
c© 2011 by Lu-chuan Kung. All rights reserved.

UNIFIED CROSS-LAYER FRAMEWORK: A GENERIC PLATFORM FOR
CROSS-LAYER DESIGN EXPERIMENTATION

BY

LU-CHUAN KUNG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:
Professor Nitin Vaidya

Abstract

Cross-layer designs in wireless network systems have been an active research area. Numerous

cross-layer schemes are proposed to improve overall system performance by allowing infor-

mation to be shared and controlled across protocol layers. However, much of the previous

research work in this area is simulation-based. The main obstacle which hinders researchers

from real implementation is the complexity involved in lower-level driver modification and

kernel programming. Moreover, common pitfalls of cross-layer scheme implementation can

lead to unexpected system performance degradation.

In this work we propose unified cross-layer framework (UCF), a generic mechanism for

OS to support cross-layer schemes. Through this mechanism protocol components export

protocol-specific information through parameters and events to protocol components at other

layers. Cross-layer extensions are activated only at necessary times according to their as-

signed priorities so that they can react to events and make decisions at different time scales

with minimal overhead. We implement and evaluate UCF on embedded systems running

NetBSD to demonstrate the modularity, ease of programming, and utility of UCF.

ii

To my parents, my wife, and my family, for their love and support.

iii

Acknowledgments

The majority of the work of this thesis was performed under the guidance of the late Professor Jennifer Hou.

I am grateful to her inspiration and encouragement. I am also very thankful to my advisor, Professor Nitin

Vaidya, for his support and patience to help me finish this thesis.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1

Chapter 2 Background . 3
2.1 Layer versus Cross-Layer . 3
2.2 Models of Cross-Layer Schemes . 3
2.3 IEEE 802.11 Implementation in NetBSD . 4

2.3.1 Packet Transmission . 5
2.3.2 Packet Reception . 5

2.4 802.11e Differentiated Service in NetBSD . 6
2.5 Motivating Examples . 6

2.5.1 Rate Adaptation Using Unified Cross-Layer Framework 9

Chapter 3 Related Work . 11
3.1 Accessing Information from Drivers and Network Stacks . 11
3.2 Cross-Layer Control . 11
3.3 Software MAC . 12
3.4 Cross-Layer Signaling . 12

Chapter 4 Unified Cross-Layer Framework . 14
4.1 Design Guidelines . 14
4.2 Architecture and Major Components . 15
4.3 Internals of the Unified Cross-Layer Manager . 16

4.3.1 Accessing Exported Parameters . 16
4.3.2 Events Registration and Subscription . 17
4.3.3 Event Delivery and Callback Invocation . 18
4.3.4 Implementing Device Drivers as Loadable Kernel Modules in NetBSD 19
4.3.5 Accessing PHY/MAC Parameters From the User Space 20

4.4 Wireless Extension Interface . 21
4.4.1 PHY/MAC Parameters Exported by the Wireless Extension Interface 21
4.4.2 PHY/MAC Events Exported by the Wireless Extension Interface 23

Chapter 5 Performance Evaluation . 25
5.1 Examples of Cross-Layer Control Modules . 25

5.1.1 Rate and Power Control Algorithms . 25
5.1.2 Scheduling-based MAC . 26

5.2 Implementation . 27
5.3 Performance Evaluation . 28

5.3.1 Micro-Benchmarks . 28

v

5.3.2 Synchronous v.s. Asynchronous Events . 29
5.3.3 Rate and Power Control Schemes . 31

Chapter 6 Conclusions . 33

References . 34

vi

List of Tables

4.1 The APIs defined in the unified cross-layer manager. 20
4.2 Per-device parameters in the wireless extension interface. 22
4.3 Per-neighbor parameters in the wireless extension interface. 22
4.4 Per-packet parameters in the wireless extension interface. 23
4.5 Reception events in the wireless extension interface. 23
4.6 Transmission events in the wireless extension interface. 24
4.7 MAC-Layer events in the wireless extension interface. 24

vii

List of Figures

2.1 802.11 module and device driver architecture in NetBSD. 4
2.2 802.11 module and device driver data structures in NetBSD. 5
2.3 Flow graph of packet transmission in NetBSD. 6
2.4 Flow diagram of packet reception in NetBSD. 7
2.5 The rate control module in the Atheros driver on NetBSD . 8
2.6 TCP throughput with different module delay . 8
2.7 Rate control module using the proposed unified cross-layer framework. 10

4.1 The architecture of the unified cross-layer Framework . 15
4.2 The event definition tree of the 802.11 wireless extension. 17
4.3 Unified cross-layer manager and the flow graph of event delivery. 19

5.1 Pseudo-code of power adaptation. 26
5.2 Pseudo-code of the PARF power and bit-rate adaptation algorithm. 26
5.3 Pseudo code of a deterministic MAC scheduler using UCF. 28
5.4 Breakdowns of the processing time of packet transmission tasks with different event subscrip-

tions. 29
5.5 Packet loss rate of ping tests with different ping intervals using either synchronous or asyn-

chronous event. 30
5.6 Round-trip time of ping tests with different ping intervals using either synchronous or asyn-

chronous event. 30
5.7 The topology and aggregate throughputs of three rate and power control schemes. 32

viii

Chapter 1

Introduction

A multi-hop wireless network is a collection of wireless nodes which cooperatively establish communication,

without use of fixed infrastructure or centralized administration. It has gained tremendous attention in recent

years because of its wide applications in civilian and military areas, and its ability to provide connectivity

without the need for a pre-existing infrastructure. An example multi-hop wireless network is the wireless

mesh network (a.k.a. the community wireless network) for providing broadband access [1, 2, 3].

Although initial success has been reported, a number of performance-related problems have also been

identified. Excessive packet losses [4, 5, 6], unpredictable channel behaviors [5, 6], inability to find stable and

high-throughput paths [5, 6], throughput degradation due to intra-flow and inter-flow interferences [7, 8, 4],

and lack of incentives (and a pricing mechanism) to forward transit packets are among those most cited.

All the above problems (except perhaps for the incentive issue) are rooted in the fact that the notion of a

link is different in wireless environments. In network theory and practice, a link is usually characterized by

its bandwidth, latency, and loss rate. However, in the case of wireless networks, a wireless medium is shared

among nodes, and the sharing range is determined by (i) several PHY/MAC attributes such as transmit

power and carrier sense threshold, and intra-/inter-flow interference and (ii) several environmental factors

such as multi-path fading, shadowing, scattering, presence of obstacles, and temperature and humidity

variations. As a result, all the definitive metrics that characterize a link are no longer well defined in the

wireless context.

Because PHY/MAC attributes and environmental factors have a profound impact on higher-layer pro-

tocols [5, 9], the notion of cross-layer design and optimization has been proposed to optimize the overall

performance of wireless networks. In spite of a large amount of theoretical research results that demonstrate

the advantages of cross-layer design and optimization [10, 11, 12, 13], there has not been extensive device

driver support that exports PHY/MAC characteristics via a set of rich, well-defined APIs and help realizing

the notion of cross-layer design and optimization. Very often, research results on cross-layer design and

optimization have been (in-)validated, via either analytical reasoning built upon abstract models or simu-

lations using over-simplified PHY/MAC models. For the few efforts that go beyond theoretical derivation

1

and simulation [6, 1, 2], the software (such as customized device drivers, address resolution modules, rout-

ing daemons, and name servers) is often implemented in an ad-hoc manner, lacks in structural modularity,

and does not come with well-defined APIs for experimentation and performance tuning. An open, modu-

lar programming environment is crucial to the understanding of whether or not, and to what extent, the

performance of wireless networks benefits from cross-layer design and optimization.

In this work, we propose, in compliance with the guidelines given in [10, 14], the notion of unified cross-

layer framework (UCF). UCF serves as a general interface to pass messages and control signals between

protocol modules at any layer. It allows a protocol module to export certain attributes and events, thus

other protocol modules can access their interested exported attributes and and register callback functions

which are triggered in the case of event occurrence. In UCF, exporting and dynamic control of low-level

attributes at varying granularities, such as per-packet, per-link, per-session or per-interface, are enabled

through well-defined APIs to facilitate cross-layer design and optimization.

To demonstrate the utility of UCF, we have implemented several cross-layer schemes that tunes bit-rates

and transmit power using cross-layer information. We also present an example in which the chosen event

delivery mechanism have a large impact on system performance. In addition, we measure the overhead of

event delivery mechanisms of UCF. The results showed that with slight increase of processing time, UCF

provides simple but effective building blocks for implementing cross-layer schemes.

The remainder of the work is organized as follows. In Chapter 2, we introduce the background and explain

the problem and challenge. In Chapter 3 we review related work. In Chapter 4, we elaborate on how we

design and implement the unified cross-layer framework. In 4.4, we present the wireless extension interface

designed to export PHY/MAC parameters and events on an IEEE 802.11 interface. In Section 5.1, we

demonstrate the utility of UCF by giving examples of cross-layer control modules that adapts transmit power

and bit-rate, as well as a schedule-based medium access algorithm. Following that, we present performance

evaluation and empirical results in Section 5.3. Finally, we conclude the work in Section 6.

2

Chapter 2

Background

2.1 Layer versus Cross-Layer

Network protocols are usually designed with a layered architecture. One layer of protocol provides only

a subset of network functionalities and delegates remaining functionalities to other layers. For example,

TCP provides reliable transmission while IP deals with routing packets. Such design reduces the complexity

of protocol design and implementation. It also greatly influences the design of network software. As a

result, network software are usually organized as a stack of software layers, in which one layer only directly

communicates with its adjacent layers through some interfaces.

However, with the emergence of wireless networks the notion of cross-layer approach is introduced. The

idea is that in wireless network, the problem of packet routing and scheduling has to be considered jointly

to obtain a theoretically optimal solution. Consequently, in order to improve network performance, the

barriers that we imposed intensionally between non-adjacent layers need to be broken. The question is: do

we really have to sacrifice software modularity for performance? In this work, we argue that we can avoid

this trade-off by designing a clean interface for cross-layer protocols. Thus a cross-layer protocol can be

implemented in a way that is modular, maintainable, and portable.

2.2 Models of Cross-Layer Schemes

As summarized by Fu at el. [15], based on which layer is making control decisions, cross-layer schemes can

be categorized in four basic types: application-centric, middle layer-centric, centralized, and autonomous.

In general, in order to make cross-layer decision, a decision maker must gather information from other layers

with the right scope and timescale. Scope defines which entities that should report their status to a decision

maker. For example, at the TCP layer, we could be interested in either the throughput of one session,

or the aggregate throughput of all active sessions. At the wireless data link layer, we might be interested

in the number of failed packet transmissions for a wireless NIC, or the number of failed transmissions for

3

a particular link, or even the number of failed packets on a link, with a particular modulation. Timescale

defines how often should the decision maker be notified with the update of status from the interested entities.

Different layers usually have a different requirement of the freshness of feedback. For example, link layer

adaptation such as bit-rate adaptation and packet retransmissions usually requires immediate feedback. On

the other hand, application-level schemes are usually more interested in statistics of a longer time duration,

such as a round-trip time (RTT), therefore a generic cross-layer framework should provide a decision making

module the flexibility to choose the timescale in which it gets status updates.

2.3 IEEE 802.11 Implementation in NetBSD

In this section, we briefly introduce how the 802.11 networking modules are organized in NetBSD 4.x/5.x

kernel. NetBSD was chosen because it is highly customizable and the size of a complete NetBSD image can

be crammed into a 16MB compact flash card. Also at the time this work started, NetBSD had the most

robust driver support of Atheros NIC and 802.11 networking in kernel.

The organization of 802.11 networking stack in NetBSD is shown in Figure 2.1. At the top is the generic

network device layer. The next layer is a 802.11-specific layer, which deals with all the 802.11-specific

functions. To the bottom is the device driver layer, which handles all the hardware-specific operations of a

wireless NIC.

Network	
 devices	

Device	

independent	

802.11	
 layer	

Device	
 driver	

Atheros	
 HAL	

if.c

dev/ic/ath.c

net80211/ieee80211.c

contrib/dev/ath/ah.h

Generic	
 network	

device	
 func@ons	

802.11	
 crpyto	
 802.11	
 MAC	

protocol	

802.11	
 network	

management	

TX	
 queue	

management	

RX	
 queue	

management	

Misc.	
 	

HAL-­‐specific	

func@ons	

Hardware	
 Abstrac@on	
 Layer	
 (HAL)	

provided	
 by	
 Atheros	

Figure 2.1: 802.11 module and device driver architecture in NetBSD.

4

The data structures that actually store the device information at each layer are linked together as

shown in Figure 2.2. Structure ieee80211com stores all the vendor-independent 802.11 information of a NIC,

such as channel information, available base stations, RTS/CTS threshold, ...etc. Per-link information such

as available bit-rates for the link and statistics for the link, RSSI of received packets is stored in struct

ieee80211 node . Hardware-specific data structure ath softc stores hardware-specific data such as interrupt

handlers, memory descriptors for DMA transfer, vendor-specific statistics of the interface.

struct	
 ath_so+c	

struct	
 ieee80211com	

sc_ic;	
 	

struct	
 ieee80211com	

struct	
 ifnet	
 	
 	
 	
 	
 	
 	
 	
 *ic_ifp;	
 	

struct	
 ifnet	

struct	
 ifnet	
 	
 	
 	
 	
 	
 	
 	
 *ic_ifp;	
 	

…	

Atheros-­‐specific	

device	
 informa>on	

…	

…	

802.11	
 protocol	

informa>on	

…	

…	

Network	
 device	

informa>on	

…	

Figure 2.2: 802.11 module and device driver data structures in NetBSD.

2.3.1 Packet Transmission

Figure 2.3 diagrams how data link layer serves a request to send a 802.11 data packet from an upper layer in

NetBSD. An upper layer protocol first put a packet mbuf into the queue of the interface through ifq enqueue.

It then calls the if start function of that interface to start transmission. In our example, if start function

will points to ath start function, which calls several helper functions at the 802.11 layer to obtain the

necessary information in order to set up hardware-specific transmission descriptors. It then calls ath start

which puts the per-packet descriptors into a transmit queue. The SoC on the card then initiates transmission

as long as it thinks the channel is available.

2.3.2 Packet Reception

The flow diagram of packet reception in NetBSD is shown in Figure 2.4. When a packet is received by

the wireless NIC, it triggers a hardware interrupt, which is handled by the registered interrupt handler

5

Network	
 devices	

if.c

ifq_enqueue	

dev/ic/ath.c

net80211/ieee80211.c
Device	

independent	

802.11	
 layer	

Device	
 driver	

ath_start	

contrib/dev/ath/ah.h

Atheros	
 HAL	

ath_tx_start	

ath_hal_tx_start	
 ath_hal_setuptxdesc	

ieee80211_find_txnode	

ieee80211_classify	

ieee80211_encap	

Figure 2.3: Flow graph of packet transmission in NetBSD.

ath intr. This generic handler then calls a reception-specific handler ath rx proc. This handler’s main job is

to maintain DMA descriptors and prepare a m buf structure of the received packet before passing the packet

to the 802.11 layer. After some 802.11 protocol processing, the packet is passed to the if input handler,

which is usually the IPv4 packet input handler, if the NIC was set up as an IPv4 interface.

2.4 802.11e Differentiated Service in NetBSD

IEEE 802.11e defines quality of service (QoS) extensions to 802.11. In the enhanced distributed channel

access (EDCA), four access categories, are defined for background, best effort, video, and voice traffic. In

NetBSD, the access category of a packet is determined by either the 802.11d tag of the Ethernet header or

the TOS field of the IP header of the packet. The Atheros NIC maps each access category to a hardware

queue. Each queue has its own QoS parameters, as defined in 802.11e. Users can change the parameters of a

particular access category by system call ioctl, which is dispatched to function ieee80211 ioctl setwmeparam

in the 802.11 layer.

2.5 Motivating Examples

Rate adaptation algorithms have been an active research topic [16, 17, 18]. The open-source Atheros device

driver in NetBSD includes a few rate selection schemes: AMRR[19], ONOE, and SampleRate[20]. These

6

if.c

dev/ic/ath.c

net80211/ieee80211.c

contrib/dev/ath/ah.h

ath_intr	
 ath_rx_proc	

ieee80211_input	

if_input	

ieee80211_deliver_data	

hardware	
 interrupts	

Network	
 devices	

Device	

independent	

802.11	
 layer	

Device	
 driver	

Atheros	
 HAL	

Figure 2.4: Flow diagram of packet reception in NetBSD.

schemes are implemented according to an API specifically designed for rate selection. A rate control module

provides certain callback functions to the device driver so that the module is notified when certain event of

interest occurs. For example: before transmitting a frame, the driver consults the rate control module for

the bit-rate to use. After the transmission is completed, the driver sends the feedback of the transmission

back to the rate control module. A simplified diagram that illustrates the interactions between the Atheros

driver and rate control module is shown in Figure 2.5.

As shown in the example, a common approach to implementing cross-layer design/optimization and

enable interaction between protocols in different layers is to modify the device driver and insert callback

functions of a higher-layer protocol module wherever desirable. There are a number of drawbacks in this

callback architecture with respect to the system design, implementation complexity and performance:

• Lack of priority differentiation. Callback functions are executed in the same thread context of

a device driver. In many cases the calling device driver is in the process of handling an interrupt

when it invokes a callback function. Calling a callback function in an interrupt handler may increase

the interrupt processing time and may thus decrease the overall system throughput. To demonstrate

this problem, we insert a delay procedure into one of the rate control module in the Atheros driver

to simulate a computational intensive adaptive procedure. We then measure the TCP throughput

between a sender and a receiver node where the receiver node has the long-delay rate control module.

As shown in Figure 2.6, the overall system performance is affected by the cross-layer callback function

as an unintended side-effect.

7

ath_rate_findrate()

ath_rate_tx_complete()

ath_tx_start()
rate control module

atheros driver

ath_tx_processq()

{

 rate = ath_rate_findrate()

}

{

 ath_rate_tx_complete()

}

Figure 2.5: The rate control module in the Atheros driver on NetBSD

10
−1

10
0

10
1

10
2

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

module delay (ms)

T
C

P
 th

ro
ug

hp
ut

 (
M

bp
/s

)

Figure 2.6: TCP throughput with different module delay

8

• Lack of asynchronous events. As shown in the example, sometimes a device driver needs certain

feedback from a cross-layer module, but at some other times it does not. In the latter case, the call

can be handled in an asynchronous manner (e.g., buffering). The aforementioned ad-hoc approach,

however, does not differentiate the two cases and thus the device driver has to wait for the completion

of a callback function every time when an event occurs. This incurs a larger overhead.

• Lack of dynamic binding. Because a callback function is directly invoked by a device driver, the

address of the callback function must be known at compile time. This implies that, each time the

device driver switches to another cross-layer control module or a new cross-layer control module is

added, the device driver has to be re-compiled and reloaded.

• Tight coupling of the device driver and higher-layer protocol modules. Each time a cross-

layer control module is implemented, the device driver has to be modified. This involves tracing

the source code of the device driver and locating the right places to insert callback functions. This

compromises the design goal of the layered network architecture.

• Lack of an unified open API. The lack of an open API makes it difficult to integrate cross-layer

schemes in a systematic manner. Ad-hoc insertion of callback functions in the device driver may even-

tually make the code difficult to debug and maintain. It also makes it difficult to simultaneously load

and run multiple cross-layer control algorithms, even if they control orthogonal PHY/MAC parameters.

2.5.1 Rate Adaptation Using Unified Cross-Layer Framework

Figure 2.7 shows how the above rate-control module can be implemented using the proposed unified cross-

layer framework(UCF). Essentially the framework provides two major interfaces for both the device driver

and cross-layer control modules. It provides (i) for the device driver an API to export events and register

parameter handlers; and (ii) for the cross-layer control module an API to subscribe events of interest and

register event handlers. These interfaces provide a clean separation between the driver and the modules. The

driver exports a certain set of events and parameters which constitute part of an extension. A cross-layer

control module that understands the extension can subscribe to events of interest and access parameters

through the unified cross-layer manager. We will elaborate on the UCF and its features in Section 4.2.

9

Rate	
 control	

module	

callback2()	

{	

	
 	
 	
 	
 set_param2(val);	

}	

callback1()	

{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

set_param1(val);	

}	

zzz()	

{	

	
 	
 	
 trigger_sync_event(evt2);	

}	

xxx()	

{	

	
 	
 	
 trigger_event(evt1);	

}	

Atheros	
 driver	

/*	
 parameter	
 handlers	
 */	

set_param1(param1_in)	
 {	
 }	

get_param1(param1_out)	
 {	
 }	

set_param2(param2_in)	
 {	
 }	

get_param2(param2_out)	
 {	
 }	

Unified	
 Cross-­‐
Layer	

Manager	

Event	

Dispatching	

Parameter	

Access	

Figure 2.7: Rate control module using the proposed unified cross-layer framework.

10

Chapter 3

Related Work

3.1 Accessing Information from Drivers and Network Stacks

Common operating systems usually provide some mechanisms to configure parameters of software compo-

nents such as TCP/IP protocol stacks or hardware devices like a 802.11 network interface card (NIC). In

Linux for example, sysfs[21], introduced in version 2.6, is a virtual file system that exports device information

and configuration options as simple text files. Users can discover and explore all devices in the system by

traversing the directories and symbolic links of sysfs.

Linux Wireless Extension is the initial interface for supporting 802.11 devices. It defines a common

set of ioctl system calls for configuring 802.11 devices. However, ioctl is not flexible enough to support

complicated configurations, nor does it support notifications from kernel. Therefore cfg80211 and mac80211

[22] are introduced as a replacement of the Linux Wireless Extension. Building on top of netlink, which is

a generic interface for userspace process to communicate with kernel in Linux, cfg80211 provides a unified

interface to configure 802.11 interfaces. Sitting on top of cfg80211 is the mac80211 layer, which deals

the details of 802.11 protocol, such as authentication, processing and generating management frames, and

supporting ad hoc and mesh modes.

Similarly on Windows systems, Network Driver Interface Specification (NDIS) of 802.11 WLAN drivers

defines a set of configuration and indication objects for 802.11 device drivers. Such OS support of 802.11

focuses on configuration of 802.11 devices but does not consider the issues with cross-layer designs such as

latencies and priorities. UCF, on the other hand, enables fine-grained control of the tradeoff between event

latency and performance overhead.

3.2 Cross-Layer Control

The IEEE 802.11 standard [23] defines a layer management interface, which allows a layer-independent

management entity to gather information from MAC and PHY layer and to set the values of layer-dependent

11

parameters. While this abstract interface can be seen as a subset of the UCF API, our framework extends

this interface and provides more functionalities and considers practical operating system issues such as the

context switching, locking issues, latencies and event buffering.

3.3 Software MAC

The notion of implementing MAC layer functions entirely in software, i.e. software MAC, is not a new

concept. SoftMAC [24] explores the possibilities to implement new MAC, on top of Atheros wireless NIC.

It is an extension to the Madwifi driver for the Atheros 802.11a/b/g networking cards that provides the

following controls over the MAC layer: (i) overriding 802.11 MPDU frame format; (ii) eliminating automatic

ACK and retransmission; (iii) eliminating RTS/CTS exchange; (iv) eliminating virtual carrier sense (NAV);

and (v) controlling PHY clear channel assessment (CCA) and transmission backoff. Inspired by this work,

we extend the notion of software MAC to allow tuning a complete suite of PHY/MAC characteristics for

cross-layer design and optimization: transmit power, carrier sense threshold, channels, data rates, and frame

transmission schedule.

Click modular router [25] is an effort to enables a normal PC to become an efficient router. In Click,

routers are constructed by inter-connecting click elements, which perform simple computing tasks as part

of routing. From the point of view of an operating system, Click bypasses the whole networking stack.

It intercepts packets from network devices right after reception and sends packets directly to devices for

transmission, after the actual processing is done entirely inside Click. While Click also promotes modularity

and reusability of software components, it does not reuse any of the existing, well-tested and fine-tuned

protocol modules of OS kernel. On the contrary, UCF lets developers to build cross-layer-aware protocols,

on top of existing kernel modules, which greatly reduces the complexity of such task.

3.4 Cross-Layer Signaling

Abu et al. [26] discuss how to pass information across layers in layered network system. While the goal of

facilitating cross-layer signaling of their work is similar to ours, their discussion is only conceptual and lacks

consideration of practical issues and actual implementation.

NS-Miracle[27] is a ns2 library that provides a mean for cross-layer modules to communicate with each

other. Conceptually similar to UCF, NS-Miracle emphasizes the importance of a standard mechanism for

cross-layer messaging. However, NS-Miracle is only a simulation library while UCF is implemented on a real

system that deals with all the complicated kernel programming issues: interrupt handling, locking, memory

12

management, and DMA. UCF greatly lightens the burden of protocol designers to implement and evaluate

their cross-layer protocols on a real testbed.

13

Chapter 4

Unified Cross-Layer Framework

In this chapter we discuss the design and internals of Unified Cross-Layer Framework (UCF). First we

summarize the design principles of UCF. We then introduce the architecture and major components of

UCF. We then discuss the implementation details of UCF, before delving into the details of the 802.11

extension interface.

4.1 Design Guidelines

The UCF is designed to provide the following features:

• Controlled transparency: The UCF provides a transparent and generic interface for higher-layer proto-

col modules to access, through well-defined APIs, a rich set of PHY/MAC attributes and functionalities

in the device driver. Through an event subscription mechanism, higher-layer protocol modules can also

receive timely update of the channel status, without directly inserting callback functions in various

places of the device driver.

• Flexibility: The design philosophy of the UCF is to provide minimum but crucial functionalities that

enable implementation of complicated cross-layer design/control algorithms. The event subscription

mechanism is simple, elegant, and allows multiple higher-layer protocol modules to subscribe, and be

alerted of, PHY/MAC events of interest. They can also register with the event subscription mechanism

their callback functions, allowing adequate actions to be taken upon occurrence of the event of interest.

Moreover, the UCF allows the time granularity at which PHY/MAC properties are controlled to be

on a per-packet or per-link, per-interface, or per-system basis.

• Easy integration and portability: Each extension interface register its exported parameters events to

the UCF independently. Multiple extension interfaces can be dynamically loaded. An cross-layer

protocol module (e.g., a routing daemon) can be extended to subscribe events of interest (e.g., the

frame reception status upon frame arrival), and realize cross-layer design/optimization by adequately

14

Network	
 Applica/on	

TCP	

IP	

Device	

Driver	

Device	

Driver	

CLCM	

Syscall	

U
nified	
 Cross-­‐Layer	
 M

anager	

User	

Space	

Kernel	

Space	
 CLCM	

EEPM	

EEPM	
 EEPM	

Applica/on	

Layer	

Transport	

Layer	

Network	

Layer	

Datalink	

Layer	

Figure 4.1: The architecture of the unified cross-layer Framework

gaining access to/control PHY/MAC parameters and being timely informed of important events. A

cross-layer control scheme falls back to its normal operation if the required extension is not supported

by the UCF. This ensures backward compatibility.

4.2 Architecture and Major Components

Figure 4.1 shows the architecture of the unified cross-layer framework (UCF). Different from the traditional

layered approach, an extension-enabled device driver exports PHY/MAC parameters and events to higher-

layer protocol modules. The major components in the UCF are as follows:

• Unified Cross-Layer Manager (UCLM): UCLM is the major component of the UCF. It is responsible for

(i) loading and unloading extensions, (ii) providing an API for cross-layer control modules to register

events of interest and the associated callback functions; (iii) allowing control modules to read and

write the exported attributes of a protocol module via handlers registered by the protocol module;

(iv) maintaining event definition and subscription, and (v) dispatching events to subscribing control

modules. We will elaborate on its internals later in Section 4.3.

• Extension-enabled protocol module (EEPM): A protocol module such as device driver registers itself to

the UCLM to export a set of PHY/MAC attributes and events in the form of extension specification.

15

The specification serves as service agreements between a protocol module and a cross-layer control

module that uses it. To implement an extension, a protocol module implements the get/set handlers

of the attributes it exports. It also defines events, provides the event information to the UCLM, and

notifies the manager upon occurrence of events.

• Cross-layer control module (CLCM) : A cross-layer control module implements a cross-layer de-

sign/optimization algorithm. As a client to the UCLM, it registers itself with the UCLM in order

to use the facilities provided by a EEPM. Through a generic interface, a control module can read

and write PHY/MAC parameters exported by an EEPM. Also, it can subscribe to events of interest

defined in an extension specification and provide callback functions to be invoked whenever certain

events occur.

• Kernel-mode proxy: For user-space programs to gain access to the UCF in the kernel, we introduce a

kernel mode proxy that serves as a bridge between the two entities. Each UCF API function exported

is assigned an unique system call number. The kernel mode proxy is responsible for: (i) translating a

UCF-related system call and invoking the corresponding UCF function, and (ii) delivering events to

the handler in the user space.

4.3 Internals of the Unified Cross-Layer Manager

The unified cross-layer manager maintains (i) the definition record of all the supported events in an event

definition tree; and (ii) the list of subscribers of each event. To provide access to one parameter (or one

set of parameters), an EEPM registers one getter function and one setter function with the UCLM via

RegisterSetHandler() and RegisterGetHandler().

A cross-layer control module (un-)subscribes to an event with a callback function by calling AddEven-

tHandler() (RemoveEventHandler()). An EEPM generates and delivers an event to the UCLM (and subse-

quently CLCM that are interested in the event) by calling TriggerEvent(). Table 4.1 lists the APIs exported

by the UCLM.

4.3.1 Accessing Exported Parameters

Parameters exported by an EEPM are controllable parameters which affect the behavior and state of the

protocol module. At the first glance, parameter access in UCF may seem similar to the traditional operation

of ioctl(). The UCLM keeps a table of function pointers for each extension interface. (Recall that the

table is updated by an extension interface via RegisterSetHandler() and RegisterGetHandler().) When a

16

IEEE	

802.11	

device	

PHY	

events	

Frame	

RX	

Frame	

TX	

MAC-­‐layer	

events	

RX	
 OK	
 RX	

error	

TX	

Query	

TX	

Status	

Fragm-­‐
entaHon	

Manag-­‐
ement	

frames	

Neighbor	

events	

Authent-­‐
icaHon	

Node	

join	

Node	

leave	

Figure 4.2: The event definition tree of the 802.11 wireless extension.

request to read/write a parameter arrives, the manager invokes the corresponding handler in the table. For

example, the 802.11 wireless extension defines a parameter ’channel’ to specify the wireless channel on which

a wireless interface operates. A driver that provides the 802.11 wireless extension implements (and registers)

two handler functions, e.g., setDevChannel() and getDevChannel(). A CLCM can then use the API functions

SetExtParam() /GetExtParam() to set/read the current setting of wireless channel, respectively.

What differentiates UCF from ioctl-like functions is that it also supports dynamic and fine-grained

access to objects that are usually not accessible through ioctl() calls. The lifespan of these objects is

usually shorter and associated with some events. Often, one event indicates creation of an object, another

indicates its termination, while some other events might indicate change of the state of the object. These

events all include an identification of the object, which can be used in the parameter access function to

specify the object. For example, in the 802.11 wireless extension (Section 4.4), a neighbor is a data structure

associated with each direct neighbor of a node. The neighbor object is created when a new neighbor node is

detected and destroyed when the node moves away or leaves the network. A CLCM can use SetExtParam()

and GetExtParam() to specify the properties associated with that particular neighbor.

4.3.2 Events Registration and Subscription

An event in the framework triggers certain extension-specific state change. The state change may result

from a hardware interrupt, a timer timeout, or a function call from upper layers. Each extension specifica-

tion defines a number of events. In the UCF, events are organized using a MIB(Management Information

17

Base)-style naming scheme, in which an event name consists of a list of words, connected by dots. All events

supported in UCF (which may come from different extensions) are organized in an internal data structure

called the event definition tree. Figure 4.2 shows an example of the event definition tree for the 802.11

wireless extension (meaning of each event will be described in Section 4.4). UCF provides functions Cre-

ateEventNode(), RemoveEventNode(), and LookupEventNode() to create, remove, and lookup event definition,

respectively.

For a cross-layer module to actually receive any event, it must subscribe to its interested events. AddE-

ventHandler()/RemoveEventHandler() is provided to allow an extension interface to register/cancel an event

handler for a particular event. Internally the UCLM maintains a subscriber list for every leaf node in the

event definition tree to keep track of subscribers and maintain pointers to their event handlers.

4.3.3 Event Delivery and Callback Invocation

Depending on the type of events, there are two possible paths for delivering an event to the manager. A

synchronous event is an event for which an EEPM requires immediate feedback from its subscribers. When

a synchronous event is triggered, it is delivered by the dispatcher in UCLM immediately and the EEPM that

triggers the event waits until all the subscriber handlers are finished. An example of a synchronous event

is a transmit query (Table 4.6), in which prior to the transmission of a frame, the extension-enabled device

driver queries registered subscribers for recommendations of a few per-packet transmit parameters such as

transmit power, channel, and bit-rate. Thus per-packet control of transmit power, channel, and bit-rate can

be implemented. Synchronous events make it possible for cross-layer control modules to make decisions upon

occurrence of certain events. An asynchronous event, on the other hand, is a notification message sent by

the EEPM to the subscriber(s) of that event. Upon reception of an asynchronous event, the UCLM inserts

the event into the event queue and wakes up the dispatcher. The dispatcher then delivers the event to the

corresponding callback functions.

Figure 4.3 shows the internals of the UCLM and the data paths of the two event delivery mechanisms.

Synchronous events are delivered directly to the subscribing modules using the original thread which calls

TriggerEvent(). As many of the events are triggered by interrupts, TriggerEvent() is likely to be invoked by an

interrupt handler. This implies that the event handler for a synchronous event must complete within a short

time to ensure that it will not degrade the system performance. Asynchronous events, on the other hand, are

buffered in event queues before being delivered by the dispatcher thread. Again, because TriggerEvent() may

be invoked by an interrupt handler and delivering events in the context of interrupt handlers is inefficient,

we split the task into event creation and callback invocation. The TriggerEvent() function creates an event

18

object and puts it into event queue. It is now dispatcher’s job to invoke the registered callbacks with the

event object. Running on its own kernel thread, the dispatcher constantly monitors the event queue and

is awakened whenever there is a new event. In this manner, the overhead incurred in interrupt handlers is

greatly reduced.

Extension-­‐Enabled	

Protocol	
 Module	
 (EEPM)	

Event	

trigger	

Tunable	

parameters	

Cross-­‐Layer	

Control	
 	

Module	
 	

(CLCM)	
 2	

Dispatcher	

Event	
 queue	

SubscripCon	

record	

Unified	
 Cross-­‐Layer	
 Manager	

Event	

definiCon	
 tree	

Asynchronous	

events	

synchronous	

events	

access	
 tunable	

parameters	
 and	

extension	
 interface	

Cross-­‐Layer	

Control	
 	

Module	
 	

(CLCM)	
 2	

Figure 4.3: Unified cross-layer manager and the flow graph of event delivery.

4.3.4 Implementing Device Drivers as Loadable Kernel Modules in NetBSD

In our NetBSD implementation of UCF, both EEPM and CCLM are implemented as loadable kernel modules

(LKM). LKMs are dynamic libraries that can be loaded/unloaded at run time to provide new functionalities

in NetBSD. Using LKMs in an experimental testbed is beneficial for supporting fast system prototying,

allowing drivers/modules to be updated/modified at runtime, allowing the system to fall back to the original

default driver after a system crash.

To realize extension interfaces as LKMs in the framework, we modularize the Atheros driver in NetBSD

as a LKM. This is more complicated than modularizing other kinds of kernel modules, because it involves

the auto-configuration (autoconf(9)) framework of NetBSD. Basically we have to instruct the OS how to

load a device by providing two data structures: struct cfdriver points to the driver to be loaded and struct

cfattach instructs OS how to attach the driver in a LKM.

19

Category Function name Function description

Extension
management

RegisterExtension()
UnregisterExtInterface()

Register/unregister an extension interface module.

FindExtension()
Query whether an extension interface identified by a unique
name or id exists. Return a handle to the interface if it
exists.

Register parameter
set/get handlers

RegisterSetHandler()
UnregisterSetHandler()

Register or unregister a set handler to the unified cross-
layer manager.

RegisterGetHandler()
UnregisterGetHandler()

Register or unregister a get handler to the unified cross-
layer manager.

Access to extension
parameters

GetExtParam()
Get the value of an extension parameter by invoking the
registered get handler.

SetExtParam()
Set the value of an extension parameter by invoking the
registered set handler.

Event definition and
lookup

CreateEventNode()
RemoveEventNode()

Define or remove an event definition in the event definition
tree.

LookupEventNode()
Look up an event definition by its name and return the
pointer of the event definition node.

Event subscription and
delivery

TriggerEvent() Generate an event and deliver it to the subscribers.
AddEventHandler()
RemoveEventHandler()

Subscribe to an event with a callback handler function.

Table 4.1: The APIs defined in the unified cross-layer manager.

4.3.5 Accessing PHY/MAC Parameters From the User Space

One design goal of the UCF is to provide uniform access to PHY/MAC parameters, no matter in which layer

the cross-layer control module resides. In many cases, programs in the user space (e.g., routing daemons)

can benefit from utilizing the cross-layer PHY/MAC information. Because most driver modules reside in

the kernel space where user-space programs cannot access, a mechanism is required for user-space programs

to gain access to or control PHY/MAC parameters.

There are two reasonable design options for providing access to extensions from the user space: (i)

adding new system calls to access extensions; and (ii) enabling user-space programs and the unified cross-

layer manager to communicate through IPC mechanisms such as local socket and shared memory.

In the first approach, new system calls are added into the system call table of the operating system.

User programs can therefore access extensions through standard system calls. Note that on NetBSD, system

calls can be extended through loadable kernel modules. Therefore the entire UCF can be implemented as a

LKM. This way it is easy for an application to link with the UCF library and the overhead incurred in this

approach is minimal.

In the second approach, the UCLM communicates with cross-layer user-space programs through IPC

mechanisms. This approach incurs additional overhead of encoding and decoding function calls and argument

list into messages. However, it has the potential to support remote control modules because the socket

interface can support both local and remote processes transparently. In our current implementation, we

20

focus on a local system and hence take the first approach for a lightweight implementation.

4.4 Wireless Extension Interface

In principle, one can design any type of extension interfaces that export attributes and events of interest.

In this section, we elaborate in particular on the wireless extension interface, which is designed to export a

rich set of PHY/MAC parameters and events on an IEEE 802.11 wireless interface.

4.4.1 PHY/MAC Parameters Exported by the Wireless Extension Interface

We list PHY/MAC parameters supported in the proposed wireless extension. The listing is by no means a

complete set of 802.11 configurations but to provide a flavor of the supported parameters. We categorize

them into three groups: per-device, per-neighbor, and per-packet parameters. Note that several of the per-

device parameters are related to network configuration and thus can also be set by ifconfig via ioctl()

calls. However, ioctl() does not support settings of dynamic objects such as per-neighbor and per-node

parameters. In contrast, the proposed wireless interface supports per-neighbor and per-packet parameter

settings through events that specify the lifetime of such dynamic objects.

Per-Device Configuration

Table 4.2 lists the parameters on a per-device level of a 802.11 wireless interface. In addition to the setter

commands listed, there are also the corresponding getter commands that read the current values of these

parameters. For brevity, the getter commands are not listed.

Per-neighbor Transmit Parameters

Table 4.3 gives the parameters that control the transmission behavior on a per-neighbor basis. The device

driver keeps a table of neighbors and maintains the status and parameter settings for each neighbor. These

settings can be retrieved and set using the proposed wireless extension. In particular, one can realize

a specific power (rate) control algorithm at the per-neighbor granularity by setting the txPower (rate)

parameter. Before transmission of a frame, the driver searches the table to retrieve the parameter setting

for the destination node.

21

Command Description and parameters

SetOpMode
Set the operating mode.
opMode Operating mode. Valid values are: AP (access point),

STA (station), ADHOC (ad-hoc mode), MONITOR (moni-
toring mode)

SetBssID
Set the ID of BSS (basic service set defined in 802.11).
bssID BSS ID of the network to join

SetChannel
Set the 802.11 channel.
channel New Channel
phyMode Physical mode of the new channel, eg. 11A, 11B, 11G.

SetPreamble
Set the preamble format.
shortPreamble 0(default): long preamble, 1: short preamble

SetDevTxPower
Set the per-device transmit power limit.
devTxPower The maximum transmit power level of this device.

SetAntenna
Select the antenna.
antSelect Selection of the antenna being used.

SetEdcaParam

Set the IEEE 802.11e EDCA(enhanced distributed channel access) parameters of
an access category.
ac Access category
aifsn AIFS in slottimes.
logCwMin Minimum congestion window size.
logCwMax Maximum congestion window size.
txOpLimit Limit of transmit opportunities.
noAckPolicy True if no ack is used for this access category

SetRtsThreshold
Set the minimum threshold of the frame size to enable RTS/CTS.
rtsThreshold RTS threshold.

SetFragThreshold
Set the minimum threshold of the frame size to enable fragmentation.
fragThreshold Fragmentation threshold.

Table 4.2: Per-device parameters in the wireless extension interface.

Command Description and parameters

SetNodeTxParam

Set the transmit parameters of a neighbor node.
node The neighbor node
txPower Transmit power level.
rate Rate to transmit this packet.
retries Limit of the MAC-level retransmission
priority WME access category of the packet

Table 4.3: Per-neighbor parameters in the wireless extension interface.

22

Per-Packet Transmit Parameters

Table 4.4 lists the parameters that control the transmission of a frame. Each request includes an input

argument packetPtr that identifies the packet of which the properties are being set. One can, for example,

implements a specific power control algorithm at the per-packet granularity by setting the txPower parameter.

Note that many of the per-packet transmit parameters can also be set in a per-neighbor or per-interface

setting. In such case, settings at the finer granularity take precedence. In other words, for the same

parameter, per-packet setting overrides per-neighbor or per-interface setting.

Command Description and parameters

SetPktTxParam

Set the transmit parameters of a packet.
pktPtr Pointer to the packet
txPower Transmit power level.
rate Rate to transmit this packet.
retries Limit of the MAC-level retransmission
priority WME access category of the packet
antenna Antenna to use for transmission

Table 4.4: Per-packet parameters in the wireless extension interface.

4.4.2 PHY/MAC Events Exported by the Wireless Extension Interface

In this section, we present the PHY/MAC events supported by the wireless extension interface. An event is

specified by a name, the scenario when it is generated, and the event data that comes with it. We categorize

all the events into three groups: receiving events, transmission events, and MAC-associated events.

Reception Events

Table 4.5 gives events that are related to, and triggered upon, reception of a frame.

Event Name Event description and data fields
FrameRxOk A frame is received successfully by the interface.

recvFrame The received frame.
senderNode Sender of this frame.
recvStatus Reception status. Reception status includes rate, sig-

nal strength, and timestamp of the received frame.
FrameRxError A reception error has occurred and its cause is indicated by the error code.

errorCode Error code of the receiving error.

Table 4.5: Reception events in the wireless extension interface.

23

Transmission Events

Table 4.6 gives events that are generated when a frame is to be transmitted. Note that the transmit query

event is a synchronous event (Section 4.2). Through this event, a cross-layer control module can be inquired,

prior to the time of transmitting a frame, to provide transmit parameters (as listed in section 4.4.1) on a

per-packet basis.

Event Name Event description and data fields
TxQuery
(synchronous)

This event is generated right before a frame is to be transmitted. The
transmit descriptor of the frame is to be filled.
framePtr Pointer to the frame being transmitted

TxInterrupt An interrupt is generated when a marked frame is transmitted.
markedFrame The marked frame.

TxStatus The event is generated after a frame transmission attempt. It carries the
status of the transmission, including the retry counts, the rate used, the
virtual collision count and the hardware-assigned timestamp.
framePtr Pointer to the transmitted frame.
txStatus Result of the transmission.

Table 4.6: Transmission events in the wireless extension interface.

MAC-Layer Events

Table 4.7 gives events that are related to the IEEE 802.11 MAC protocol.

Event name Event description and data fields

MgmtFrame
The event is generated when a 802.11-related management frame is received.
frameType Type of the received frame.
frame The received frame.

FragmentReq The event is generated before a frame is fragmented at the MAC layer.
outgoingFrame The frame to be fragmented.

StateChanged The event is generated when the MAC layer changes its state. There are 5
states defined: initial, scanning, authenticating, associating, and associated.
oldState Previous state.
newState New state.

NodeJoin The event is generated when a new node joins the network. A corresponding
entry is created in the node table.
node Pointer to the node structure in the node table.

NodeLeave The event is generated when a node leaves the network. The corresponding
entry in the node table is invalidated.
node Pointer to the node structure in the node table.

Table 4.7: MAC-Layer events in the wireless extension interface.

24

Chapter 5

Performance Evaluation

5.1 Examples of Cross-Layer Control Modules

With the availability of the unified cross-layer manager and the wireless extension interface, numerous

cross-layer design/optimization applications can be devised, ranging from power control, interference mit-

igation, channel assignment, and scheduling-based MAC (rather than contention-based MAC) both on a

per-connection or per-packet basis. In this section, we give illustrative examples of several cross-layer con-

trol modules and demonstrate how they can be implemented using the proposed framework.

5.1.1 Rate and Power Control Algorithms

Topology control and management – how to determine the transmit power of each node so as to mitigate

interference, improve spatial reuse, while consuming the minimum possible power – is one of the most

important issues in wireless multi-hop networks. Several rate and power control algorithms have been

proposed, and the principle they employ is essentially to decide the transmit rate and power level dynamically

based on several PHY/MAC parameters: the frame error rate, the frame loss statistics on the wireless

link, and/or the estimate of interference level. To demonstrate the utility of the proposed framework, we

implement a few different rate adaptation schemes. Listed in Figure 5.1 is an adaptation algorithm that

adapts transmit power in a way similar to how rate is adapted in the Auto Rate Fallback (ARF) algorithm[28].

Another example is Power-controlled Auto Rate Fallback (PARF) algorithm proposed in [29]. Figure 5.2

outlines how PARF can be implemented using UCF.

The above algorithms can be readily implemented as a cross-layer control module in our framework. They

listen to the TxStatus event, update the number of of successful transmissions, and call SetNodeTxParam to

set the transmit power txPower on a per-neighbor basis. We have implemented these algorithms and evaluate

their performance in Section 5.3.3.

25

PowerAdaptation
On L consecutive packets losses :

txPower ← min (txPower + step, maxTxPower)
On S consecutive successful transmissions:

txPower ← max (txPower - step, minSafeTxPower)
On timeout for being idle longer than IDLE TIME:

txPower ← maxTxPower

Figure 5.1: Pseudo-code of power adaptation.

PowerControlledAutoRateFallback
On L consecutive packets losses :

rate ← Lower(rate)
if IsLowestRate(rate)

txPower ← min (txPower + step, maxTxPower)
On S consecutive successful transmissions:

rate ← Higher(rate)
if IsHighestRate(rate)

txPower ← max (txPower - step, minTxPower)
On timeout for being idle longer than IDLE TIME:

rate ← HighestRate()

Figure 5.2: Pseudo-code of the PARF power and bit-rate adaptation algorithm.

5.1.2 Scheduling-based MAC

Another dimension of improving the network capacity is through joint temporal and spatial diversity. Specif-

ically, the overall capacity can be increased by exploiting spatial diversity that exists among a number of

multi-hop paths. Packets that are routed along these paths can be scheduled to take place simultaneously if

their transmissions do not interfere with each other significantly.

To realize the notion of joint temporal and spatial diversity, a device driver has to support scheduling-

based medium access (rather than contention-based medium access). A scheduler should also be able to

gain access to PHY/MAC attributes and schedule packets according to the channel status and packet delay

constraints. To enable a scheduler to transmit packets at deterministic time instants, we can leverage the

features provided by the wireless extension interface:

• Disable exponential backoff mechanism by setting both logCwMin and logCwMax to 0. In this manner,

all the frames will be transmitted once they arrive at the transmit queue of the firmware/hardware.

• Disable MAC-layer retransmission by setting retries=0 in the per-neighbor/per-packet transmit pa-

rameter.

In addition, to disable link-level ACKs, we can leverage the SoftMAC methodology [24] and “undo” several

26

802.11 functions implemented in the Atheros interface hardware/HAL as follows:

• Instrument via the device configuration parameter. Set the interface to operate in the monitor mode

(in which all the messages, including those meeting the 802.11 PHY format but not necessarily the

802.11 MAC message types, will be received).

• Exploit a IEEE 802.11 MAC feature that it does not acknowledge multicast frames to eliminate auto-

matic ACKs in the case of unicast. That is, the multicast bit in the destination address of a unicast

frame is set to lure the hardware/HAL into believing that the destination address is not a valid unicast

address. (The frame will still be received because it meets the 802.11 PHY format.)

Next, to enable the scheduler to receive packets from an upper-layer protocol module and to schedule

packets based on PHY/MAC characteristics, the following events can be used to notify the scheduler:

• Deliver request: A scheduler can be notified by this event of a packet sent from an upper layer protocol

module for delivery. A packet may be associated with a tag that specifies its scheduling deadline, i.e.,

the relative time by which the packet has to be transmitted.

• Timer event: A scheduler can invoke itself periodically by listening to timer events. These timers can

be used to schedule packets according to their (relative) transmit delay constraints.

• Transmission feedback: A scheduler is notified by event TxStatus of whether or not a packet transmis-

sion is successful.

• Dequeue request: A scheduler is notified by this event when the hardware has completed the previous

transmission and is ready to accept the next packet(s).

The pseudo code in Figure 5.3 elaborates how a scheduling-based MAC can be implemented using UCF.

5.2 Implementation

We implement UCF on a development branch of NetBSD 4.0. The whole UCF framework is implemented as

a loadable kernel module (LKM) which can be loaded or unloaded dynamically. We also modify the Atheros

driver extensively to support the 802.11 MAC/PHY parameters and events mentioned in Section 4.4. Our

customized NetBSD distribution is based on CUWiN 0.7.0[1]. The customized NetBSD distribution is

deployed to a 20-node testbed consisting of Soekris Net4526 (with 64MB RAM and 64MB flash) and Soekris

Net4801 (128MB RAM and 256MB flash) embedded systems. Each wireless node is equipped with two

Wistron CM9 MiniPCI cards.

27

DeterministicMACScheduler
On deliveryRequest(packet, constraints):

if constraints can be satisfied:
enqueue packet with priority inferred by constraints
schedule timer event(s) if necessary

else
reject the delivery request

On timer event:
packet ← first packet in the queue
put packet into hardware transmission queue for transfer

On transmission feedback event:
if transmission error occurs

if delivery constraint is still satisfiable
reschedule packet delivery

else
notify failure of packet delivery

On dequeueRequest event:
packet ← first packet in the queue
put packet into hardware transmission queue for transfer

Figure 5.3: Pseudo code of a deterministic MAC scheduler using UCF.

5.3 Performance Evaluation

In this section we evaluate UCF by measuring its performance and showcase a few cross-layer modules

implemented in UCF.

5.3.1 Micro-Benchmarks

To understand how much overhead is introduced by the event notification mechanism of UCF, we benchmark

the packet transmission function of Atheros driver with cross-layer modules subscribing to different events.

For each packet transmission, we breakdown the processing task in device driver into 3 stages: (i) pre-DMA

(direct memory access) processing, such as filling hardware-dependent frame descriptor and (ii) setup of

DMA descriptors and enqueuing to hardware transmission queue, and (iii) cleanup of DMA descriptors. In

this experiment, three cross-layer modules subscribe to no event, TxStatus, and both TxStatus and TxQuery

events, respectively. The results are shown in Figure 5.4. It can be seen that TxStatus event incurs more

overhead in the DMA cleanup stage, while TxQuery event incurs more overhead in the DMA setup and

hardware queue enqueuing stage.

28

0

20

40

60

80

100

120

140

160

180

200

pre-DMA tx
processing

setup DMA
transfer and

enqueue for tx

cleanup DMA
descriptors

ti
m

e
 (

n
s/

p
k
t)

no event
txstatus
txstatus+txquery

Figure 5.4: Breakdowns of the processing time of packet transmission tasks with different event subscriptions.

5.3.2 Synchronous v.s. Asynchronous Events

In this experiment, we run ping tests on two nodes to study the effect of different event delivery methods

(synchronous or asynchronous) on system performance. The receiver node runs a cross-layer module which

simulates a computationally intensive procedure by running a delay loop to delay a fixed amount of time

(5ms). The cross-layer module subscribes to the “frame-received” (Table 4.5) event using either synchronous

mode or asynchronous mode. We vary the intervals between two consecutive ping request packets on the

sender and measure the packet loss rate and average round-trip time. The results are shown in Figure 5.5

and Figure 5.6.

In Figure 5.5 we see that in synchronous mode, when the ping interval approaches the processing delay of

one packet (5ms), CPU is locked up in the interrupt handler most of time and cannot process interrupts fast

enough, therefore causing packet losses when the hardware receiving buffer is overflowed. On the other hand

in asynchronous mode, incoming packets are still processed and delivered to the network stack to return

the ping reply packets even though the system spends most of time running the time-consuming cross-layer

module. This is because the hardware interrupt handler and network stack handlers have higher priority

than the cross-layer module. The results confirm that the ad-hoc way of implementing cross-layer module

can incur unnecessary performance degradation. In contrast, UCF handles event triggering and delivery in

the correct context (either interrupt or process), providing more flexibility and better interface for protocol

29

1 2 3 4 5 6 7 8
!10

0

10

20

30

40

50

60

70

80

90

100

Ping interval (ms)

Pa
ck

et
 L

os
s

R
at

e
(%

)

sync event
async event

Figure 5.5: Packet loss rate of ping tests with different ping intervals using either synchronous or asyn-
chronous event.

1 2 3 4 5 6 7 8

0

200

400

600

800

1000

1200

1400

1600

1800

Ping interval (ms)

Pi
ng

 ro
un

d!
tri

p
tim

e
(m

s)

async. event
sync. event

Figure 5.6: Round-trip time of ping tests with different ping intervals using either synchronous or asyn-
chronous event.

30

designers to design and implement cross-layer schemes.

5.3.3 Rate and Power Control Schemes

In this section we show the performance evaluation results of the three cross-layer schemes described in

Section 5.1.1. The topology contains two pairs of sender and receiver nodes and is shown in Figure 5.7(a).

The sender and receiver of each pair are placed close to each other while the two pairs are separated by

3.5m. To show the influence of different rates and power levels within such a small area, we unplug the

antennas of the nodes and only put antenna cables on them. In each run of the experiment, both senders

send data to their receivers simultaneously for 10 seconds. We measure the aggregated UDP throughput of

the two pairs. The offered load is 11Mbps which saturates the link (11Mbps for 802.11b). We repeat the

experiments three times for every rate/power control scheme and present the average results.

Since the two pairs are within each other’s interference range under the maximum power control, there

will be poor spatial reuse by using the maximum power. By applying power control, we can improve spatial

reuse and boost the aggregated throughput. Also, since the channel condition is time-varying, the best data

rate to use should also be time-varying. Figure 5.7(b) justifies these intuitions. From left to right, each bar

shows the aggregate throughput of the following setups:

• Concurrent: aggregate throughput when each sender uses fixed data rate (11Mbps) and default trans-

mit power.

• Non-concurrent: sum of the individual throughputs of the two flows using fixed data rate (11Mbps)

and is therefore the maximum achievable throughput.

• Power Adaptation as described earlier in Figure 5.1 with minTxPower=0, maxTxPower=60, and step=10.

• ARF: each node use Auto Rate Fallback (ARF) [28]. Bit-rates are in the set of {1, 2, 5.5, 11}Mbps .

• PARF: each node use PARF as described in Figure 5.2 to adapt both transmit power and bit-rate (in

the same range and set as Power Adaptation and ARF).

We find that both the rate control module and the power control module achieve better throughput than

the default (fixed) scheme. Further, the joint rate/power control module can offer even higher throughput

since it improves both spatial reuse and robustness against temporary bad channel conditions.

31

S1 S2

R2R1

3.5m

(a) Two-flow topology used in the experiment

0	

2	

4	

6	

8	

10	

12	

14	

16	

Concurrent	
 Non-­‐concurrent	
 Power	

Adapta8on	

ARF	
 PARF	

Aggregate	
 Throughput	
 (Mbps)	

(b) Aggregate throughputs of rate-control, power-control, and joint rate and power
control algorithm

Figure 5.7: The topology and aggregate throughputs of three rate and power control schemes.

32

Chapter 6

Conclusions

In this work we present UCF as a generic framework to facilitate messaging between cross-layer components.

UCF lightens the burden of protocol designers by hiding the details of low-level OS programming. The generic

API interface of UCF enables protocols to be cross-layer aware, yet still maintains modularity and separation

between cross-layer components. Possible future work includes using UCF to implement cross-layer aware

TCP and cross-layer aware routing protocols. Another avenue for future work is to port UCF to Linux and

other wireless drivers and make UCF available for more system developers and network researchers.

33

References

[1] “Champaign-urbana community wireless network,” http://www.cuwireless.net/.

[2] “Seattle wireless,” http://www.seattlewireless.net/.

[3] “Mit roofnet,” http://pdos.csail.mit.edu/roofnet/doku.php.

[4] Z. Fu, H. Luo, P. Zerfos, S. Lu, L. Zhang, and M. Gerla, “The impact of multihop wireless channel on
tcp performance,” IEEE Trans. on Mobile Computing, vol. 4, no. 2, pp. 209–221, March/April 2005.

[5] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level measurements from an 802.11b
mesh network,” in Proc. of ACM SIGCOMM. ACM, September 2004.

[6] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and evaluation of an 802.11b mesh
network,” in Proc. of ACM Mobicom. ACM, September 2005.

[7] K. Sanzgiri, I. D. Chakeres, and E. M. Belding-Royer, “Determining intra-flow contention along mul-
tihop paths in wireless networks,” in Proc. of Broadnets Wireless Networking Symposium, October
2004.

[8] D. Berger, Z. Ye, P. Sinha, S. Krishnamurthy, M. Faloutsos, and S. K. Tripathi, “TCP-friendly medium
access control for ad-hoc wireless networks: alleviating self-contention,” in Proc. of IEEE MASS, Oc-
tober 2004.

[9] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless mesh networks,” in Proc.
ACM MobiCom 2004. ACM, September 2004.

[10] V. Kawadia and P. R. Kumar, “A cautionary perspective on cross layer design,” IEEE Wireless Com-
munication Magazine, vol. 12, no. 1, February 2005.

[11] X. Liu, E. K. P. Chong, and N. B. Shroff, “Opportunistic scheduling: An illustration of cross-layer
design,” Telecommunications Review, December 2004.

[12] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-layer congestion control in wireless
networks,” IEEE/ACM Transactions on Networking, vol. 14, no. 2, pp. 302–315, February 2006.

[13] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in wireless networks,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 8, pp. 1452–1463, June 2006.

[14] X. Lin and N. B. Shroff, “Cross-layer design for multi-hop wireless networks: a loose coupling per-
spective,” in Proc. of IEEE INFOCOM. IEEE Computer Soceity, March 2005, (invited for fast track
publication to IEEE/ACM Trans. on Networking.

[15] F. Fu and M. van der Schaar, “A new systematic framework for autonomous cross-layer optimization,”
Vehicular Technology, IEEE Transactions on, vol. 58, no. 4, pp. 1887–1903, Mar. 2009.

[16] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive MAC protocol for multi-Hop wireless networks,”
in Proceedings of the 7th annual international conference on Mobile computing and networking -
MobiCom ’01. New York, New York, USA: ACM Press, 2001, pp. 236–251. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=381677.381700

34

http://portal.acm.org/citation.cfm?doid=381677.381700

[17] S. H. Y. Wong, S. Lu, H. Yang, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless net-
works,” in Proceedings of the 12th annual international conference on Mobile computing and networking
- MobiCom ’06, vol. pp. New York, New York, USA: ACM Press, 2006, p. 146.

[18] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer wireless bit rate adaptation,” ACM
SIGCOMM Computer Communication Review, vol. 39, no. 4, pp. 3–14, Aug. 2009.

[19] M. Lacage, M. Manshaei, and T. Turletti, “IEEE 802.11 rate adaptation: a practical approach,” in
Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless
and mobile systems. ACM, 2004, pp. 126–134.

[20] J. C. Bicket, “Bit-rate selection in wireless networks,” Master’s thesis, MIT, 2005.

[21] P. Mochel, “The sysfs Filesystem,” Proceedings of the Linux Symposium, vol. 1, 2005.

[22] The official linux wireless wiki. [Online]. Available: http://linuxwireless.org/

[23] IEEE 802.11 Standard - Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE Computer Soceity, 2007.

[24] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald, “SoftMAC Flexible Wireless Research
Platform 1 Introduction 2 Implementation and Design of the,” in Hotnets, 2005.

[25] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular router,” ACM
Transactions on Computer Systems, vol. 18, no. 3, pp. 263–297, Aug. 2000.

[26] M. Abu-Rgheff, “Cross-layer signalling for next-generation wireless systems,” 2003 IEEE Wireless Com-
munications and Networking, 2003. WCNC 2003., pp. 1084–1089.

[27] N. Baldo, F. Maguolo, M. Miozzo, M. Rossi, and M. Zorzi, “ns2-miracle: a modular framework for
multi-technology and cross-layer support in network simulator 2,” in ValueTools ’07. ICST, Brussels,
Belgium, Belgium: ICST, 2007, pp. 1–8.

[28] A. Kamerman and L. Monteban, “Wavelan-ii: a high-performance wireless lan for the unlicensed band,”
in Bell Labs Technical Journal, August 1997, pp. 118–133.

[29] A. Akella, G. Judd, S. Seshan, and P. Steenkiste, “Self-management in chaotic wireless deployments,”
in MobiCom ’05: Proceedings of the 11th annual international conference on Mobile computing and
networking. New York, NY, USA: ACM, 2005, pp. 185–199.

35

http://linuxwireless.org/

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Background
	Layer versus Cross-Layer
	Models of Cross-Layer Schemes
	IEEE 802.11 Implementation in NetBSD
	Packet Transmission
	Packet Reception

	802.11e Differentiated Service in NetBSD
	Motivating Examples
	Rate Adaptation Using Unified Cross-Layer Framework

	Chapter 3 Related Work
	Accessing Information from Drivers and Network Stacks
	Cross-Layer Control
	Software MAC
	Cross-Layer Signaling

	Chapter 4 Unified Cross-Layer Framework
	Design Guidelines
	Architecture and Major Components
	Internals of the Unified Cross-Layer Manager
	Accessing Exported Parameters
	Events Registration and Subscription
	Event Delivery and Callback Invocation
	Implementing Device Drivers as Loadable Kernel Modules in NetBSD
	Accessing PHY/MAC Parameters From the User Space

	Wireless Extension Interface
	PHY/MAC Parameters Exported by the Wireless Extension Interface
	PHY/MAC Events Exported by the Wireless Extension Interface

	Chapter 5 Performance Evaluation
	Examples of Cross-Layer Control Modules
	Rate and Power Control Algorithms
	Scheduling-based MAC

	Implementation
	Performance Evaluation
	Micro-Benchmarks
	Synchronous v.s. Asynchronous Events
	Rate and Power Control Schemes

	Chapter 6 Conclusions
	References

