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Abstract

Significant research effort has been directed towards the desigpesfutmance analysis of imperfect scheduling
policies for wireless networks. These imperfect schedulers are oégttdespite being sub-optimal, as they allow for
more tractable implementation at the expense of some loss in performdoaever much of this prior work takes
a uniform scaling approach to analyzing scheduling performanceselshheéhe performance of a scheduling policy
is characterized in terms of a single scalar quantity, the efficiency-ratibleVSuitable for characterizing worst-case
performance, this approach limits one’s ability to understand the diffeseants of performance degradation that may
be experienced by different links in a network. Such an understanslingry valuable when average performance is
of greater interest than the worst-case, or when certain links are moetant than others. Furthermore, once one
approaches scheduler design with non-uniform performance mpeasain mind, one finds that simple modifications
to well-known scheduling algorithms can yield substantially improved ndfoum scaling results compared to the
original algorithms. In this paper, we make a comprehensive casadfipting such an approach by presenting non-
uniform scaling results for a set of algorithms that are variants of welknalgorithms from the class of maximal
schedulers.

I. INTRODUCTION

Substantial recent research effort has been directed dewihe design ofmperfectscheduling policies [1], [2],
[3], [4] for wireless networks, and analyzing their perf@amnce. These imperfect schedulers are of interest despite
being sub-optimal, as they allow for more tractable impletagon at the expense of some loss in performance.
However much of this prior work takes a uniform scaling apptoto analyzing scheduling performance, whereby
the performance of a scheduling policy is characterizedeims of a single scalar quantity, tledficiency-ratio*
While this leads to a compact and simple characterizatidiestdown the performance criterion to the worst-case
degradation experienced by any link in the network. In adaiange of scenarios, it is likely that many or most
links in the network may be able to achieve much better thipugy When the average experience of most links is
more important than the worst-case, it is more relevant twsicier the performance achieved by each link, rather
than use the performance of the worst-case link as a metnilagly, when all links are not equally important, one
may care about trying to provide performance guarantegsoptional to each link’s importance. In such scenarios,
it is important to be able to understand what kind of difféised guarantees a scheduling algorithm can provide
to different links. Thus, it is very relevant to attempt merhance analysis based on efficiency-vectorather than
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1The eﬁiciency-@tio of an imperfect scheduler is said todhi& given any load vectorl, such that the optimal scheduler can stabilize the
network with load A , the imperfect scheduler can stabilize it for the scaled deeagtoryA .



a singleefficiency-ratic?

While, most of the previously mentioned prior work takes a&amn scaling approach, some non-uniform scaling
bounds were indeed proved in [5] for a maximal schedulingritlym. In this paper, we make a much more
comprehensive attempt to make a case for efficiency-veasedperformance analysis. Furthermore, we show that
simple modifications involving introduction of prioritieg® well known scheduling algorithms from the class of
maximal schedulers, e.g., maximal scheduling with thrieishand centralized greedy maximal scheduling, enables
one to achieve improved non-uniform bounds.

It must be noted that maximal schedulers are of practicarést, since they can potentially be approximately
implemented using backoff schemes [6], [7], or probaldisitndom-access schemes [8]. These approaches can also
be modified to allow for prioritization through suitable mudation of backoff intervals and/or access probabilities,
and thus the results presented in this paper can providelussfght for practical MAC protocol design.

II. NOTATION AND TERMINOLOGY

We assume the availability of a single channel for commuitnaThe wireless network is viewed as a directed
graph, with each directed link in the graph representing\ailable communication link. We model interference
using aconflictrelation between links. Two links are said to conflict witlcleather if it is only feasible to schedule
at most one of the links at any given time. The conflict relati® assumed to be symmetric. The conflict-based
interference model provides a tractable approximationeafity — while it does not capture the wireless channel
precisely, it is more amenable to analysis. Such conflisetainterference models have also been used in past
related work (e.g., [9], [10]), etc.

We assume a single channel of operation. Time is assumeddlotbed, with the slot duration being 1 unit time
(i.e., we use slot duration as the time unit). In each timé $he scheduler used in the network determines which
links should transmit in that time slot.

We now introduce some notation and terminology.

The network is viewed as a collection of directed links, veheach link is a pair of nodes that are capable of
direct communication with non-zero rate.

« L denotes the set of directed links in the network.
« I(l) denotes the set of links that conflict with link As a matter of convention we assume thatl(l).
« K| denotes the maximum number of linkslifl) that can be scheduled simultaneously i§ not scheduled.
« K is the largest value oK over all linksl, i.e.,K = mlax K.
o K =max{1K}.
o K=max1,K}.
o Imax=max|I(l
max IeLX‘ (]

We limit our focus to single-hop flows. Thus, all traffic ovamrk | can be viewed as a single aggregated flow.

I11. RELATED WORK

The seminal work of Tassiulas and Ephremides[11] yield#ior@ughput-optimakcheduler (the Dynamic Back-
pressure Scheduler), which can schedule all “feasibldfi¢riiows without resulting in unbounded queues. However,
such an optimal scheduler is difficult to implement in preetiHence, various imperfect scheduling strategies that
trade-off throughput for simplicity have been proposed ih [2], [3], [4] amongst others. A queue-loading rule
for maximal scheduling in multi-channel wireless netwoikpresented in [10].

—
2Analogous to efficiency-ratio, we can say that an algorittuhieves an efficiency-vector 6f = [y/] if: given any load vectorA , such that
—

the optimal scheduler can stabilize the network with loadthe imperfect scheduler can stabilize it for the scaled duwor?? (where
XY denotes the dot-product of vectorgy).



Related to this work, [5] presents some non-uniform scaliegults for a simple maximal scheduler with
threshold-rule. It is shown that each link achieves a sgatih malxK . In Section IV this paper, we show how
k

kel (1)
introducing prioritization in a maximal scheduler with ¢shold-rule helps improve the achievable non-uniform
scaling guarantees. In [12] uniform scaling results aresgmted for certain maximal schedulers with priorities.
Their focus is on proving rate-stability. While this papesatonsiders certain maximal schedulers with priorities,

we focus onnon-uniform boundsand provequeue-stability which is a stronger condition.

IV. LocAL K-PRECEDENCEBASED MAXIMAL SCHEDULER

A maximal scheduler much studied in prior work such as [3], [S] for its potential amenability to distributed
implementation is the following:

Maximal Scheduler with Threshold Rulét the beginning of each sldt all those linksl with g (t) > r
participate in the scheduling process for that slot. Fronoragst the participating links, a maximal schedule is
computed, i.e., if a participating linkis not scheduled, then some link conflicting witmust be scheduled. The
following uniform and non-uniform bounds are known for tkisheduler:

« Uniform Bound:This scheduler can achieve an efficiency—ratio%o[?:], [9].
« Non-uniform Bound: This scheduler can achieve an eﬁiciency-vecto{%] [5].
kel (l

We now describe a simple variation on the maximal scheduigr mreshold<r)ule:

Local K-precedence based Maximal Schedulereach time slot, only those linkd with g (t) > r, participate
in scheduling. The scheduler computes a schedule with tlenviag property:

If link | participates in scheduling, the eithleis scheduled, or some conflicting lifke 1(I) with Ke > K is
scheduled.

An alternative description in terms of priority-assignménas follows:

Each linkl has a priority valuep(l) = K —Ki+1, whereg(l) < @(k) implies| has higher priority thak. In each
slot, a maximal schedule is computed from amongst particigdinks by following the priority order. Thus, either
a participating linkl is scheduled, or a link € I (1) \ {I} with equal or higher priority is scheduled.

An approximation to such a scheduler can be implementedyusibackoff based procedure, where each link
| chooses a backoff value proportional @) (e.g., a linkl could chooseK — K| +1 as its backoff). Sinc&
is typically a small constant for most wireless network® tverhead incurred by the backoff window would be
small.

The following assumptions are made about the arrival androdlarate processes:

The arrival process for link is i.i.d. over all time-slotd, and is denoted byA(t)}, with E[A;(t)] = A;. We
make no assumption about independence of arrival procéssego links |, k. However, we consider only the class
of arrival processes for whicE[A| (t)Ak(t)] is bounded, i.e.E[A(t)Ak(t)] <n for all | € L, ke L, wheren is a
suitable constant. The ratg achievable on a link is assumed to be time-invariant.

Theorem 1:The localK-precedence based scheduler can achieve an efficienay-vgct [w17w2,...7ww] where

Vi = max{ll,K|} = K%

The proof is presented in the appendix.

V. A GENERAL BOUND FOR ANY PRIORITY BASED SCHEDULER

The scheduler described in Section IV involves assignmémriorities to links. In this section, we make an
effort to better understand the non-uniform scaling betrawf any generic maximal scheduler with priorities.

We consider any arbitrary priority assignment to links. ikel[12], we do not assume that the priorities are
unique. Thus, two links may have equal priority. Moreovég priorities do not even have to be locally unique,
i.e.,, alinkl and a linkk € I(1)\ {I} may have the same priority. Though this complicates theyaisaklightly
compared to the case of unique priorities, it is useful tosater this more general case for the following reason: in



practice a prioritized scheduler might be implementedgisimifferentiated backoff mechanism. In such a scenario,
the number of slots in the backoff window must be at least asynaes the number of locally distinct priorities.
Therefore, assigning unique priorities to all links wouhdplies that the window-size must increase linearly in the
number of network links, or at the very least linearlyljfuy In a large network with variable node density, it may
be more practical to allocate priorities from a smaller befact, we remark that the scheduler described in Section
IV also assigns potentially non-unique priorities, sincany links| (some of which may be mutually conflicting)
may have the same value Kf.

We denote the priority of a link by ¢(1). @(I) < @(k) implies thatl hashigher priority thank.

Let H() = {klke I(I),0(k) < ¢(1)}.

Let Z(I) = {klke I(I),(k) = @(1)}. Note thatl € Z(I).

Let hy be the maximum number of links iH(I) UZ(l) that can be concurrently scheduled i not scheduled,
andh = max{1,h }.

LetH = max hg. It follows that:

kel (N\H(1)

VkeHUZ() :He>hy (1)

Let T denote the vector of link-rates.

Consider the following prioritized maximal scheduler:

In slott, only links | with q;(t) >, participate. If a linkl participates and is not scheduled in dlothis implies
that somek e H(1)UZ(l)\ {I} must be scheduled in slot

We make the same assumptions about the arrival and link rategses as in Section IV.

Theorem 2:Any prioritized maximal algorithm with priority-vectojg(l)] can stabilize any Ioad—vectof for
which 7+80T’ lies within theyi]-reduced rate region, where<0g, < 1 is a positive constant which can be chosen
to be very small (e.g£, can be chosen to be 1%), andy; = Hil

The proof is presented in the appendix.

VI. A CENTRALIZED GREEDY MAXIMAL SCHEDULER WITH MODIFIED WEIGHTS

For the results in this section, we consider only the clasaidfal processes with bounded second moments, i.e.,
E[\(t)2] <n for all | € £, wheren is a suitable constant. For simplicity, we retain the asgionf time-invariant
link-rates, but the result of this section can be generdlinea wider class of well-behaved rate processes. For each
link I, r; <Rmax whereRmax is some constant.

The centralized greedy maximal (CGM) scheduler is a weitligid instance of the class of maximal schedulers.
It operates in the following manner:

In each timeslot:

1) For each linkl, compute link weightv = g (t)r;.

2) Sort the linksl in non-increasing order ofj;.

3) Add the first link in the sorted list (i.e., the one with hégh weight) to the schedule for the timeslot, and

remove from the list all links that are no longer feasiblegda conflicts).

4) Repeat step 3 until the list is exhausted (i.e., no motslizan be added to the schedule).

For this scheduler, it is known that the efficiency-ratioﬁslast%.

We now describe a variant of the CGM Scheduler for which it ésgible to prove non-uniform guarantees
analogous to the loc#{-precedence based threshold maximal scheduler:

In time-slott:

1) For each link, computew; = %.

2) Sort the weights in non-increasling order.

3) Select the link with maximum weight and include it in théedule; eliminate all links conflicting with it



4) Repeat till no more links remain.

The rate allocated to a linkduring slott is denoted by (t). If a link is selected for scheduling in slot then
X (t) =r(t), elsex(t) =0.

R denotes the set of all feasible rate-allocations (theseaeeallocations that result from some conflict-free
schedule).

Theorem 3:The centralized greedy maximal scheduler that uses lirghtgw, = 4 %) mg'ng KT can achieve
- o 1 o 1
an efficiency-vector ofy, wherey, = K= maiKg-

To prove this, we first state and prove the following claim:

Lemma 1:1f a scheduler selects the set of links to schedule, suchithaach slot, 3 ¢ (t)x (t) > mai}{xz gt )VT(R,
leL cRleL
then this scheduler achieves an efficiency-vectojofwherey = &

Proof: Let 7 be a traffic vector within the reduced rate-region. Th_énl-f lies within the convex-hull of
— —
R. Hence, A lies within the convex hull off’ =y - ®. Therefore(1+&)(q- A ) < gaxﬁ-?.
eR/’

The dynamics of the queues in the network is as follows:

q(t+1)=(at) —x)++N(t) 2

wherex (t) is eitherr; or 0 depending on whethéris scheduled or not.
Consider the following Lyapunov function:

Va(t) = ¥ (ai(t))? ®)

leL

Noting that (g (t +1))2 = (@ (t) = x(1))4 +Ai(1))% < max{(ar () + (M (£) = (£)))2, (A1 (£)2} < (ar(t) + M () -
X (1)))?+ (A (t))?, we obtain the following:

NI (M) =E [Z —>a ]

leL leL

SELZ ((ql(t)+(>\|(t)—>q(t)))2+(>\|() —qt )\a ]
eL

+C; whereCy =n+ anax

leL (4)
2( GON— T ax ) | +Cr
leL leL
< -y ANq (t) +C
leL
if lELCh (tx(t) = max (Iequl O (U)
|

We remark that Lemma 1 can be viewed as the non-uniform amalofj Proposition 3 in [1].

Let Sy denote the set of links selected by the CGM scheduler withifieddweights. Consider anye Sy. Let
us denote byB(l) the maximum weight independent subset of linkd (h \ {I} that were still eligible in the step
when| was chosen. EvidentlyB(l)| < K. Furthermore, ifSot is the set of links selected by a scheduler that

maximizesy g . <. then Z q"' < z max q':' QKLK , since each link € Sy either also occurs ithp: and
ESopt 15 Sg kE@(l)
thereby contnbutes its we|ght to it, or is the cause of bilsgkn Sy a set of links that occur iGpt, whose weight



Fig. 1. A Star Topology

cannot exceed W% py definition.

keB()
From the greedy nature of the scheduler, it follows that:
an o Gk
= for all | € 54,k € B(l
g =R 9 () (5)
Therefore:
an > K (qK ) for all | € Sg,k € B(l)

qr > ( {QK"})fora|||esg

qr > z qkk VB <K)
cB(l

sy an > Z a <~>
|€59 |€50p[ Kl

In light of Lemma 1, this proves the result.

(6)

VIl. A CANONICAL TOPOLOGY. THE STAR

In this section, we compare and discuss the implicationsunfresults for a canonical topology—where the
link-interference graph is a star (Fig. 1) with one centek landK radial links. This topology is often used as
an example in work on scheduling algorithms. In Section I\& proved that the locaK-precedence scheduler
achieves an eficiency vector {%]. Since the scheduler of Section IV is also a priority basedimal scheduler,
therefore Theorem 2 also applies to it. Thus, this schediderstabilize any vector that lies in tmé] reduced
region, or in the reduced region specified by Theorem 2.

Let us consider what would happen when we use the IKepfecedence scheduler in the star topology. In this
case, the link corresponding to the center vertex has pririand itsh, = 1, while all other links have priority
1, and theirﬁ = 1. 3 ThereforeH, = 1. Thus, the locaK-precedence based maximal scheduler is withirean
margin of the optimal for the star topology. Singecan be chosen to be extremely small, this is near-optimals;Th
our non-uniform scaling results also yield a close-to4opli uniform-scaling bound for this particular topology.

Note that the vanilla maximal scheduler with thresholdsyfrwhich the above scheduler is derived, can be
shown to have an efficiency-ratio no better thi%rin the case of the star topology. Thus, the use of precedence
based orK yields a very substantial improvement in performance is tase.

SErratum added June 10, 2009: Please read as: "In this casénkhcorresponding to the center vertex has priority 1 aadni= 1, while
all other links have priorityK, and theirh; = 1.



It must be noted that for the special case of the star topolother prior work has also shown performance-
improvement when priority is given to the center link. In J1R is shown that giving higher priority to the center
link when performing prioritized maximal scheduling allevene to achieve rate-stability for all vectors within
the rate-region. Note that our result proves queue-stgbilihich is a much stronger result. Similarly, in [8], it is
shown that when using a random access protocol, breakisgnti@vor of the center link yields substantially better
performance thal’%.

VIII. DISCUSSION

The results presented in this paper are not only examplesreiniform performance analysis, but also highlight
how it may be possible to achieve desirable non-uniform gpuaes by appropriate assignment of priorities to links.
For instance, our non-uniform performance bound for thallécprecedence based scheduler of Section IV is a
strict improvement over the previous known uniform and maiform bounds for the vanilla maximal scheduler with
thresholds [3], [5]. Our general result for any prioritizecheduler (Theorem 2) can be helpful in determining siatabl
priority assignments for small known-topology networksatthieve desired differentiated levels of performance.

It must also be noted that our result for the modified-weigBM scheduler proves the same non-uniform
bound as for the locaK-precedence scheduler; however, the two scheduler actiievdound in different ways:
the CGM variant effectively gives precedence to linkaith lower K, by using weights inversely proportional to
K, whereas the loca-precedence scheduler gives precedence to links withrla¢geThis is not surprising as
the two algorithms operate quite differently. The CGM aputo gives precedence according to weight, and thus,
a single higher weight link can prevent concurrent schadubf multiple links with only slightly lower weight.
Modifying the weight formulation to privilege lowdf; addresses this. On the other hand, the maximal scheduler
with thresholds chooses any maximal schedule from amodiggble links, and thus, a link with large K; may
get a much lower fraction of time if links ih(l), which could potentially have been active concurrentlycdmee
eligible at different times, and are scheduled sequewtitliereby increasing the fraction of time it is blocked by
up to a factor ofK;. Giving priority to links with higherK, addresses this.
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APPENDIX

Proof of Theorem 1: Let x (t) denote the service received by lihlduring slott. Thus,x (t) =0 if | is not
scheduled during the slot, am{t) = r| otherwise.
The queue dynamics are as follows:

at+1)=a)+Art)—x() (7

We use the following Lyapunov function to prove queue-siigbi

Vo(q (1)) 8)

_ Kiai(t) l leQk(t)]
kel

leL N M

It can be seen that:

Vq(a(t+1))qu(ﬁ(t)):|z [K|Q|(t+1) ( s quk(tﬂ)) )
eL ki

" ST €
Ki(a(t)+at+1) —q(t) ( k“k<qk(t>+qk<t+1>—qk<t>>>
PEI0) Mk
)

M

_ Klqlm( quk<t>)+ K.q.(t)( it +1) — at)
e N ke%) Mk e "N ke%) Mk

|
b

Ki(at+1) —qt) Ke(ak(t+1)—a(®) )| < Ka) Kick (1)
2 f (kelzm " ﬂ 2 (kelzu) fi )
_ {k}qlm( k“k<qk<t+1>—qk<t>>> . K|<q.<t+1>—q|<t>><z k“qumﬂ
el " \kémy Tk 1€z i ke Tk
L5 [K@try—am) ( 5 Kk<qk<t+1>qk<t>>>}
1€z N kETT) Tk
oy {ml(t) ( 5 k“k<qk<t+1>—qk<t>>> . [k](ql(wl)—ql(t)) ( 5 Kk<qk<t+1>—qk<t)>>]
= =10 M &z r kT Mk

sinceke I(l) = | € 1(k) from the symmetric conflicts assumption

9)

Denote byZ/(t) the set of linksl for which g (t) > r;. This set of links participates in the scheduling process

for slott. From the scheduler definition, it follows that, for &l £/(t):

PEIOTRL

If A lies within the[%l]—reduced rate region, then, by assumption, there existe smimeduling algorithm that
achieves stability with load vector = [y] - .
This implies existence of an average service-rate vegtéor all links | satisfying the following for some > 0O:

(1+¢&)K\ < x5 for all links | (11)

S ™ < max{1,K } =K, for all links | 12)
PEIOL



Le Qinit = maxm. Using (9):
lec '

EVg(T (t+1)) ~Va(T ()| TO i ~
-25 Ku;ul( ) (E > )E[Kkmk( +ri) —qk<t>>}> iSE [Kl (a +rT) —a) (kEIZ(I)Kkmk(t +rt) —qk<t>>>]
. |€LKIqI (kelz(l : OrT > IGLE[KMr:(t)kGIZ(I)Kk?r\:()] N
el s el B )
gzleff'l(t) <E k;”ﬁ"?:(t)] ELE%)KK’;E(U?() >+cl whereCy — | £|K21 max

g (g ey ) e

leL\Z/(t)

w5 () e (g )
ey ke Tk ez N PETORRL

using (10), (11), (12)

min

Kat Ko (t
=2 Z [—&Ymin] +2° 5 &YminQinit —2 M,
€Ty " 1T(t) edze N

5 |0||()Eym 1o KIQI(U( Kk)\k> e
ez N ez N k;l) Mk

(compensating for links withh; = 0 by adding the 22 €YminQinit term, and also
l€C7(t)

subtracting and adding back 25 Kiai (t)
leNz/t) !

+2

€Ymin to handle links inL\ £'(t))

K
<23 'q' (—€yimin) +Ca
cL

Whereymmf| mi}\n>0KrlA Fmax=Mmaxr, C = (Ié!ﬂ"rﬁ; and Cy = Cy + 2&Ymin| L|Qinit + 28YminK | L] + 2| L|K?Imay
| ler

Using the above in conjunction with Lemma 2 from [13] suffitesprove stability.



Proof of Theorem 2. Suppose the set of valid priority values that can be assigadihks is M where

|M] =m. Thus, for alll: 1< @) <m

i-1
Let Si={l|l € £,¢(l) =i}. Evidently for a linkl € &, H(I) C U S$j, andZ(l) C &. Conversely, for a link € j,
j=1

mHOuzo)< U .

=]
The queue dynamics are as follows:

at+1)=a)+Ant)—x()

wherex (t) can be either 0 or; depending on whethdrwas scheduled during slbtor not.
We use the following Lyapunov function:

It can be seen that:

Vo(T (t+1)) = Va(T (1) =

m(mm)m”lzqm+¢> s a(t+D) 1 ¢ G(t+])
i; €o & N ke Tk N L
-5 (ITT‘aX)mlﬂz'(t 5 a® 1 ¢ b
&\ & Sk ko 2k&n) Tk
e (max)mi+1 a®)+@t+1)—a() 5 Ok(t) + (ak(t+1) — ak(t))
i; € = fi keH() "k
L ga @ty —am)] O <|max m"“zq(t) KD 1 ¢ ()
2% Mk i<\ % G k) Tk 2 Tk
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<1\ € S lkdhn) Tk kezn) Tk

H
m—i+1 _
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1€5i
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Since we have a prioritized maximal scheduler, it followatti g (t) > r; then either is scheduled in slot or
else some& € (H(1)UZ(l))\ {l} is scheduled in slot. Therefore for all participating links:
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Using the above in conjunction with Lemma 2 from [13] suffitegrove stability.



