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ABSTRACT
This paper studies how the capacity of a static multi-channel
network scales as the number of nodes, n, increases. Gupta
and Kumar have determined the capacity of single-channel
networks, and those bounds are applicable to multi-channel
networks as well, provided each node in the network has a
dedicated interface per channel.

In this work, we establish the capacity of general multi-
channel networks wherein the number of interfaces, m, may
be smaller than the number of channels, c. We show that the
capacity of multi-channel networks exhibits different bounds
that are dependent on the ratio between c and m. When the
number of interfaces per node is smaller than the number
of channels, there is a degradation in the network capacity
in many scenarios. However, one important exception is a
random network with up to O (log n) channels, wherein the
network capacity remains at the Gupta and Kumar bound

of Θ
�
W � n

log n � bits/sec, independent of the number of in-

terfaces available at each node. Since in many practical
networks, number of channels available is small (e.g., IEEE
802.11 networks), this bound is of practical interest. This
implies that it may be possible to build capacity-optimal
multi-channel networks with as few as one interface per
node. We also extend our model to consider the impact
of interface switching delay, and show that in a random net-
work with up to O (log n) channels, switching delay may not
affect capacity if multiple interfaces are used.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication
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1. INTRODUCTION
Previous research (e.g., [9, 10]) has characterized the ca-

pacity of wireless networks. One approach for enhancing the
network capacity is to use multiple channels. Past research
on wireless network capacity has typically considered wire-
less networks with a single channel, although the results are
applicable to a wireless network with multiple channels as
well, provided that at each node there is a dedicated inter-
face per channel. With a dedicated interface per channel, a
node can use all the available channels simultaneously. How-
ever, the number of available channels in a wireless network
can be fairly large (e.g., IEEE 802.11a [11] has provisioned
for up to 12 non-overlapping channels), and it may not be
feasible to have a dedicated interface per channel at each
node. When nodes are not equipped with a dedicated in-
terface per channel, then capacity degradation may occur,
compared to using a dedicated interface per channel. In
this paper, we characterize the impact of number of chan-
nels and interfaces per node on the network capacity, and
show that in a random network with up to O (log n) chan-
nels, even with a single interface per node, there is no ca-
pacity degradation. This implies that it may be possible to
build capacity-optimal multi-channel networks with as few
as one interface per node.

When a dedicated interface per channel is not available,
the available interfaces can potentially be switched among
different channels to use any of the available channels. Such
an interface switching technique is often used to improve
channel utilization [15, 22, 23]. However, interface switching
incurs a delay, which may reduce the achievable network
capacity. In this paper, we include a preliminary study of
the impact of interface switching delay on network capacity.
We show that in a random network with up to O (log n)
channels, interface switching delay has no impact on network
capacity, even when there are end-to-end delay constraints,
provided that a few additional interfaces are provisioned for
at each node.

1.1 Modeling multi-channel multi-interface
networks

We consider a static wireless network containing n nodes.
We use the term “channel” to refer to a part of the fre-



quency spectrum with some specified bandwidth. There are
c channels, and we assume that every node is equipped with
m interfaces, 1 ≤ m ≤ c. We assume that an interface is
capable of transmitting or receiving data on any one channel
at a given time. We use the notation (m, c)-network to refer
to a network with m interfaces per node, and c channels.

We define two channel models to represent the data rate
supported by each channel:

Channel Model 1: In model 1, we assume that the total
data rate possible by using all channels is W . The total
data rate is divided equally among the channels, and there-
fore the data rate supported by any one of the c channels
is W/c. This was the channel model used by Gupta and
Kumar [10], and we primarily use this model in our analy-
sis. In this model, as the number of channels increases, each
channel supports a smaller data rate. This model is appli-
cable to the scenario where the total available bandwidth is
fixed, and new channels are created by partitioning existing
channels.

Channel Model 2: In model 2, we assume that each chan-
nel can support a fixed data rate of W , independent of the
number of channels. Therefore, the aggregate data rate pos-
sible by using all c channels is Wc. This model is applicable
to the scenario where new channels are created by utilizing
additional frequency spectrum.

The results presented in this paper are derived assuming
channel model 1. However, all the derivations are applicable
for channel model 2 as well, and the results for model 2 can
be obtained by replacing W in the results of model 1 by
Wc [14]. In the rest of this paper, we will only present the
results for channel model 1, but discuss implications of the
results with channel model 2 where appropriate.

1.2 Definitions
We study the capacity of static multi-channel wireless net-

works under the two settings introduced by Gupta and Ku-
mar [10].

Arbitrary Networks: In the arbitrary network setting, the
location of nodes, and traffic patterns can be controlled.
Since any suitable traffic pattern and node placement can
be used, the bounds for this scenario are applicable to any
network. Therefore, the arbitrary network bounds may be
viewed as the best case bounds on network capacity, as the
bounds are applicable to all networks. The network capacity
is measured in terms of “bit-meters/sec” (originally intro-
duced by Gupta and Kumar [10]). The network is said to
transport one “bit-meter/sec” when one bit has been trans-
ported across a distance of one meter in one second.

Random Networks: In the random network setting, node
locations are randomly chosen, i.e. independently and uni-
formly chosen, on the surface of an unit torus. Each node
sets up one flow to a randomly chosen destination. The
network capacity is defined to be the aggregate throughput
over all the flows in the network, and is measured in terms
of bits/sec.

We use the following notation to represent asymptotic
bounds:

1. f(n) = O(g(n)) implies there exists some constant d
and integer N such that f(n) ≤ dg(n) for n > N .

2. f(n) = o(g(n)) implies that limn→∞
f(n)
g(n)

= 0.

3. f(n) = Ω(g(n)) implies g(n) = O(f(n)).

4. f(n) = ω(g(n)) implies g(n) = o(f(n)).

5. f(n) = Θ(g(n)) implies f(n) = O(g(n)) and g(n) =
O(f(n)).

6. MINO (f(n), g(n)) is equal to f(n), if f(n) = O(g(n)),
else, is equal to g(n).

The bounds for random networks hold with high probabil-
ity (whp). In this paper, whp implies with “probability 1
when n → ∞.”

1.3 Main Results
Gupta and Kumar [10] have shown that in an arbitrary

network, network capacity scales as Θ (W
√

n) bit-meters/sec,
and in a random network, the network capacity scales as

Θ
�
W � n

log n � bits/sec. Under the channel model 1, which

was the model used by Gupta and Kumar [10], the capacity
of a network with a single channel and one interface per node
(that is, a (1, 1)-network in our notation) is equal to the ca-
pacity of a network with c channels and m = c interfaces
per node (that is, a (c, c)-network). This equivalence arises
because the c interfaces can operate in parallel over channels
of data rate W

c
to mimic the operation of one interface oper-

ating over a channel of data rate W (this is formally proved
in Lemma 1). Furthermore, under both channel models, the
capacity of a (c, c)-network is at least as large as the capac-
ity of a (m, c)-network, when m ≤ c (this is trivially true,
by not using c − m interfaces in the (c, c)-network). In the
results presented in this paper, we capture the impact of
using fewer than c interfaces per node by establishing the
loss in capacity, if any, of a (m, c)-network in comparison to
a (c, c)-network.

The goal of this work is to study the impact of the number
of channels c, and the number of interfaces per node m, on
the capacity of arbitrary and random networks. Our results
show that the capacity is dependent on the ratio c

m
, and not

on the exact values of either c or m (as proven in Lemma
2). We now state our main results under channel model 1.

1. Results for arbitrary network: The network capacity
of a (m, c)-network has two regions (see Figure 1) as follows
(from Theorem 1 and Theorem 2):

1. When c
m

is O(n), the network capacity is Θ � W � nm
c �

bit-meters/sec (segment A-B in Figure 1). Compared
to a (c, c)-network, there is a capacity loss by a factor
of 1 − � m

c
.

2. When c
m

is Ω(n), the network capacity is Θ � W nm
c �

bit-meters/sec (line B-C in Figure 1). In this case,
there is a larger capacity degradation than case 1, as
nm
c

≤ � nm
c

when c
m

≥ n.

Therefore, there is always a capacity loss in arbitrary net-
works whenever the number of interfaces per node is fewer
than the number of channels.
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Figure 1: Impact of number of channels on capacity
scaling in arbitrary networks (figure is not to scale).
There is a degradation in capacity when the ratio of
channels to interfaces is ω(1).

2. Results for random network: The network capacity of
a (m, c)-network has three regions (see Figure 2) as follows
(from Theorem 3 and Theorem 4):

1. When c
m

is O(log n), network capacity is Θ
�
W � n

log n �
bits/sec (segment D-E in Figure 2). In this case, there
is no loss compared to a (c, c)-network. Hence, in
many practical scenarios where c may be constant or
small, a single interface per node suffices.

2. When c
m

is Ω(log n) and also O � n
�

log log n

log n � 2 �
, the

network capacity is Θ � W � nm
c � bits/sec (segment E-

F in Figure 2). In this case, there is some capacity
loss. Furthermore, in this region, the capacity of a
(m, c)-random network is the same as that of a (m, c)-
arbitrary network (segment E-F in Figure 2 overlaps
part of segment A-B in Figure 1), implying “random-
ness” does not incur a capacity penalty.

3. When c
m

is Ω � n
�

log log n

log n � 2 �
, the network capacity is

Θ
�

Wnm log log n

c log n � bits/sec (line F-G in Figure 2). In

this case, there is a larger capacity degradation than
case 2. Furthermore, in this region, the capacity of a
(m, c)-random network is smaller than that of a (m, c)-
arbitrary network, in contrast to case 2.

3. Other results: The results presented above are derived
under the assumption that there is no delay in switching an
interface from one channel to another. However, we show
that in a random network with up to O (log n) channels,
even if interface switching delay is considered, the network
capacity is not reduced, provided a few additional interfaces
are provisioned for at each node. This implies that it may
be possible to hide the interface switching delay by using ex-
tra interfaces in conjunction with carefully designed routing
and transmission scheduling protocols.

The rest of the paper is organized as follows. We present
related work in Section 2. In Section 3, we establish the
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Figure 2: Impact of number of channels on capacity
scaling in random networks (figure is not to scale).
There is no degradation in capacity when the ratio
of channels to interfaces is O (log n).

capacity of multi-channel networks under arbitrary network
setting. Section 4 establishes the capacity of multi-channel
networks under random network setting. Section 5 char-
acterizes the impact of interface switching delay. Section 6
discusses the practical implications of the theoretical results.
We conclude in Section 7.

2. RELATED WORK
In their seminal work, Gupta and Kumar [10] derived the

capacity of ad hoc wireless networks. The results are appli-
cable to single channel wireless networks, or multi-channel
wireless networks where every node has a dedicated interface
per channel. We extend the results of Gupta and Kumar to
those multi-channel wireless networks where nodes may not
have a dedicated interface per channel, and also consider the
impact of interface switching delay on network capacity.

Grossglauser and Tse [9] showed that mobility can im-
prove network capacity, though at the cost of increased end-
to-end delay. Subsequently, other research [3, 20] has ana-
lyzed the trade-off between delay and capacity in mobile net-
works. Gamal et al. [7] characterize the optimal throughput-
delay trade-off for both static and mobile networks. In this
paper, we adapt some of the proof techniques presented by
Gamal et al. [7] to the multi-channel capacity problem.

Recent results have shown that the capacity of wireless
networks can be enhanced by introducing infrastructure sup-
port [1,12,17]. Other approaches for improving network ca-
pacity include the use of directional antennas [31], and the
use of unlimited bandwidth resources (UWB) albeit with
power constraints [19, 32].

Li et al. [16] have used simulations to evaluate the capacity
of multi-channel networks based on IEEE 802.11. Other
research on capacity is based on considerations of alternate
communication models [8, 26, 27].

Several researchers have proposed wireless protocols for
multi-channel networks (cf. [2, 6, 15, 18, 22, 23]). Some so-
lutions are based on using a single interface at each node
[2, 23–25], while other solutions require a dedicated inter-
face for each channel [6, 18]. More recently, solutions have
been proposed that require multiple interfaces, but fewer in-
terfaces than the number of channels [13, 15, 22]. Although,
there are several proposals for multi-channel networks, it is



not apparent in those proposals how many interfaces are ac-
tually required to maximally utilize the available channels.

3. CAPACITY RESULTS FOR ARBITRARY
NETWORKS

We model the impact of interference by using the protocol
model proposed by Gupta and Kumar [10]. The transmis-
sion from a node i to a node j on some channel x is success-
ful, if for every other node k simultaneously transmitting on
channel x, the following condition holds

d(k, j) ≥ (1 + ∆)d(i, j), ∆ > 0

where d(i, j) is the distance between nodes i and j, and
∆ is a “guard” parameter that ensures that concurrently
transmitting nodes are sufficiently farther away from the
receiver to prevent excessive interference.

It is shown in [10] that the protocol model is equivalent
to an alternate physical model that is based on received
Signal-to-Interference-Noise Ratio (SINR) (when path loss
exponent is greater than 2). Therefore, the results in this
paper are applicable under the physical model as well. We
do not consider other physical layer characteristics such as
channel fading in our analysis.

We derive the capacity results for arbitrary and random
networks under the assumption that there is no switching de-
lay. We extend our model to consider the impact of switch-
ing delay in Section 5.

In an arbitrary network, the location of nodes, and traf-
fic patterns can be controlled. Recall that the network is
said to transport one “bit-meter/sec” when one bit has been
transported across a distance of one meter in a second. The
network capacity of an arbitrary network is measured in
terms of bit-meters per second, instead of bits per second.
The bit-meters/sec metric is a measure of the “work” that
is done by the network in transporting bits. In the case of
random networks, the average distance traveled by any bit
is Θ(1), and therefore the “bit-meters/sec” and “bits/sec”
capacity is of the same order.

We assume that n nodes can be located anywhere on the
surface of a torus of unit area, as in [7]. The assumption of
a torus enables us to avoid technicalities arising out of edge
effects, but the results are applicable for nodes located on an
unit square as well. We first establish an upper bound on the
network capacity of arbitrary networks, and then construct
a network to prove that the bound is tight.

3.1 Upper bound on capacity
The capacity of multi-channel arbitrary networks is lim-

ited by two constraints (described below), and each of them
is used to obtain a bound on the network capacity. The min-
imum of the two bounds (the bounds depend on ratio be-
tween the number of channels c and the number of interfaces
m) is an upper bound on the network capacity. While there
may be other constraints on capacity as well, the constraints
we consider are sufficient to provide a tight bound. Later
in this section, we will present a lower bound that matches
the upper bound established by the two constraints, which
validates our claim that the constraints are tight. We derive
the bounds under channel model 1, although the derivation
can be applied to channel model 2 as well1.

1Recall that the results under channel model 2 can be ob-

Constraint 1 – Interference constraint: The capacity of
any wireless network is constrained by interference. Since
the wireless channel is a shared medium, under the assumed
protocol model of interference, two nodes simultaneously re-
ceiving a packet from two different transmitters must have
a minimum separation between them, which depends on ∆.
This implies that there is a bound on the maximum num-
ber of simultaneous transmissions in the network. Based
on this observation, using the proof techniques presented
in [10] with some modifications to account for multiple in-
terfaces and channels, one bound on the network capacity
is O � W � nm

c � bit-meters/sec. The detailed derivation is in
Appendix A.

Constraint 2 – Interface bottleneck constraint: The ca-
pacity of a wireless network is also constrained by the max-
imum number of bits that can be transmitted simultane-
ously over all interfaces in the network. Since each node
has m interfaces, there are a total of mn interfaces in the
(m, c)-network. Each interface can transmit at a rate of W

c

bits/sec. Also, the maximum distance a bit can travel in the
network is O(1) meters. Hence, the total network capacity
is at most O � W nm

c � bit-meters/sec. This bound is tight
when c

m
is Ω(n).

Combining the two constraints, the network capacity is
O � MINO � W � nm

c
, W nm

c � � bit-meters/sec, under channel
model 1. Therefore, we have the following theorem on the
network capacity of arbitrary networks (Figure 1 has a pic-
torial representation).

Theorem 1. The upper bound on the capacity of a (m, c)-
arbitrary network under channel model 1 is as follows:

1. When c
m

is O(n), network capacity is O � W � nm
c � bit-

meters/sec.

2. When c
m

is Ω(n), network capacity is O � W nm
c � bit-

meters/sec.

The network capacity of a (c, c)-network is O (W
√

n) bit-
meters/sec under channel model 1, which was the result ob-
tained by Gupta and Kumar [10]. When fewer interfaces are
available, there is a capacity degradation by at least a factor
of 1 − � m

c
. Intuitively, the capacity degradation arises be-

cause the total bits that can be simultaneously transmitted
decreases.

3.2 Constructive lower bound
In this section, we construct a network to establish a lower

bound on the network capacity. The lower bound matches
the upper bound, implying that the bounds are tight. We
first establish two results that we use in the rest of the paper.
The results are proved under channel model 1, but hold for
channel model 2 as well.

Lemma 1. Suppose m, c, c̃ are positive integers such that
c̃ = c

m
. Then, a (m, c)-network can support at least the

capacity supported by a (1, c̃)-network.

tained by replacing W with Wc in the results derived under
channel model 1.
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Mapping

Group c̃

Group 1
1

m

c = c̃m

(c̃ − 1)m + 1

Figure 3: Lemma 1 construction: Forming c̃ chan-
nel groups, with m channels per group, in a (m, c)-
network.

Proof. Consider a (m, c)-network. We group the c chan-
nels into c̃ groups (numbered from 1 to c̃), with m chan-
nels per group as shown in Figure 3. Specifically, chan-
nel group i, 1 ≤ i ≤ c̃, contains all channels j such that
(i − 1)m + 1 ≤ j ≤ im.

Assume that time on the channels is divided into slots of
duration τ . Consider any slot s. Suppose a node X in the
(1, c̃)-network has its interface on some channel i, 1 ≤ i ≤ c̃,
in slot s. We simulate this behavior in the (m, c)-network by
assigning the m interfaces of X in the slot s to the m chan-
nels in the channel group i. In this fashion, in any slot, the
m interfaces of any node in the (m, c)-network are mapped
to a channel group. The aggregate data rate of each channel
group is Wm/c = W/c̃ (since c = mc̃). Therefore, a chan-
nel group in the (m, c)-network can support the same data
rate as a channel in the (1, c̃)-network. This mapping allows
the (m, c)-network to mimic the behavior of (1, c̃)-network;
the Wτ/c̃ bits sent on some channel in any time slot s in
the (1, c̃)-network can be simulated by sending Wτ/c bits
(in the same slot s) on each of the m channels in the cor-
responding channel group of the (m, c)-network. Hence, a
(m, c)-network can support the capacity of a (1, c̃) network,
when c = mc̃.

Lemma 2. Suppose m and c are positive integers. Then,
a (m, c)-network can support at least 1

2
the capacity sup-

ported by a � 1, � c
m � � -network.

Proof. Suppose � c
m � = c

m
. Then the result directly fol-

lows from the previous lemma. Otherwise, m < c, and we
use c′ = m � c

m � of the channels in the (m, c)-network, and
ignore the rest of the channels. This can be viewed as a
(m, c′)-network, with a total data rate of W ′ = W m

c
� c
m �

(as each channel supports W
c

bits/sec). Using Lemma 1,
a (m, c′)-network with total data rate of W ′ can support
at least the capacity of a � 1, � c

m � � -network with total data
rate of W ′. However, when W ′ < W , the (m, c′)-network

with total data rate W ′ can achieve only a fraction W ′

W
of

the capacity of a � 1, � c
m � � -network with total data rate W

(instead of W ′). Now,

W ′

W
=

m

c

� c

m �
=

� c
m �
c
m

≥
� c
m �� c

m � + 1
, since

c

m
≤

�
c

m � + 1

≥ 1

2
, since

�
c

m � ≥ 1

S2S1

R3

R4

R2

S4

S3

R1

rr∆ r∆

l = 2(1 + 2∆)r

r(1 + ∆)

Figure 4: The placement of nodes within a cell.
There are k nodes at each of the labeled positions.

Hence, a (m, c)-network can support at least 1
2

the ca-

pacity supported by a � 1, � c
m � � network. This implies that

asymptotically, a (m, c)-network has the same order of ca-
pacity as a � 1, � c

m � � -network.

We now provide the following construction to establish
that a capacity of Ω � MINO � W � nm

c
, W nm

c � � bit-meters/sec
is achievable in a (1, c)-network under the channel model 1.
The result is then extended to a (m, c)-network by using
Lemma 2.

Step 1: We consider a torus of unit area. Let k = min � c, n
8 � .

This implies that k ≤ c. Partition the square area into n
8k

equal-sized square cells, and place 8k nodes in each cell.
Since the total area is 1, each cell has an area of 8k

n
, and

sides of length l = � 8k
n

.

Step 2: The 8k nodes within each cell are distributed
by placing k nodes at each of the eight positions shown in
Figure 4. Nodes placed at locations S1, S2, S3, S4 act as
senders, and nodes placed at remaining locations act as re-
ceivers. The sender locations S1 through S4 are at a dis-
tance of r∆ from the center of the cell (recall that ∆ is the
“guard” parameter from the protocol model of interference),

where r = l
2(1+2∆)

= 1
(1+2∆)

� 2k
n

. The receiver locations R1

through R4 are at a distance of r(1 + ∆) from the center of
the cell. Therefore, the distance between S1-R1, S2-R2, S3-
R3, and S4-R4 is equal to r. Each receiver location is at a
distance of r∆ from nearest edge of the cell, and each sender
location is at a distance of r(1 + ∆) from the nearest edge
of the cell.

Step 3: Label the k nodes in any location (S1 through S4,
R1 through R4) as 1 through k. The jth node in each sender
location, 1 ≤ j ≤ k, communicates with the jth node in the
nearest receiver location (at a distance of r) on channel j.
Consider any pair of communicating nodes A and B that are
located at, say, S1 and R1 respectively. Then, the nearest
senders within the cell, other than A (located at S1), which
are sending on the same channel as A are located at one



of S2, S3, S4, and are at least a distance of r(1 + ∆) away
from B (located at R1). Similarly, in every cell, senders are
at least r(1 + ∆) distance from the cell boundary. There-
fore, senders in adjacent cells of B are at least a distance of
r(1 + ∆) away from B as well. Hence, under the protocol
model of interference, the transmission between A and B is
not interfered with by any other transmission in the net-
work, and this property holds for all communicating pairs.

From the above construction, there are n
2

pairs of nodes

in the (1, c)-network, each transmitting at a rate of W
c

over

a distance r = 1
(1+2∆)

� 2k
n

. Hence, the total capacity of the

network (summing over all n nodes) is n
2

W
c

r = W
c

1
(1+2∆)

� nk
2

bit-meters/sec. Recall that k = min � c, n
8 � . Substituting for

k in the above derivation, we obtain the capacity of a (1, c)-
network to be Ω � MINO � W � n

c
, W n

c � � bit-meters/sec un-
der channel model 1, since ∆ is a constant.

Using Lemma 2, the capacity of a (m, c)-network un-

der channel model 1 is Ω � MINO � W � n
b c

m
c , W n

b c

m
c

� �
bit-

meters/sec. Since 1
b c

m
c ≥ 1

c

m

, we have the capacity of

arbitrary networks to be Ω � MINO � W � mn
c

, W mn
c � � bit-

meters/sec, which leads to the following theorem:

Theorem 2. The achievable network capacity of a (m, c)-
arbitrary network under channel model 1 is as follows:

1. When c
m

is O(n), network capacity is Ω � W � nm
c � bit-

meters/sec.

2. When c
m

is Ω(n), network capacity is Ω � W nm
c � bit-

meters/sec.

The upper bound (Theorem 1) and lower bound (Theorem
2) on the order of the capacity of arbitrary networks match,
indicating the bounds are tight.

3.3 Implications
A common scenario of operation is when the number of

channels is not too large ( c
m

= O(n)). Under this scenario,
the capacity of a (m, c)-network in the arbitrary setting
scales as Θ � W � nm

c � under channel model 1. Similarly, un-
der channel model 2, the capacity of the network scales as
Θ (W

√
nmc). Under either model, the capacity of a (m, c)-

network goes down by a factor of 1 − � m
c

, when compared
with a (c, c)-network. Therefore, doubling the number of
interfaces at each node (as long as number of interfaces is
smaller than the number of channels) increases the channel
capacity by a factor of only

√
2.

Furthermore, the ratio between m and c decides the capac-
ity, rather than the individual values of m and c. Increasing
the number of interfaces may result in a linear increase in
the cost but only a sub-linear (proportional to square-root
of number of interfaces) increase in the capacity. There-
fore, the optimal number of interfaces to use may be smaller
than the number of channels depending on the relationship
between cost of interfaces and utility obtained by higher ca-
pacity.

Different network architectures have been proposed for
utilizing multiple channels when the number of available in-
terfaces is smaller than the number of available channels

[6, 15, 22]. The construction used in proving lower bound
implies that maximal capacity is achieved when all channels
are utilized. One architecture used in the past [6] is to use
only m channels when m interfaces are available, leading
to wastage of the remaining c − m channels. That archi-
tecture results in a factor of 1 − m

c
loss in capacity which

can be significantly higher than the optimal 1 − � m
c

loss
(when c

m
= O(n)). Hence, in general, higher capacity may

be achievable by architectures that use all channels, possibly
by dynamically switching channels.

4. CAPACITY RESULTS FOR RANDOM
NETWORKS

We assume that n nodes are randomly located on the sur-
face of a torus of unit area. Each node selects a destination
randomly to which it sends λ(n) bits/sec. The highest value
of λ(n) which can be supported by every source-destination
pair with high probability is defined as the per-node through-
put of the network. The traffic between a source-destination
pair is referred to as a “flow”. Since there are a total of n
flows, the network capacity is defined to be nλ(n).

Note that each node picks a destination node randomly,
and so a node may be the destination of multiple flows. Let
D(n) be the maximum number of flows for which a node in
the network is a destination. We use the following result to
bound D(n).

Lemma 3. The maximum number of flows for which a

node in the network is a destination, D(n), is Θ
�

log n

log log n � ,

with high probability.

Proof. The process of nodes selecting a random desti-
nation may be mapped to the well-known “Balls into Bins”
problem [21]. Each source node may be viewed as a “ball”,
and each destination node may be viewed as a “bin”. The
process of selecting a destination node may be viewed as
randomly dropping a “ball” into a “bin”. Based on this
mapping, the proof of the lemma follows from well-known
results (cf. [21], Section 4).

4.1 Upper bound
The capacity of multi-channel random networks is limited

by three constraints, and each of them is used to obtain a
bound on the network capacity. The minimum of the three
bounds (the bounds depend on ratio between the number
of channels c and the number of interfaces m) is an upper
bound on the network capacity. While there may be other
constraints on capacity as well, the constraints we consider
are sufficient to provide a tight bound. We derive the bounds
under channel model 1, but the results are applicable under
channel model 2 as well.

Constraint 1 – Connectivity constraint: The capacity of
random networks is constrained by the need to ensure the
network is connected, so that every source-destination pair
can successfully communicate. Since node locations are ran-
domly chosen, there is some minimum transmission range
each node should use to ensure the network is connected.
Since all transmissions cover at least an area proportional
to the square of the minimum transmission range, there is
a bound on the number of simultaneous transmissions that
can occur in the network. Based on this observation, Gupta
and Kumar [10] have presented one bound on the network



capacity to be O
�
W � n

log n � bits/sec. This bound is appli-

cable to multi-channel networks as well.

Constraint 2 – Interference constraint: A random net-
work is a special case of an arbitrary network, and therefore
the arbitrary network constraints are applicable to random
networks as well. Therefore, the capacity of multi-channel
random networks is also constrained by interference (this
is same as constraint 1 listed for arbitrary networks in Sec-
tion 3.1). This constraint was already captured in the upper
bound for arbitrary networks, and we had obtained a bound
of O � W � nm

c � bit-meters/sec. In a random network, each
of the n source-destination pairs are separated by an average
distance of Θ(1) meter. Consequently, the network capacity
of random networks is at most O � W � nm

c � bits/sec. We do
not explicitly use the second arbitrary network constraint
(“Interface bottleneck constraint” from Section 3.1) in the
random network proof as the bounds established by that
constraint are not tight, and that bound is subsumed by the
bound for “destination bottleneck constraint”.

Constraint 3 – Destination bottleneck constraint: The ca-
pacity of a multi-channel network is constrained by the data
that can be received by a destination node. Consider a node
X which is the destination of the maximum number (that is,
D(n)) of flows. Recall that in a (m, c)-network, each channel
supports a data rate of W

c
bits/sec. Therefore, the total data

rate at which X can receive data over m interfaces is Wm
c

bits/sec. Since X has D(n) incoming flows, the data rate of
the minimum rate flow is at most Wm

cD(n)
bits/sec. Therefore,

by definition of λ(n), λ(n) ≤ Wm
cD(n)

, implying that network

capacity (which by definition is nλ(n)) is at most O
�

Wmn
cD(n) �

bits/sec. Substituting for D(n) from Lemma 3, the network

capacity is at most O
�

Wmn log log n

c log n � bits/sec.

The bound obtained from constraint 3 is applicable to any
network, including mobile networks, as long as the destina-
tion of every flow is randomly chosen among the nodes in the
network. Even when m = c, this bound implies that the per-

flow throughput, λ(n), is at most O
�

W log log n

log n � bits/sec.

Previous results on capacity of mobile networks [4,7,9] have
stated a per-flow throughput of O(W ) bits/sec is possible,
as in their models, each node does not randomly select a
destination node. In our work, we choose the destination
of a flow randomly from among n − 1 possible destinations,
similar to Gupta and Kumar [10]. Considering our discus-
sion above, the O(W ) bits/sec bound with mobility cannot
apply when destination nodes are randomly chosen. The
previous results for mobile networks hold under other mod-
els of selecting destination nodes, wherein each node is the
destination of at most O(1) flows (for example, such a con-
straint is satisfied when permutation routing is used).

Combining the three bounds, the network capacity is at

most O
�
MINO

�
W � n

log n
, W � nm

c
, Wmn log log n

c log n � � bits/sec

under channel model 1. From this, we have the following
theorem on the upper bound on capacity of random net-
works (Figure 2 has a pictorial representation).

Theorem 3. The upper bound on the capacity of a (m, c)-
random network under channel model 1 is as follows:

1. When c
m

is O(log n), network capacity is O
�
W � n

log n �
bits/sec.

2. When c
m

is Ω(log n) and also O � n
�

log log n

log n � 2 �
, net-

work capacity is O � W � nm
c � bits/sec.

3. When c
m

is Ω � n
�

log log n

log n � 2 �
, the network capacity is

O
�

Wmn log log n

c log n � bits/sec.

An interesting observation from this theorem is that as
long as c

m
is O(log n), the number of interfaces has no impact

on channel capacity. This implies that when the number of
channels is O(log n) (which is the common case today), there
is no loss in network capacity even if each node has a single
interface.

4.2 Lower bound
The lower bound is established by constructing a routing

scheme and a transmission schedule for any random network.
The lower bound matches the upper bound implying that
the bounds are tight. We will provide a construction for
a (1, c)-network (a network wherein each node has a single
interface) under channel model 1, and then invoke Lemma 2
to extend the result to a (m, c)-network. The steps involved
in the construction are described next.

4.2.1 Cell construction
The surface of the unit torus is divided using a square grid

into square cells (see Figure 5), each of area a(n), similar to
the approach used in [7]. The key difference in our work from
[7] is that the size of the cell, a(n), varies with the number
of channels, and has to be carefully chosen to meet multiple
constraints (which are described later in the text). In par-

ticular, we set a(n) = min � max � 100 log n

n
, c

n � ,
�

1
D(n) � 2 �

,

where D(n) = Θ
�

log n

log log n � as described before. Intuitively,

the three values that influence a(n) are based on the three
constraints that were described in the upper bound proof:
cell size needed to ensure connectivity, cell size needed when
capacity is constrained by interference, and cell size needed
when capacity is constrained by the maximum number of
flows to any destination node, respectively.

We need to bound the number of nodes that are present
in each cell. We state the bound here, and present a proof
of the bound in Appendix B.

Lemma 4. If a(n) > 50 log n

n
, then each cell has Θ (na(n))

nodes per cell, with high probability.

Proof. See Appendix B.

By construction, we ensure that a(n) ≥ 100 log n

n
for large

n (as max � 100 log n

n
, c

n � is at least 100 log n

n
, and

�
1

D(n) � 2

is

asymptotically larger than 100 log n

n
). Thus, with our choice

of a(n), Lemma 4 holds for suitably large n, and each cell
has Θ (na(n)) nodes per cell, whp.

The transmission range2 of each node, r(n), is set to be
� 8a(n). With this transmission range, a node in one cell
2Transmission range is defined to be the maximum distance
over which any node can communicate.
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Figure 5: Routing through cells: Packets are routed
through the cells intersected by the line joining the
source and the destination. Within each cell, a spe-
cific node is chosen for forwarding all packets of a
flow.

can communicate with any node in its eight neighboring
cells. Note that when the cell size a(n) increases, larger
transmission range is required, as r(n) is dependent on a(n).

A transmission originating from a node S interferes with
another transmission from A to B, only if S is within a dis-
tance of (1 + ∆)r(n) of receiver B (using the interference
definition of protocol model). Since the distance between
A and B is at most r(n), the distance between the two
transmitters, S and A, must be less than (2 + ∆)r(n) if
the transmissions were to interfere. Thus, any transmis-
sion can possibly interfere with only those transmissions
from transmitters within a distance of (2 + ∆)r(n). There-
fore, nodes in a cell can be interfered with by only nodes in
cells within a distance of (2 + ∆)r(n), and this interfering
area can be completely enclosed in a larger square of side
3(2 + ∆)r(n) (this is a loose bound). Consequently, there

are at most (3(2+∆)r(n))2

a(n)
= 72(2 + ∆)2 interfering cells (re-

call r(n) = � 8a(n)). Hence, the number of interfering cells,
kinter ≤ 72(2 + ∆)2, is a constant that only depends on ∆
(and is independent of a(n) and n).

4.2.2 Routing Scheme
Packets are routed through the cells that lie along the

straight line joining the source and the destination node. A
node in each cell through which the line passes is used to
relay traffic along that flow (we will describe the choice of
the node later). Figure 5 shows an example of the cells used
to route data for a flow between source S and destination
D.

In previously proposed constructions for proving lower
bound on capacity [7,10], it was immaterial which node in a
chosen cell forwarded packets for some flow. However, such
an approach may “overload” certain nodes, leading to ca-
pacity degradation, when the number of interfaces per node

is smaller than the number of channels. Consequently, it
is important to ensure that the routing load is distributed
among the nodes in a cell. This is a key extension to the
routing procedure used in earlier capacity results [10], and
the extension is described next.

For each flow passing through a cell, one node in the cell
is “assigned” to the flow. The assigned node of a flow in a
cell is the only node in that cell which may receive/transmit
data along that flow. The assignment is done using a flow
distribution procedure as below:

Step 1 – Assign source and destination nodes: For any
flow that originates in a cell, the source node S is assigned
to the flow (S is necessarily in the originating cell). Simi-
larly, for any flow that terminates in a cell, the destination
node D is assigned to the flow. Since a single node in each
cell is allowed to receive or transmit data for a flow, it is
required that the source and destination nodes be assigned
to flows originating or terminating from them.

Step 2 – Balance distribution of remaining flows: After
step 1 is complete, we are left with only those flows that pass
through a cell. Each such remaining flow passing through
a cell is assigned to the node in the cell that has the least
number of flows assigned to it so far. This step balances
the assignment of flows to ensure that all nodes are assigned
(nearly) the same number of flows. The node assigned to a
flow will receive packets from some node in the previous cell
and send the packet to a node in the next cell.

Each node is the originator of one flow. Each node is
the destination of at most D(n) flows, which by Lemma 3

is Θ
�

log n

log log n � . Therefore, step 1 of the flow distribution

procedure assigns to each node at most 1 + D(n) flows.
We use the following result to bound the number of source-

destination lines that pass through any cell (and are assigned
in step 2); we omit the proof as it has already been presented
earlier in [7].

Lemma 5. The maximum number of source-destination
lines that intersect any cell (including lines originating and

terminating in the cell) is O
�
n � a(n) � , with high probabil-

ity.

Step 2 of the flow distribution procedure carefully assigns
the remaining flows among the nodes in the cell to ensure
that all nodes end up with nearly same number of flows. By
Lemma 4, each cell has Θ (na(n)) nodes, and by Lemma 5 at

most O
�
n � a(n) � flows pass through a cell. Therefore, step

2 will assign to any node in the network at most O � 1√
a(n)

�
flows. Therefore the total flows assigned to any node is

at most O � 1 + D(n) + 1√
a(n)

�
. When choosing the size

of a(n) earlier, the maximum value of a(n) was at most�
1

D(n) � 2

, which implies 1√
a(n)

is at least D(n). Hence, the

total flows assigned to any node is always asymptotically

dominated by 1√
a(n)

, and is therefore equal to O � 1√
a(n)

�
flows.



4.2.3 Scheduling transmissions
The transmission scheduling scheme is responsible for gen-

erating a transmission schedule for each node in the (1, c)-
network that satisfies the following constraints:

Constraint 1: When a node X transmits a packet to a
node Y over a channel j for some flow, X and Y should
not be scheduled to transmit/receive at the same time for
any other flow (since each node is assumed to have a single
interface in the construction).

Constraint 2: Any two simultaneous transmissions on any
channel should not interfere.

The multi-channel construction differs from the mecha-
nisms used in earlier constructions [7,10] in two ways. First,
the scheduling is on a per-node basis since flows are dis-
tributed among nodes, whereas in the past work it was suf-
ficient to schedule on a per-cell basis. Second, since there is
a single interface, but c channels are available (recall that
we are assuming a (1, c)-network for now), the schedule
has to additionally ensure that at most a single transmis-
sion/reception is scheduled for a node at any time (con-
straint 1 above).

We build a suitable schedule using a two-step process. In
the first step, we satisfy constraint 1 by scheduling trans-
missions in “edge-color” slots so that at every node during
any edge-color slot, at most one transmission or reception
is scheduled. In the second step, we satisfy constraint 2 by
dividing each edge-color slot into “mini-slots”, and assign-
ing mini-slots to channels such that any scheduled trans-
mission is interference-free. By using the two-step process,
each transmission in a mini-slot satisfies both constraint 1
and constraint 2.

Step 1 – Build a routing graph: We build a graph, called
the “routing graph”, whose vertices are the nodes in the net-
work. One edge is inserted between all node pairs, say A and
B, for every flow on which A and B are consecutive nodes
(the routing scheme for selecting nodes along a flow was de-
scribed earlier). Therefore, by this construction, every hop3

in the network along any flow is associated with one edge in
the routing graph. The resulting routing graph is a multi-

graph4 in which each node has at most O � 1√
a(n)

�
edges,

since each flow through a node can result in at most two
edges, one incoming and one outgoing, and we have already

shown that each node is assigned to at most O � 1√
a(n)

�
flows. It is a well-known result [30] that a multi-graph with
at most e edges per vertex can be edge-colored5 with at most
3e
2

colors. Therefore, the routing graph can be edge colored

with at most some f = O � 1√
a(n)

�
colors.

We use edge coloring to ensure that when a transmission
is scheduled along an edge, the interfaces on the nodes at ei-

3A hop is a pair of consecutive nodes on a flow.
4A graph with possibly multiple edges between a pair of
nodes.
5Edge-coloring requires any two edges incident on a common
vertex to use different colors.

ther end of the edge are free, thereby satisfying constraint 1.

We divide every 1 second period into f (O � 1√
a(n)

�
) “edge-

color” slots, each of length 1
f

(Ω
� � a(n) � ) seconds. Each of

these edge-color slots is associated with an unique edge color.
An edge is scheduled for transmission in the slot associated
with its edge color. Since edge coloring ensures that at a
vertex, all edges connected to the vertex use different col-
ors, each node will have at most one transmission/reception
scheduled in any edge-color slot. By construction, each edge
corresponds to a hop in the network. Therefore this scheme
ensures that during every 1 second interval, along any flow
in the network, one transmission is scheduled on each hop
of a flow.

Step 2 – Build an interference graph: In step 2, each
edge-color slot is further sub-divided into “mini-slots” as ex-
plained below, and every node has an opportunity to trans-
mit in some mini-slot. We develop a schedule for using mini-
slots, which satisfies constraint 2. The schedule decides on
which mini-slot within an edge-color slot and on what chan-
nel a node may transmit, and the same schedule is used in
every edge-color slot.

We build another graph, called the “interference graph”,
wherein, vertices are nodes in the network, and there is an
edge between two nodes if they may interfere with each
other. Since every cell has at most some constant kinter

number of cells that may interfere with each other, and
each cell has Θ (na(n)) nodes, each node has at most g =
O (na(n)) edges in the interference graph. It is well-known
that a graph with maximum degree e can be vertex-colored6

with at most e + 1 colors [30]. Therefore, the graph can
be vertex-colored with some O (na(n)) colors, i.e., at most
k1na(n) colors for some constant k1. Transmissions of two
nodes assigned the same vertex-color do not interfere with
each other. Hence, they can be scheduled to transmit on the
same channel at the same time. On the other hand, nodes
colored with different colors may interfere with each other,
and need to be scheduled either on different channels, or at
different time slots on the same channel.

We divide each edge-color slot into � k1na(n)
c � mini-slots on

every channel, and number the slots on each channel from

1 to � k1na(n)
c � . There is a total of c � k1na(n)

c � mini-slots

across the c channels. Channels are numbered from 1 to c.
A node which is allocated a color p, 1 ≤ p ≤ k1na(n) is al-
lowed to transmit in mini-slot � p

c � on channel (p mod c)+1.
The node may actually transmit if the edge-coloring has al-
located an outgoing edge from the node to the corresponding
edge-color slot.

Figure 6 depicts a schedule of transmissions on the net-
work developed after the two-step scheduling process. The
first step allocates one edge-color slot for each hop of every
flow. The second step decides within each edge-color slot
when the transmitter node on a hop may actually transmit
a packet.

As seen in step 1, each edge-color slot is of length Ω
� � a(n) �

seconds. As seen in step 2, each edge-color slot is sub-

6Vertex-coloring requires any two vertices sharing a common
edge to use different colors.
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Figure 6: Transmission schedule: Every hop along
every flow is assigned to exactly one edge-color slot
in each one second interval. Within the edge-color
slot assigned to a hop, a specific mini-slot is chosen
during which the transmitter node on that hop may
transmit.

divided into � k1na(n)
c � mini-slots. Therefore, each mini-slot

is of length Ω � √
a(n)�

k1na(n)
c �

�
seconds. Each channel can trans-

mit at the rate of W
c

bits/second. Hence, in each mini-

slot, λ(n) = Ω � W
√

a(n)

c

�
k1na(n)

c �
�

bits can be transported. Since

� k1na(n)
c � ≤ k1na(n)

c
+ 1, we have, λ(n) = Ω � W

√
a(n)

k1na(n)+c

�
bits/sec. Depending on the asymptotic order of c, either
na(n) or c will dominate the denominator of λ(n). Hence,

λ(n) = Ω � MINO � W

n
√

a(n)
,

W
√

a(n)

c

� �
bits/sec. Since each

flow is scheduled to receive one mini-slot on each hop dur-
ing every 1 second interval, every source-destination flow can
support a per-node throughput of λ(n) bits/sec. Therefore,
the total network capacity is equal to nλ(n) which is equal

to Ω � MINO � W√
a(n)

,
Wn

√
a(n)

c

� �
bits/sec.

Recall that a(n) is set to min � max � 100 log n

n
, c

n � ,
�

1
D(n) � 2 �

,

where D(n) = Θ
�

log n

log log n � . Substituting for the three val-

ues, and then applying Lemma 2 to extend the results to an
(m, c)-network, we have the following theorem.

Theorem 4. The achievable capacity of a (m, c)-random
network under channel model 1 is as follows:

1. When c
m

is O(log n), a(n) = Θ � log n

n � , and the net-

work capacity is Ω
�
W � n

log n � bits/sec.

2. When c
m

is Ω(log n) and also O � n
�

log log n

log n � 2 �
, a(n) =

Θ � c
mn � , and the network capacity is Ω � W � nm

c � bits/sec.

3. When c
m

is Ω � n
�

log log n

log n � 2 �
, a(n) = Θ � �

log log n

log n � 2 �
,

and the network capacity is Ω
�

Wmn log log n

c log n � bits/sec.

The lower bound matches the upper bound (Theorem 3)
implying that the bounds are tight. Recall that the trans-
mission range r(n) has been set to � 8a(n). Hence, the

transmission range is larger in case 2 and case 3 of Theo-
rem 4 as compared to case 1 (since a(n) increases). This
implies that in multi-channel networks with large number of
channels, higher transmission power is necessary for meeting
capacity bounds than is required in a single channel network.

4.3 Implications
The above result implies that the capacity of multi-channel

random networks with total channel data rate of W is the
same as that of a single channel network with data rate W as
long as the ratio c

m
is O(log n). When the number of nodes

n in the network increases, we can also scale the number
of channels (for example, by using additional bandwidth, or
by dividing available bandwidth into multiple sub-channels).
Even then, as long as the channels are scaled at a rate not
more than log n, there is no loss in capacity even if a sin-
gle interface is available at each node. In particular, if the
number of channels c is a fixed constant, independent of
the node density, then as the node density increases beyond
some threshold density (at which point c ≤ log n), there is
no loss in capacity even if just a single interface is available
per node. Thus, this result may be used to roughly estimate
the number of interfaces each node has to be equipped with
for a given node density and a given number of channels.

In a single channel random network, i.e., a (1, 1)-network,
the capacity bottleneck arises out of the channel becoming
fully utilized, and not because interface at any node is fully
utilized. On an average, the interface of a node in a sin-
gle channel network is busy only for 1

X
fraction of the time,

where X is the average number of nodes that interfere with
a given node. In a (1, 1)-random network with n nodes, each
node on an average has Θ(log n) neighbors to maintain con-
nectivity [10]. This implies that in a single channel network,

each interface is busy for only Θ
�

1
log n � time. Intuitively,

our construction above utilizes this slack time of interfaces
to support up to O(log n) channels without loss in capac-
ity. In general, there is no loss in capacity in a random
network as long as the number of channels is smaller than
the average number of nodes in any neighborhood7 of a node.

In earlier capacity results [7, 10], the transmission range,
and therefore the neighborhood size, is a function of only
the node density. However, for multi-channel networks, the
transmission range has to be chosen based on ratio of chan-
nels to interfaces, in addition to the node density. For exam-
ple, with a given node density, when the number of channels
to interfaces is large (specifically, ω(log n)), the number of
interfaces in a neighborhood will be smaller than the total
number of channels. Therefore, even if all the interfaces are
being used continuously, it is not possible to fully saturate
the available channels. This can result in significant capacity
degradation.

The capacity degradation can be reduced by increasing
the size of a neighborhood, thereby ensuring the number
of interfaces in a neighborhood is equal to the number of
channels. Therefore, the lower bound construction requires
the cell size to be chosen such that the number of inter-
faces (or nodes, when each node has a single interface) in
each neighborhood is greater than or equal to the number

7The neighborhood of a node consists of all other nodes that
may interfere with it.



of channels. Thus, it turns out that the optimal strategy
for maximizing capacity when number of channels is large
is to sufficiently increase the cell size a(n), which implies a
larger transmission range r(n) is needed to allow communi-
cation with neighboring cells. However, there is still some
capacity loss because larger transmission range (than that is
needed for connectivity alone) lowers capacity by “consum-
ing” more area. In summary, in a single channel random net-
work, the transmission range is chosen to be large enough to
ensure connectivity. However, in the case of multi-channel
networks, the transmission range has to be chosen such that
it is sufficiently large to ensure that all channels are utilized,
in addition to guaranteeing connectivity.

4.4 Optimal routing and transmission
scheduling approaches

The construction used in demonstrating that the lower
bound is achievable can be used to develop optimal routing
and transmission scheduling approaches. The lower bound
construction suggests that load balancing (i.e., distributing
flows) among nodes in a given neighborhood is essential for
full utilization of multiple channels. In a single channel net-
work, load balancing is sometimes used to balance energy
consumption across nodes, or to improve resilience of the
network. However, load balancing in the same neighbor-
hood is not always required in single channel networks for
maximizing capacity.

For example, consider a simple scenario with two flows
from A to B and C to D as shown in Figure 7. The flows pass
through a cell with two nodes E and F. Assume that node E
is being used to forward data for flow A-B. In a single chan-
nel network with channel rate W , the per-flow throughput
is the same whether node E or node F is chosen to forward
data along flow C-D. In particular, the per-flow throughput
is W

4
as the channel rate is split between receiving and send-

ing data at the intermediate nodes. This is because E and
F interfere with each other, and therefore cannot simulta-
neously transmit. Now, consider the scenario wherein two
channels of data rate W

2
are available, but each node has

a single interface. In this scenario, if node E is chosen to
forward data along both flows A-B and C-D, the interface
on node E can transmit/receive at most W

2
bits/sec, leading

to a lower per-flow throughput of W
8

. Instead, if node F is
chosen to forward data along C-D, and links A-E and E-B
use one channel, while C-F and F-D use the other channel,
a higher per-flow throughput of W

4
can be achieved. This

example highlights the need for distributing flows (“load”).
The routing protocol should therefore explicitly try to bal-
ance load among nodes in every neighborhood, and select
routes with lower load.

In the transmission scheduling scheme used for lower bound
construction, it suffices for a node to always transmit on a
specific channel without requiring to switch channels for dif-
ferent packets (recall that the same mini-slot on a specific
channel is used by a node in all “edge-color” slots). However,
a node may have to switch channels for receiving data. An
alternate construction is to use a scheduling scheme which
ensures that a node receives all data on a specific channel,
but may have to switch channels when sending data. It
can be shown that the alternate construction is equivalent
to the lower bound construction by modifying the mini-slot
assignment to be done on a per-receiver basis instead of a

FA B

C

 D

E

Figure 7: Need for balancing load among nodes in a
neighborhood. If A is transmitting to B through E,
it is better for C to transmit to D through F.

per-sender basis. This intuition can be used to develop a
practical scheme that uses two interfaces per node. One in-
terface can be used for receiving data and is always fixed
to a single channel. The second interface can be used for
sending data and is switched between channels, as neces-
sary. Existing multi-channel protocols have often required
tight synchronization among nodes. The use of two inter-
faces, with a dedicated interface on a fixed channel obviates
the need for tight synchronization as a node receives data on
a well-known channel. Furthermore, using a fixed channel
for reception does not degrade capacity since it is based on
the (optimal) alternate construction.

We have already used some of the insights gained from this
work to develop routing and channel assignment protocols
[13, 15] that are well-suited for multi-channel networks.

5. IMPACT OF SWITCHING DELAY
The previous discussion on multi-channel capacity has not

considered the impact of interface switching delay. When
the number of interfaces at each node is smaller than the
number of channels, interfaces may have to be switched be-
tween channels. Switching an interface from one channel to
another may incur a switching delay, say S. For example,
existing IEEE 802.11-based wireless interfaces require [22]
between few tens to hundreds of microseconds to switch from
one channel to another. Switching delay is, however, inde-
pendent of the number of nodes in the network.

We will show that if there are no end-to-end delay con-
straints, switching delay will not affect network capacity.
For this, we will use the end-to-end delay constraint defini-
tion from [7]. Each packet is assumed to have a size L, and
L is scaled with respect to the throughput obtained for each
end-to-end flow. If each flow can transport λ bits/sec, then
each flow is assumed to send packets of size L = λ. In the
lower bound construction provided before, if packet sizes are
set to λ bits, each packet traverses at least one hop in one
second. Therefore, the end-to-end delay of a flow will be
bounded by the number of hops on the flow, when there is



no interface switching latency. Let us assume that the min-
imum end-to-end delay in the absence of interface switching
latency is Dopt. A reasonable delay constraint in the pres-
ence of switching latency is to require that the end-to-end
delay is at most a small constant multiple of Dopt; other-
wise applications may see a large increase in the end-to-end
delay. This requirement may be equivalently translated to
allow a maximum packet size of L.

5.1 Capacity in the absence of end-to-end
delay constraints

In the case of arbitrary networks, capacity bounds are met
without requiring interface switching at all (as was shown
in the construction used for lower bound). Hence, switch-
ing delay will not impact the capacity of arbitrary networks,
even if there is an end-to-end delay constraint. In the ab-
sence of any end-to-end delay constraints, we show next that
the capacity of random networks is independent of switching
delay (the construction is described next).

In the construction we use to establish lower bound for
random networks, interfaces may have to be switched be-
tween channels (when receiving data). In the worst case,
an interface may have to be switched between channels for
every packet transmission. If there is no end-to-end delay
constraint, then we propose a simple “guard slot” approach
which ensures that capacity loss can be made arbitrarily
small even in the presence of switching delay.

The “guard slot” approach is as follows. Suppose that
each packet is L bits long. This implies that the length of
each edge color slot is T = Lc

W
seconds (since each channel

supports a data rate of W
c

bits/sec under channel model 1).
One simple way of hiding the interface switching delay S is
to insert a “guard” slot of duration S between two “edge-
color” slots during which all channels are idle, to ensure
there is sufficient time for interface switching. With this ap-
proach, the network capacity will be only T

T+S
fraction of

the capacity when there is no switching delay. However, the
capacity reduction can be made arbitrarily small by send-
ing extremely large packets (L � λ) resulting in T � S,
leading to large end-to-end delay. Therefore, in the absence
of end-to-end delay constraints, by using large data packets,
the capacity degradation in random networks can be made
arbitrarily small.

5.2 Capacity in the presence of end-to-end
delay constraints

As we discussed above, even in the presence of delay con-
straints, the capacity of arbitrary networks is not affected
by switching delay, since switching is not required to meet
the capacity bounds. In the case of random networks as
well, the upper bound proofs do not mandate interfaces to
be switched, and therefore, even with switching delay, there
may be no change in the capacity. However, it is still an open
question if the capacity of random networks is independent
of the switching delay when there are end-to-end delay con-
straints.

In the presence of end-to-end delay constraints, switch-
ing delay does reduce the achievable network capacity in the
lower bound constructions proposed earlier. For example,
considering the guard-slot approach described above, when
there is a restriction on the maximum packet size, each edge-

color slot is bounded by some length T , and the network
capacity will be only T

T+S
of the capacity without switching

delay, We next describe an approach that shows using addi-
tional interfaces at each node is sufficient in many scenarios
to hide the switching delay, even with end-to-end delay con-
straints.

The new approach simulates a virtual interface having 0
switching delay using multiple physical interfaces that each
have a switching delay S. By this construction, the use of v
additional interfaces per node can hide the switching delay,
i.e., a (v, c)-network using interfaces with switching delay S
can achieve the same capacity and end-to-end delay bounds
as a (1, c)-network using one interface with 0 switching de-
lay. This construction suggests that multiple interfaces are
sufficient to overcome the impact of switching delay, though
multiple interfaces may not be necessary.

Lemma 6. Suppose that the time required for packet trans-
mission in a (1, c)-network is T = Lc

W
, and suppose v =� S

T � + 1. Then a (v, c)-network built with interfaces having
switching delay S, can achieve the same capacity and end-
to-end delay as a (1, c)-network built with interfaces having
0 switching delay.

Proof. Let us assume that each node has v = � S
T � + 1

interfaces, each having a switching delay S. We build a
virtual interface with zero switching delay by using the v
physical interfaces, as shown in Figure 8. We consider any
time interval of length vT . We divide this time into v slots
of length T , and only allow the ith interface, 1 ≤ i ≤ v, to
transmit/receive in slot i. Thus, each physical interface is
used for transmission/reception in one slot, and is idle for
the next (v − 1) slots of total duration (v − 1)T seconds.
Since v = � S

T � + 1, we have:

(v − 1)T = � S

T � T

≥ S

Hence, between two successive operations of a physical inter-
face there is at least a gap of S, which ensures that switch-
ing delay is provisioned for. By this construction, the sim-
ulated virtual interface can continuously transmit/receive,
with 0 switching delay. Therefore, a network using v inter-
faces having switching delay S, can mimic the behavior of
a (1, c)-network built with interfaces having switching delay
0.

From the previous lemma, by increasing the number of
interfaces at each node by a factor of v, switching delay is
completely hidden. We next discuss the capacity implica-
tions of using v physical interfaces at each node to construct
a virtual interface, instead of directly using the v interfaces
to send data in parallel.

From Theorem 4, we note that when the number of chan-
nels is O(log n) and there is no switching delay, the capacity
of a (v, c)-network is the same as that of a (1, c)-network.
Using this observation along with Lemma 6, we can conclude
that by using the virtual interface technique, the capacity of
a (v, c)-network with each interface having switching delay
S is the same as the capacity of a (v, c)-network with each
interface having switching delay 0. Hence, when the num-
ber of channels is O(log n), which is a scenario of significant
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Figure 8: Constructing one virtual interface with
zero switching delay by using v physical interfaces
with switching delay S. Each packet transmission
requires T seconds.

practical interest, there is no capacity loss even with switch-
ing delay, provided multiple interfaces are used.

Again, from Theorem 4, we note that when the number of
channels is larger (Ω(log n)) and there is no switching delay,
the capacity of a (1, c)-network is the lower than that of
a (v, c)-network. Hence, using this observation along with
Lemma 6, we can conclude that using the virtual interface
technique when the number of channels is larger (Ω(log n)),
a (v, c)-network with each interface having switching delay
S will have lower capacity than a (v, c)-network with each
interface having switching delay 0.

Using Theorem 4, we can show that in this case, the

capacity will be lower by a factor of 1√
v

≈ � T
T+S

(since

v ≈ T+S
T

) when number of channels is between Ω(log n)

and O � n
�

log log n

log n � 2 �
, and by a factor of 1

v
≈ T

T+S
when

number of channels is Ω � n
�

log log n

log n � 2 �
. In contrast, if the

guard slot approach is used, the capacity is lower by a fac-
tor T

T+S
in all cases, independent of the number of channels.

Therefore, although there is a capacity loss with switching
delay for certain scenarios using the virtual interface tech-
nique, it is still significantly better than the guard slot ap-
proach when the number of channels is small. It is part
of our future work to study if alternate constructions are
possible that will not have any capacity loss at all.

6. PRACTICAL IMPLICATIONS
The theoretical analysis has studied the capacity of wire-

less networks with the number of channels varying across
a wide range. The region where the number of channels is
scaled as O(log n) seems to be of immediate practical inter-
est, since the number of channels provisioned for in current
wireless technologies is not too large. However, there are
many recent efforts aimed at utilizing frequency spectrum
in higher frequency bands, where significantly larger band-
width is available for use. For example, there is around
7 GHz of spectrum available for unlicensed use in the 60
GHz band [5], whereas the total bandwidth used in cur-
rent wireless technologies, such as IEEE 802.11, is less than
500 MHz. The bandwidth that may become available in
higher frequency bands can be split up into a large number

of channels, and therefore the region with number of chan-
nels greater than Ω(log n) may be of practical interest in the
near future.

The capacity analysis has shown that a single interface
may suffice for random networks with up to O(log n) chan-
nels. The capacity-optimal lower bound construction used
to support the above claim is based on certain assumptions,
all of which may not be satisfied in practice. For example, we
assume that interface switching delay is zero, transmission
range of interfaces can be carefully controlled, and there is
a centralized mechanism for co-ordinating route assignment
and scheduling. In addition, the theoretical analysis derives
asymptotic results, and capacity can be improved by con-
stant factors in the lower bound constructions by using mul-
tiple interfaces. From Section 5, we note that when interface
switching delay is not zero, having more than one interface
may be beneficial. Furthermore, our research on protocol
design [15] has identified many benefits of using at least two
interfaces at each node, such as allowing full-duplex transfer,
and simplifying the development of distributed protocols for
utilizing multiple channels.

Simulation and testbed experiments [13, 22] have shown
that having more than one interface may be beneficial in
practice. However, these experiments do not prove multiple
interfaces are necessary for obtaining all the observed per-
formance improvement. In addition, some results also show
that [13] it is not necessary to have one interface per channel
to utilize all the channels, and in fact even many (e.g., 12)
channels can be fully utilized by using only two interfaces,
which partly validates the theoretical claim.

Furthermore, there are other proposals [2,25], which show
that a single interface solution can also effectively utilize
multiple channels, though at the cost of increased protocol
complexity. Therefore, in practice, the theoretical claim that
a single interface suffices with O(log n) channels is reason-
ably accurate, with the caveat that additional interfaces may
be useful in simplifying protocol design and hiding switching
delay.

7. CONCLUSIONS
In this paper, we have derived the lower and upper bounds

on the capacity of static multi-channel wireless networks.
We have considered wireless networks having c channels,
and m ≤ c interfaces per node. Each interface is capable of
selecting appropriate transmission power, and lower bound
constructions require global knowledge. Under this model,
we have shown that in an arbitrary network, there is a loss
in the network capacity when the number of interfaces per
node is smaller than the number of channels. However, we
have shown that surprisingly, in a random network, a single
interface may suffice for utilizing multiple channels, as long
as the number of channels is scaled as O(log n). We have
then considered the impact of non-zero interface switching
delay on capacity, and shown that in a random network
with up to O(log n) channels, interface switching delay has
no impact on capacity, provided each node is provisioned
with a few extra interfaces. As part of our future work, we
intend to apply the insights gained from this work to build
practical routing and MAC algorithms that approach the
capacity limit.
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APPENDIX

A. UPPER BOUND IN ARBITRARY
NETWORKS

Theorem 5. The arbitrary network capacity of a (m, c)-
network is O � W � nm

c � bit-meters/sec under channel model
1.

Proof. We prove the result under channel model 1. The
proof is based on a proof in [10]. We assume that nodes



are synchronized, and slotted transmissions of duration τ
are used. We assume that each source node originates λ
bits/sec. Let the average distance between source and des-
tination pairs be L̄. Therefore, the capacity of the network
is λnL̄ bit-meters/sec.

We consider any time period of length one second. In this
time interval, consider a bit b, 1 ≤ b ≤ λn. We assume that
bit b traverses h(b) hops on the path from its source to its
destination, where the h-th hop traverses a distance of rh

b .
Since the distance traversed by a bit from its source to its
destination is at least equal to the length of the line joining
the source and the destination, by summing over all bits we
obtain,

λn�
b=1

h(b)�
h=1

rh
b ≥ λnL̄ (1)

Let us define H to be the total number of hops traversed
by all bits in a second, i.e. H = � λn

b=1 h(b). Therefore,
the number of bits transmitted by all nodes in a second
(including bits relayed) is equal to H. Since each node has
m interfaces, and each interface transmits over a channel
with rate W/c (assuming channel model 1), the total bits
that can be transmitted by all nodes over all interfaces is at
most Wmn

2c
(Transporting a bit across one hop requires two

interfaces, one each at the transmitting and the receiving
nodes). Hence, we have,

H ≤ Wmn

2c
(2)

Under the protocol model, a transmission over a hop of
length r is successful only if there is no transmitter within a
distance of (1 + ∆)r. Suppose node A is transmitting a bit
to node B, while node C is simultaneously transmitting a bit
to node D, and both the transmissions are over a common
channel. Then, using the interference model, we have

d(C, B) ≥ (1 + ∆)d(A,B)

d(A,D) ≥ (1 + ∆)d(C,D)

Adding the above two expressions together, and applying
triangle inequality, we obtain,

d(B, D) ≥ ∆

2
(d(A, B) + d(C, D))

This implies that the receivers of two simultaneous trans-
missions are separated by a distance proportional to the
distance from their senders. This may be viewed as each
hop consuming a disk of radius ∆

2
times the length of the

hop around each receiver. Since the area “consumed” on
each channel is bounded above by the area of the domain
(1 sq meter), summing over all channels (which can in total
potentially transport W bits) we have the constraint,

λn�
b=1

h(b)�
h=1

π∆2

4
(rh

b )2 ≤ W (3)

which can be rewritten as,

λn�
b=1

h(b)�
h=1

1

H
(rh

b )2 ≤ 4W

π∆2H
(4)

Since the expression on the left hand side is convex, we
have,

(
λn�
b=1

h(b)�
h=1

1

H
rh

b )2 ≤
λn�
b=1

h(b)�
h=1

1

H
(rh

b )2 (5)

Therefore, from (4) and (5),

λn�
b=1

h(b)�
h=1

rh
b ≤ � 4WH

π∆2
(6)

Substituting for H from (2), and using (1) we have,

λnL̄ ≤ W � 2mn

π∆2c
(7)

This proves that the network capacity of an arbitrary net-
work is O � W � nm

c � bit-meters/sec under channel model
1.

B. RESULTS FOR ESTABLISHING LOWER
BOUND IN RANDOM NETWORKS

Lemma 4: If a(n) > 50 log n

n
, then each cell has Θ(na(n))

nodes per cell, with high probability.

Proof. A similar result was stated in [7] without proof.
Here we provide a proof based on VC-theory (see [28] for de-
tails on VC-theory), similar to the approach used by Gupta
and Kumar [10]. The total number of square cells is 1

a(n)
.

Since nodes are randomly located on the torus, the proba-
bility that any given node will lie in a specific cell is a(n).
We want to derive bounds on number of nodes in every cell
in the square grid, which requires a proof of uniform con-
vergence. The set of axis-parallel squares C are known to
have VC-dimension 3. By applying the Vapnik-Chervonekis
theorem [29], similar to the approach used in [10], we have
the following bound on the number of nodes NC in any cell
C:

Prob � sup
C∈C ����

NC

n
− a(n) ����

≤ 50 log n

n

�
> 1 − 50 log n

n
(8)

where the constants in the above expression have been care-
fully chosen to satisfy the Vapnik-Chervonekis theorem. The
above result implies that with high probability, we have

na(n) − 50 log n ≤ NC ≤ na(n) + 50 log n

provided a(n) > 50 log n

n
.

Hence, we can conclude that the number of nodes in any
cell is Θ(na(n)) with high probability, as long as a(n) >
50 log n

n
.


