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Our research is focused on the performance of TCPover mobile ad hoc networks.Since TCP/IP is the standard network protocol stackon the Internet, its use over mobile ad hoc networks isa certainty. Not only does it leverage a large number ofapplications, but its use also allows seamless integrationwith the Internet, where available.However, earlier research on cellular wireless sys-tems showed that TCP su�ers poor performance in wire-less networks because of packet losses and corruptioncaused by wireless induced errors. Thus, a lot of re-search has since focused on mechanisms to improve TCPperformance in cellular wireless systems (e.g. [2, 3]).Further studies have addressed other network problemsthat negatively a�ect TCP performance, such as band-width asymmetry and large round-trip times, which areprevalent in satellite networks (e.g. [12, 4]).In this paper, we address another network character-istic that impacts TCP performance, which is commonin mobile ad hoc networks: link failures due to mobil-ity. We �rst present a performance analysis of standardTCP over mobile ad hoc networks, and then present ananalysis of the use of explicit noti�cation techniques tocounter the a�ects of link failures.2 Simulation Environment and MethodologyThe results in this paper are based on simulations usingthe ns network simulator from Lawrence Berkeley Na-tional Laboratory (LBNL) [13], with extensions fromthe MONARCH project at Carnegie Mellon [5]. Theextensions include a set of mobile ad hoc network rout-ing protocols and an implementation of BSD's ARPprotocol, as well as an 802.11 MAC layer and a radiopropagation model. Also included are mechanisms tomodel node mobility using pre-computed mobility pat-terns that are fed to the simulation at run-time. Formore information about the extensions, we refer thereader to [5]. Unless otherwise noted, no modi�cationswere made to the simulator described in [5], beyond mi-nor bug �xes that were necessary to complete the study.All results are based on a network con�guration con-sisting of TCP-Reno over IP on an 802.11 wireless net-work, with routing provided by the Dynamic Source1



Routing (DSR) protocol and BSD's ARP protocol (usedto resolve IP addresses to MAC addresses).The choice of DSR as the routing protocol was basedon the availability of the ns extensions at the time whenthis study was initiated. Our goal was only to observeTCP's performance in the presence of mobility inducedfailures in a plausible network environment, for whichany of the proposed mobile wireless ad hoc routing pro-tocols would have su�ced. However, since we frequentlyrefer to the routing protocol in this paper, the next para-graph is a brief primer on DSR to familiarize the readerwith its terminology and characteristics.The Dynamic Source Routing (DSR) protocol wasdeveloped by researchers at CMU for use in mobile adhoc networks [6]. In DSR, each packet injected intothe network contains a routing header that speci�es thecomplete sequence of nodes on which the packet shouldbe forwarded. This route is obtained through route dis-covery. When a node has a packet to send for whichit does not have a route, it initiates route discoveryby broadcasting a route request. This request is propa-gated through the network until it reaches a node, sayx, that knows of a route to the destination. Node x thensends a route reply to the requester with the new routeformed from the route at node x concatenated with thesource route in the request. To limit how far a requestis propagated, a time-to-live (TTL) �eld is attached toevery request along with a unique request identi�er. Anode that receives a route request that it has seen be-fore, or that has lived beyond its time-to-live, dropsthe request. To reduce the number of route discover-ies, each node maintains a cache of routes that it haslearned. A node may learn of a route through route dis-covery, or through other means such as snooping routesin route replies and data packets, or eavesdropping onlocal broadcasts. This cache is updated through routeerror messages. Route error messages are sent by anode when it discovers that a packet's source route isinvalid. The route discovery protocol, as implementedin the CMU extensions to ns, has two phases: a localbroadcast (a ring-0 search) followed by a propagatingsearch. The ring-0 search is initiated in the hope thata route can quickly be found in a neighbor's cache. Ifa route is not found within a small amount of time, apropagating search is attempted. If this fails, the pro-tocol backs-o� and tries again, eventually giving up if aroute is not found. This procedure repeats until all ofthe packets queued for that particular destination aredropped from the queue, or a route is found. A packetmay be dropped from the queue if a route has not beenfound within a pre-speci�ed amount of time (the \SendBu�er Timeout" interval), or if the queue is full andnewly arriving packets force it out. Route discoveriesfor the same destination are limited by the back-o� andretry procedure, which is initiated per destination (ver-sus per packet). Thus, regardless of the number of pack-ets that need a route to the same destination, only oneroute discovery procedure is initiated. Once a route isfound and a packet is sent, there is the possibility thatthe route becomes \stale" while the packet is in 
ight,because of node mobility (a route is \stale" if some linkson the route are broken). In such an instance, DSRuses a mechanism called packet salvaging to re-routethe packet. When a node x detects that the next link

in a packet's route is broken, it �rst sends a route errormessage to the node that generated the packet's routeto prevent it from sending more packets on the brokenroute. Node x then attempts to salvage the packet bychecking its cache to see if it knows of another route tothe packet's destination. If so, node x inserts the newsource route into the packet and forwards it on thatroute; if not, the packet is dropped.We chose to keep most of the parameters of the sim-ulations identical to those in [5], with a few exceptions.The following is a discussion of our simulation setup.Our network model consists of 30 nodes in a 1500x300meter 
at, rectangular area. The nodes move accordingto the random waypoint mobility model. In the randomwaypoint model, each node x picks a random destina-tion and speed in the rectangular area and then travelsto the destination in a straight line. Once node x arrivesat its destination, it pauses, picks another destination,and continues onward. We used a pause time of 0 so thateach node is in constant motion throughout the simula-tion. All nodes communicate with identical, half-duplexwireless radios that are modeled after the commerciallyavailable 802.11-based WaveLan wireless radios, whichhave a bandwidth of 2Mbps and a nominal transmissionradius of 250m. TCP packet size was 1460 bytes, andthe maximum window was eight packets.Unless otherwise noted, all of our simulation resultsare based on the average throughput of 50 scenarios, orpatterns. Each pattern, generated randomly, designatesthe initial placement and heading of each of the nodesover the simulated time. We use the same pattern fordi�erent mean speeds. Thus, for a given pattern atdi�erent speeds, the same sequence of movements (andlink failures) occur. The speed of each node is uniformlydistributed in an interval of 0:9v � 1:1v for some meanspeed v. For example, consider one of the patterns, let'scall it I. A node x in I that takes time t to move frompoint A to point B in the 10 m/s run of I will take timet=2 to traverse the same distance in the 20 m/s run ofI. So, x will always execute the exact same sequenceof moves in I, just at a proportionally di�erent rate.See [17] for more details on the mobility patterns.3 Performance MetricIn this performance study, we set up a single TCP-Renoconnection between a chosen pair of sender and receivernodes and measured the throughput over the lifetime ofthe connection. We use throughput as the performancemetric in this paper.The TCP throughput is usually less than \optimal"due to the TCP sender's inability to accurately deter-mine the cause of a packet loss. The TCP sender as-sumes that all packet losses are caused by congestion.Thus, when a link on a TCP route breaks, the TCPsender reacts as if congestion was the cause, reducingits congestion window and, in the instance of a timeout,backing-o� its retransmission timeout (RTO). There-fore, route changes due to host mobility can have adetrimental impact on TCP performance.2
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Hops Throughput(Kbps)1 1463.02 729.03 484.44 339.95 246.46 205.27 198.18 191.89 185.310 182.4Figure 1: TCP-Reno throughput over an 802.11 �xed,linear, multi-hop network of varying length (in hops).To gauge the impact of route changes on TCP perfor-mance, we derived an upper bound on TCP throughput,called the expected throughput. The TCP through-put measure obtained by simulation is then comparedwith the expected throughput.We obtained the expected throughput as follows. We�rst simulated a static (�xed) network of n nodes thatformed a linear chain containing n�1 wireless hops (sim-ilar to the \string" topology in [15]). The nodes usedthe 802.11 MAC protocol for medium access. Then, aone-way TCP data transfer was performed between thetwo nodes at the ends of the linear chain, and the TCPthroughput was measured between these nodes. Thisset of TCP throughput measurements is analogous tothat performed by Gerla et al. [15], using similar (butnot identical) MAC protocols.Figure 1 presents the measured TCP throughput as afunction of the number of hops, averaged over ten runs.Observe that the throughput decreases rapidly when thenumber of hops is increased from 1, and then stabilizesonce the number of hops becomes large. This trend issimilar to that reported in [15]. Therefore, for a detailedexplanation of the reasons behind this trend, we referthe reader to [15]. Our objective here is to use thesemeasurements to determine the expected throughput.The expected throughput is a function of the mobil-ity pattern. For instance, if two nodes are always adja-cent and move together (similar to two passengers in acar), the expected throughput for the TCP connectionbetween them would be identical to that for 1 hop inFigure 1. On the other hand, if the two nodes are al-ways in di�erent partitions of the network, the expectedthroughput is 0. In general, to calculate the expectedthroughput, let ti be the duration for which the short-est path from the sender to receiver contains i hops(1 � i � 1). Let Ti denote the throughput obtainedover a linear chain using i hops. When the two nodesare partitioned, we consider that the number of hops iis 1 and T1 = 0. The expected throughput is thencalculated asexpected throughput= P1i=1 ti � TiP1i=1 ti (1)Of course,P1i=1 ti is equal to the duration for which theTCP connection is in existence. The measured through-

put may never become equal to the expected through-put, for a number of reasons. For instance, the under-lying routing protocol may not use the shortest pathbetween the sender and receiver. Also, Equation 1 doesnot take into account the performance overhead of de-termining new routes after a route failure. Despite theselimitations, the expected throughput serves as a reason-able upper bound with which the measured performancemay be compared. Such a comparison provides an es-timate of the performance degradation caused by hostmobility in ad hoc networks.
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s)(d) mean speed = 30 m/sFigure 3: Comparison of measured and expected throughput for the 50 mobility patternsbut the ratio ti=tj for any i and j remains the same.Therefore, the expected throughput for a given mobilitypattern, calculated using Equation 1, is independent ofthe speed.Intuition suggests that when the speed is increasedthen route failures happen more quickly, resulting inpacket losses, and frequent route discoveries. Thus,intuitively, TCP throughput should monotonically de-grade as the speed is increased. In Figure 2(a), thethroughput drops sharply as the mean speed is increasedfrom 2 m/s to 10 m/s. However, when the mean speedis increased from 10 m/s to 20 m/s and 30 m/s, thethroughput averaged over the 50 runs decreases onlyslightly. This is a counter-intuitive result. However, infact, the throughput could have potentially increasedwith speed. Consider, for example, Figure 2(b), whichplots the throughput for each of the 50 mobility pat-terns for the 20 m/s and 30 m/s mean speeds used inour simulations (the patterns are sorted, in this �gure,in the order of their throughputs at 20 m/s). Observethat, for certain mobility patterns, the throughput in-creases when the speed is increased. Later, in Section 5,we explain this anomaly.Figure 3 provides a di�erent view of the TCP through-put measurements. In this �gure, we plot the measuredthroughput versus expected throughput for each of the50 mobility patterns. The four graphs correspond toeach of the four di�erent mean speeds of movement. Be-cause the expected throughput is an upper bound, allthe points plotted in these graphs are below the diag-onal line (of slope 1). When the measured throughputis closer to the expected throughput, the correspond-ing point in the graph is closer to the diagonal line,and vice versa. The following observations can be madefrom Figure 3:� Although, for any given speed, the points may belocated near or far from the diagonal line, whenthe speed is increased the points tend to moveaway from the diagonal, signifying a degradationin throughput. Later in this paper, we show that,using a TCP optimization, the cluster of points inthis �gure can be brought closer to the diagonal.� On the other hand, for a given speed, certain mo-bility patterns achieve throughput close to 0, al-though other mobility patterns (with the samemean speed) are able to achieve a higher through-put.

� Even at high speeds, some mobility patterns resultin high throughput that is close to the expectedthroughput (for instance, see the points close tothe diagonal line in Figure 3(c) and (d)). This oc-curs for mobility patterns in which, despite mov-ing fast, the rate of link failures is low (as dis-cussed earlier, if two nodes move together, the linkbetween them will not break, regardless of theirspeed).Section 5 provides explanations for some observa-tions made based on the data presented in Figures 2and 3.5 Mobility Induced BehaviorsIn this section, we look at examples of mobility inducedbehaviors that result in unexpected performance. Themeasured throughput of the TCP connection is a func-tion of the interaction between the 802.11 MAC proto-col, the ARP protocol, the DSR routing protocol, andTCP's congestion control mechanisms. As such, thereare likely to be several plausible explanations for anygiven observation. Here, for each observation, we giveone such explanation that we have been able to con�rmusing the measured data.5.1 Some mobility patterns yield very low throughputWe present one observed scenario wherein loss of someTCP data and acknowledgment packets (due to routefailures) results in zero throughput. Note that we mea-sure throughput as a function of the amount of datathat has been acknowledged to the sender. In the ex-ample scenario discussed here, no acknowledgments arereceived by the sender during the 120 second lifetimeof the TCP connection (the average speed for this caseis 30 m/s). However, the expected throughput for themobility pattern in this run is 694Kbps. A path existsbetween the TCP sender and receiver nearly the entiretime.A condensed version of the simulation packet traceis shown in Table 1. This trace was obtained with node1 as the TCP sender and node 2 as the TCP receiver.In the table, the Evnt column lists the event type { sdenotes that a packet is sent, r denotes that a packet is4



Evnt Time (secs) Node SeqNo Pkt Resns 0.000 1 1 tcpD 0.191 5 1 tcp NRTEs 6.000 1 1 tcpr 6.045 2 1 tcps 6.145 2 1 ackD 6.216 21 1 ack NRTEs 18.000 1 1 tcps 42.000 1 1 tcps 90.000 1 1 tcpD 120.000 15 1 tcp ENDD 120.000 16 1 tcp ENDD 120.000 25 1 tcp ENDTable 1: Packet trace for a 30 m/s run that experiencedzero throughput.received, and D denotes that a packet is dropped. TheResn column lists the reason why a packet is dropped {NRTE means that the routing protocol could not �nda route and END means the simulation �nished. TheNode, SeqNo, and Pkt columns report the node at whichthe event occurred, the TCP sequence number1 of thepacket depicted in the event, and the type of packet,respectively.In this scenario, the sender and the receiver nodeare initially six hops apart and stay within six hopsof each other for all but 6 seconds of the 120 secondsimulation. For 6 seconds, the network is partitioned,with the sender and receiver nodes being in di�erentpartitions.Soon after the �rst packet is sent by node 1, a linkbreak occurs along the route that causes a partition inthe network. The partition causes the �rst packet tobe dropped (at time 0.191 seconds) by the routing pro-tocol on node 5, which was the forwarding node thatdetected the link failure. Eventually, the TCP senderon node 1 times-out and retransmits the packet (attime 6.000). On the second attempt, the packet reachesthe receiver, node 2, who sends a delayed acknowledg-ment (at time 6.145). However, the acknowledgment issent on a route from node 2's cache that is stale (i.e.,some links on the route are broken), so the acknowledg-ment is later dropped (at time 6.216). The remainingattempts to retransmit the packet also fail because ofstale cached routes. In each instance, the packet is heldby the ARP layer of a forwarding node until the end ofthe simulation (see the rows with Evnt = D and Resn= END in Table 1). Each ARP layer is left holding apacket because its attempts to resolve the IP addressof the next node in the route to a MAC address failbecause of mobility.Therefore, the TCP sender is unable to receive anyacknowledgment from the receiver.1These are sequence numbers assigned by ns to TCP packets.ns does not number each octet individually; instead, the packetsare numbered sequentially as 1, 2, etc. All references to TCPsequence numbers in this paper are the ns assigned sequencenumbers.

5.2 Anomaly: Throughput increases when speed isincreasedIn the example discussed in this section, TCP through-put improves by a factor of 1.5 when the speed is in-creased from 10 m/s to 20 m/s. In the scenario underconsideration, the TCP sender and receiver were ableto reach each other 100% of the time, and spent 74% ofthe time at most two hops away. The nodes were nevermore than three hops away.The characteristics of the connection between theTCP sender and receiver can be seen in the mobilitypattern pro�le shown in Figure 4(a) (see [17] for similardetails on all of the patterns). The ticks shown at thetop of the pro�le mark the points in the pattern at whichthe minimum path between the TCP sender and receiverchanged. The curve shows the minimum path length(distance) in hops between the sender and receiver forthe duration of the pattern. Notice that a change in theminimum path is not always caused by a change in pathlength (e.g. at the 0.28 mark in Figure 4(a)), becausethe nodes on the path may change even though the totalnumber of hops stays the same.The other curves in Figure 4 show the mean through-put over the TCP connection (averaged over 1 second)for each of the four mean node speeds. Note that, asmentioned in Section 2, the sequence of moves that eachnode makes is identical, regardless of the mean speed.The only di�erence is that a distance covered by a node,say x, over time t, such as in �gure (b), takes x a time oft=2 to cover in �gure (c). This is analogous to a moviein which the time taken to show the same number offrames at rate r takes half the time to show at rate 2r.Thus, the mobility pattern pro�le shown in (a) can beused as a reference point for the other curves in Fig-ure 4. Note that the variations in the throughput forcurves (b)� (e) are correlated to the path length in (a)because of the e�ect shown in Figure 1, which we dis-cussed earlier. Also note that DSR does not always usethe minimum path when one is available, as seen aroundthe 1450s mark of Figure 4(b).Discussion of Figure 4(c) In the 10 m/s run, the rout-ing protocol uses symmetric forward and reverse routes(of optimal length) between the TCP sender and re-ceiver for the �rst 50s of the simulation, resulting ingood initial throughput. However, the sequence of pathchanges around the 50s mark causes the TCP sender toback-o�, from which it fails to recover, until the �nal30s of the simulation. The details of the packet activityaround the moment at which the initial back-o� occursis shown in Figure 5. Leading up to the failure, the for-ward and reverse routes are symmetric and optimal inlength (two hops). Around the 50.4s mark, the routebreaks (because of mobility) at the link between theintermediate node and the TCP receiver. This resultsin the queuing of nearly a full window of packets atthe intermediate node. The intermediate node salvagesthe queued packets, then successfully delivers them tothe receiver on a new forward route (seen around the50.58s mark). After detecting the failed link, the re-ceiver chooses a new reverse route for sending acknowl-edgments, which is di�erent than the forward route.5
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However, the reverse route that it chooses is also stale,so several acknowledgments are lost before salvaging re-sults in the arrival of two of the acknowledgments at theTCP sender around the 50.72s mark. These acknowl-edgments trigger a burst of packets from the sender,which are immediately queued by the forwarding nodeat the next hop in the path, because, although thereverse route is good, the forward route is now bro-ken by mobility. Another acknowledgment arrives later(around the 50.87s mark), resulting in the queuing ofanother packet. Meanwhile, the forwarding node, whichnow has the full window queued, repeatedly tries to sal-vage the packets. This �nally results in the loss of halfof the packets (around the 50.98s mark) by ARP, whichfails to determine the MAC address of the node overthe next hop in the salvaged route because the nodehas moved away. However, half of the packets are suc-cessfully salvaged on an alternate route and delivered(seen between the 51.0s and 51.08s marks), generatinga sequence of dupacks from the receiver signifying thepacket loss. After the third and fourth dupacks arrive,the TCP sender enters fast recovery and retransmitsthe lost packet (at the 51.08s mark), but the lost pack-ets cause the sender to timeout. The retransmission ofthe lost packet by the sender results in a brief burst ofpackets (seen as a spike in throughput around the 50smark in Figure 4(c)), but the routes quickly break again,as the path changes from two to three hops, because ofsimilarly lost acknowledgments.For all subsequent timeouts, except one, stale routesresult in packet losses even though the TCP sender andreceiver are never more than three hops distance fromeach other. The one exception occurs around the 333smark, at which time a retransmitted packet results inthe re-establishment of packet 
ow when the nodes areone hop away.Discussion of Figure 4(d) The 20 m/s run shares manyof the characteristics of the slower 10 m/s run, but re-sults in higher throughput because a retransmission latein the pattern (around the 90s mark) succeeds in brie
yre-establishing the 
ow of packets. Initially, the data
ow is quickly stalled (around the 25s mark) because ofthe loss of a full window of packets, which is caused bythe same sequence of link changes in the pattern that af-fected the 10 m/s run. The throughput, again, degradeswhen repeated route failures induce packet losses, caus-ing the TCP sender to timeout and back-o�. However,unlike the 10 m/s run, the packet 
ow is re-establishedlater in the pattern (at the 88s mark) when a retrans-mitted packet results in the discovery of a good routewhen the nodes are only two hops apart. This successis why the 20 m/s run is able to transfer data at 1.5times the rate of the 10 m/s run, for the same mobilitypattern.5.3 Summary and ObservationsIn this section, we present a summary of the e�ects ofmobility on TCP performance that we observed in theprevious examples and in our other experiments.From the previous examples, it is clear that the char-acteristics of the routing protocol have a very signi�cant

impact on TCP performance. Most notable were theproblems caused by the caching and propagation of staleroutes. Even in relatively slowly changing topologies,the inability of the TCP sender's routing protocol toquickly recognize and purge stale routes from its cacheresulted in repeated routing failures. Allowing interme-diate nodes to reply to route requests with routes fromtheir caches complicated this problem, because they of-ten responded with stale routes. This was further am-pli�ed by the fact that other nodes could overhear orsnoop the stale routes in the replies as they were propa-gated, spreading the bad information to caches in othernodes. We saw the e�ects of this problem in our simu-lations. For instance, in the simulation run presented inour �rst example (Section 5.1), the TCP sender tried touse the same stale route three times because it receivedthe route repeatedly from other nodes. In the latter twotries, the stale route came to the TCP sender by way ofsalvaging. The stale route that was used was a two hoproute between the TCP sender and receiver. In each ofthe two instances, a neighboring node salvaged a packetfrom the TCP sender using the stale route, which thenode had stored in its route cache. The neighboringnode then sent the packet on the next hop in the sal-vaged route, back to the TCP sender. The result wasthat the TCP sender ended up trying to forward itsown packet on a route that it had earlier determinedwas stale. However, we believe that these problems canpotentially be solved using more e�ective cache main-tenance strategies, including simple techniques like dy-namically adjusting the route cache timeout mechanismdepending on the observed route failure rate, the use ofnegative route information (mentioned in [6]), or the useof signal strength information.
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Another interesting e�ect of a routing protocol's be-havior with respect to mobility was observed in our sec-ond example (Section 5.2). The fact that the TCP data
ow was lost at the same point in the mobility patternfor both runs raised questions about what characteristicof the pattern was causing the failure. From Figure 4(a),it is clear that the rapid sequence of path changes atthe 0.13 mark caused all four runs to fail. Upon furtherinspection, we observed that the routing protocol regu-larly failed when the minimum path increased in length.This is apparent in the results shown in Figure 7.In the �rst few moments of the mobility pattern,shown in Figure 7(a), the TCP sender and receiver movecloser to each other, shortening the path between themfrom two hops to one (around mark 0.01). A few mo-ments later (around mark 0.07), they slowly diverge toa distance of �ve hops. In the TCP throughput mea-surements shown in (b)� (e), it is evident that the data
ow across the TCP connection is maintained when thepath is shortened, but is lost when the path is length-ened. This happens several times in the pattern, inde-pendent of the mean speed of the nodes. Most notably,(b) shows that even while traveling at a slow speed of2 m/s, a path change from one hop to two (around the1500s mark) can stall the data 
ow. This behavior canbe attributed, in part, to the routing protocol. As theTCP sender and receiver move closer to each other, DSRcan often maintain a valid route by shortening the ex-isting route, and often does so before a failure occurs.However, as the TCP sender and receiver diverge, theincrease in path length eventually causes a route failurebecause DSR does not attempt to lengthen a route un-til a failure occurs. The route failure and subsequentroute discovery process often result in the restorationof the route only after the TCP sender has repeatedlytimed-out and backed-o�, stalling the data 
ow. Thisis further magni�ed by the caching and propagation ofstale routes, as mentioned previously.However, intuition suggests that this is not a prob-lem that is unique to DSR, but will most likely be aproblem for other reactive protocols as well. Thus, per-haps a metric of routing protocol performance shouldnot only measure the protocol's ability to recognize opti-mal routes, but also to quickly adjust an existing route,albeit non-optimally.Another characteristic of DSR that we observed af-fecting TCP performance was the route request retrans-mission back-o� algorithm. In DSR, if a route requestdoes not generate a timely reply, the requester times-out and retransmits the request. Each timeout resultsin exponential back-o�, which is limited to some �xedmaximum value. If this value is too large, then route re-quests may occur too infrequently to recognize availableroutes in time to prevent TCP's retransmission timerfrom backing-o� to a large value, but if it is too small,then the frequent route requests may cause network con-gestion. The maximum value suggested in [6] may notbe suitable for good TCP performance.Based on these observations, it might be suggestedthat instead of augmenting TCP/IP, it would be bet-ter to improve the routing protocols so that mobilityis more e�ectively masked. Clearly, extensive modi�ca-tions to upper layer protocols is less desirable than a

routing protocol that can react quickly and e�cientlysuch that TCP is not disturbed. However, regardlessof the e�ciency and accuracy of the routing protocol,network partitioning and delays will still occur becauseof mobility, which cannot be hidden.Thus, in the next section, we analyze some simplemodi�cations to TCP/IP to provide TCP with a mech-anism by which it can recognize when mobility induceddelays and losses occur, so that it can take appropriateactions to prevent the invocation of congestion control.6 TCP Performance Using Explicit FeedbackIn this section, we present an analysis of the use of ex-plicit feedback on the performance of TCP in dynamicnetworks. The use of explicit feedback is not new, andhas been proposed as a technique for signaling conges-tion (ECN [14]), corruption due to wireless transmissionerrors (EBSN [1], ELN [3]), and link failures due to mo-bility ([7], SCPS-TP [9], TCP-F [8]). Our interest inthis section is analyzing the performance of the latter,which we refer to as Explicit Link Failure Noti�cation(ELFN) techniques. Although the TCP-F paper studiesa similar idea, the evaluation is not based on an ad hocnetwork. Instead, they use a black-box, that does notinclude the evaluation of the routing protocol.The objective of ELFN is to provide the TCP senderwith information about link and route failures so thatit can avoid responding to the failures as if congestionoccurred.There are several di�erent ways in which the ELFNmessage can be implemented. A simple method wouldbe to use a \host unreachable" ICMP message as a no-tice to the TCP sender. Alternatively, if the routingprotocol already sends a route failure message to thesender, then the notice can be piggy-backed on it. Thisis the approach we took in this analysis. We modi�edDSR's route failure message to carry a payload similarto the \host unreachable" ICMP message. In particu-lar, it carries pertinent �elds from the TCP/IP headersof the packet that instigated the notice, including thesender and receiver addresses and ports, and the TCPsequence number. The addresses are used to identifythe connection to which the packet belongs, and thesequence number is provided as a courtesy.TCP's response to this notice is to disable congestioncontrol mechanisms until the route has been restored.This involves two di�erent issues: what speci�c actionsTCP takes in response to the ELFN notice, and how itdetermines when the route has been restored.We used the following simple protocol. When a TCPsender receives an ELFN, it disables its retransmissiontimers and enters a \stand-by" mode. While on stand-by, a packet is sent at periodic intervals to probe thenetwork to see if a route has been established. If an ac-knowledgment is received, then it leaves stand-by mode,restores its retransmission timers, and continues as nor-mal. For this study, we elected to use packet probinginstead of an explicit notice to signal that a route hasbeen re-established.8
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To see what could be achieved with this protocol,we studied variations in the parameters and actions andmeasured their e�ects on performance. In particular, welooked at the following:� Variations in the length of the interval betweenprobe packets.� Modi�cations to the retransmission timeout value(RTO) and congestion window upon restoration ofthe route.� Di�erent choices of what packet to send as a probe.The results of these studies are presented below. Eachcurve is based on the mean throughput for the 50 dif-ferent mobility patterns we used earlier.Figure 8 is the analogue of Figure 3, except that theresults in Figure 8 are based on simulations in whichTCP-Reno was modi�ed to use ELFN (with a 2s probeinterval). Clearly, the use of ELFN has improved thethroughput for each of the speeds, as evidenced by thecloser proximity of the measured pattern throughputs tothe expected throughput line. The tighter clustering ofthe points also suggests that the use of ELFN techniquesimproves throughput across all patterns, rather thandramatically increasing just a few.
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Base TCPFigure 9: Performance comparison between basic TCP-Reno and TCP-Reno w/ ELFN using varying probe in-tervals.Figure 9 shows the measured throughput as a per-centage of the expected throughput for various probeintervals. Based on these results, it is apparent thatthe throughput is critically dependent on the time be-tween probe packets. This dependency exists becauseincreasing the time between probes delays the discov-ery of new routes by the length of the interval. Thus,it is no surprise that if the probe interval is too large,then the throughput will degrade below that of stan-dard TCP, as shown by the results for probe intervalsof 30s. Intuitively, if the probe interval is too small,then the rapid injection of probes into the network willcause congestion and lower throughput. Thus, insteadof a �xed interval, perhaps choosing an interval that isa function of the RTT could be a more judicious choice.However, based on the sensitivity of the throughput to
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Base TCPFigure 10: Performance comparison of di�erent windowand RTO modi�cations in response to ELFN.the interval size, the function must be chosen very care-fully.In addition to varying the probe intervals, we alsolooked at the performance advantages of adjusting thecongestion window and/or retransmission timeout (RTO)after the failed route had been restored. These resultsare shown in Figure 10. In the �gure, ELFN representsthe case where no changes are made to TCP's state be-cause of ELFN. Thus, TCP's state (congestion window,RTO, etc.) are the same after the route is restored, asit was when the ELFN was �rst received. W/ELFNrepresents the case where the congestion window is setto one packet after the route has been restored, andRTO/W/ELFN represents the case where the RTO isset to the default initial value (6s in these simulations)and the window is set to one after the route is restored.Adjusting the window seemed to have little impact onthe results. This is believed to be due to the fact thatthe optimal window (the bandwidth/delay product) ofthe simulated network is a relatively small number ofpackets, so it takes only a few round trips to ramp upto the optimal window after a failure. However, alteringthe RTO had a more signi�cant impact on throughput.We suspect that this is due to a combination of factors,but is most probably caused by the frequency at whichroutes break, coupled with ARP's proclivity, as imple-mented, to silently drop packets. Thus, if a restoredroute immediately breaks again and results in a failedARP lookup, then the sender will likely timeout. Giventhe length of the timeout, it does not take many of suchoccurrences to dramatically a�ect performance.Finally, we took a brief look at the impact thatthe choice of probe packet had on performance, whichis shown in Figure 11. We considered two possibil-ities: always send the �rst packet in the congestionwindow (First/ELFN in the �gure), or retransmit thepacket with the lowest sequence number among thosesignaled as lost in the ELFNs that were received (Low-est Rcvd/ELFN). The �rst approach is intuitive, thesecond approach was chosen with the optimistic think-ing that perhaps some packets in the window did getthrough, and, if the route is restored quickly, then thenext packet in sequence will be in 
ight. However, asshown by the results, this had almost no impact whatso-10
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Base TCPFigure 11: Performance comparison between basicTCP-Reno and TCP-Reno w/ ELFN using di�erentchoices for the probe packet.ever. We suspect that this has to do with the fact thatroutes, once broken, were rarely restored quickly. In ad-dition, as shown in Section 5, the presence of di�erentforward and reverse routes equalizes the two approacheswhen only the forward link breaks, since those packetsthat did get through before the break are acknowledgedvia the reverse channel. Thus, the lowest sequence num-ber of the packets lost would also happen to be the �rstin the window.7 Related WorkBecause routing is an important problem in mobile adhoc networks, researchers have explored several routingprotocols for this environment (e.g., [19, 10, 11, 16, 18,20, 21, 22, 23]).Recently, some researchers have considered the per-formance of TCP on multi-hop networks [15, 8]. Gerlaet al. [15] investigated the impact of the MAC protocolon performance of TCP on multi-hop networks. Chan-dran et al. [8] proposed the TCP-Feedback (TCP-F)protocol, which uses explicit feedback in the form ofroute failure and re-establishment control packets. Per-formance measurements were based on a simple one-hop network, in which the link between the sender andreceiver failed/recovered according to an exponentialmodel. Also, the routing protocol was not simulated.Durst et al. [12] looked at the Space Communica-tions Protocol Speci�cations (SCPS), which are a suiteof protocols designed by the Consultative Committeefor Space Data Systems (CCSDS) for satellite commu-nications. SCPS-TP handles link failures using explicitfeedback in the form of SCPS Control Message Protocolmessages to suspend and resume a TCP sender duringroute failure and recovery. Performance measurementsfocused on link asymmetry and corruption over last-hopwireless networks, common in satellite communications.8 Conclusions and Future WorkIn this paper, we investigated the e�ects of mobility onTCP performance in mobile ad hoc networks. Through

simulation, we noted that TCP throughput drops sig-ni�cantly when node movement causes link failures, dueto TCP's inability to recognize the di�erence betweenlink failure and congestion. We then made this pointclearer by presenting several speci�c examples, one ofwhich resulted in zero throughput, the other, in an un-expected rise in throughput with an increase in speed.We also introduced a new metric, expected throughput,which provides a more accurate means of performancecomparison by accounting for the di�erences in through-put when the number of hops varies. We then used thismetric to show how the use of explicit link failure noti-�cation (ELFN) can signi�cantly improve TCP perfor-mance, and gave a performance comparison of a varietyof potential ELFN protocols. In the process, we discov-ered some surprising e�ects that route caching can haveon TCP performance.In the future, we intend to investigate ELFN pro-tocols in more detail, as well as the e�ects that othermobile ad hoc routing protocols have on TCP perfor-mance. Currently, we are also studying the impact thatthe link-layer has on TCP performance, such as aggre-gate delay caused by local retransmissions over multiplewireless hops.
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Base TCPFigure 12: Performance comparison between base TCP-Reno and TCP-Reno with two con�gurations of ELFNwhen other tra�c is present in the network.We also intend to continue this study by looking atthe performance of ELFN in congested networks. Ini-tial results, shown in Figure 12, suggest that similarperformance bene�ts can be expected in congested net-works, as in the uncongested network presented in thispaper. Figure 12 shows a performance comparison be-tween base TCP-Reno, and ELFN with and withoutmodi�cations to the RTO and congestion window, asdescribed in Section 6 (both used 4s probes). The addi-tional network tra�c was provided by ten CBR connec-tions between eight other nodes, each sending 512-bytepackets at a rate of 10 packets/second, with slightlystaggered start times.More research is needed to better understand thecomplex interactions between TCP and lower layer pro-tocols when used over mobile ad hoc networks, and to�nd solutions to the problems caused by these inter-actions. One such problem that we identi�ed was the11
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