to weight, and ¢hsisgle higher weight link can prevent concurrent schagdul
of multiple links with only slightly lower weight. Modifyig the weight formulation to privilege lowd¢, addresses this. On the
other hand, the maximal scheduler with thresholds choasgsnaximal schedule from amongst eligible links, and thumla
I with large K; may get a much lower fraction of time if links i{l) which could potentially have been active concurrently,
become eligible at different times, and are scheduled seilig, thereby increasing the fraction of time it is bleckby up
to a factor ofK,. Giving priority to links with higherK; addresses this.

It must also be emphasized that explicitly seeking to prame-uniform performance bounds can also lead to a paradigm-
shift in the manner in which scheduler design is approacked.instance, the prioritized schedulers discussed inghjser
resulted from an effort to identify the circumstances inathtcertain links in a network could be guaranteed betteirsg#than
the remaining links. More specifically, these simple schemusuggest that, given a network where we may seek to provid
different levels of service for different links, one can @utially leverage tunable parameters such as link pridatgesign
algorithms that provably achieve the desired non-unifosrfggmance bounds.
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APPENDIX
Proof of Theorem 1. Let x(t) denote the service received by lihlduring slott. Thus,x (t) = 0 if | is not scheduled

during the slot, and (t) = r; otherwise.
The queue dynamics are as follows:

at+1)=a)+N)—x() (10)
We use the following Lyapunov function to prove queue-siigbi
(T 0) = 5 Kiai (t) [ 5 Kka(t)] (11)
T P (PR

It can be seen that:

Vg(T(t+1)—Vg(TM) = 3 [K'q' ( ; quk )
leL kel(l €
Ki(at) +at+1)—aq(t) ( 5 Kic(Gik(t) +th+1) Qk(t))>
KETI)
)

Kiai (t) KOl (t)
(2

leL N

_ < Ka Kieak(t) Kiai (t) Ki(aw(t+1) — k() Ki(ar(t+1) —a(t) Kk (t)
IezL N (kelz(l) M )+I6L N (kelz(l) M Jr|eZL N kelz(l) Mk ﬂ
Ki(a(t+1) —at) kak(t+1)—a®) )| < Kat) Kicak (t)
+|ezL U (kelz(l) Mk ﬂ IGZL " (kelz(l) Tk > (12)
- Kia (t) Kic(ak(t+1) — i(t)) Ki(a(t+1)—q(t) Kic(t)
_lezj i (kelzm fk > +lezL f <kelz<l> k }

Ly |[R@trn-aw) ( 5 Rdadten o t))ﬂ
=3 " P=10) Tk
B Kia (t) k(gk(t+1)— ) ai(t) Kic(ak(t +1) — ge(t))
_zlezi i <kelz<l> Tk ) +|EZL[ <kelz(l) Tk )]

sinceke I(l) = | € 1(k) from the symmetric conflicts assumption

Denote by/(t) the set of linksl for which g (t) > r. This set of links participates in the scheduling processsfot t.
From the scheduler definition, it follows that, for &l £/(t):

Kicxc(t)
PSR

> K (13)



If )\ lies within thew reduced rate region, then, by assumption, there existe saheduling algorithm that achieves stability
with load vectorA’ — Y len.

Noting that in the current casg = < , this implies existence of an average service-rate vegtéor all links | satisfying
the following for somee > 0:

(1+&)KA < x5 for all links | (14)

S X < max(1,K} = K for all links | (15)
ke Tk

Le Qinit = max=5= 'q'() . LetYmin=min Kih . Using (12):
leL, y>0 "

ENy(T (t+1)) = Va(T )T (1))

o5 Rt ( e [Rula +r1>—qk<t>>’mt>}) iy E [K.(q.(ttl)—q'(t)) ( 5 Rk<qk<t+r1>—qk<t>>> ‘w]
ez N kel k Iz ' KET(l) k
|Z| qi(t) Kk _ IZ|)\|( ) Kichk ()
<2y = (kEIZU)rKE[Ak(t) xk<t>\a>(t>]>+|€zLE[ P ]
B Kig (t) KicAk(t) Kiok(t) | KA (t) Kihk(t)
72@% fl (E Lelzm k ]_Elkem) k ‘q(t) >+|€ZLE[ "l (kelzm fk )]
K| q (t) Kk)\k(t) Kka(t) N
2 E —E C
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(compensating for links witiA; = 0 by adding the 22 €YminQinit term, and also
leL'(t)

subtracting and adding back 22 Kian(t)
leNZ'@) !

€Ymin to handle links inL\ £'(t))




Kig (t)

<2y (—&Ymin) +C2

leL

wherermax= maxr| C= ‘frtfn”r";’ax andC; = Cq + 2€Ymin| £| Qinit +28ym.nK|L| +2|L|K2Imax Using the above in conjunction

with Lemma 2 from [14] sufleces to prove stability.

Proof of Theorem 2: Suppose the set of valid priority values that can be assigmédidks is M where|M] = m. Thus,
foralll: 1<g(l)<m
i-1
Let 5i = {l|l € L,@(l) =i}. Evidently for a linkl € S, H(I) € U Sj, andZ(l) C S. Conversely, for a link € j, I(1)\
j=1

Hmuzm)< U S
i=j+1
The queue dynamics are as follows:

qt+21)=qt)+A(t)—x(t) (16)

wherex (t) can be either 0 or; depending on whethdrwas scheduled during slbtor not.
We use the following Lyapunov function:
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Since we have a prioritized maximal scheduler with thredolt follows that ifq (t) > r; then eithed is scheduled in slot
t or else som& < (H(I)UZ(l))\ {lI} must be scheduled in slot Therefore for all participating links:
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Using the above in conjunction with Lemma 2 from [14] suffitegrove stability.



