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Abstract

Significant research effort has been directed towards the design andperformance analysis of imperfect scheduling
policies for wireless networks. These imperfect schedulers are of interest despite being sub-optimal, as they allow for
more tractable implementation at the expense of some loss in performance. However much of this prior work takes
a uniform scaling approach to analyzing scheduling performance, whereby the performance of a scheduling policy
is characterized in terms of a single scalar quantity, the efficiency-ratio. While suitable for characterizing worst-case
performance, this approach limits one’s ability to understand the different extents of performance degradation that may
be experienced by different links in a network. Such an understandingis very valuable when average performance is
of greater interest than the worst-case, or when certain links are more important than others. Furthermore, once one
approaches scheduler design with non-uniform performance guarantees in mind, one finds that simple modifications
to well-known scheduling algorithms can yield substantially improved non-uniform scaling results compared to the
original algorithms. In this paper, we make a comprehensive case foradopting such an approach by presenting non-
uniform scaling results for a set of algorithms that are variants of well-known algorithms from the class of maximal
schedulers.

I. I NTRODUCTION

Substantial recent research effort has been directed towards the design ofimperfectscheduling policies [1], [2],

[3], [4] for wireless networks, and analyzing their performance. These imperfect schedulers are of interest despite

being sub-optimal, as they allow for more tractable implementation at the expense of some loss in performance.

However much of this prior work takes a uniform scaling approach to analyzing scheduling performance, whereby

the performance of a scheduling policy is characterized in terms of a single scalar quantity, theefficiency-ratio.1

While this leads to a compact and simple characterization, itties down the performance criterion to the worst-case

degradation experienced by any link in the network. In a large range of scenarios, it is likely that many or most

links in the network may be able to achieve much better throughput. When the average experience of most links is

more important than the worst-case, it is more relevant to consider the performance achieved by each link, rather

than use the performance of the worst-case link as a metric. Similarly, when all links are not equally important, one

may care about trying to provide performance guarantees proportional to each link’s importance. In such scenarios,

it is important to be able to understand what kind of differentiated guarantees a scheduling algorithm can provide

to different links. Thus, it is very relevant to attempt performance analysis based on anefficiency-vectorrather than
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1The efficiency-ratio of an imperfect scheduler is said to beδ if: given any load vector

−→
λ , such that the optimal scheduler can stabilize the

network with load
−→
λ , the imperfect scheduler can stabilize it for the scaled downvector γ

−→
λ .



a singleefficiency-ratio.2

While, most of the previously mentioned prior work takes a uniform scaling approach, some non-uniform scaling

bounds were indeed proved in [5] for a maximal scheduling algorithm. In this paper, we make a much more

comprehensive attempt to make a case for efficiency-vector based performance analysis. Furthermore, we show that

simple modifications involving introduction of prioritiesto well known scheduling algorithms from the class of

maximal schedulers, e.g., maximal scheduling with thresholds and centralized greedy maximal scheduling, enables

one to achieve improved non-uniform bounds.

It must be noted that maximal schedulers are of practical interest, since they can potentially be approximately

implemented using backoff schemes [6], [7], or probabilistic random-access schemes [8]. These approaches can also

be modified to allow for prioritization through suitable modulation of backoff intervals and/or access probabilities,

and thus the results presented in this paper can provide useful insight for practical MAC protocol design.

II. N OTATION AND TERMINOLOGY

We assume the availability of a single channel for communication. The wireless network is viewed as a directed

graph, with each directed link in the graph representing an available communication link. We model interference

using aconflict relation between links. Two links are said to conflict with each other if it is only feasible to schedule

at most one of the links at any given time. The conflict relation is assumed to be symmetric. The conflict-based

interference model provides a tractable approximation of reality – while it does not capture the wireless channel

precisely, it is more amenable to analysis. Such conflict-based interference models have also been used in past

related work (e.g., [9], [10]), etc.

We assume a single channel of operation. Time is assumed to beslotted, with the slot duration being 1 unit time

(i.e., we use slot duration as the time unit). In each time slot, the scheduler used in the network determines which

links should transmit in that time slot.

We now introduce some notation and terminology.

The network is viewed as a collection of directed links, where each link is a pair of nodes that are capable of

direct communication with non-zero rate.

• L denotes the set of directed links in the network.

• I(l) denotes the set of links that conflict with linkl . As a matter of convention we assume thatl ∈ I(l).
• Kl denotes the maximum number of links inI(l) that can be scheduled simultaneously ifl is not scheduled.

• K is the largest value ofKl over all links l , i.e., K = max
l

Kl .

• K̃l = max{1,Kl}.

• K̃ = max{1,K}.

• Imax= max
l∈L

|I(l)|

We limit our focus to single-hop flows. Thus, all traffic over link l can be viewed as a single aggregated flow.

III. R ELATED WORK

The seminal work of Tassiulas and Ephremides[11] yielded athroughput-optimalscheduler (the Dynamic Back-

pressure Scheduler), which can schedule all “feasible” traffic flows without resulting in unbounded queues. However,

such an optimal scheduler is difficult to implement in practice. Hence, various imperfect scheduling strategies that

trade-off throughput for simplicity have been proposed in [1], [2], [3], [4] amongst others. A queue-loading rule

for maximal scheduling in multi-channel wireless networksis presented in [10].

2Analogous to efficiency-ratio, we can say that an algorithm achieves an efficiency-vector of−→γ = [γl ] if: given any load vector
−→
λ , such that

the optimal scheduler can stabilize the network with load
−→
λ , the imperfect scheduler can stabilize it for the scaled downvector−→γ ·

−→
λ (where

−→x ·−→y denotes the dot-product of vectorsx,y).



Related to this work, [5] presents some non-uniform scalingresults for a simple maximal scheduler with

threshold-rule. It is shown that each link achieves a scaling of 1
max
k∈I(l)

K̃k
. In Section IV this paper, we show how

introducing prioritization in a maximal scheduler with threshold-rule helps improve the achievable non-uniform

scaling guarantees. In [12] uniform scaling results are presented for certain maximal schedulers with priorities.

Their focus is on proving rate-stability. While this paper also considers certain maximal schedulers with priorities,

we focus onnon-uniform bounds, and provequeue-stability, which is a stronger condition.

IV. L OCAL K-PRECEDENCEBASED MAXIMAL SCHEDULER

A maximal scheduler much studied in prior work such as [3], [9], [5] for its potential amenability to distributed

implementation is the following:

Maximal Scheduler with Threshold Rule:At the beginning of each slott: all those linksl with ql (t) ≥ r l

participate in the scheduling process for that slot. From amongst the participating links, a maximal schedule is

computed, i.e., if a participating linkl is not scheduled, then some link conflicting withl must be scheduled. The

following uniform and non-uniform bounds are known for thisscheduler:

• Uniform Bound:This scheduler can achieve an efficiency-ratio of1
K̃

[3], [9].

• Non-uniform Bound: This scheduler can achieve an efficiency-vector of[ 1
max
k∈I(l)

K̃k
] [5].

We now describe a simple variation on the maximal scheduler with threshold rule:

Local K-precedence based Maximal Scheduler:In each time slott, only those linksl with ql (t)≥ r l participate

in scheduling. The scheduler computes a schedule with the following property:

If link l participates in scheduling, the eitherl is scheduled, or some conflicting linkk ∈ I(l) with K̃k ≥ K̃l is

scheduled.

An alternative description in terms of priority-assignment is as follows:

Each link l has a priority valueφ(l) = K̃− K̃l +1, whereφ(l) < φ(k) implies l has higher priority thank. In each

slot, a maximal schedule is computed from amongst participating links by following the priority order. Thus, either

a participating linkl is scheduled, or a linkk∈ I(l)\{l} with equal or higher priority is scheduled.

An approximation to such a scheduler can be implemented using a backoff based procedure, where each link

l chooses a backoff value proportional onφ(l) (e.g., a link l could chooseK̃ − K̃l + 1 as its backoff). SincẽK

is typically a small constant for most wireless networks, the overhead incurred by the backoff window would be

small.

The following assumptions are made about the arrival and channel rate processes:

The arrival process for linkl is i.i.d. over all time-slotst, and is denoted by{λl (t)}, with E[λl (t)] = λl . We

make no assumption about independence of arrival processesfor two links l ,k. However, we consider only the class

of arrival processes for whichE[λl (t)λk(t)] is bounded, i.e.,E[λl (t)λk(t)] ≤ η for all l ∈ L ,k ∈ L , whereη is a

suitable constant. The rater l achievable on a linkl is assumed to be time-invariant.

Theorem 1:The localK-precedence based scheduler can achieve an efficiency-vector −→γ = [γl1,γl2, ...,γl|L | ] where

γl i = 1
max{1,Kl }

= 1
K̃l

.

The proof is presented in the appendix.

V. A GENERAL BOUND FOR ANY PRIORITY BASED SCHEDULER

The scheduler described in Section IV involves assignment of priorities to links. In this section, we make an

effort to better understand the non-uniform scaling behavior of any generic maximal scheduler with priorities.

We consider any arbitrary priority assignment to links. Unlike [12], we do not assume that the priorities are

unique. Thus, two links may have equal priority. Moreover, the priorities do not even have to be locally unique,

i.e., a link l and a link k ∈ I(l) \ {l} may have the same priority. Though this complicates the analysis slightly

compared to the case of unique priorities, it is useful to consider this more general case for the following reason: in



practice a prioritized scheduler might be implemented using a differentiated backoff mechanism. In such a scenario,

the number of slots in the backoff window must be at least as many as the number of locally distinct priorities.

Therefore, assigning unique priorities to all links would implies that the window-size must increase linearly in the

number of network links, or at the very least linearly inImax. In a large network with variable node density, it may

be more practical to allocate priorities from a smaller set.In fact, we remark that the scheduler described in Section

IV also assigns potentially non-unique priorities, since many links l (some of which may be mutually conflicting)

may have the same value ofKl .

We denote the priority of a linkl by φ(l). φ(l) < φ(k) implies thatl hashigher priority thank.

Let H(l) = {k|k∈ I(l),φ(k) < φ(l)}.

Let Z(l) = {k|k∈ I(l),φ(k) = φ(l)}. Note thatl ∈ Z(l).

Let hl be the maximum number of links inH(l)∪Z(l) that can be concurrently scheduled ifl is not scheduled,

and h̃l = max{1,hl}.

Let Hl = max
k∈I(l)\H(l)

h̃k. It follows that:

∀ k∈ H(l)∪Z(l) : Hk ≥ h̃l (1)

Let −→r denote the vector of link-rates.

Consider the following prioritized maximal scheduler:

In slot t, only links l with ql (t)≥ r l participate. If a linkl participates and is not scheduled in slott, this implies

that somek∈ H(l)∪Z(l)\{l} must be scheduled in slott.

We make the same assumptions about the arrival and link rate processes as in Section IV.

Theorem 2:Any prioritized maximal algorithm with priority-vector[φ(l)] can stabilize any load-vector
−→
λ for

which
−→
λ +εo

−→r lies within the[γl ]-reduced rate region, where 0< εo < 1 is a positive constant which can be chosen

to be very small (e.g.,εo can be chosen to be 10−5), andγl = 1
Hl

.

The proof is presented in the appendix.

VI. A C ENTRALIZED GREEDY MAXIMAL SCHEDULER WITH MODIFIED WEIGHTS

For the results in this section, we consider only the class ofarrival processes with bounded second moments, i.e.,

E[λl (t)2]≤ η for all l ∈ L , whereη is a suitable constant. For simplicity, we retain the assumption of time-invariant

link-rates, but the result of this section can be generalized to a wider class of well-behaved rate processes. For each

link l , r l ≤ Rmax whereRmax is some constant.

The centralized greedy maximal (CGM) scheduler is a well-studied instance of the class of maximal schedulers.

It operates in the following manner:

In each timeslott:

1) For each linkl , compute link weightwl = ql (t)r l .

2) Sort the linksl in non-increasing order ofwl .

3) Add the first link in the sorted list (i.e., the one with highest weight) to the schedule for the timeslot, and

remove from the list all links that are no longer feasible (due to conflicts).

4) Repeat step 3 until the list is exhausted (i.e., no more links can be added to the schedule).

For this scheduler, it is known that the efficiency-ratio is at least 1
K̃

.

We now describe a variant of the CGM Scheduler for which it is possible to prove non-uniform guarantees

analogous to the localK-precedence based threshold maximal scheduler:

In time-slot t:

1) For each linkl , computewl = ql (t)r l

K̃l
.

2) Sort the weights in non-increasing order.

3) Select the link with maximum weight and include it in the schedule; eliminate all links conflicting with it



4) Repeat till no more links remain.

The rate allocated to a linkl during slott is denoted byxl (t). If a link is selected for scheduling in slott, then

xl (t) = r l (t), elsexl (t) = 0.

R denotes the set of all feasible rate-allocations (these arerate-allocations that result from some conflict-free

schedule).

Theorem 3:The centralized greedy maximal scheduler that uses link-weights wl = ql (t)r l

K̃l
= ql (t)r l

max{1,Kl }
can achieve

an efficiency-vector of−→γ , whereγl = 1
K̃l

= 1
max{1,Kl }

.

To prove this, we first state and prove the following claim:

Lemma 1: If a scheduler selects the set of links to schedule, such that, in each slot,∑
l∈L

ql (t)xl (t)≥max
y∈R

∑
l∈L

ql (t)
yl (t)
K̃l

,

then this scheduler achieves an efficiency-vector of−→γ , whereγl = 1
K̃l

.

Proof: Let
−→
λ be a traffic vector within the reduced rate-region. Then−→γ −1 ·

−→
λ lies within the convex-hull of

R . Hence,
−→
λ lies within the convex hull ofR ′ = −→γ ·R . Therefore(1+ ε)(−→q ·

−→
λ ) ≤ max

−→y ∈R ′

−→q ·−→y .

The dynamics of the queues in the network is as follows:

ql (t +1) = (ql (t)−xl (t))+ +λl (t) (2)

wherexl (t) is eitherr l or 0 depending on whetherl is scheduled or not.

Consider the following Lyapunov function:

Vq(t) = ∑
l∈L

(ql (t))
2 (3)

Noting that (ql (t + 1))2 = ((ql (t)− xl (t))+ + λl (t))2 ≤ max{(ql (t)+ (λl (t)− xl (t)))2,(λl (t))2} ≤ (ql (t)+ (λl (t)−

xl (t)))2 +(λl (t))2, we obtain the following:

E [∆(Vq(t))|
−→q (t)] = E

[

∑
l∈L

(ql (t +1))2− ∑
l∈L

ql (t)
2|−→q (t)

]

≤ E

[

∑
l∈L

(
(ql (t)+(λl (t)−xl (t)))

2 +(λl (t))
2−ql (t)

2
)
|−→q (t)

]

≤ 2E

[

∑
l∈L

ql (t)(λl (t)−xl (t)) |
−→q (t)

]
+C1 whereC1 = η+R2

max

= 2

(

∑
l∈L

ql (t)λl − ∑
l∈L

ql (t)xl (t)

)
+C1

≤−ε∑
l∈L

λl ql (t)+C1

if ∑
l∈L

ql (t)xl (t) = max
−→y ∈R ′

(

∑
l∈L

ql (t)yl (t)

)

(4)

We remark that Lemma 1 can be viewed as the non-uniform analogue of Proposition 3 in [1].

Let Sg denote the set of links selected by the CGM scheduler with modified weights. Consider anyl ∈ Sg. Let

us denote byB(l) the maximum weight independent subset of links inI(l)\{l} that were still eligible in the step

when l was chosen. Evidently|B(l)| ≤ Kl . Furthermore, ifSopt is the set of links selected by a scheduler that

maximizes∑ql
r l
K̃l

, then ∑
l∈Sopt

ql r l
K̃l

≤ ∑
l∈Sg

max

{
ql r l
K̃l

, ∑
k∈B(l)

qkrk
K̃k

}
, since each linkl ∈ Sg either also occurs inSopt and

thereby contributes its weight to it, or is the cause of blocking in Sg a set of links that occur inSopt, whose weight



Fig. 1. A Star Topology

cannot exceed ∑
k∈B(l)

qkrk
K̃k

by definition.

From the greedy nature of the scheduler, it follows that:

ql r l

K̃l
≥

qkrk

K̃k
for all l ∈ Sg,k∈ B(l) (5)

Therefore:

ql r l ≥ K̃l

(
qkrk

K̃k

)
for all l ∈ Sg,k∈ B(l)

∴ ql r l ≥ K̃l

(
max

k∈B(l)

{
qkrk

K̃k

})
for all l ∈ Sg

∴ ql r l ≥ ∑
k∈B(l)

qkrk

K̃k
(∵ |Bl | ≤ Kl )

∴ ∑
l∈Sg

ql r l ≥ ∑
l∈Sopt

ql

(
r l

K̃l

)

(6)

In light of Lemma 1, this proves the result.

VII. A C ANONICAL TOPOLOGY: THE STAR

In this section, we compare and discuss the implications of our results for a canonical topology—where the

link-interference graph is a star (Fig. 1) with one center link andK radial links. This topology is often used as

an example in work on scheduling algorithms. In Section IV, we proved that the localK-precedence scheduler

achieves an eficiency vector of[ 1
K̃l

]. Since the scheduler of Section IV is also a priority based maximal scheduler,

therefore Theorem 2 also applies to it. Thus, this schedulercan stabilize any vector that lies in the[ 1
K̃l

] reduced

region, or in the reduced region specified by Theorem 2.

Let us consider what would happen when we use the localK-precedence scheduler in the star topology. In this

case, the link corresponding to the center vertex has priority K and its h̃l = 1, while all other links have priority

1, and their̃hl = 1. 3 ThereforeHl = 1. Thus, the localK-precedence based maximal scheduler is within anεo
−→r

margin of the optimal for the star topology. Sinceεo can be chosen to be extremely small, this is near-optimal. Thus,

our non-uniform scaling results also yield a close-to-optimal uniform-scaling bound for this particular topology.

Note that the vanilla maximal scheduler with thresholds, from which the above scheduler is derived, can be

shown to have an efficiency-ratio no better than1
K in the case of the star topology. Thus, the use of precedence

based onKl yields a very substantial improvement in performance in this case.

3Erratum added June 10, 2009: Please read as: ”In this case, the link corresponding to the center vertex has priority 1 and its h̃l = 1, while
all other links have priorityK, and theirh̃l = 1.”



It must be noted that for the special case of the star topology, other prior work has also shown performance-

improvement when priority is given to the center link. In [12], it is shown that giving higher priority to the center

link when performing prioritized maximal scheduling allows one to achieve rate-stability for all vectors within

the rate-region. Note that our result proves queue-stability, which is a much stronger result. Similarly, in [8], it is

shown that when using a random access protocol, breaking ties in favor of the center link yields substantially better

performance than1
K̃

.

VIII. D ISCUSSION

The results presented in this paper are not only examples of non-uniform performance analysis, but also highlight

how it may be possible to achieve desirable non-uniform guarantees by appropriate assignment of priorities to links.

For instance, our non-uniform performance bound for the local K-precedence based scheduler of Section IV is a

strict improvement over the previous known uniform and non-uniform bounds for the vanilla maximal scheduler with

thresholds [3], [5]. Our general result for any prioritizedscheduler (Theorem 2) can be helpful in determining suitable

priority assignments for small known-topology networks toachieve desired differentiated levels of performance.

It must also be noted that our result for the modified-weight CGM scheduler proves the same non-uniform

bound as for the localK-precedence scheduler; however, the two scheduler achievethis bound in different ways:

the CGM variant effectively gives precedence to linksl with lower Kl by using weights inversely proportional to

Kl , whereas the localK-precedence scheduler gives precedence to links with larger Kl . This is not surprising as

the two algorithms operate quite differently. The CGM approach gives precedence according to weight, and thus,

a single higher weight link can prevent concurrent scheduling of multiple links with only slightly lower weight.

Modifying the weight formulation to privilege lowerKl addresses this. On the other hand, the maximal scheduler

with thresholds chooses any maximal schedule from amongst eligible links, and thus, a linkl with large Kl may

get a much lower fraction of time if links inI(l), which could potentially have been active concurrently, become

eligible at different times, and are scheduled sequentially, thereby increasing the fraction of time it is blocked by

up to a factor ofKl . Giving priority to links with higherKl addresses this.
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APPENDIX

Proof of Theorem 1: Let xl (t) denote the service received by linkl during slott. Thus,xl (t) = 0 if l is not

scheduled during the slot, andxl (t) = r l otherwise.

The queue dynamics are as follows:

ql (t +1) = ql (t)+λl (t)−xl (t) (7)

We use the following Lyapunov function to prove queue-stability:

Vq(
−→q (t)) = ∑

l∈L

K̃l ql (t)
r l

[

∑
k∈I(l)

K̃kqk(t)
rk

]
(8)

It can be seen that:

Vq(
−→q (t +1))−Vq(

−→q (t)) = ∑
l∈L

[
K̃l ql (t +1)

r l

(

∑
k∈I(l)

K̃kqk(t +1)

rk

)]
− ∑

l∈L

[
K̃l ql (t)

r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)]

= ∑
l∈L

[
K̃l (ql (t)+ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t)+qk(t +1)−qk(t))
rk

)]
− ∑

l∈L

[
K̃l ql (t)

r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)]

= ∑
l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)
+ ∑

l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)
+ ∑

l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)]

+ ∑
l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]
− ∑

l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)

= ∑
l∈L

[
K̃l ql (t)

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]
+ ∑

l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)]

+ ∑
l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]

= 2∑
l∈L

[
K̃l ql (t)

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]
+ ∑

l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]

sincek∈ I(l) =⇒ l ∈ I(k) from the symmetric conflicts assumption
(9)

Denote byL ′(t) the set of linksl for which ql (t) ≥ r l . This set of links participates in the scheduling process

for slot t. From the scheduler definition, it follows that, for alll ∈ L ′(t):

∑
k∈I(l)

K̃kxk(t)
rk

≥ K̃l (10)

If
−→
λ lies within the [ 1

K̃l
]-reduced rate region, then, by assumption, there exists some scheduling algorithm that

achieves stability with load vector
−→
λ′ = [−→γ ]−1 ·

−→
λ .

This implies existence of an average service-rate vectorxl for all links l satisfying the following for someε > 0:

(1+ ε)K̃l λl ≤ xl for all links l (11)

∑
k∈I(l)

xk

rk
≤ max{1,Kl} = K̃l for all links l (12)



Le Qinit = max
l∈L

K̃l ql (0)
r l

. Using (9):

E[Vq(
−→q (t +1))−Vq(

−→q (t))|−→q (t)]

= 2∑
l∈L

K̃l ql (t)
r l

(
E[ ∑

k∈I(l)

E[
K̃k(qk(t +1)−qk(t))

rk
]

)
+ ∑

l∈L

E

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]

≤ 2∑
l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃k

rk
E [λk(t)−xk(t)|

−→q (t)]

)
+ ∑

l∈L

E

[
K̃l λl (t)

r l
∑

k∈I(l)

K̃kλk(t)
rk

]

= 2∑
l∈L

K̃l ql (t)
r l

(
E

[

∑
k∈I(l)

K̃kλk(t)
rk

]
−E

[

∑
k∈I(l)

K̃kxk(t)
rk

|−→q (t)

])
+ ∑

l∈L

E

[
K̃l λl (t)

r l

(

∑
k∈I(l)

K̃kλk(t)
rk

)]

≤ 2∑
l∈L

K̃l ql (t)
r l

(
E

[

∑
k∈I(l)

K̃kλk(t)
rk

]
−E

[

∑
k∈I(l)

K̃kxk(t)
xk

|−→q (t)

])
+C1 whereC1 = |L |K̃2ηImax

= 2∑
l∈L

K̃l ql(t)
r l

(

∑
k∈I(l)

K̃kλk

rk
−E

[

∑
k∈I(l)

K̃kxk(t)
rk

|−→q (t)

])
+C1

= 2 ∑
l∈L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk
−E

[(

∑
k∈I(l)

K̃kxk(t)
rk

|−→q (t)

)])

+2 ∑
l∈L\L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk
−E

[

∑
k∈I(l)

K̃kxk(t)
rk

|−→q (t)

])
+C1

≤ 2 ∑
l∈L ′(t)

K̃l ql (t)
r l

[(

∑
k∈I(l)

K̃kλk

rk
− ∑

k∈I(l)

xk

rk

)
+

(

∑
k∈I(l)

xk

rk

)
−E

[

∑
k∈I(l)

K̃kxk(t)
rk

|−→q (t)

]]

+2E

[

∑
l∈L\L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk

)]
+C1

≤ 2 ∑
l∈L ′(t)

K̃l ql (t)
r l

[
−ε

(

∑
k∈I(l)

K̃kλk

rk

)]
+2 ∑

l∈L\L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk

)
+C1

using (10), (11), (12)

≤ 2 ∑
l∈L ′(t)

K̃l ql (t)
r l

[−εymin]+2 ∑
l∈L ′(t)

εyminQinit −2 ∑
l∈L\L ′(t)

K̃l ql (t)
r l

εymin

+2 ∑
l∈L\L ′(t)

K̃l ql (t)
r l

εymin+2 ∑
l∈L\L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk

)
+C1

(compensating for links withλl = 0 by adding the 2∑
l∈L ′(t)

εyminQinit term, and also

subtracting and adding back 2∑
l∈L\L ′(t)

K̃l ql (t)
r l

εymin to handle links inL \L ′(t))

≤ 2∑
l∈L

K̃l ql (t)
r l

(−εymin)+C2

whereymin = min
l∈L , λl >0

K̃l λl
r l

, rmax= max
l∈L

r l , C1 = |L |ηImax
(min

l∈L
r l )2 , andC2 = C1 + 2εymin|L |Qinit + 2εyminK̃|L |+ 2|L |K̃2Imax.

Using the above in conjunction with Lemma 2 from [13] sufficesto prove stability.



Proof of Theorem 2: Suppose the set of valid priority values that can be assignedto links is M where

|M| = m. Thus, for all l : 1≤ φ(l) ≤ m.

Let Si = {l |l ∈ L ,φ(l) = i}. Evidently for a linkl ∈ Si , H(l)⊆
i−1
S

j=1
S j , andZ(l)⊆ Si . Conversely, for a linkl ∈ S j ,

I(l)\ (H(l)∪Z(l)) ⊆
m
S

i= j+1
Si .

The queue dynamics are as follows:

ql (t +1) = ql (t)+λl (t)−xl (t) (13)

wherexl (t) can be either 0 orr l depending on whetherl was scheduled during slott or not.

We use the following Lyapunov function:

Vq(
−→q (t)) =

m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]
(14)

It can be seen that:

Vq(
−→q (t +1))−Vq(

−→q (t)) =

m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t +1)

r l

[

∑
k∈H(l)

qk(t +1)

rk
+

1
2 ∑

k∈Z(l)

qk(t +1)

rk

]

−
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)+(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

qk(t)+(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

qk(t)+(qk(t +1)−qk(t))
rk

]
−

m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

−
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]



≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

λl (t)
r l

[

∑
k∈H(l)

λk(t)
rk

+
1
2 ∑

k∈Z(l)

λk(t)
rk

]

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

[

∑
k∈I(l)\(H(l)∪Z(l))

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

λl (t)
r l

[

∑
k∈H(l)

λk(t)
rk

+
1
2 ∑

k∈Z(l)

λk(t)
rk

]

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+ ∑
k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

[

∑
k∈I(l)\(H(l)∪Z(l))

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

λl (t)
r l

[

∑
k∈H(l)

λk(t)
rk

+
1
2 ∑

k∈Z(l)

λk(t)
rk

]

sincek∈ H(l) =⇒ l ∈ I(k)\ (H(k)∪Z(k)) andk∈ Z(l) =⇒ l ∈ Z(k) and l ∈ Sm =⇒ I(l)\ (H(l)∪Z(l)) = φ

Since we have a prioritized maximal scheduler, it follows that if ql (t) ≥ r l then eitherl is scheduled in slott or

else somek∈ (H(l)∪Z(l))\{l} is scheduled in slott. Therefore for all participating linksl :

∑
k∈H(l)

xk(t)
rk

+ ∑
k∈Z(l)

xk(t)
rk

≥ 1 (15)

Since the vector
−→
λ +εo

−→r lies within the[−→γ ] reduced rate region, there is some positiveε such that(1+ε)[−→γ ]−1 ·

(
−→
λ + εo

−→r ) is stabilizable by some scheduling algorithm. Hence, it follows that:

∑
k∈H(l)

(
(1+ ε)

Hk(λk + εork)

rk

)
+ ∑

k∈Z(l)

(
(1+ ε)

Hk(λk + εork)

rk

)
≤ h̃l (16)



Hence:
[

∑
k∈H(l)

λk + εork

rk
+ ∑

k∈Z(l)

λk + εork

rk

]

=

(

∑
k∈H(l)

1
Hk(1+ ε)

Hk(1+ ε)(λk + εork)

rk
+ ∑

k∈Z(l)

1
Hk(1+ ε)

Hk(1+ ε)(λk + εork)

rk

)

≤
1

h̃l (1+ ε)

(

∑
k∈H(l)

Hk(1+ ε)(λk + εork)

rk
+ ∑

k∈Z(l)

Hk(1+ ε)(λk + εork)

rk

)
(using (1))

<

(
1

h̃l

)
h̃l = 1 (using (16))

∴ ∑
k∈H(l)

λk

rk
+ ∑

k∈Z(l)

λk

rk
< 1− εo(min

l∈L
|H(l)∪Z(l)|) ≤ 1− εo

(∀l ∈ L , l ∈ Z(l) and hence|Z(l)| ≥ 1)

(17)

Therefore:

E[Vq(
−→q (t +1))−Vq(

−→q (t))|−→q (t)]

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

E

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+ ∑
k∈Z(l)

(qk(t +1)−qk(t))
rk

|−→q (t)

]

+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

E

[

∑
k∈I(l)\(H(l)∪Z(l))

(qk(t +1)−qk(t))
rk

|−→q (t)

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

E

[

∑
l∈Si

λl (t)
r l

[

∑
k∈H(l)

λk(t)
rk

+
1
2 ∑

k∈Z(l)

λk(t)
rk

]]

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

E

[

∑
k∈H(l)

λk(t)−xk(t)
rk

+ ∑
k∈Z(l)

λk(t)−xk(t)
rk

|−→q (t)

]

+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

E

[

∑
k∈I(l)\(H(l)∪Z(l))

λk(t)−xk(t)
rk

|−→q (t)

]
+C1 whereC1 =

m

∑
i=1

(
Imax

εo

)m−i+1

K̃2ηImax

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[(

∑
k∈H(l)

λk

rk
+ ∑

k∈Z(l)

λk

rk

)
−E

[(

∑
k∈H(l)

xk(t)
rk

+ ∑
k∈Z(l)

xk(t)
rk

)
|−→q (t)

]]

+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

[(

∑
k∈I(l)\(H(l)∪Z(l))

λk

rk

)
−E

[(

∑
k∈I(l)\(H(l)∪Z(l))

xk(t)
rk

)
|−→q (t)

]]
+C1

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

(−εo)+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

εo +
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

|I(l)\ (H(l)∪Z(l))|+C1

(using (15) and (17), and compensating for linksl /∈ L ′(t) by adding
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

εo)

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

(−εo)+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

(Imax−1)+C2

≤ ∑
l∈Sm

ql (t)
r l

(−Imax)+
m−1

∑
i=1

∑
l∈Si

ql (t)
r l

[(
Imax

εo

)m−i+1

(−εo)+

(
Imax

εo

)m−i

(Imax−1)

]
+C2

= ∑
l∈Sm

ql (t)
r l

(−Imax)+
m−1

∑
i=1

∑
l∈Si

ql (t)
r l

[
−

(
Imax

εo

)m−i
]

+C2



≤ ∑
l∈Sm

ql (t)
r l

(−Imax)+
m−1

∑
i=1

∑
l∈Si

ql (t)
r l

[
−

(
Imax

εo

)]
+C2 (∵ Imax≥ 1,εo < 1)

whereC2 = C1 +∑m
i=1

(
Imax
εo

)m−i+1
εo|Si |.

Using the above in conjunction with Lemma 2 from [13] sufficesto prove stability.


