
1

MTSF: A Timing Synchronization Protocol to
Support Synchronous Operations in Multihop

Wireless Networks
Jungmin So

Dept. of Computer Science, and

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Email: jso1@uiuc.edu

Nitin Vaidya
Dept. of Electrical and Computer Engineering, and

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Email: nhv@uiuc.edu

Technical Report
October 2004

Abstract— In this paper, we propose a protocol for synchro-
nizing time in multihop wireless networks. Protocols for power
management or dynamic channel assignment often require syn-
chronous operations, such as waking up at the same time or listen-
ing to a common channel. Having the nodes synchronized in time
is often crucial for these protocols to work. However, the exist-
ing synchronization mechanisms do not work well with these pro-
tocols because either they may fail to synchronize the time even
without transient failures or packet loss, or they may require a
large overhead. The proposed synchronization protocol, called
MTSF (Multihop Timing Synchronization Function), successfully
synchronizes time in a multihop network, at a low cost. In the
absence of packet loss, MTSF guarantees an upper bound on the
clock error between any two pair of nodes in the network. More-
over, MTSF can tolerate packet losses to some extent and its per-
formance degrades gracefully when the loss rate becomes high.
The cost of MTSF increases very slowly as the number of nodes
increase, which makes the protocol highly scalable. MTSF is fully
distributed, and operates without a central coordinator. Finally,
MTSF is self-stabilizing, which means that starting from an arbi-
trary state, the protocol converges to a steady state. Due to these
features, MTSF can support protocols that require synchronous
operations at a low cost.

I. I NTRODUCTION

Time synchronization is an important feature in distributed
systems. Many applications and protocols require synchronous
operations, and those operations rely on synchronized time.
One example is the power saving mechanism (PSM) of IEEE
802.11 [1]. In IEEE 802.11 PSM, all nodes wake up at the be-
ginning of a beacon interval to exchange messages. While the
nodes are awake, they exchange messages to schedule trans-
mission for the current beacon period. If a node does not have
any communication scheduled, it may turn off its radio and go
to sleep for the rest of the beacon period. When a node wakes
up at the start of a beacon period, it expects other nodes to be
up as well. However, if the nodes are not time-synchronized,
nodes may wake up at different times, causing packet losses
when they start transmitting packets.

A revised version from a technical report in January 2004.

To synchronize time, IEEE 802.11 has a protocol called Tim-
ing Synchronization Function (TSF), which is explained in de-
tail in Section IV. TSF uses timestamped beacon messages
transmitted at the start of each beacon period to synchronize
clocks among nodes. The protocol is designed for wireless
LANs, where there is a direct link between any pair of nodes.
Huang and Lai [2] points out that TSF is not scalable, mean-
ing that as the number of nodes increase, the possibility that
the nodes go out of synchronization becomes large enough to
significantly impact protocols that rely on synchronized clocks.
They propose a simple modification to TSF to improve the scal-
ability, as explained in Section III.

For a multihop network, it is much more difficult to achieve
time synchronization, because nodes are spread out in multi-
ple broadcast domains. IEEE 802.11 TSF does not work in
multihop network, mainly due to the reason that beacon mes-
sages sent on different broadcast domains do not agree with
each other. As elaborated later, this leads to a problem we call
time partitioningwhere the time in two groups of nodes can
keep on drifting away from each other, even though they are
connected.

Several clock synchronization protocols have been proposed
for multihop wireless networks, including sensor networks.
They are summarized in Section III. However, as discussed
in Section III, these protocols do not support the synchronous
operations well. Some protocols have low overhead but can-
not avoid time partitioning problem, and other protocols that
achieve global accuracy incur too much overhead.

Due to the difficulty of clock synchronization in a multi-
hop network, protocol designers often avoid synchronous op-
erations [3], or assume that the clocks are synchronized using
out-of-band mechanisms such as GPS [4]. Also, some protocols
introduce additional overhead to avoid relying on time synchro-
nization. One example in this approach is STEM [5], which
uses a second channel.

To support synchronous operations, we need a protocol that
maintains the clock error under a certain bound in a stable man-
ner so that this bound can be used for other protocols running

2

on top of this synchronization protocol. Thus, the protocol we
propose in this paper, aims to achievestable synchronizationat
a low cost. By stable synchronization, we mean that the maxi-
mum clock error between any pair of nodes in the network does
not go over a certain bound for a long time. As shown from
the simulation results, MTSF achieves stable synchronization
among nodes, with a cost that increases very slowly as the num-
ber of nodes increase in a given area.

The rest of the paper is organized as follows. In Section II,
we describe the problem formally and present the goal we try
to achieve in this paper. In Section III, we review the existing
clock synchronization protocols. In Section IV, we describe
IEEE 802.11 TSF in detail and identify its problems to pro-
vide insights that lead to our proposed protocol. In Section V,
we describe our proposed protocol, MTSF, and provide math-
ematical proofs of its features. In Section VI, we evaluate the
performance of MTSF using simulations. Finally, we draw our
conclusion in Section VII.

II. PROBLEM DEFINITION

In this section, we describe formally the problem addressed
in this paper. We also define terms and variables that will be
used throughout the paper.

We consider an ad hoc network that consists of multiple wire-
less nodes. The network may span multiple hops, meaning that
a pair of nodes may be connected via other nodes acting as in-
termediate relays. No infrastructure exists. We assume that the
network is always connected, meaning that when all nodes are
active (not sleeping), one can find a path between any pair of
nodes in the network.

Each node maintains a hardware clock. The value of the
hardware clock is calledphysical timeand the physical time
of nodei is denoted asTP

i . We also assume that there exists a
“real” clock, which represents the real time. The nodes have no
knowledge on the real time. We denote the real time ast, and
we can express the relationship between physical time of node
i and real time as the following.

TP
i = αit + βi (1)

In Equation 1, bothαi andβi are both determined by hard-
ware clock and cannot be controlled by the protocol.

Other than the hardware clock, each node also maintains a
software clock. The value of the software clock is calledlog-
ical time. Logical time can be modified by the protocol. The
following equation describes the relationship between physical
time and logical time. The logical time of nodei is denoted as
Ti.

Ti = TP
i + γi (2)

In the equation,γi is the parameter that can be controlled by
the synchronization protocol. A node can correct the logical
time to reduce the time difference with other nodes, and this
process is calledtime synchronization. So when we say node
A synchronizes to node B, it means that node A adjusts theγ
value to reduce|TA − TB |. Using the above two equations, we
can state the relationship between logical time and the real time
as follows.

Ti = αit + δi (3)

whereδi = βi + γi. In the above equation,α is called the
clock rate, andδ is called theclock offset. From here on, when
we refer to the “time” at a node, we mean logical time at that
node.

Suppose all nodes start their clock exactly at the same time,
with the same initial time. Since each node has a different clock
rateα, after some time all nodes will have different logical time.
In order to synchronize the time, each node exchanges mes-
sages telling their local time to other nodes. Then nodes use
this messages to adjust their clocks so that the time difference
among nodes is kept small1. Due to the uncertainty in message
delay, the nodes in the network cannot be synchronized to the
exact same time. We defineclock errorto be the time difference
between a pair of nodes, and we denote the clock error of node
i andj as∆ij . Specifically,

|Ti − Tj | = ∆ij (4)

Also, we define the maximum of all the clock errors as the
global clock error, which is denoted asmax∆ij . The goal of a
synchronization protocol is to make the global clock error small
so that it can be always kept under a certain threshold, which we
call thesynchronization threshold. The synchronization thresh-
old represents the amount of accuracy an application requires.
Specifically, we define our goal of time synchronization as fol-
lows. For a given synchronization thresholdW ,

max∆ij ≤ W (5)

If the protocol guarantees this upper bound on the global
clock error, an application that runs on top of this protocol
can use this information to set up a “margin” before starting a
synchronized operation. For example, in a power management
scheme, assume that the time is divided into beacon intervals,
and node A and B are supposed to wake up at the beginning of
each beacon interval and exchange messages. If A knows that
∆ij ≤ W , then A can wait for W before transmitting a packet,
after A starts a new beacon interval. This is depicted in Figure
1. WAB packetsbeginning of beacon interval at A

beginning of beacon interval at B time
Fig. 1. Node A knows that the maximum synchronization error is W, so node A
waits for duration W at the beginning of its beacon interval before transmitting.

1time = logical time

3

III. R ELATED WORK

Numerous time synchronization schemes exist in the context
of wired and wireless networks [6], [7], [8], [9], [10], [11], [12],
[13]. In this section, we review representative works in this
area.

In wired networks, clock synchronization is often achieved
using the Network Time Protocol (NTP) [6]. In NTP, multi-
ple canonical sources are used as reference clocks, and a hi-
erarchical structure is built that are rooted at these sources.
Timestamped packets are exchanged along the branches of the
trees, so that all nodes can synchronize to one of the canonical
sources.

NTP is designed for wired networks, with the assumption
that the network is mostly static. So NTP pre-configured syn-
chronization hierarchy. However, in a wireless networks, topol-
ogy may change frequently due to mobility, node failures and
link failures. Also, predefined canonical sources may not exist
in an ad hoc network. Thus NTP cannot be directly applied to
wireless ad hoc networks.

For wireless LANs, IEEE 802.11 standard has a synchroniza-
tion protocol called timing synchronization function (TSF) [1].
TSF is used for power saving mode (PSM) where every node
has to wake up at the same time (beginning of a beacon interval)
to exchange messages. At the beginning of a beacon interval,
each node picks a random delay before transmitting a beacon.
When a node transmits a beacon, all other nodes receives the
beacon, suppress their beacon transmissions, and synchronize
to the beacon sender using the timestamp included in the bea-
con. A node only synchronizes to a faster node (a node with a
faster logical time) to avoid going back in time. IEEE 802.11
TSF is described in more detail in the next section, as it is rele-
vant to our proposed protocol.

This scheme has the problem offastest node asynchronism,
identified by Huang and Lai [2]. Since a node only synchro-
nizes to a faster node, the time of the fastest node (a node with
the fastest logical time in the network) will keep drifting away
from other nodes, unless it becomes the beacon transmitter. As
the number of nodes increases, the chance that the fastest node
transmits becomes smaller. Huang and Lai propose a simple
modification to TSF called ATSP (Adaptive Timing Synchro-
nization Procedure), to reduce the impact of fastest node asyn-
chronism [2]. The idea is to have each node adjust their fre-
quency of beacon transmission according to the received bea-
con messages. In each beacon interval, if a node receives a
beacon with a faster clock, it reduces its beacon frequency. If
not, then it increase its beacon frequency until it reaches the
maximum. This scheme works well in wireless LAN. How-
ever, when these schemes are applied to multihop networks, the
clocks might still drift away because of thetime partitioning
problem as explained in the next section.

For multihop networks, Sheu et al. [14] proposed a scheme
called Automatic Self-time-correcting Procedure (ASP). This
protocol has two features. First, as in ATSP, the frequency of
beacon transmission is adjusted according to the relative time
values among neighbors, so that a faster node transmits bea-
con with higher probability than a slower node. Second, a node
estimates the clock rate difference with its neighbor who is a
faster node, so that it can automatically adjust its clock even

when it does not receive a beacon from a faster node. This pro-
tocol improves the synchronization accuracy without incurring
additional overhead compared to IEEE 802.11 TSF. However,
it is not easy to obtain an accurate estimation on the neighbor’s
clock rate. First, the clock rate can change due to environmen-
tal changes such as temperature. Second, this protocol does
not consider estimation error due to propagation delay, but even
small estimation error can lead to significant error in estimating
the clock rate.

Ganeriwal et al. proposed a scheme similar to NTP, but mod-
ified to work in sensor networks [12]. The protocol, called
Timing-Sync Protocol for Sensor Networks (TPSN), builds a
tree structure in the network so that all nodes synchronizes to
the root node. To synchronize a pair of nodes, TPSN uses pair-
wise message exchange to reduce estimation error. This pro-
tocol achieves good accuracy, but each synchronization round
requires2n transmissions, when the number of nodes isn. This
is a high overhead when the network is dense. Also, TPSN does
not deal with fastest node asynchronism. It is often the case
that clocks are not allowed to go back in time, because the local
ordering of events cannot be preserved. The lightweight tree-
based synchronization algorithm (LTS) [11] is similar to TPSN,
but each node chooses the synchronization period based on the
desired accuracy.

Until now, all protocols assumed that a node can stamp the
time at the MAC layer, just before transmitting the packet. So
the uncertainty in delay for contending the channel is removed.
The Reference-Broadcast Synchronization (RBS) [8], consid-
ers this delay, because it assumes that the timestamping is done
at a higher layer. To remove the uncertainty in the delay before
a node gains channel access, the protocol proposes receiver-
receiver synchronization paradigm. The idea is to have a refer-
ence node broadcast packet, and receivers compare their ob-
servations to synchronize time to each other. This protocol
achieves high accuracy, but at a cost of high overhead. Also,
multihop synchronization is not well-defined, although they
propose to use nodes in an overlapping area of two broadcast
domains to transfer time information.

Li and Rus proposes three mechanisms for achieving clock
synchronization in sensor networks [13]. The all-node based
synchronization and cluster-based synchronization are not scal-
able nor fault-tolerant as argued in [13]. In the diffusion-based
algorithm, each node periodically reads its neighbors’ clocks
and computes average. Then it returns the average value to its
neighbors. This scheme has a tradeoff between convergence
time and overhead.

Finally, Elson and Estrin proposed the concept ofpost-facto
synchronization[7]. In post-facto synchronization, the clocks
are left unsynchronized. When an event happens, the rele-
vant nodes coordinate with each other to figure out what event
happened at what time. On the other hand, in a priori syn-
chronization, nodes exchange messages to maintain clocks syn-
chronized. Post-facto synchronization can preserve ordering of
events, but cannot be used to support synchronous operations,
because the clocks need to be synchronized prior to the opera-
tion.

Our protocol extends IEEE 802.11 TSF to work in multihop
networks by having each node maintain a soft state. Since TSF

4

is highly relevant to our protocol, we examine the protocol in a
greater detail in the next section.

IV. IEEE 802.11 TIMING SYNCHRONIZATION FUNCTION

(TSF)

In this section, we describe IEEE 802.11 TSF in detail, and
discuss issues when this protocol is applied to a multihop net-
work.

In IEEE 802.11 TSF, the synchronization takes place in every
beacon period. At the beginning of a beacon period, each node
waits for a random delay before transmitting a beacon. When
a node transmits a beacon, the nodes that receives the beacon
suppress their beacon transmissions. So for a wireless LAN,
only a single packet is transmitted in each beacon period.

Before transmitting a beacon, the sender records the times-
tamp in the beacon packet using its clock. The timestamp is
generated just before the node transmits the packet, so that
the uncertainty in the MAC contention delay can be removed.
When a node receives the beacon packet, it reads the timestamp
and estimates the current time of the sender’s clock considering
the transmission and propagation delay. If the receiver has a
slower time, it synchronizes to the sender by adjusting its time.
Node do not synchronize to a slower node to avoid going back
in time.

Suppose node A transmits a beacon and B receives it. If A’s
clock is faster than B’s, B adjusts its time to match that of A.
Since there is a delay between the point of time node A stamps
its time in the beacon packet, and the time B receives the bea-
con. This delay consists of the transmission time and the prop-
agation delay, as illustrated in Figure 2.AB Transmissiontime PropagationDelay TimePacketTimestamp generated Beaconreceived
Fig. 2. When node B receives a beacon from node A, it has to estimate A’s
current time considering the transmission time and the propagation delay.

The transmission time can be measured using transmission
rate and packet size. LetB be the transmission rate andp be
the packet size. Then the transmission time can be calculated
as

Tt = p/B (6)

Since we know the transmission rate and the packet size, we
can obtain the accurate estimation of this delay. However, due
to the difference between rate of the receiver’s clock and rate of
the real clock, an estimation error occurs. The error in estimated
transmission time,εt, is

εt = |αR − 1| × Tt (7)

The IEEE 802.11 standard requires the clock accuracy to be
within ±0.01%. So we assume that the clock rates are within
the range [0.9999, 1.0001]. Also, we assume that the size of a
beacon packet is 56 bytes, which consists of 24 bytes of pream-
ble, and other 32 bytes of data. Finally, we assume that the
preamble is transmitted at 1Mbps, and data is transmitted at
2Mbps. Then, in Equation 7,

max |α− 1| = 0.0001 (8)

and,

Tt =
192
106

+
256

2× 106
= 320µs (9)

So the maximum estimation error for the transmission time
is

max εt = 320× 0.0001 = 0.032µs (10)

To estimate the propagation delay, we need to know the dis-
tance from the source to the destination. Since the distance is
unknown, we use the upper bound as an estimate. Then the
maximum estimation error for the propagation delay is

max εp = dmax × 1
C

(11)

wheredmax is the maximum transmission range andC is
the speed of light. If we assumedmax to be 250m, then the
maximum error for propagation time would be approximately
0.8µs.

On the whole, the maximum estimation delay,εmax is

εmax = max εt + max εp (12)

With 2Mbps of channel bandwidth, 56 bytes of packet size
and the transmission range of 250m, the maximum error in syn-
chronizing a pair of nodes is approximately 1mus.

The IEEE 802.11 TSF is efficient in terms of communication
cost, because only one packet is transmitted for each broadcast
domain in each beacon period. However, when applied to mul-
tihop networks, TSF may fail to synchronize the clocks due to
the time partitioningproblem. Consider the scenario in Figure
3. Suppose node A is faster in time than B, and node D is faster
than C. Then node A and D have higher chance of transmitting
beacons before node B and C. So if A and D transmit beacons,
B synchronizes with A and C synchronizes with D. If this hap-
pens for several period, the time between (A,B) and (C,D) will
drift away unboundedly. We call this problemtime partitioning,
because even though these two groups of nodes are connected
with each other, they do not exchange time information. If node
A has a higher clock rate than D, for these two groups to syn-
chronize to each other, B has to transmit a beacon, so that it can
propagate to node C and then D. When the number of nodes
increases, the problem of time partitioning has an significant
impact on the clock accuracy, as shown by simulations in Sec-
tion VI. Also, note that giving faster nodes higher chance in
beacon transmission such as in ATSP increases the impact of
the time partitioning problem.

To prevent the time clustering problem and maintain the
clocks synchronized, we need to make sure that every node is

5A DCB
Fig. 3. A simple chain topology with 4 nodes.

synchronized with the fastest node within a certain period. Sup-
pose in Figure 3, node A is the fastest node. Then for node D to
synchronize with node A, the time information has to propagate
through node B and C. So if we preserve the rule that only one
node transmits in a broadcast region, node A has to transmit in
the first beacon interval, node B in the next interval, and finally
node C in the next interval for D to synchronize with A. This is
similar to establishing a path between nodes, so that the packet
is forwarded one hop at each beacon interval.

By maintaining a small amount of soft state at each node,
we can establish an implicit path from the fastest node to all
other nodes. This is what our proposed protocol does, and it is
explained in detail in the next section.

V. M ULTIHOP TIMING SYNCHRONIZATION FUNCTION

(MTSF)

The basic idea of MTSF is to have each node maintain a path
to the fastest node in the network, and make the time of the
fastest node propagated through the path, so that every node
can synchronize with the fastest node within a certain period of
time. For example, in Figure 3, if node A is the fastest node,
we want to achieve a schedule as in Figure 4. As we can see
in the figure, node D can update its time in every other beacon
interval to match the rate of node A. We achieve this schedule
by having each node maintain a soft state.ABCD Beaconinterval time

Propagation of time informationbeacon
Fig. 4. An example beacon transmission schedule.

In MTSF, each node schedules beacon transmission every
two beacon intervals, orrounds. At the beginning of a round
in which the node schedules beacon transmission, it waits for a
random delay before transmitting a beacon. As in IEEE 802.11
TSF, the sender stamps its time in the packet just before trans-
mitting the packet. When a node receives the beacon, it com-
pares the clock of the sender and itself considering the trans-
mission time and propagation delay. If the sender’s clock is
faster, the receiver synchronizes to the sender. After receiving
a beacon, a node decides if it should suppress its own beacon
according to the rule explained later.

Every node maintains a “parent” variable, initially set to the
identifier of itself. When a node finds a neighbor node with a

faster clock, it sets the “parent” variable to be the identifier of
the faster node. If there are multiple faster nodes in the neigh-
borhood, the fastest node among those neighbors are chosen as
the parent node.

Once the parent node is chosen, the node schedules its bea-
cons in the rounds that its parent node does not schedule
beacons. So if the parent node schedules beacons on “odd-
numbered” rounds, the child node schedules beacons on “even-
numbered” rounds.

Using this simple scheme, each node eventually establishes
a path towards the fastest node. When every node in the net-
work has a path between itself and the fastest node, we say that
the protocol as converged to asteady state. We will prove that
starting from an arbitrary state where each node has an arbitrary
time, this protocol converges to the steady state, given that the
network topology does not change during the process of conver-
gence. Before proving this self-stabilization property, we first
derive the upper bound on the clock error between a node and
the fastest node in the network given that the protocol is in a
steady state. The result is used to prove the self-stabilization
property of MTSF.

Lemma 1:When the protocol reaches a steady state, the up-
per bound on the global clock error is2f(D + 1)L + Dεmax,
wheref is maximum rate difference compared to the real clock,
D is the network diameter,L is the length of a beacon interval,
andεmax is the maximum estimation error.

Proof: Suppose the fastest node in the network is R, and
the node we want to calculate the clock difference isk hops
away from R, in the path established by the protocol. Note
thatk may not necessarily be the shortest hop distance between
these two nodes. We name the nodeCk, and the nodes in the
path from R toCk areC1, C2, . . ., Ck−1.

To make the equations simple, we ignore the impact of esti-
mation errorεmax (defined in Section IV in the analysis. The
effect of εmax is added to the upper bound at the end of the
analysis.

At ith beacon interval, node R sends a beacon to nodeC1,
and C1 synchronizes to node R. After the synchronization,
T i

C1
= T i

R. Then at the beginning of (i + 1)th interval,TC1

can be expressed as follows.

T i+1
C1

= T i
R + αC1L (13)

whereαC1 is the clock rate ofC1 andL is the length of the
beacon interval. Now at (i + 1)th interval,C1 sends a beacon
andC2 is synchronized toC1. SinceC1 is the fastest neighbor
of C2, C1 is the last node thatC2 synchronizes to in the beacon
interval. Then at the beginning of (i + 2)th interval, the time of
C2 is

T i+2
C2

= T i+1
C1

+ αC2L = T i
R + (αC1 + αC2)L (14)

Continuing this process, nodeCk−1 will send a beacon at
(i+k−1)th beacon interval, andCk will synchronize toCk−1.
Then at the beginning of (i + k)th beacon interval, the time of
Ck is

T i+k
Ck

= T i
R + (

∑
αCj)L (15)

6

wherej = 1, 2, . . . , k. Also, since node R never synchro-
nizes to other nodes,

T i+k
R = T i

R + αRkL (16)

Thus, the clock difference betweenCk and R at the beginning
of (i + k)th beacon interval is

∆CkR = T i+k
R − T i+k

Ck
= αRkL− (

∑
αCj)L (17)

= (
∑

(αR − αCj
))L (18)

wherej = 1, 2, . . . , k.
Since a node synchronizes to its parent node in every other

beacon interval,Ck does not synchronize toCk−1 in (i + k)th
beacon interval. So at the beginning of (i + k + 1)th beacon
interval, the clock difference betweenCk and R becomes the
maximum, and it is

∆CkR = (
∑

(αR − αCj
) + (αR − αCk

))L (19)

This is the maximum clock error between a node and the
fastest node in the network.

SupposeD is the network diameter, which is the maximum
hop distance between any pair of nodes in the network. Then
the maximum clock error among all pairs of nodes in the net-
work will be

max∆ = (
∑

(αR − αCj) + (αR − αCD))L (20)

where j = 1, 2,. . ., D, andC1, C2, . . ., CD−1 are the nodes
in the path from R toCD.

Since the clock rates are unknown, a node cannot precisely
determinemax∆. So we can consider the worst case, where
R has the maximum clock rate and all other nodes have the
minimum allowable clock rate. If the clock rate is required to
be within the range [1− f, 1 + f], thenmax∆ becomes

max∆ = (
∑

(αR − αCj))L = 2f(D + 1)L (21)

Now we take into accountεmax. Since the maximum esti-
mation error for each hop isεmax, the new upper bound on the
network synchronization error is

max∆ = 2f(D + 1)L + Dεmax (22)

If we assumef is 0.0001,D is 10,L is 100ms, andε is 1µs,
then the maximum network synchronization error will be 230
µs.

This is a very conservative calculation of the global clock
error because we assumed that the fastest node has the maxi-
mum clock rate, and all other nodes have the minimum clock
rate. Thus, in reality, MTSF may achieve a lower bound on the
accuracy in the steady state.

Now we prove that the protocol converges to a steady state,
where every node in the network establishes a path to the fastest
node.

Lemma 1:Starting from an arbitrary state, the protocol even-
tually enters a steady state, where every node in the network

establishes a path to the fastest node. In the steady state, every
node updates its time in every two beacon intervals to match the
rate of the fastest node.

Proof: If node S has node D as its parent, we say that
node S “points to” node D. Also, if node S can reach node R by
going up the path, we say that node S “points towards” node R.

We prove that if a node always chooses the fastest neighbor
as its parent, it eventually points towards the fastest node in the
network. When every node points towards the fastest node, the
protocol enters a steady state.

We start with a simple example and generalize the argument
to any possible cases.

Consider the scenario in Figure 5. The clock rate of node
A, B, C, D and E isαA, αB , αC , αD, andαE , respectively.
SupposeαA > αE > αB > αD > αC . At some point of time,
B will regard A as the fastest node in the network, because node
A has a faster rate than B. On the other hand, D will regard E
as the fastest node. After that, node C has to decide whether it
should pick node B or node D as its parent. We argue that if
C always chooses a faster node as its parent, C will eventually
choose B as its parent. Applying the same argument, D and E
will also eventually point toward node A.A DCB E
Fig. 5. A network scenario with 5 nodes placed in a chain topology.

To show this, we consider the clock difference∆BC and
∆CD at the start ofkth beacon interval. Considering all pos-
sible situations, we show that eventually∆BC becomes larger
than∆CD so that node C chooses B as its parent. For sim-
plicity of the analysis, we ignore the impact of the estimation
error, εmax. However, the argument below still holds even if
the estimation error is taken into account.

Let L be the length of a beacon interval. Assume that in
(k − 1)th beacon interval, node A broadcasts a beacon, and B
synchronizes to A. So at the start ofkth beacon interval,

∆AB = (αA − αB)L (23)

Ignore nodes D and E for now. At thekth beacon interval,
node B transmits a beacon and node C synchronizes to node B.
So at the start ofk + 1th beacon interval,

∆BC = TB − TC = TA −∆AB − TC = (24)

αAt + δA − (αA − αB)L− (αCt + δC) (25)

We can rewrite the equation as

∆BC = (αA − αC)t + u (26)

whereu is a constant (u = δA−(αA−αB)L−δC). Similarly,

∆CD = (αE − αC)t + v (27)

wherev is a constant. SinceαA > αE , ast increases, eventu-
ally ∆BC becomes larger than∆CD. Thus, node C eventually
chooses node B as its parent.

7

We can generalize this argument and prove that every node in
the network will eventually choose its parent towards the fastest
node, if each node chooses the fastest neighbor as its parent.

We prove this using the previous argument and by induction
on hop distance of a node from the fastest node. Let R be the
fastest node in the network. For the base case, suppose node
A1 is a one-hop neighbor of node R. Since node R is the fastest
node, for any nodei in A1’s neighbor set.

∆A1R ≥ ∆A1i (28)

Now suppose nodeAk+1 is k + 1 hops away from node R.
It has a neighbor nodeAk, which is already pointing towards
node R. All ofAk ’s ancestors,A1, A2, ..., Ak−1, are pointing
toward node R.

Since the nodesAi (i = 1, 2, ..., k) are already pointing to-
ward node R, from Equation 19, the maximum of∆AkR at the
start of a beacon interval is

max∆AkR = (
∑

(αR − αAi
) + (αR − αAk

))L (29)

wherei = 1, 2, ..., k. Thus,

min∆Ak+1Ak
= TR−((

∑
(αR−αi)+(αR−αAk

))L)−TAk+1

(30)
Thus,∆Ak+1Ak

can be written as

∆Ak+1Ak
= (αR − αAk+1)t + c (31)

where c is a constant. Similarly, if another neighbor of node
Ak+1, B, is pointing towards node S, then

∆Ak+1B = (αS − αAk+1)t + c′ (32)

Since αR is greater thanαS , eventually nodeAk+1 will
chooseAk as its parent.

So if every node always chooses the fastest neighbor as its
parent, then eventually every node will point towards the fastest
node in the network, and the protocol enters a steady state.

Until now, we have shown that if each node transmits beacon
in every other beacon interval and choose the fastest neighbor
as its parent, all nodes will eventually point towards the fastest
node in the network. However, if every node transmits beacon
in every other beacon interval, the communication overhead of
this protocol is proportional to the number of nodes, which is
not scalable.

The reason for having each node maintain the “parent” vari-
able is to reduce the communication overhead while still pre-
serving the upper bound on the global clock error. We define
leaf nodeto be a node which does not have any child that is
pointing towards itself. The leaf nodes do not contribute to the
accuracy of the protocol, so they do not need to transmit bea-
cons every other beacon interval.

However, if a leaf node does not transmit beacon at all, the
protocol will not be able to adapt to change in the topology.
Suppose a new node joins the network and it needs to point to
the leaf node to reach the fastest node. If a leaf node does not
transmit at all, the new node would not be able to synchronize

to the fastest node. Thus, leaf nodes can transmit at a low fre-
quency to advertise its existence, but not in every other beacon
interval.

To identify whether a node S is a leaf node or a non-leaf
node, we need feedback from the nodes who consider S as their
parent. So every node includes its parent identifier in the beacon
packet, so that when a node receives a beacon with the parent
identifier as itself, then the node knows that it is a non-leaf node.

The beacon transmission rules for non-leaf nodes and leaf
nodes are as follows. If a node is a non-leaf node, it transmits
beacons in every other beacon interval, regardless of whether it
receives a beacon in that interval or not. If a node is a leaf node,
it suppresses its beacon if it receives a beacon fromanother
leaf node with the same parentin the beacon interval. This is to
make sure that their parent node is notified of their existence. In
addition, to guarantee that every leaf node transmits a beacon
eventually, we force every leaf node to transmit beacon with a
probability p even though they receive a beacon from another
node sharing the same parent. If a non-leaf node does not re-
ceive beacons from any of its children for several consecutive
beacon intervals, it regards itself as a leaf node.

This scheme reduces the communication cost of MTSF sig-
nificantly, while maintaining the upper bound on the clock er-
ror. As we will see in the next section, the number of non-leaf
nodes grows slowly as the number of nodes increase in a given
area. So the communication overhead of MTSF grows slowly
with increasing node density, which makes MTSF a scalable
protocol.

VI. PERFORMANCEEVALUATION

In this section, we report results from the simulations we per-
formed to study the performance of MTSF. For the simulations,
we have used our own simulator written in C++. We want to
see if MTSF successfully bounds the clock error between any
pair of nodes, and if MTSF achieves this goal at a low cost.
For comparison, we also simulate a modified version of IEEE
802.11 TSF. In the modified version of IEEE 802.11, when a
node receives a beacon, it does not always suppress its beacon,
but transmits the beacon with a probabilityp. If p is 0, then the
protocol falls back to the basic IEEE 802.11 TSF. Ifp is 1, then
every node transmits a beacon in a beacon period.

To measure the performance of a protocol in terms of clock
accuracy, we use the following metrics.
• Global clock error: This is the maximum of clock differ-

ence between any pair of nodes in the network. We trace
the maximum clock error over time to see the behavior of
the protocol. Tracing maximum clock error also shows
how fast the protocols converge, because at the beginning
of each simulation, the clock values are arbitrarily chosen
for each node.

• Percentage of time that the network is out of synchro-
nization: For different threshold values, we measure the
percentage of time the maximum clock error exceeds the
threshold.

To measure the protocol overhead, we use the following met-
rics.
• Average number of beacon transmissions per round in a

broadcast domain: For each round, we measure how many

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80 90 100

G
lo

ba
l C

lo
ck

 E
rr

or
 (

m
s)

Time (s)

Global Clock Error over Time

MTSF
TSF (p=0.0)
TSF (p=0.2)
TSF (p=0.4)

Fig. 6. Global Clock Error over time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

G
lo

ba
l C

lo
ck

 E
rr

or
 (

m
s)

Time (s)

Global Clock Error over Time

MTSF
TSF (p=0.0)
TSF (p=0.2)
TSF (p=0.4)

Fig. 7. Global Clock Error over time. Shown with a smaller scale on Y-axis.

beacons are transmitted in a broadcast region. For exam-
ple, if a node receives three beacons in a round, the num-
ber of beacon transmitted in that broadcast region is 3. It
is averaged over all nodes and over the whole simulation
time.

• Percentage of leaf nodes in the converged synchronization
tree: This metrics indicates how MTSF builds an efficient
synchronization tree in the network.

We measure these metrics with different network size and
packet loss rate to see the impact of these factors. We first de-
scribe our simulation setup, and then we present and discuss the
results.

A. Simulation Setup

In all of our simulations, nodes are randomly placed in a
square-shaped region. The size of the area is 1000m× 1000m,
unless otherwise specified. Every node has a fixed transmission
range of 250m.

The clock rates are randomly selected from the range
[0.9999, 1.0001], following the IEEE 802.11 specification
(cite). So starting from synchronized clocks, the maximum
clock error between two nodes after 1 second is 200µs. Also,
the initial clock value for each node is randomly chosen from
the range [0, 1000] milliseconds. The beacon period is 100 mil-
liseconds, unless otherwise specified.

Under these assumptions, we vary the packet loss rate to see
the impact on the performance. If the packet loss rate isp, then
a node transmits a packet, its neighbor successfully receives the

packet with probability1 − p. Each receiver follows the fixed
packet loss rate independent of other receivers.

Finally, the total simulation time is 1000 seconds for every
simulations.

B. Simulation Results

Now we present and discuss our simulation results. As men-
tioned before, we evaluate our proposed protocol, MTSF, as
well as IEEE 802.11 TSF with different probability that a node
is forced to transmit beacon in a beacon period.

In the first simulations, we plot the global clock error over
the whole simulation time. 100 nodes are randomly placed in
1000m× 1000m area, with clock rates and initial clock values
randomly assigned.

Figure 6 shows the result for different protocols. Figure 7
plots the same graph, but with a smaller scale on the Y-axis.
We can see that with MTSF, the maximum clock error is al-
ways bounded under a certain threshold. With the original IEEE
802.11 TSF, the clocks may drift away until the fastest node
gets a chance to transmit the beacon. With increased probabil-
ity of forced transmission, the accuracy of TSF increases, and
the accuracy of TSF with forced transmission probability 0.4 is
comparable to the accuracy of MTSF. We will see later that the
number of packets transmitted is much smaller with MTSF.

If the global clock error exceeds a given threshold, we say
that the network has become unsynchronized. We measure the
percentage of time that the network is unsynchronized, for dif-
ferent thresholds. Figure 8 also shows that the accuracy that

9

MTSF achieves is comparable to TSF with forced transmission
probability between 0.2 and 0.4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

U
ns

yn
ch

ro
ni

ze
d

D
ur

at
io

n

Threshold (ms)

Percentage of Unsynchronized Duration vs. Threshold

MTSF
TSF (p=0.0)
TSF (p=0.2)
TSF (p=0.4)

Fig. 8. Percentage of Time the Network is Unsynchronized.

In addition to performance in terms of accuracy, we want to
see how fast the network converges to a synchronized state us-
ing MTSF. Note that the initial values are assigned randomly
from the range [0, 1000]. So initially, the clocks are unsynchro-
nized by the maximum of 1 second.

Figure 9 plots the global clock error over time with different
protocols, but it only shows the initial part where the clocks are
being synchronized. For IEEE 802.11 TSF, the convergence
time is longer when the forced transmission probability is low.
As the probability increases, the convergence time decreases
dramatically. For MTSF, the convergence time is comparable
to TSF with forced transmission probability 0.2. The overhead
of MTSF is lower than that of TSF with probability 0.2, as seen
later.

 0

 200

 400

 600

 800

 1000

 0 0.5 1 1.5 2

G
lo

ba
l C

lo
ck

 E
rr

or
 (

m
s)

Time (s)

Global Clock Error over Time

MTSF
TSF (p=0.0)
TSF (p=0.2)
TSF (p=0.4)

Fig. 9. Global Clock Error over Time.

Next, we study the overhead of the protocols. To see the
communication overhead, we measure the average number of
beacons sent or received per round in a broadcast domain.

Figure 10 shows the result. The message overhead of MTSF
is less than TSF with forced transmission probability 0.2. More-
over, as the number of nodes increase, the increase rate of mes-
sage overhead is much slower than TSF. This result indicates
that MTSF is scalable.

The reduction in communication cost comes from building
an efficient spanning tree in the network, with the fastest node
as the root. If the percentage of leaf nodes is higher, then the
communication cost is lower. To see how MTSF does well in

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

N
um

be
r

of
 P

ac
ke

ts
 p

er
 S

ec
on

ds
 p

er
 D

om
ai

n

Number of Nodes

Number of Packets per Round per Domain vs. Number of Nodes

TSF (p=0.0)
TSF (p=0.2)
TSF (p=0.4)
TSF (p=0.6)
TSF (p=0.8)
TSF (p=1.0)

MTSF

Fig. 10. Average Number of Messages Per Second Per Domain.

terms of building a spanning tree, we measure the percentage of
leaf nodes in a converged network. As shown in Figure 11(a),
the percentage of leaf nodes increases as the number of nodes
increase. Also, Figure 11(b) shows that the number of non-leaf
nodes increases slowly as the number of nodes increases.

Until now, we assume that there is no packet loss. However,
in reality, there can be packet loss due to bad channel quality, or
packet collisions. In the next simulations, we study how MTSF
performs under different packet loss rates. Figure 12 and Figure
13 shows the degradation in accuracy of MTSF when there is
packet loss. The results show that MTSF tolerates packet loss
well with only a slightly increased global clock error. This tol-
erance of MTSF comes from the redundancy in which a node
may receive multiple clocks from neighbors in a round and syn-
chronize to them. So even when the beacon from the parent is
lost, there may be other neighbors that transmit beacons in the
same round. If the beacon holds a faster clock, the node can
synchronize to these beacons. When the network is not con-
verged to a steady state, packet loss may lead to a longer con-
vergence time because a node may temporarily switch its root.
But once the synchronization tree is stabilized and all nodes
have the same root, the redundancy improves the tolerance of
the protocol to packet loss.

From the simulations, we have seen that MTSF achieves
good accuracy even under packet losses, and the accuracy is
achieved at a much lower cost than IEEE 802.11 TSF with
forced transmission probability tuned to match the accuracy
with MTSF. Also, we have seen that MTSF is scalable, because
the overhead of MTSF increases slow as the node density in-
creases.

VII. C ONCLUSION

In this paper, we have proposed MTSF, a time synchroniza-
tion protocol for multi-hop wireless networks. Since MTSF is
designed to support synchronous operations for applications or
other protocols running on top of MTSF, it aims to achieve sta-
bility in maintaining clock accuracy. At the same time, MTSF
aims to reduce the communication cost used for synchroniza-
tion. Reducing cost is important in achieving scalability.

Since a node only synchronizes to a faster node, all the nodes
must synchronize with the fastest node in the network to avoid
fastest node asynchronism. MTSF achieves this by implicitly
building up a synchronization tree rooted at the fastest node in

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

P
er

ce
nt

ag
e

of
 L

ea
f N

od
es

Number of Nodes

Percentage of Leaf Nodes vs. Number of Nodes

Percentage of leaf nodes

(a) Percentage of Leaf Nodes

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

N
um

be
r

of
 N

on
-L

ea
f N

od
es

Number of Nodes

Number of Non-Leaf Nodes vs. Number of Nodes

Number of non-leaf nodes

(b) Number of Non-leaf Nodes

Fig. 11. The leaf nodes in the synchronization tree built by MTSF protocol.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 20 30 40 50 60 70 80 90 100

G
lo

ba
l C

lo
ck

 E
rr

or
 (

m
s)

Time (s)

Global Clock Error over Time

MTSF (l=0.0)
MTSF (l=0.2)
MTSF (l=0.4)
MTSF (l=0.6)

Fig. 12. Global Clock Error over Time.

the network. During a short period of time when there is no
change in network topology, the protocol quickly converges to
a steady state. In the absence of packet loss, the protocol in the
steady state guarantees an upper bound on the global clock er-
ror. In the presence of packet loss, the protocol tolerates when
the loss rate is low, and the performance degrades gracefully as
the loss rate becomes high. When the topology changes, the
protocol quickly self-stabilizes to another steady state, without
any explicit procedures. We have proven that the network con-
verges to a steady state once the network topology is fixed, and
also calculated the upper bound on the global clock error in the
steady state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

of
 U

ns
yn

ch
ro

ni
ze

d
D

ur
at

io
n

Threshold (ms)

Percentage of Unsynchronized Duration vs. Threshold

MTSF (l=0.0)
MTSF (l=0.2)
MTSF (l=0.6)
MTSF (l=0.8)

Fig. 13. Percentage of Time the Network is Unsynchronized.

Also, using the tree structure, MTSF reduces the number of
beacon transmissions in each period. This is important because
the synchronization process should not harm the performance
of applications that use the synchronization service, by occupy-
ing significant amount of bandwidth.

The simulation results show that MTSF achieves stable clock
accuracy at a low cost. So MTSF can efficiently support syn-
chronous operations which is an important requirement for
many applications and protocols. We are planning to implement
MTSF with other protocols that use synchronous operations, to
test the effectiveness of MTSF in supporting synchronous oper-
ations. The results will be reported in the near future.

ACKNOWLEDGMENTS

This research was supported in part by Motorola Center for
Communication.

REFERENCES

[1] IEEE 802.11 Working Group, “Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications,” 1997.

[2] L. Huang and T. Lai, “On the Scalability of IEEE 802.11 Ad Hoc Net-
works,” in ACM MOBIHOC, June 2002.

[3] Y.C. Tseng, C.S. Hsu and T.Y. Hsieh, “Power-Saving Protocols for IEEE
802.11-Based Multi-Hop Ad Hoc Networks,” inIEEE INFOCOM, 2002.

[4] I.A. Getting, “The Global Positioning System,”IEEE Spectrum 30, De-
cember 1993.

[5] C. Schurgers, V. Tsiatsis, S. Ganeriwal and M. Srivastava, “Topology
Management for Sensor Networks: Exploiting Latency and Density,” in
ACM MOBIHOC, June 2002.

11

[6] D. Mills, “Internet Time Synchronization: The Network Time Protocol,”
IEEE Trans. Communications., October 1991.

[7] J. Elson and D. Estrin, “Time Synchronization for Wireless Sensor Net-
works,” in International Parallel and Distributed Processing Symposium
(IPDPS), April 2001.

[8] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Synchro-
nization using Reference Broadcasts,” inFifth Symposium on Operating
Systems Design and Implementation (OSDI), December 2002.

[9] Kay Römer, “Time Synchronization in Ad Hoc Networks,” inACM
MOBIHOC, October 2001.

[10] M.L. Sichitiu and C. Veerarittiphan, “Simple, Accurate Time Synchro-
nization for Wireless Sensor Networks,” inIEEE Wireless Communica-
tions and Networking Conference (WCNC), 2003.

[11] Jana van Greunen and Jan Rabaey, “Lightweight Time Synchronization
for Sensor Networks,” inWorkshop on Wireless Sensor Networks and
Applications (WSNA), September 2003.

[12] S. Ganeriwal, R. Kumar, M. B. Srivastava, “Timing-sync Protocol for
Sensor Networks,” inFirst ACM Conference on Embedded Networked
Sensor Systems (SenSys), November 2003.

[13] Q. Li and D. Rus, “Global Clock Synchronization in Sensor Networks,”
in IEEE INFOCOM, 2004.

[14] J.-P. Sheu, C.-M. and C.-W. Sun, “A Clock Synchronization Algorithm
for Multi-Hop Wireless Ad Hoc Networks,” inIEEE ICDCS, 2004.

