
ar
X

iv
:1

41
2.

85
32

v2
 [

cs
.D

C
]

 2
 J

an
 2

01
5

Crash-Tolerant Consensus in Directed Graphs∗

Lewis Tseng1 and Nitin Vaidya2

1 Department of Computer Science,
2 Department of Electrical and Computer Engineering,

University of Illinois at Urbana-Champaign

Email: {ltseng3, nhv}@illinois.edu

Phone: +1 217-244-6024, +1 217-265-5414

Mailing address: Coordinated Science Lab., 1308 West Main St., Urbana, IL 61801, U.S.A.

December 30, 2014†

Abstract

This work considers a point-to-point network of n nodes connected by directed links,
and proves tight necessary and sufficient conditions on the underlying communication
graphs for achieving consensus among these nodes under crash faults. We identify the
conditions in both synchronous and asynchronous systems.

∗This research is supported in part by National Science Foundation awards 1329681. Any opin-
ions, findings, and conclusions or recommendations expressed here are those of the authors and do
not necessarily reflect the views of the funding agencies or the U.S. government.

†Revised January 1, 2014 to make minor improvements to the presentation.

http://arxiv.org/abs/1412.8532v2

1 Introduction

In this work, we explore algorithms for achieving consensus in the presence of crash faults [9, 1].
We assume a point-to-point network, which is modeled as a directed graph, i.e., the communication
links between neighboring nodes are not necessarily bi-directional. We consider both synchronous
and asynchronous systems.

The crash consensus problem [9, 1] considers n nodes, of which at most f nodes may crash.
The faulty nodes may fail stop at any point of time. We do not assume Byzantine behavior [8] in
this work. A crash consensus algorithm is correct if it satisfies the following three properties:

• Agreement: the output (i.e., decision) at all the fault-free nodes is identical.

• Validity: the output at any fault-free node must be some node’s input.

• Termination: every fault-free node eventually decides on an output.

This paper presents tight necessary and sufficient conditions for crash consensus in directed
graphs.

1.1 Related Work

Lamport, Shostak, and Pease introduced the Byzantine consensus problem in [10]. Subsequently,
researchers also explored the consensus problem in the presence of crash faults [1, 9]. It has been
shown that the lower bound on the round complexity is f + 1, and f + 1 nodes are sufficient for
solving crash consensus [1, 9]. For undirected graphs, it is easy to see that f +1 node connectivity
is both necessary and sufficient for crash consensus.

For Byzantine consensus in undirected graphs, [6, 4] showed that 2f + 1 node connectivity
is both necessary and sufficient. Recently, we identified tight conditions for Byzantine consensus
problem in directed graphs [12]. For link failures in complete graphs, Schmid, Weiss, and Keidar
proved impossibility results and lower bound on the number of nodes for synchronous consensus
under transient Byzantine link faults [11]; however, the nodes are always fault-free. Many effort
has also been devoted to characterizing tight conditions for other related problems. Please refer to
our prior work [12] for more details.

For crash faults, Charron-Bost et al. proved tight conditions for approximate consensus in
dynamic graphs [2], where the graphs may change continually and unpredictably, in synchronous
and partially-synchronous systems. Our work considers exact and approximate consensus in syn-
chronous and asynchronous systems, respectively. Moreover, we assume the communication graph
is static.

1.2 Network Model

Sections 2 and 3 assume synchronous systems, and section 4 considers asynchronous systems. The
underlying communication network is static, i.e., it does not change over time. The communication
network consisting of n nodes is modeled as a simple directed graph G(V, E), where V is the set of n
nodes, and E is the set of directed edges between the nodes in V. We assume that n ≥ 2, since the
consensus problem for n = 1 is trivial. Node i can transmit messages to another node j if and only if
the directed edge (i, j) is in E . Also, each node can send messages to itself as well. For node i, let N−

i

1

be the set of nodes from which i can receive messages. That is, N−
i = { j | (j, i) ∈ E }∪ {i}. Define

N+
i as the set of nodes that can receive messages from node i.That is, N+

i = { j | (i, j) ∈ E }∪ {i}.

All the communication links are reliable, FIFO (first-in first-out) and deliver each transmitted
message exactly once.

2 Synchronous Systems

2.1 Necessary Condition

All the paths we discuss in the paper are directed paths. We first introduce some useful definitions.
A reduced graph GF for a graph G(V, E) is a subgraph induced by vertex subset V −F where F is
a potential fault set. The formal definition is presented below.

Definition 1 (Reduced Graphs) For a given graph G(V, E), and a given parameter k, and each
set F ⊂ V such that |F | ≤ k, reduced graph GF (VF , EF) is defined as follows: (i) VF = V − F ,
and (ii) EF is obtained by removing from E all the links incident on the nodes in F . That is,
EF = E − {(i, j) ∈ E | i ∈ For j ∈ F}.

We define a fault-tolerant version of node connectivity over a directed graph, which extends the
traditional notion of node connectivity (or vertex connectivity) [14].

Definition 2 (Crash-Tolerant Node Connectivity) A graph G(V, E) is said to satisfy k Crash-
Tolerant Node Connectivity (CT node connectivity) if for any F ⊂ V such that |F | ≤ k, there is a
single node s ∈ V − F that has paths to all the nodes in GF .

Recall that by assumption, we assume that i ∈ N+
i and N−

i , and hence, i has a path to itself as
well. The traditional notion of node connectivity [14], some reduced graph may not have a node
that can reach all the nodes, since it only requires the reduced graph to be weakly connected.

Definition 3 (Directed Rooted Spanning Tree) A spanning tree of a graph H(V, E) is said
to be a directed rooted spanning tree if there is a single root in the spanning tree that has directed
paths to all the nodes in V.

It should be easy to see that k CT node connectivity is equivalent to the condition that given
any reduced graph GF , there exists a directed rooted spanning tree. Charron-bost et al. [2] also
use the notion of rooted spanning tree to specify the tight condition for achieving approximate
consensus in dynamic networks.

Definition 4 (Source) Given a reduced graph GF , a node s is said to be the source of GF if there
exists a directed rooted spanning tree with s being the root.

With a slight abuse of terminology, we will use the terms root and source interchangeably.

Based on CT node connectivity, the following theorem presents the necessary condition.

Theorem 1 If exact consensus is possible in G(V, E) with at most f crash faults, then G(V, E)
satisfies f CT node connectivity.

2

Proof: The proof is by contradiction. Suppose that there exists a consensus algorithm, and
G(V, E) does not satisfy f CT node connectivity. Thus, there exists a set F ⊂ V with |F | ≤ f , and
a pair of nodes i, j 6∈ F such that there is no node s that has paths from s to both i and j. Note
that by assumption, each node i has a path to itself.

For the reduced graph GF and a node x in V−F , define Sx as the set of all nodes that have paths
to node x in GF . Note that Sx contains x as well, because x has a path to itself. By assumption,
Si and Sj are disjoint. Moreover, there is no path from any node in Si to any node in Sj in GF ,
and vice versa, since otherwise, there exists some node that can reach both nodes i and j, which
contradicts with the assumption. Then, V can be partitioned into disjoint sets F, Si, Sj , R, where
F, Si and Sj are defined as above, and R contains the remaining nodes, i.e., R = V − F − Si − Sj .
Then, we make the following observations:

• F and R may be empty, but Si and Sj are non-empty, since i ∈ Si and j ∈ Sj.

• Nodes in R (if non-empty) have no path to nodes in Si ∪ Sj in GF by definition. This is
because if some node r ∈ R can reach some node in Si or Sj in GF , then by definition, r
should also be in Si or Sj , respectively. This contradicts with the assumption.

Now, consider an execution of the consensus algorithm where F (if non-empty) are the faulty
nodes which crash before the start of the algorithm. All the other nodes are assumed to be fault-
free. This is possible, since by assumption, |F | ≤ f . Also, suppose that nodes in Si and nodes in
Sj have distinct input values. Without loss of generality, assume that nodes in Si have input 0 and
nodes in Sj have input 1. Nodes in R have input either 0 or 1.

Consider a node x in Si. Since in GF , there is no path from Sj ∪ R to nodes in Si, the only
input value learned by x throughout the execution of the algorithm is 0, and to satisfy validity
property, 0 should be the output of x. Similarly, a node y in Sj can only learn 1 throughout the
execution of the algorithm, and thus, 1 should also be the output of y. Note that by assumption,
both Si and Sj are non-empty, and fault-free. Therefore, the fact that Si and Sj agree on different
outputs violates the agreement property of the algorithm, a contradiction. �

2.2 Sufficiency

In this section, we propose a consensus algorithm in graphs that satisfy f CT node connectivity.
This section assumes that each node has a binary input. In Section 2.3, we discuss how to extend
the algorithm to solve multi-valued consensus. Note that the existence of such correct consensus
algorithm proves the following theorem.

Theorem 2 If G(V, E) satisfies f CT node connectivity, then binary consensus is achievable in G

with at most f crash faults.

This theorem also implies that f CT node connectivity is a tight condition for binary consensus.
Section 2.3 shows that f CT node connectivity is sufficient for multi-valued consensus, as well.
Therefore, f CT node connectivity is a tight condition for consensus in the presence of f crash
faults.

Algorithm Min-Max For a graph H that contains a directed rooted spanning tree, define
height(r,H) as the minimum height of all the spanning trees rooted at r in H. That is,

3

height(r,H) = min
all spanning tree T rooted at r in H

height of T

Given a graph G, define the fault-tolerant diameter d as follows:

d := max
F⊂V , |F |≤f

max
all roots s of GF

height(s,GF) (1)

Due to the notion of directed rooted spanning tree (Definition 3), given any reduced graph GF ,
if no node in V − F crashes, then the source of GF (Definition 4) is able to propagate a value to
any other node in V −F within d rounds by performing flooding, i.e., a source broadcasts its value
in the first round, and then in later rounds, all the nodes forward the value received in the current
round.

Now, we present the code running at each node i.

Algorithm Min-Max

• Set vi to the input at node i.

• For Phase p = 1 to 2f + 2:

If p mod 2 = 0, then repeat the following steps d times (Min Phase):

1. Broadcast vi to nodes in N+
i .

2. Receive the broadcast values from N−
i .

3. Set vi to the minimum value of all the values received.

Else, repeat the following steps d times (Max Phase:):

1. Broadcast vi to nodes in N+
i .

2. Receive the broadcast values from N−
i .

3. Set vi to the maximum value of all the values received.

• Output vi.

Note that by definition of, i ∈ N−
i and N+

i , so in step 2 of each phase, i can receive the message
from itself.

Theorem 3 Algorithm Min-Max is correct for binary inputs in all the graphs that satisfy f CT
node connectivity.

Proof: Validity and termination properties are obvious, since d is upper bounded by n. Now, we
prove that the agreement property also holds assuming that the inputs are either 0 or 1.

Fix an execution of the algorithm. Since there are 2f + 2 phases. There must exists a pair
of consecutive phases pt, pt+1 such that no node crashes in phases pt and pt+1. Without loss of
generality, let pt be the Min Phase and pt+1 be the Max Phase.

Denote by F the nodes that have crashed in the execution by the end of Phase pt−1. Recall
that the source of a reduced graph H is defined as the root of the directed spanning tree in H as
per Definition 4. Consider two cases:

4

• Case I: if some source s of the reduced graph GF has vs = 0 at the beginning of phase pt,
then due to the definition of the source and fault-tolerant diameter d, by the end of phase pt,
every node i ∈ V − F has received 0 on a path from source s and sets vi = 0, since pt is a
Min Phase.

• Case II: if each source s of the reduced graph GF has vs = 1 at the beginning of phase pt,
then by the end of pt, each source s still has vs = 1. Suppose by way of contradiction that
each source s of GF has vs = 1 at the beginning of phase pt, but by the end of pt, some
source s′ has vs′ = 0. By assumption, source s′ must receive 0 on a path from some other
non-source node x in phase pt. However, the fact that there exists a path from x to s′ implies
that x is also a source in GF , and vx = 0 at the start of phase pt. This is a contradiction.
Now, observe that by the end of phase pt, each source s still has vs = 1, and phase pt+1 is
the Max Phase. Therefore, by the end of pt+1, every node i ∈ V − F will receive 1 on a path
from source s and sets vi = 1.

In either case, agreement is achieved. This completes the proof. �

2.3 Multi-valued Consensus

It is easy to see that Algorithm Min-Max does not work correctly when the input is not binary, since
the source(s) of some reduced graph may not have either maximum or minimum input value(s),
and thus, the rest of the nodes cannot learn the value(s) of the source(s) in either Min or Max
Phase. This section considers the consensus problem with input being in the range [0,K], where
K ≥ 1.

We present Algorithm MVC (Multi-Valued Consensus). It consists of two loops: The OUTER-
LOOP iterates over all possible inputs, and the INNER-LOOP is essentially Algorithm Min-Max
with an extra step to update the tentative state. In Algorithm MVC, each node i keeps track of
two types of variables:

• ti: This variable is the tentative state at each node. It is guaranteed that at any point of
time, ti equals an input at some node. Moreover, if node i enters OUTER-LOOP iteration l,
then ti is set to be some input value that has been seen by node i and is at least l.

• vi: This binary variable acts as several roles. It first represents whether or not ti = l at
the beginning of each OUTER-LOOP iteration l (STEP I of the OUTER-LOOP). Then, at
the end of STEP II of the OUTER-LOOP, vi becomes the output of Algorithm Min-Max
(INNER-LOOP). Thus, at the beginning of STEP III of the OUTER-LOOP, nodes will have
the same vi’s, which allows nodes to reach an agreement on whether to proceed to next
OUTER-LOOP iteration.

Now, we describe the structure of Algorithm MVC. In each OUTER-LOOP iteration l ∈ [0,K],
nodes try to learn whether some node i has the tentative state ti = l at the beginning of the
iteration. First, vi acts as a local observation at node i, i.e., vi is set to 0 if and only if ti = l (STEP
I of the OUTER-LOOP). Then, at STEP II of the OUTER-LOOP, nodes use Algorithm Min-Max
(INNER-LOOP) to reach agreement on the observations (vi’s). There are two possible outcomes
at the end of the STEP II of the OUTER-LOOP:

• vi = 0:

5

This case implies that nodes learn that some node i has ti = l at the beginning of the OUTER-
LOOP iteration, and they know that all the other nodes that have not crashed also learn the
same information. Thus, nodes will exit the OUTER-LOOP with outputs l (STEP III of the
OUTER-LOOP).

• vi = 1:

In this case, nodes will proceed to the next OUTER-LOOP iteration.1 Moreover, nodes
are guaranteed to set their tentative state (ti’s) to some value strictly greater than l when
completing the INNER-LOOP. At step 4 of each INNER-LOOP phase, nodes update ti’s to
the minimum value that is strictly greater than l and is received in that INNER-LOOP phase.
Later, we will show that if at any point of time, node i changes vi from 0 to 1, then ti will also
be updated to some value strictly greater than l. Thus, if nodes enter the OUTER-LOOP
iteration l+1, then no node will ever have tentative state ≤ l. If at the end of OUTER-LOOP
K, nodes do not exit the loop, i.e., the code Exit OUTER-LOOP is never executed, then all
the fault-free nodes will terminate with output K.

Note that due to the agreement property of Algorithm Min-Max, either nodes will exit OUTER-
LOOP at the same iteration, or nodes will terminate with output K.

Algorithm MVC

• ti[0] := input at node i

• OUTER-LOOP l := 0 to K:

– STEP I: If ti[l] == l, then vi[l] := 0; otherwise, vi[l] := 1

– STEP II: INNER-LOOP p := 1 to 2f + 2:

Repeat the following steps d times:

1. Broadcast the tuple (vi[l], ti[l])
2. Receive the broadcast tuples from incoming neighbors and node i itself. Denote by

Bi the set of tuples received in this step.
3. If p mod 2 = 0, then \\ Min-Phase

vi[l] := min{a | (a, ∗) ∈ Bi}
Else, \\ Max-Phase

vi[l] := max{a | (a, ∗) ∈ Bi}
4. If |min{b | (∗, b) ∈ Bi, b > l}| > 0, then

ti[l] := min{b | (∗, b) ∈ Bi, b > l}

– STEP III: If vi[l] == 0, then

Exit OUTER-LOOP

• Output l

Theorem 4 Algorithm MVC is correct in all the graphs that satisfy f CT node connectivity.

The proof is presented in Appendix A.

1Note that this case does not mean that no node has ti = l. However, in this case, nodes cannot be sure that all
nodes that have not crashed also have learned that some node i has ti = l at the beginning of the OUTER-LOOP
iteration. Thus, nodes have to proceed to the next OUTER-LOOP iteration.

6

3 Iterative Algorithms

Observe that Algorithm Min-Max does not utilize any topology information, since it does not
require node identifiers (ID), and the usage of the fault-tolerant diameter d can be replaced by the
number of nodes n. That is, assuming the knowledge of n and f , Algorithm Min-Max works in
anonymous systems [7] and anonymous networks [3], where nodes do not have IDs. In anonymous
systems, we define a family of iterative algorithms – Fixed Iterative Algorithm – those iterative
algorithms using fixed transition functions. This section assumes synchronous systems, as well.

Iterative Algorithms We first describe the structure of the iterative algorithms of interest. Each
node i maintains state vi, with vi[t] denoting the state of node i at the end of the t-th iteration
of the algorithm. Initial state of node i, vi[0], is equal to the initial input provided to node i. At
the start of the t-th iteration (t > 0), the state of node i is vi[t − 1]. The iterative algorithms of
interest will require each node i to perform the following three steps in iteration t, where t > 0.

1. Transmit step: Transmit current state, namely vi[t− 1], on all outgoing edges.
2. Receive step: Receive values on all incoming edges. Denote by ri[t] the union of i’s value and

the values received by node i from its neighbors.
3. Update step: Node i updates its state using a transition function Zi as follows. Zi is a part

of the specification of the algorithm, and takes as input the vector ri[t].

vi[t] = Zi (ri[t], t) (2)

Fixed Iterative Algorithms

Definition 5 (Fixed Transition Function) A transition function Zi for node i is said to be
fixed if for all iteration t ≥ 0 and all i ∈ V, Zi(Ri[t], t) = Z∗(Ri[t]). In other words, the transition
function does not change over time, and every node uses the same transition function.

For iterative algorithms that use fixed transition function, we present the following result.

Theorem 5 In general, it is impossible to solve consensus using fixed iterative algorithms in
anonymous systems and networks.

The proof is presented in Appendix B.

4 Asynchronous Systems

This section considers asynchronous systems, where each node proceeds in different speed and the
messages may be arbitrarily delayed. For simplicity, we assume the channels are reliable.

Approximate Consensus [6] showed that it is impossible to achieve exact consensus in asyn-
chronous systems with a single crash fault. Therefore, we are interested in approximate consensus
algorithms. The algorithms must achieve the following three properties:

• ǫ-agreement: the difference between outputs at any two fault-free nodes is bounded by ǫ.

7

• Validity: the output at any fault-free node is in the convex hull of all the inputs.

• Termination: every fault-free node decides on an output in a finite-amount of time.

4.1 Necessity

To facilitate the discussion, we first introduce an useful definition.

Definition 6 Given a graph G(V, E) and a node-partition A,B of V, A is said to propagate to
B if (i) B is not empty; and (ii) there exist at least f + 1 distinct nodes in A which have outgoing
links to some node in B, i.e., |{i | i ∈ A, N+

i ∩B 6= ∅}| ≥ f + 1.

We will denote the fact that set A propagates to set B by the notation of A → B. When it is
not true that A → B, we will denote that fact by A 6→ B.

Theorem 6 Suppose that an asynchronous approximate consensus algorithm exists for G(V, E).
Then for any node partition L,C,R of V, where L and R are both non-empty, either L ∪ C → R

or C ∪R → L.

Proof: The proof is by contradiction. Suppose that there exists a correct approximate consensus
algorithm, and G(V, E) does not satisfy the condition. That is, there exists a node partition L,C,R

such that L and R are not empty, and L∪C 6→ R and C∪R 6→ L. Let O(L) denote the set of nodes
in C ∪R that have outgoing links to some nodes in L, i.e., {i | i ∈ C ∪R, N+

i ∩L 6= ∅}. Similarly,
define O(R) = {j | j ∈ L ∪ C, N+

j ∩R 6= ∅}. By assumption, |O(L)| ≤ f and |O(R)| ≤ f .

Consider the scenario where (i) each node in L has input 0; (ii) each node in R has input 2ǫ;
(iii) nodes in C (if non-empty) have arbitrary inputs in [0, 2ǫ]; (iv) no node crashes; and (v) the
message delay from O(L) to L and from O(R) to R is arbitrarily large compared to all the other
traffic. Consider nodes in L. From their perspectives, it is possible that all nodes in O(L) have
crashed. This is due to the following observations:

• The only nodes in C ∪R that have outgoing links to L are nodes in O(L). Thus, nodes in L

are not able to learn whether nodes in O(L) are alive or not from nodes in (C ∪R)−O(L).

• The message delay from O(L) is arbitrarily large.

• The size of |O(L)| ≤ f .

Therefore, nodes in L cannot wait for any message from nodes in O(L) to decide the outputs.
Similarly, nodes in R cannot wait for any message from nodes in O(R) to decide the outputs.
Consequently, to satisfy the validity property, the output at each node in L has to be 0, since 0
is the input of all the nodes in L. Similarly, all nodes in R have to output 2ǫ. Thus, ǫ-agreement
property is violated, since ǫ < 2ǫ. This is a contradiction. �

4.2 Sufficiency

We prove that the condition in Theorem 6 is also sufficient by proposing an asynchronous ap-
proximate consensus algorithm – Algorithm WA (Wait-and-Average). The algorithm assumes the
knowledge of global topology at each node, and the algorithm proceeds in phases. In each phase,

8

nodes flood messages containing their current value, ID (identifier), and a phase index. Each node
i waits until it has received enough values from other nodes. Then, node i updates its value to be
the average of all the values received in this phase, and then proceeds to the next phase. When
node i has finished pend phases, it outputs its current state. pend is some sufficiently large integer.

Now, we discuss how many values received by a node is considered enough. Let heardi[p] be
the set of nodes from which node i has received values during phase p. Each node i proceeds to
perform the averaging operation if the following condition holds.

Condition WAIT: Denote by reachi(F) the set of nodes that have paths to node i in the
reduced graph GF . Then, Condition WAIT is satisfied if there exists a set of nodes Fi ⊆ V − {i}
and |Fi| ≤ f such that reachi(Fi) ⊆ heardi[p].

2

Now, we present the algorithm below.

Algorithm WA

pend is some sufficiently large integer.

• For each node i, set vi[0] to the input at node i

• For Phase p = 1 to pend:

– On entering phase p ≥ 1:

Ri[p] = {vi[p− 1]}

heardi[p] = {i}

Send message (vi[p− 1], i, p) to all the outgoing neighbors

– When message (h, j, p) is received for the first time:

Ri[p] = Ri[p] ∪ {h}

heardi[p] = heardi[p] ∪ {j}

Send message (h, j, p) to all the outgoing neighbors

if Condition WAIT holds:

vi[p] =

∑
v∈Ri[p]

v

|Ri[p]|

• Output vi

The following theorem shows the correctness of Algorithm WA. It also proves that the condition
in Theorem 6 is sufficient for approximate consensus in asynchronous systems.

Theorem 7 Algorithm WA is correct in all graphs that satisfy the condition in Theorem 6.

2reachi(Fi) may be different in each phase, since it depends on the delay pattern. For simplicity, we ignore the
phase index p in the notation.

9

Proof Sketch: Validity and termination properties are obvious. For ǫ-agreement, we only present
the key lemma here. The rest of the proof is standard, e.g., [13, 5, 1].

For phase p ≥ 1, consider two nodes i, j that have successfully computed values vi[p] and vj [p],
respectively, in phase p. That is, i and j have not crashed before computing v[p]’s. With a slight
abuse of terminology, define heardi[p] as the set of nodes whose values are used by node i to
compute its state vi[p] in phase p. Define heardj [p] similarly.

Lemma 1 heardi[p] ∩ heardj [p] 6= ∅.

Proof: By construction, there exist two sets Fi and Fj such that (i) Fi ⊆ V − {i} and |Fi| ≤ f ;
(ii) Fj ⊆ V − {j} and |Fj | ≤ f ; (iii) reachi(Fi) ⊆ heardi[p]; and (iv) reachj(Fj) ⊆ heardj [p].
If reachi(Fi) ∩ reachj(Fj) 6= ∅, then the proof is complete, since reachi(Fi) ⊆ heardi[p] and
reachj(Fj) ⊆ heardj [p]. Thus, heardi[p]∩heardj[p] 6= ∅. Now, consider the case when reachi(Fi)∩
reachj(Fj) = ∅. We will derive a contradiction in this case.

We start with the following claim:

Claim 1 In G, the only nodes that may have outgoing links to nodes in reachi(Fi) are nodes in
Fi. Similarly, in G, the only nodes that may have outgoing links to nodes in reachj(Fj) are nodes
in Fj.

Proof: Recall that reachi(Fi) is defined as the set of nodes that have paths to node i in the reduced
graph GFi

, and reachj(Fj) is defined similarly. Thus, Fi ∩ reachi(Fi) = ∅ and Fj ∩ reachj(Fj) = ∅.
These two observations together with the definitions of reachi(Fi) and reachj(Fj) imply that there
is no path from nodes in V − reachi(Fi)− Fi (if non-empty) to nodes in reachi(Fi) in GFi

. Hence,
the claim is proved. �

Let L = reachi(Fi), R = reachj(Fj) and C = V − L − R. Observe that since reachi(Fi) ∩
reachj(Fj) = ∅, L,C,R form a partition of V. Moreover, i ∈ reachi(Fi) and j ∈ reachj(Fj); hence,
L = reachi(Fi) and R = reachj(Fj) are both non-empty. Then, let O(L) be the nodes in C ∪ R

that have outgoing links to some nodes in L in G. Since L = reachi(Fi), the only nodes that may
be in O(L) are in Fi due to Claim 1. By assumption, |Fi| ≤ f . Therefore, C∪R 6→ L. Similarly, we
can argue that L ∪ C 6→ R. These two conditions violate the necessary condition, a contradiction.
Thus, reachi(Fi) ∩ reachj(Fj) 6= ∅, which implies heardi[p] ∩ heardj [p] 6= ∅. This completes the
proof. �

LetM andm denote the upper bound and the lower bound on the inputs, respectively. Then, by
an analysis similar to [13, 5, 1], Lemma 1 can be used to show ǫ-agreement when pend is sufficiently
large (as a function of n, f,M,m).

�

5 Summary

This paper addresses consensus problems in the presence of crash faults, where the underlying com-
munication networks may be incomplete. We explore exact and approximate consensus algorithms
in synchronous and asynchronous systems, respectively. We prove tight conditions for the graphs
to be able to solve these consensus problems.

10

References

[1] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced
Topics. Wiley Series on Parallel and Distributed Computing, 2004.

[2] B. Charron-Bost, M. Függer, and T. Nowak. Approximate consensus in highly dynamic net-
works. CoRR, abs/1408.0620, 2014.

[3] C. Delporte-Gallet, H. Fauconnier, and A. Tielmann. Fault-tolerant consensus in unknown
and anonymous networks. In ICDCS, pages 368–375. IEEE Computer Society, 2009.

[4] D. Dolev. The byzantine generals strike again. Journal of Algorithms, 3(1):1430, March 1982.

[5] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching approximate
agreement in the presence of faults. J. ACM, 33:499–516, May 1986.

[6] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus
problems. In Proceedings of the fourth annual ACM symposium on Principles of distributed
computing, PODC ’85, pages 59–70, New York, NY, USA, 1985. ACM.

[7] R. Guerraoui and E. Ruppert. What can be implemented anonymously? In P. Fraigniaud,
editor, DISC, volume 3724 of Lecture Notes in Computer Science, pages 244–259. Springer,
2005.

[8] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans. on
Programming Languages and Systems, 1982.

[9] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[10] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, Apr. 1980.

[11] U. Schmid, B. Weiss, and I. Keidar. Impossibility results and lower bounds for consensus under
link failures. SIAM J. Comput., 38(5):1912–1951, Jan. 2009.

[12] L. Tseng and N. H. Vaidya. Exact byzantine consensus in directed graphs. CoRR,
abs/1208.5075, 2012.

[13] L. Tseng and N. H. Vaidya. Asynchronous convex hull consensus in the presence of crash
faults. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC ’14, pages 396–405, New York, NY, USA, 2014. ACM.

[14] D. B. West. Introduction To Graph Theory. Prentice Hall, 2001.

A Proof of Theorem 4

Theorem 4 Algorithm MVC is correct in all the graphs that satisfy f CT node connectivity.

Proof: The termination property is obvious. Now, we prove the two other properties. Suppose
that the graph G(V, E) satisfies the condition stated in Theorem 1. Let vendi [l] be the value vi[l] at
node i after the INNER-LOOP is completed in some OUTER-LOOP iteration l.

11

Claim 2 For all nodes i, j that have not crashed in OUTER-LOOP iteration l, vendi [l] = vendj [l].

Proof: This is due to the correctness of Algorithm Min-Max, since if we ignore the code related
to ti’s, then the INNER-LOOP is essentially equal to Algorithm Min-Max. �

We will use Claim 2 to prove the agreement property. In the proof below, we will say that a
node exits an OUTER-LOOP iteration l if it has vendi [l] = 0; otherwise, a node is said to complete
the iteration l.

Lemma 2 Algorithm MVC satisfies the agreement property in G.

Proof: By Claim 2, all the nodes that have not crashed will either exit the OUTER-LOOP in the
same iteration l or complete OUTER-LOOP iteration K. Thus, all the fault-free nodes will have
the same output l. �

To prove the validity property, we first introduce some notations, and prove useful lemma and
claims. Let tbegini [l] be the value ti[l] at node i at the beginning of some OUTER-LOOP iteration

l, and let tendi [l] be the value ti[l] at node i at the end of OUTER-LOOP iteration l. Let vbegini [l]

be the value vi[l] at node i after STEP I of the OUTER-LOOP iteration l. Thus, if tbegini [l] = l,

then v
begin
i [l] = 0; otherwise, vbegini [l] = 1.

Lemma 3 In an OUTER-LOOP iteration l (0 ≤ l < K), for each node i ∈ V that has not crashed,
and has vi[l] = 1, then ti[l] > l.

Proof: The proof is by induction on OUTER-LOOP iterations.

Induction Basis: l = 0.

We first prove the following claim.

Claim 3 At any point of time, for each node i that has not crashed, and has vi[0] = 1, then
ti[0] > 0.

Proof: First, we prove the following claim: each node i will change vi[0] from 0 to 1 if and only
if it receives (1, x) from its incoming neighbor such that x > 0. The proof is by contradiction.
Consider the first Max-Phase p (of the INNER-LOOP) in which some node i changes vi[0] from
0 to 1, because i has received (1, 0) from its incoming neighbors. Then, consider a chain of nodes
propagating the tuple (1, 0) from some node s to node i such that node s has vs[0] = 1 and ts[0] = 0
at the beginning of the Max-Phase p. Note that by assumption of p, node s has never received (1, 0)
from other nodes before Max-Phase p. Moreover, node s has also never received (1, x) such that
x > 0 from other nodes before Max-Phase p, since otherwise, ts[0] would be updated to x at step
4 of the INNER-LOOP. These two observations imply that vs[0] = 1 and ts[0] = 0 before entering
the INNER-LOOP, i.e., after line 1 of the OUTER-LOOP is executed. This is a contradiction.

Second, Claim 3 follows directly from the claim above.

�

Claim 3 implies that the statement of Lemma 3 holds for the base case (l = 0).

Induction Step: Suppose that for all OUTER-LOOP iteration l ≥ r, the statement of Lemma 3
holds. Consider the (r + 1)-th OUTER-LOOP iteration. We can prove the following claim based
on similar logic as in the base case and the induction hypothesis.

12

Claim 4 At any point of time, for each node i that has not crashed and has vi[r + 1] = 1, then
ti[r + 1] > r + 1.

This claim completes the proof of induction step. Thus, Lemma 3 is proved. �

Claim 5 At any point of time in an OUTER-LOOP iteration l, if node i has not crashed, then
ti[l] equals an input at some node.

Proof: This claim holds by construction, since all the t’s propagated are initially some node’s
input. �

Claim 6 If any node i exits OUTER-LOOP iteration l and outputs l, then there must exist some
node j such that tbeginj [l] = l.

Proof: Suppose by way of contradiction that every node j that has not crashed has tbeginj [l] 6= l,

and node i exits iteration l. The first assumption implies that every node j has v
begin
j [l] = 1.

Due to the validity of Algorithm Min-Max, every node j that has not crashed after completing
INNER-LOOP has vendj [l] = 1. Therefore, no node will exit iteration l, a contradiction. �

Now, we are ready to prove the key lemma.

Lemma 4 Algorithm MVC satisfies the validity property in G.

Proof: Consider two cases:

• Some node has input K:

In this case, suppose that all the fault-free nodes exit the OUTER-LOOP iteration l ≤ K

and output l. Then, by Claims 5 and 6, the validity property holds. Suppose that no fault-
free node exits the OUTER-LOOP, i.e., for all i that has not crashed, vendi [K] = 1. In this
case, the validity property still holds, since all the fault-free nodes will output K, and by
assumption, some node has input K.

• No node has input K:

Assume that all the nodes have input ≤ K ′, where K ′ < K. In this case, we show the
following claim.

Claim 7 All the fault-free nodes will exit the OUTER-LOOP in some iteration l ≤ K ′.

Proof: If fault-free nodes exit during some OUTER-LOOP iteration l < K ′, then the
proof is done. Suppose not. Then, in iteration K ′ − 1, every node i that has not crashed
has vendi [K ′ − 1] = 1. Consequently, by Lemma 3, every node that has not crashed has
tendi [K ′ − 1] > K ′ − 1. This observation together with Claim 5 and the assumption that the
input is bounded by K ′ imply that tendi [K ′−1] = K ′. Therefore, in the beginning of iteration

K ′, every node that has not crashed has tbegini [K ′] = K ′ and v
begin
i [K ′] = 0. Then, due to the

validity property of Algorithm Min-Max, every node i that has not crashed has vendi [K ′] = 0.
Therefore, every fault-free node will exit the OUTER-LOOP in iteration K ′. �

Claims 5, 6 and 7 together prove the validity property.

�

Lemmas 2 and 4 prove Theorem 4. �

13

B Proof of Theorem 5

Theorem 5 In general, it is impossible to solve consensus using fixed iterative algorithms in anony-
mous systems and networks.

Proof: We prove the theorem by showing a counter example. We present a directed graph that
satisfies f CT node connectivity, and show that no fixed transition function solves consensus.

Consider a directed graph G consisting of three parts: (i) a clique of size f + 1, (ii) a source
node s that has an outgoing edge to every node in the clique, and (iii) a leaf node l that has an
incoming edge from every node in the clique. Note that there is no incoming edge to s, and no
outgoing edge from l. Moreover, edge (s, l) is not an edge in G. Obviously, the graph satisfies f

CT node connectivity, since (i) if s ∈ F , then at least one node in the clique is the source in the
reduced graph GF ; (ii) if s 6∈ F , then s is the source in GF .

Suppose that each node uses the transition function Z. First, we look at how Z maps to a
value when a node receives exactly f +1 values. Recall that Ri[t] denotes the set of values received
by i at iteration t. It is clear that if Ri[t] contains all 0’s or all 1’s, then Z(Ri[t]) should map to
0 or 1, respectively; otherwise, either validity or agreement property is violated. This implies the
following claim:

Claim 8 There must exist a pair of set of 2f+1 values R0 and R1 such that (i) |R0| = |R1| = f+1;
(ii) there is exactly one more 1 in R1 than in R0, i.e., suppose R0 contains a 0’s and (f + 1 − a)
1’s, then R1 contains (a− 1) 0’s and (f + 2− a) 1’s; and (iii) Z(R0) = 0 and Z(R1) = 1.

Denote by R the set of f 0’s and one 1, and R′ the set of f 1’s and one 0. Claim 8 implies that
there are three possible cases. In all the cases below, we consider an execution of the algorithm
where (i) a single node in the clique crashes before the algorithm starts; and (ii) no other node
crashes throughout the execution. The inputs at each node is described in each case below.

• Z(R) = 0:

Consider the case when the source s has input 1, and all the other nodes have input 0. Since
the source node does not receive any value, its state can only be 1 throughout the execution.
For each node in the clique in each iteration t ≥ 0, it receives f 0’s and one 1, and thus, state
at each node in the clique can only be 0, since Z(R) = 0. Thus, the agreement property is
violated.

• Z(R) = 1 and Z(R′) = 0:

Consider the case when the leaf l has input 0, and all the other nodes have input 1. Since
the source node does not receive any value, its state can only be 1 throughout the execution.
For each node in the clique in each iteration t ≥ 0, it receives f + 1 1’s, and thus, state at
each node in the clique can only be 1. As a result, in each iteration t, the leaf node l receives
f 1’s and one 0, and thus the state at node l is 0 in each iteration, since Z(R′) = 0. Thus,
the agreement property is violated.

• Z(R) = 1 and Z(R′) = 1:

Consider the case when the source s has input 0, and all the other nodes have input 1. Since
the source node does not receive any value, its state can only be 0 throughout the execution.

14

For each node in the clique in each iteration t ≥ 0, it receives f 1’s and one 0, and thus, state
at each node in the clique can only be 1, since Z(R′) = 1. Thus, the agreement property is
violated.

�

15

	1 Introduction
	1.1 Related Work
	1.2 Network Model

	2 Synchronous Systems
	2.1 Necessary Condition
	2.2 Sufficiency
	2.3 Multi-valued Consensus

	3 Iterative Algorithms
	4 Asynchronous Systems
	4.1 Necessity
	4.2 Sufficiency

	5 Summary
	A Proof of Theorem 4
	B Proof of Theorem 5

