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Abstract

Wireless Medium Access Control (MAC) protocols such as IEEE 802.11 use distributed contention

resolution mechanisms for sharing the wireless channel. In this environment, selfish hosts that fail to

adhere to the MAC protocol may obtain an unfair throughput share. For example, IEEE 802.11 requires

hosts competing for access to the channel to wait for a “backoff” interval, randomly selected from a

specified range, before initiating a transmission. Selfish hosts may wait for smaller backoff intervals than

well-behaved hosts, thereby obtaining an unfair advantage. We present modifications to the IEEE 802.11

protocol to simplify detection of such selfish hosts, and analyze the optimality of the chosen strategy. We

also present a penalty scheme for punishing selfish misbehavior. We develop two misbehavior models to

capture the behavior of misbehaving hosts. Simulation results under these misbehavior models indicate

that our detection and penalty schemes are successful in handling MAC layer misbehavior.

Index Terms

C.2.1.k Wireless communication, C.2.3.b Network monitoring, C.2.3.c Public networks, C.2.0.f

Network-level security and protection

I. INTRODUCTION

Wireless Medium Access Control (MAC) protocols such as IEEE 802.11 [13] use distributed

contention resolution mechanisms for sharing the wireless channel. The contention resolution

mechanism is typically based on cooperative protocols (e.g., random backoff before transmission)

that attempt to ensure a reasonably fair throughput share for all the participating hosts. In

environments where hosts in the network are untrusted, some hosts may misbehave by failing

to adhere to the network protocols, with the intent of obtaining an unfair share of the channel.

The presence of selfish hosts that deviate from the contention resolution protocol can reduce

the throughput share received by well-behaved hosts. Thus, development of mechanisms for

detecting and handling selfish misbehavior is essential.

Wireless networks can be classified into infrastructure-based networks and ad hoc networks.

Infrastructure-based networks have a centralized base station. Hosts in the wireless network

communicate with each other, and with other hosts on the wired network, through the base station.

Ad hoc networks are characterized by the absence of any infrastructure support. Hosts in the

network are self-organized, and forward packets on behalf of each other, enabling communication



over multi-hop routes. IEEE 802.11 is a MAC layer protocol that can be used in infrastructure-

based networks as well as in ad hoc networks.

IEEE 802.11 has two mechanisms for contention resolution; a centralized mechanism called

point coordination function (PCF), and a fully distributed mechanism called distributed coordi-

nation function (DCF). PCF needs a centralized controller (located at the base station), and can

be used only in infrastructure-based networks. PCF is an optional feature in IEEE 802.11, and is

not supported by all IEEE 802.11 implementations. DCF provides distributed access and is the

only contention resolution mechanism that can be used for ad hoc networks. DCF is also suitable

when the number of hosts and load in the network is not fixed. Consequently, DCF is widely used

in practice for infrastructure-based networks as well. In this paper, we address a misbehavior

possible in the DCF mode. Using PCF, instead of DCF, in infrastructure-based networks may

alleviate the selfish misbehavior that we identify, but PCF may offer lower performance than

DCF during normal network operation.

Details of DCF and illustration of possible misbehavior

DCF uses CSMA/CA (carrier sense multiple access/collision avoidance) for resolving con-

tention among multiple hosts accessing the channel. A host (sender) with data to transmit on the

channel selects a random backoff value from range [0, CW ], where CW (Contention Window) is

a variable maintained by each host. While the channel is idle, the backoff counter is decremented

by one after every time slot (time slot is a fixed interval of time defined in IEEE 802.11 standard),

and the counter is frozen when the channel becomes busy. The host may access the channel when

the backoff counter is decremented to zero.

After the backoff counter is decremented to zero, the sender may reserve the channel for the

duration of the data transfer by exchanging control packets on the channel. The sender first sends

a RTS (Request to Send) packet to the receiver host. The receiver responds with a CTS (Clear to

Send) packet and this exchange reserves the channel for the duration of data transmission (RTS-

CTS exchange is optional in IEEE 802.11). Both the RTS and the CTS contain the proposed

duration of data transmission. Other hosts which overhear either the RTS or the CTS (or both)

are required to defer transmissions on the channel for the duration specified in RTS/CTS. After

a successful RTS/CTS exchange, the sender transmits a DATA packet. The receiver responds

with an ACK packet to acknowledge a successful reception of the DATA packet. If a host’s data

transmission is successful, the host resets its CW to a minimum value (CWmin); otherwise, if



a host’s data transmission is unsuccessful (detected by the absence of a CTS or the absence of

an ACK), CW is doubled, subject to a maximum of CWmax.

Strategies misbehaving hosts may use to obtain an unfair share of the channel include:

• Selecting backoff values from a different distribution with smaller average backoff value,

than the distribution specified by DCF (e.g., by selecting backoff values from the range

[0,CW
4

] instead of [0,CW], or by always selecting a fixed backoff of 1 slot).

• Using a different retransmission strategy that does not double the CW value after collision.

Such selfish misbehavior can seriously degrade the throughput of well-behaved hosts. For

example, our simulation results (Section VI) show that for a network containing 8 hosts sending

packets to a common receiver, with one of the 8 hosts misbehaving by selecting backoff values

from the range [0,CW
4

], the throughput of the other 7 hosts is degraded by as much as 50%.

In this paper we propose modifications to IEEE 802.11, for simplifying the detection of such

misbehaving hosts as well as for penalizing hosts detected to be misbehaving.

The rest of the paper is organized as follows. A discussion of related work is presented in

Section II. A brief overview of the proposed scheme is outlined in Section III, and details

are presented in Section IV. Extensions to the protocol for detecting receiver misbehavior,

and improving diagnosis accuracy are in Section V. The evaluation of the proposed scheme

is presented in Section VI. We conclude in Section VII.

II. RELATED WORK

Most research addressing selfish misbehavior assume that selfish hosts misbehave primarily to

improve their own performance (throughput, latency, energy, etc.). Selfish hosts are assumed to

desist from degrading the performance obtained by other hosts, when such an attempt does not

improve their own performance. In contrast, research addressing wireless security are primarily

focused on addressing malicious misbehavior, which is misbehavior aimed at disrupting normal

network operation, possibly with no performance gain to the misbehaving host. Selfish misbe-

havior includes hosts that refuse to forward packets on behalf of other hosts to conserve energy,

hosts that select small backoff values to obtain larger throughput share (the misbehavior that

we address), etc. Malicious misbehavior includes denial of service attacks that disrupt routing

operation, jamming the wireless channel to prevent communication, etc. Good discussions on

various security issues in wireless networks are in [6], [12], [30]



Several approaches have been proposed for addressing selfish misbehavior at the network layer

in wireless networks. One approach is to identify misbehaving hosts, and avoid their use for

network operations such as routing [23]. Another approach is to design protocols that encourage

cooperation by penalizing misbehavior [3], [4]. A complementary approach is to provide incen-

tives for hosts to cooperate by paying for cooperation [7], [8]. Network layer mechanisms address

network layer misbehavior such as dropping, delaying or mis-routing packets. The scheme we

propose addresses selfish misbehavior at the MAC layer, and can complement network layer

mechanisms.

A related approach is to design protocols that are resilient to misbehavior. In the context of

TCP, Savage et al. [9], [29] identify certain receiver misbehavior that may allow a misbehaving

receiver to gain a throughput advantage over other well-behaved receivers, and propose simple

modifications to TCP for preventing such misbehavior. The modifications we propose to IEEE

802.11 protocol are based on a similar design philosophy of incorporating features in a protocol

that help detect or discourage misbehavior.

Game-theoretic techniques [17], [18], [21], [22], [24], [25] have been used to develop protocols

which are resilient to misbehavior. Game theoretic approach assumes that all users are selfish

and rational. Rational hosts always select a strategy that maximizes their utility (utility is a

measure of the benefit obtained by a host). Protocols are designed that reach a equilibrium state

called the “Nash equilibrium”, where a selfish host cannot unilaterally gain any advantage over

well-behaved hosts.

Mackenzie et al. [21], [22] consider selfish misbehavior in Aloha protocol. Hosts are assumed

to incur a cost for each transmission (e.g., energy required for the transmission), and each host

is assumed to have perfect knowledge of channel conditions and backlogged hosts (in practice,

this knowledge may not be available to hosts in the network). Under this setting, it is shown

that the protocol has a Nash equilibrium, and there is no scope for selfish misbehavior. Konorski

[17], [18] studies selfish MAC layer misbehavior, where hosts deviate from the specified backoff

strategy. Konorski proposes a modified backoff algorithm using black-bursts, and with a game-

theoretic analysis shows that the protocol is resilient to selfish misbehavior. Konorski’s work

assumes that all hosts can accurately measure the duration and originator of each black-burst,

which is hard to guarantee in a wireless network.

Most of the protocols using game-theoretic techniques are based on the assumption of “Perfect



Information”, i.e., every host can observe all the actions of other hosts in the network. This

assumption is hard to realize in practice, especially in the context of a wireless network (with

fading channels, hidden terminals, etc.). In addition, protocols developed with game-theoretic

techniques may not achieve the performance of protocols developed under the assumption that

all hosts are well-behaved and cooperate with each other (e.g., IEEE 802.11). The scheme we

propose retains the performance of IEEE 802.11 (a protocol based on cooperation among hosts),

while ensuring detection of misbehavior.

Intrusion detection and tolerance techniques are used as a tool for diagnosing and tolerating

misbehavior [5], [11], [28], [31]. Intrusion detection approaches are based on developing a long-

term profile of normal activities, and identify intrusion by observing deviations from the measured

profile. On the other hand, our proposed modifications are not dependent on the availability of a

long-term profile of normal behavior (when the topology, channel conditions and traffic patterns

are dynamic, such a profile may not be accurate).

Bhargavan et al. [2] used a backoff mechanism similar to the one proposed in this paper, but

their goal was to achieve improved fairness in channel access. In contrast, our modifications are

designed to simplify misbehavior diagnosis.

This paper is an extension of an earlier conference paper [20]. The earlier work has been

expanded with extensions for improving detection accuracy, and a more detailed evaluation.

III. PRELIMINARIES

We define the following terminology used in presenting the proposed scheme.

Sender: Sender is a host which wants to transmit a data packet to another host.

Receiver: Receiver is a host which receives a data packet from a sender host. The receiver

monitors the sender host to detect sender’s misbehavior.

Sender and receiver are the different roles a host can perform. A host may assume the roles

of a sender and a receiver at different times. Recall that, in the case of IEEE 802.11 DCF, the

sender host transmits a DATA packet to a receiver host after an optional RTS-CTS exchange.

A. Motivation and assumptions

The proposed scheme is designed to require minimal modifications to IEEE 802.11 DCF, and

allows a receiver to detect sender misbehavior identified earlier. Detecting sender misbehavior



is important, for example, in infrastructure-based public wireless networks (e.g., public wireless

networks in airports). In public wireless networks, the base stations are maintained by the

network service providers, and can be trusted. Since the base station is well-behaved, there

is no misbehavior when it is sending. On the other hand, wireless hosts sending data to the base

station using the DCF mode are untrusted, and may misbehave to gain higher throughput share

than competing hosts. Hence, the base station (receiver) is required to detect misbehavior of

wireless hosts (senders).

We assume that the receivers are well-behaved while presenting the proposed scheme. We

discuss mechanisms to address receiver misbehavior in Section V. We also assume that there

is no collusion between the sender and the receiver. For example, these assumptions are valid

in the infrastructure-based wireless networks with a trusted base station. The proposed scheme

can also be applied to ad hoc networks (self organized networks without a central authority) to

detect misbehavior as discussed later. The proposed scheme addresses selfish misbehavior (hosts

intending to obtain higher throughput or lower delay), and does not consider malicious attacks

such as jamming the channel.

B. Brief overview of the proposed scheme

The proposed scheme is designed to handle selfish MAC layer misbehavior in hosts using IEEE

802.11 DCF mode. A goal of the proposed scheme is to simplify misbehavior detection. In IEEE

802.11 protocol, a sender transmits a RTS (Request to Send) after waiting for a randomly selected

number of slots in the range [0,CW]. Consequently, the time interval between consecutive

transmissions by the sender can be any value within the above range. Hence, a receiver that

observes the time interval between consecutive transmissions from the sender cannot distinguish

a well-behaved sender that legitimately selected a small random backoff, from a misbehaving

sender that maliciously selected a non-random small backoff. It may be possible to detect sender

misbehavior by observing the behavior of senders over a large sequence of transmissions, but

this may introduce a large delay in detecting misbehavior. In addition, it may not be feasible

to monitor the behavior of senders over a large sequence of transmissions, when host mobility

is high. Furthermore, two hosts may obtain the same throughput share over long-term, but one

host may achieve significantly lower delay by misbehaving (misbehaving host may immediately

access the channel, but the well-behaved host may have significant contention resolution delays,



especially at higher loads).

Hence, we propose modifications to the IEEE 802.11 protocol that enables a receiver to

identify sender misbehavior within a small observation interval. Instead of the sender selecting

random backoff values to initialize the backoff counter, the receiver selects a random backoff

value and sends it in the CTS (Clear to Send) and ACK packets to the sender. The sender uses

this assigned backoff value in the next transmission to the receiver. With these modifications,

a receiver knows the exact backoff value sender is expected to use. Hence, the receivers can

identify a sender deviating from the protocol by observing the number of idle slots between

consecutive transmissions from the sender. If this observed number of idle slots is less than

the assigned backoff, then the sender may have deviated from the protocol. The magnitude

of observed deviations over a small history of received packets is used to diagnose sender

misbehavior with high probability.

The proposed scheme also attempts to negate any throughput advantage that the misbehaving

hosts may obtain. To achieve this, deviating senders are penalized thereby discouraging misbe-

havior. When the receiver perceives a sender to have waited for less than the assigned backoff,

it adds a penalty to the next backoff assigned to that sender. If the sender does not backoff

for the duration specified by the penalty (or backs off for a small fraction of the duration), it

significantly increases the probability of detecting misbehavior reliably (as explained later). On

the other hand, a misbehaving sender which backs off for the duration specified by the penalty (or

a large fraction of it) does not obtain significant throughput advantage over other well-behaved

hosts. Hence, with the proposed scheme, it is difficult for a misbehaving host to obtain an unfair

share of the channel while eluding detection.

IV. PROPOSED SCHEME

The proposed scheme has three components. First, the receiver decides at the end of a

transmission from the sender, whether the sender deviated from the protocol for that particular

transmission. A deviation does not always indicate that the sender is misbehaving (as explained

later). Next, if the sender has identified a deviation for a transmission from the sender, it

penalizes the sender, based on the magnitude of the perceived deviation for that particular

transmission (penalty scheme). Last, based on the magnitude of the perceived deviation over

multiple transmissions from the sender, the receiver identifies senders that are indeed misbehaving
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(diagnosis scheme). Extensions to the protocol for detecting receiver misbehavior, and improving

detection accuracy are in Section V.

A. Identifying deviations from the protocol

In the proposed scheme, hosts follow the rules of IEEE 802.11 DCF except for some suitable

modifications to the backoff scheme, as explained below. Proposed modifications to the backoff

scheme enable a receiver R, to dictate the backoff values to be used by a sender S that is sending

packets to R. The first time S sends a packet to R, S may use an arbitrarily selected backoff

value. For all subsequent transmissions, the sender has to use the backoff values provided by the

receiver. For example, Figure 1 depicts the receiver-sender interaction in the modified protocol.

When the receiver R receives a RTS1 from the sender S, R assigns a backoff value Bexp = b to

S in the CTS packet as well as the subsequent ACK packet as shown in Figure 1 (the assigned

backoff may be included in either of CTS or ACK when RTS/CTS exchange precedes data

transfer). S is required to use this backoff value b for sending the next packet to R.

The receiver selects the backoff values Bexp assigned to the sender, from the range [0, CWmin].

The sender may misbehave by backing off for a smaller duration than Bexp. The receiver observes

the channel status during the interval between the sending of an ACK by R, and the reception of

the next RTS from S. The receiver notes down the length of this interval in slots, K, as well as

1We assume RTS/CTS exchange is used before data transmission. However, the proposed scheme can be applied even when

RTS/CTS exchange is not used.



the number of slots that were idle Bact during this interval. The sender is designated as deviating

from the protocol if the observed number of idle slots Bact is smaller than a specified fraction

α of the assigned backoff Bexp, i.e.,

Bact < α ∗ Bexp , 0 < α ≤ 1 (1)

A deviation does not necessarily indicate that the sender is misbehaving as the channel

conditions seen by the sender and receiver may be different. For example, if the sender senses

the channel to be idle and counts down its backoff timer, while the receiver senses the channel

to be busy and does not count down its timer, then the transmission from the sender may be

falsely designated as a deviation. The parameter α in equation 1 can be suitably chosen, based

on the channel conditions, to reduce the incidence of false deviations. Selecting α to be too

small may enable misbehaving senders to elude detection. Hence, we select α to be reasonably

high (our simulations used α > 0.8) and use the diagnosis scheme, presented in Section IV-C,

for accurately diagnosing misbehaving hosts.

A threshold scheme, which compares the observed backoff Bact with a threshold (based on

the assigned backoff B and total slots K) is optimal in maximizing detection percentage subject

to a maximum allowed misdiagnosis percentage (proof in Appendix I). In our current work,

we are using a constant fraction α of B as the threshold to simplify the protocol. Accurate

selection of the threshold may require more information about channel parameters, which may

not be available. Simulation results show that using fixed α values is still effective in diagnosing

misbehavior.

We now describe the extensions to IEEE 802.11 for handling sender misbehavior during packet

retransmissions. Every RTS sent by the sender has an attempt number included in a new field

in the RTS header. Sender sets the attempt number to 1 after a successful transmission, and

increments it by 1 after every unsuccessful transmission (indicated by the absence of a CTS

following a RTS, or the absence of an ACK following a DATA packet). The contention window

CW maintained by the sender, is set to CWmin after a successful transmission, and after an

unsuccessful transmission, CW is set to min( ( CWmin + 1 ) ∗ 2i−1 − 1 , CWmax ) for the ith

transmission attempt, as in IEEE 802.11.

Figure 2 demonstrates the working of the protocol after a collision. In the figure, the number

in parenthesis next to the RTS is the value of the attempt number. When a RTS transmission is
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unsuccessful, sender increments the attempt number, and chooses a new backoff value using a

deterministic function f as follows:

New Backoff = f(backoff, senderId, attempt) ∗ CW

where backoff is the backoff previously assigned by the receiver, senderId is the unique sender

identifier, and attempt is the attempt number maintained by the sender. In Figure 2, backoff=b,

senderId=S, and the attempt numbers are 1, 2 and 3.

The function f used by the sender for computing backoff values for retransmission attempt

is given by :-

f(backoff, senderId, attempt) = ((aX + c) mod (CWmin + 1))/CWmin

where a = 5, c = 2 ∗ attempt + 1 and X = (backoff + senderId) mod (CWmin + 1).

The function f generates a uniform random number between 0 and 1. The deterministic

function f that we use has been carefully chosen (a good discussion on pseudo-random generation

is in [16]) to ensure that after collisions, the colliding senders will select different backoff values

with high probability, provided the senderIds are uniformly distributed.

When a RTS is successfully received at the receiver (after possibly multiple transmission

attempts by the sender), the receiver can estimate the number of retransmission attempts by

using the attempt number field included in the RTS. An attempt number value greater than 1



indicates that there was at least 1 unsuccessful transmission attempt by the sender. The receiver

can then estimate the total time, Bexp, for which the sender was expected to backoff for, applying

the same deterministic function f used by the sender as,

Bexp = backoff +
attempt

∑

i=2

f(backoff, senderId, i) ∗ CWi

where CWi is the contention window for the ith transmission attempt (computed as in IEEE

802.11) given by CWi = min( ( CWmin + 1 ) ∗ 2i−1 − 1 , CWmax ). This estimated backoff is

then used in checking for possible deviation, by applying equation 1 as explained before. Note

that if a deterministic function is not used by the sender, then the receiver cannot easily estimate

the backoff value used by the sender after a collision.

It may be possible for the sender to provide incorrect attempt number values in the RTS.

To ensure that senders provide correct attempt numbers, the receiver can sense the channel to

identify high collision intervals (when the channel is mostly busy but few transmissions are

successful). During these intervals, the receiver can analyze the traffic to identify any sender S

achieving larger number of successful transmissions than other hosts, or having smaller average

attempt values than other hosts. If such a sender S exists, the receiver can intentionally drop

RTS packets from S occasionally, and verify that S increments the attempt number in the

retransmission of RTS. Even a single failure by S to increment the attempt number in the

retransmission is an immediate proof of misbehavior. As S does not know which RTS packets

are lost due to collisions and which are intentionally dropped by the receiver, it will be harder for

such misbehaving senders to persistently send incorrect attempt numbers without being detected.

Dropping RTS packets occasionally will not significantly affect the throughput of S.

B. Penalty Scheme

Hosts deviating from the protocol may obtain a larger throughput share than well-behaved

hosts. The penalty scheme penalizes deviating hosts by assigning larger backoff values to them

than those assigned to well-behaved hosts. We use the principle that hosts deviating more should

be assigned larger penalties. Hence, when the receiver detects a deviation (using equation 1), it

measures the deviation D = max( α ∗Bexp −Bact , 0 ), and assigns this measured deviation as

a penalty to the sender.



From analysis and simulations (details in [19]), we identified the need for additional penalty

to effectively penalize the misbehaving hosts. So, the total penalty P is equal to the sum of D

and the additional penalty. The next backoff value assigned to the deviating sender is the sum of

a random value, selected as in IEEE 802.11 from range [0, CWmin], and the computed penalty

P . Thus, the deviating sender is dictated to back off for a longer interval, before initiating the

next transmission, than it would have needed to without the penalty.

Since the penalty scheme adds a penalty for every perceived deviation, a well-behaved sender

may be penalized if the receiver incorrectly identifies the sender as deviating from the protocol.

As described earlier, this scenario may arise when the channel conditions at a well-behaved

sender differs significantly from the channel conditions at the receiver. However, we decided to

use the approach of adding a penalty for every perceived deviation to prevent a misbehaving

host from trying to adapt to any protocol parameters, and thereby obtain a throughput advantage

over well-behaved hosts. Furthermore, in most cases the magnitude of deviation for well-behaved

senders is very small. As the penalty added is proportional to the magnitude of deviation, this

penalty will be small in most cases for a well-behaved host. Our simulation results show that

the average throughput obtained by well-behaved hosts when the penalty scheme is enabled is

comparable to that obtained when using IEEE 802.11 protocol.

C. Diagnosis Scheme

The diagnosis scheme uses two protocol parameters W and Thresh. The receiver maintains

a moving window containing information about the last W packets received from each sender.

When a new packet is received, the difference Bexp − Bact is stored in the moving window. A

positive (negative) difference indicates that the sender waited for less (more) than the backoff

duration expected by the receiver. If the sum of these differences in the previous W packets from

the sender is greater than a threshold Thresh, then the sender is designated as “misbehaving”.

We add both positive differences (sender has waited for less than the required duration, i.e., a

“deviation”) and negative differences (the sender has waited for more than the required duration)

since a well-behaved host perceived as deviating for a packet may be perceived to backoff for

larger than the expected backoff for some other packet. However, a persistently misbehaving

host will have positive differences for most packets and is likely to be diagnosed. The choice

of W and Thresh does not affect the penalty scheme. Hence, a sender adapting to W and Thresh



will still have a penalty added for every perceived deviation, even if the host is not immediately

diagnosed to be misbehaving. The parameter Thresh used in the protocol may be adaptively

selected, based on the channel conditions, to maximize the probability of correct diagnosis of

misbehavior, while minimizing the probability of misdiagnosis (we defer adaptive selection to

future work).

The penalty scheme is used to penalize potentially misbehaving hosts. However, the penalty

scheme is not effective if a misbehaving host does not backoff for at least a significant fraction

of the assigned penalty when it transmits its next packet. On the other hand, the magnitude

of the observed deviation for a sender host that backs off for a small fraction of the assigned

penalty will be large, and the diagnosis scheme can identify such hosts with high probability.

Thus, penalty and diagnosis schemes together ensure that a misbehaving host cannot obtain a

larger than fair share of the channel without being diagnosed as misbehaving.

After the diagnosis scheme identifies a host to be misbehaving, MAC layer may refuse to

accept packets from the misbehaving host (by not responding with a CTS). Alternatively, higher

layers can be informed of the misbehavior. Using this information, the higher layers or the

system administrator may take suitable action. For example, in ad hoc networks, hosts forward

packets on behalf of each other. When misbehavior is diagnosed, network layer protocols may

use the diagnosis information to route around misbehaving hosts. Network layer protocols can

also refuse to forward packets originating from misbehaving hosts.

The proposed scheme can be used in conjunction with the upper layers to detect other

types of MAC layer misbehavior as well. For example, a misbehaving host may use different

MAC addresses for different packet transmissions. A receiver monitoring such a sender cannot

effectively penalize the misbehaving host, as the receiver associates different MAC addresses

with different hosts. Another misbehavior may be a host that spoofs the address of another host.

The proposed scheme can be augmented with authentication mechanisms provided by higher

layers (e.g., the newly proposed IEEE 802.1x mechanisms [1]) to identify such misbehaving

hosts.



V. EXTENSIONS TO THE PROTOCOL

A. Handling receiver misbehavior

In the proposed scheme, there exists a possibility that the receiver may misbehave in assigning

backoff values. As discussed before, in the case of infrastructure-based networks, base station

is trusted, and is not expected to misbehave. When the base station is sending, it can ignore the

backoff values assigned by client hosts (receivers), and use randomly generated backoff values.

Thus, receiver misbehavior does not impact infrastructure-based networks. However, in the case

of ad hoc networks, receivers cannot be trusted, and may misbehave.

A receiver misbehavior is to assign small backoff values to a preferred sender to receive data

from that sender at a higher than fair rate. This type of attack is possible, say, when the receiver

is expecting some data from a particular sender, and seeks to obtain that data with minimal

latency. For example, if the sender is hosting a server, it is interested in ensuring fairness access

for all its clients. So, the sender will be interested in detecting a misbehaving receiver that seeks

to download data from the sender at a higher rate.

This misbehavior can be detected using an approach similar to that used for detecting sender

misbehavior. For example, the receiver can be required to select the initial backoff values (i.e.,

backoff value before penalty is added) using some well-known deterministic function g, which

the sender is aware of. Hence, the sender can detect a receiver assigning small backoff values.

Senders can choose to use the larger of the backoff assigned by the receiver, and the backoff

expected by the sender. This solution is not sufficient in case the sender and the receiver collude.

Mechanisms to address collusion are discussed later.

An alternate approach is for the sender to publish its backoff for next transmission, with the

constraint that these values have to be picked using a well-known deterministic function g. This

is similar to the approach used in SEEDEX protocol [27], where senders inform receivers the

transmission schedule by publishing the seed of the random number generator. When the receiver

gets the schedule, it has to first verify that the published schedule has been legitimately chosen,

and then has to verify for each transmission whether the sender counted down the required

backoff using the approach described earlier. The drawback of this approach is that a receiver

can no longer punish misbehaving senders using a simple penalty mechanism as proposed earlier.

Receivers can drop packets from potentially misbehaving senders, but if packets are dropped from



well-behaved senders, it may drastically degrade their throughput (e.g., if TCP is being used, TCP

may timeout to recover from lost packets, leading to severe degradation in throughput). Hence,

dropping packets, in contrast to adding additional backoff as penalty, may have a detrimental

effect on throughput of misdiagnosed well-behaved hosts .

Another receiver misbehavior is to assign large backoff values to a sender. We do not address

this misbehavior in our scheme, as it is equivalent to a receiver refusing to accept packets from

the sender. To encourage the receiver to accept packets from the sender, higher level solutions

(e.g., incentive based mechanisms) may be used.

B. Reducing misdiagnosis

In IEEE 802.11, the channel is said to be busy in a slot in the following cases:

• When that slot has been reserved by a RTS or a CTS, or a host is receiving a packet2.

• When the strength of the received signal on the channel (including noise and interference)

is above a threshold called the “Carrier Sense threshold” (even if the packet is not decoded

correctly). Carrier sense threshold is often chosen such that the maximum distance from

which a transmission can be sensed, called the carrier sense range, is approximately twice

the distance from which a packet can be correctly received. This enables a host to sense

transmissions originating from its two-hop neighbors, and avoid colliding with them. (More

details are in IEEE standard [13].)

We identify a scenario where misdiagnosis may occur, and propose a solution. In Figure 3, bold

lines connecting two hosts indicate that they can receive packets from each other. Dashed lines

indicate that the two hosts can sense each other’s transmission, but cannot successfully receive

packets. In Figure 3 sender S attempts to communicate with the receiver R. Transmissions from

host 1 in the vicinity of R can be sensed by S, but packets from 1 cannot be received at S. R

can only sense transmissions from 2, while S cannot even sense transmissions from 2. Hence, 2

is hidden from S, but not from R.

In this scenario, when 2 starts a transmission, receiver R senses the channel to be busy, but the

sender S does not. Later, when a packet is received from S, R may decide that S did not backoff

for sufficient number of idle slots (this is a problem arising out of “hidden terminals” [15]), and

2A packet is being received on the channel, when the preamble sent by the sender has been correctly decoded.
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Fig. 3. Scenario where misdiagnosis occurs

may conclude that S is misbehaving. This leads to misdiagnosis. The protocol conservatively

chooses parameters to reduce the incidence of misdiagnosis, but the misdiagnosis percentage

may be high if the above scenario persists.

We propose an optional modification to the proposed scheme to address this problem. Observe

that the problem illustrated above would not have arisen, if R had counted the slots in which

2 was transmitting to be idle. So, if the receiver classifies a slot to be busy only when an

overheard RTS/CTS has reserved the slot, or a packet is being received (and not when only

sensing some transmission but not receiving anything correctly), then the receiver in most cases

will identify a slot to be idle whenever the sender senses a slot as idle. This will reduce the

incidence of misdiagnosis. Note that senders are still required to count a slot as busy if they

sense a transmission, as in IEEE 802.11. Furthermore, this modification is used to decide if a

sender is misbehaving. If the sender is classified as misbehaving, then the penalty is added based

on a counter that counts busy slots as before (even slots where transmissions are just sensed are

counted as busy). This ensures that appropriate penalty will be added once a sender is diagnosed

to be misbehaving.

With this modification, the receiver may now classify some slots to be idle, when the sender

actually senses the slots as busy (e.g., when the sender and receiver are reversed in Figure 3).

Misbehaving hosts aware of this modification may try to intelligently misbehave, and leverage

the conservative behavior of the receiver. However, a misbehaving sender cannot decide with

certainty, whether the receiver has classified a busy slot as idle, and thus, does not have a

guaranteed strategy for obtaining better performance.
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Fig. 4. Using multiple observers to improve diagnosis accuracy and detect collusion

C. Using multiple observers

In the discussions so far, we have required the receiver to monitor sender behavior. We can

easily extend the protocol to allow other hosts in the vicinity of the sender to monitor sender

behavior. For example, in Figure 4, host 1 can receive packets from both the sender S and

the receiver R. When host 1 receives a CTS from R intended for S, host 1 knows the backoff

assigned to S. Later, when S sends a packet, host 1 can decide if the sender S waited for the

assigned number of idle slots. These additional observers can also be used to detect collusion.

For example, host 1 can monitor the backoff values assigned by the receiver R, and decide if R

is assigning small backoff values to any particular sender. In addition, host 1 can also monitor

the sender S, and verify if a receiver is correctly punishing sender misbehavior (otherwise, a

receiver may intentionally ignore misbehavior of a preferred sender).

Multiple observers can be used to improve diagnosis accuracy. In an infrastructure-based

network, the observers may be neighboring base stations, or other specially installed monitoring

hosts. In ad hoc networks, observers may belong to a common trust group, and can share

diagnosis information (e.g., hosts 1, 2, 3 in Figure 4). As discussed before, misdiagnosis incidence

may be high in certain scenarios. But, when multiple observers are used, not all observers in-

correctly diagnose misbehavior. So, intelligently combining information from multiple observers

can reduce misdiagnosis percentage. Similarly, we can improve the correct diagnosis percentage

as well. We defer for future work analysis of scenarios when multiple observers are beneficial,

and strategies to be used for combining information from multiple observers. Use of multiple



observers in ad hoc networks requires protection against false-reporting, propagation of incorrect

diagnosis, etc. We believe we can enhance the use of multiple observers with mechanisms from

the field of distributed diagnosis. Another question of interest for infrastructure-based networks

is the locations where observers need to be placed to maximize diagnosis accuracy.

VI. SIMULATION RESULTS

We use the ns-2 [10] simulator for our simulations. The simulator has been extended with

modifications needed for our protocol. We have also incorporated modifications to the physical

carrier sensing to account for variations in channel conditions at the granularity of a slot. We

use the shadowing channel model [10]. The shadowing channel model captures the variations in

channel conditions over time and space by using a Gaussian random variable, XdB , with zero

mean and σdB standard deviation. The model is represented as
[ Pr(d)

Pr(d0)

]

dB
= −10 β log

( d

d0

)

+ XdB

β is called the Path Loss Exponent, d is the distance between the sender and receiver, Pr(d)

is the received power and Pr(d0) is the power at some reference distance d0 [10]. For free

space propagation β is 2 and we use this value in our simulations. We set σdB to 1 and the

Carrier Sense and Receive Thresholds are selected such that a transmission is received with 50%

probability at a distance of 250m, and sensed with 50% probability at a distance of 550m.

In our simulations, all the sender hosts in the network are backlogged. The traffic from the

senders to the receivers is a CBR (Constant Bit Rate) flow with rate 2 Mbps and size of CBR

packets is 512 bytes. The channel bit rate is 2 Mbps. The simulation time for each run is 50

seconds. The results are averaged over 30 runs of the simulation. Each run is seeded by a

different seed and the set of seeds used for different data points is the same. Hosts are stationary

in all simulations.

Simulation topology: We first simulate our proposed protocol for a network having a well-

behaved receiver R, and multiple senders transmitting to R. We use this simple network setting to

simplify the evaluation of the proposed protocol’s effectiveness in handling sender misbehavior,

and identify the various trade-offs involved. However, the simulation setup includes other traffic

in the vicinity of the receiver that can affect the carrier sensing at the receiver R, and the senders

that communicate with it. We also present later in this section, simulation results for multiple

senders and receivers randomly placed in the network.



Figure 5 shows the simulated network. The number of sender hosts around the receiver R is

8 (numbered 1 through 8 in the figure) with host 3 misbehaving. The 8 sender hosts are placed

in a circle of radius 150 meters around R, equidistant from each other. There are 4 other hosts

A, B, C, and D in the network, with constant bit rate (CBR) flows of rate 500 Kbps from A

to B, and from C to D. The flows A-B and C-D are at a distance of 500 meters on either side

of the receiver R as shown in Figure 5. The flows are positioned such that the transmissions on

these flows A-B and C-D are sensed with high probability by the receiver R, while farther away

sender hosts do not sense these transmissions with high probability. For example, in Figure 5,

when A sends a packet to B, host 3 may not sense the transmission, while R may sense the

transmission.

RA
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D
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3
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5
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8

1

Fig. 5. Simulation setup

We evaluate our protocol under three different scenarios by enabling or disabling traffic on

flows A-B and C-D:

1) ZERO-FLOW: In this scenario, both traffic flows A-B and C-D are turned off. This gives

a symmetric topology with 8 senders sending to a common receiver R. This models the

case when background traffic is small.

2) ONE-FLOW: In this scenario, only traffic flow C-D is turned on. In this scenario, receiver

R and hosts 1 through 5 sense the transmission from C to D with high probability, while



hosts 6, 7, and 8 do not. Consequently, hosts 6, 7, and 8 may occasionally appear to be

deviating from the protocol (as they sense the channel to be idle while receiver R senses

the channel to be busy). We select host 3 to be the misbehaving host. Hence, this scenario

tests our protocol performance when host 3 is actually misbehaving, while hosts 6-8 may

falsely appear to be misbehaving.

3) TWO-FLOW: In this scenario, both traffic flows A-B and C-D are turned on. Now, all the

senders occasionally appear to be deviating from the protocol (as they sense the channel

to be idle when the flow farthest from them is transmitting, while the receiver senses the

channel to be busy).

Simulation Metrics: The metrics used in the protocol evaluation are:

1. Correct Diagnosis: This is computed as the percentage of packets transmitted by misbe-

having senders, which are correctly diagnosed by the receiver (i.e., by the diagnosis scheme)

as packets from a misbehaving sender. A packet received at the receiver R from a sender S is

classified to be from a misbehaving sender only if the measured deviation over the previous W

packets from S is greater than Thresh, as explained in Section IV-C.

2. Misdiagnosis: This is computed as the percentage of packets sent by well-behaved senders

which are wrongly diagnosed by the receiver as packets from misbehaving senders.

3. Average throughput of well-behaved hosts: This is the average throughput per well-behaved

sender.

4. Misbehaving host throughput: This is the average throughput per misbehaving sender.

Misbehavior Models

We evaluate our protocols under two misbehavior models that capture the behavior of a

misbehaving host. The first model, termed the “Persistent Misbehavior Model”, captures the

behavior of a misbehaving host that always misbehaves using a fixed strategy. In this model, we

characterize various levels of misbehavior, with a parameter called “Percentage of Misbehavior”

(PM). A misbehaving host PM=x% transmits a packet after counting down to (100-x)% of the

assigned backoff value. The PM parameter is used to quantify the magnitude of misbehavior,

with larger values of PM indicating greater misbehavior. Hence, a host with PM=0% fully counts

down the assigned backoff and is well-behaved, whereas a host with PM=100% transmits a

packet without counting down any backoff at all. Misbehaving hosts persist with this behavior

irrespective of the magnitude of assigned backoff. This captures the behavior of a host which



misbehaves without adapting to the assigned penalties. Although, this is a simple misbehavior

model, we use this model for for most simulations to simplify the evaluation.

The second model we use, termed as “Adaptive Misbehavior Model”, captures the behavior

of a misbehaving host which changes the magnitude of misbehavior based on the magnitude of

penalty assigned by the receiver. This is intended to model a misbehaving host which tries to

obtain a higher throughput share without getting caught. This model also uses a variable called

“Percentage of Misbehavior” (PM) that is used to decide what fraction of the assigned backoff

a host will wait for, as described for the persistent misbehavior model. However, the value of

this variable is changed based on the penalty assigned by the receiver. If the receiver assigns a

penalty, misbehaving sender decreases its PM, and in the absence of a penalty, PM is increased.

Intuitively, the misbehaving host tries to misbehave more when the receiver cannot diagnose the

misbehavior (and therefore does not assign a penalty). In this model, PM is initially set to 0.

For every packet transmission not assigned a penalty by the receiver (penalty is said to be not

assigned, if assigned backoff is not greater than CWmin), the value of PM is increased by a

additive factor called “Additive Increase Percentage”. If a penalty is assigned, then the value

of PM is reduced by half (multiplicative decrease). In our evaluations, we vary the “Additive

Increase Percentage” from 1% to 20% to model varying aggressiveness of misbehavior.

A. Results for protocol performance in the absence of misbehavior

We first evaluate the performance of our protocol (without the extensions proposed in Section

V) in the absence of misbehavior to characterize the effect of occasionally penalizing well-

behaved hosts. Our evaluation in this section indicates that the average throughput, as well as

the fairness of the proposed scheme, is comparable to that of IEEE 802.11 in the absence of

misbehavior.

The number of senders communicating with the receiver R is varied from 1 to 64 (replacing the

8 senders in Figure 5). All senders are well-behaved. Figure 6 compares the average throughput

obtained by hosts when using IEEE 802.11 (curve “802.11”) with that obtained when using the

proposed scheme (curve “CORRECT”) for varying network sizes under ZERO-FLOW, ONE-

FLOW, and TWO-FLOW scenarios. As we can see from the figure, the average throughput

obtained when using the proposed scheme is comparable with IEEE 802.11 across different

network sizes (the two curves almost overlap in Figure 6). Hence, the penalty scheme does not
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Fig. 6. Throughput comparison without misbehavior for varying network sizes

degrade the aggregate throughput of the network.

We are also interested in comparing the fairness properties of the penalty scheme with that

obtained using IEEE 802.11. We use Jain’s Fairness Index [14] as a fairness metric, defined as,

fairness index =
(
∑

f
Tf )2

N∗

∑

f
T 2

f

where Tf represents the throughput of a flow f (between a sender host and receiver R),

and N is total the number of flows. Fairness index values closer to 1 indicate better fairness.

Figure 7 compares the fairness index of IEEE 802.11 and the penalty scheme for varying

network sizes under ZERO-FLOW, ONE-FLOW and TWO-FLOW scenarios. For the ZERO-

FLOW scenario, the fairness index of penalty scheme is comparable to that of IEEE 802.11. For

the ONE-FLOW and TWO-FLOW scenarios, the fairness index of our scheme is slightly lesser

that that of 802.11. This indicates that our scheme degrades the throughput of some senders

minimally, while increasing the throughput of some other senders, since the average throughput

(Figure 6) is the same as in IEEE 802.11. In ONE-FLOW and TWO-FLOW scenarios, a few

sender hosts occasionally appear to be deviating from the protocol (from the perspective of the

receiver), leading to the addition of a penalty, and thereby resulting in a slight degradation in

their throughput. However, the penalty added in those cases is small, resulting in fairness index

that is still close to that of 802.11.

There is a trade-off involved between penalizing misbehaving hosts versus ensuring the fairness

of well-behaved hosts. If we use a conservative approach of adding smaller penalties, then misbe-

having hosts may obtain a higher throughput share. On the other hand, an aggressive strategy of

adding larger penalties may unnecessarily penalize some well-behaved hosts, degrading fairness.

We balance this to an extent by penalizing hosts in proportion to their measured deviation. Thus,
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Fig. 7. Comparison of fairness index between IEEE 802.11 and proposed scheme

large penalties are assigned to misbehaving hosts with significant levels of misbehavior, while

minimal penalty is assigned for misdiagnosed hosts.

B. Results for persistent misbehavior model

In this section, we evaluate our proposed scheme (without the extensions of Section V). The

protocol parameters W and Thresh are used by the diagnosis scheme to identify misbehaving

hosts, and α is used by the penalty scheme for computing the penalty. Unless stated otherwise,

the values used for simulations are W=5, Thresh=20 (i.e., 4 slots per packet), and α=0.9. Results

on sensitivity of the protocol with choice of parameter values, and a discussion on appropriate

values is presented later in this section.

Diagnosis Accuracy: Figure 8 plots the correct diagnosis percentage and misdiagnosis per-

centage for the ZERO-FLOW, ONE-FLOW and TWO-FLOW scenarios. In the ZERO-FLOW

scenario, misdiagnosis percentage is close to 0, and the correct diagnosis percentage is quite

high once the extent of misbehavior becomes high. We observe a sharp increase in the correct

diagnosis percentage when PM increases above 50%. Since we have conservatively selected the

Thresh parameter (host is designated as misbehaving only when the total deviation for previous

W=5 packets is greater than Thresh=20 slots), resulting in small correct diagnosis percentage

when the extent of misbehavior is less (however, with the benefit of low misdiagnosis percentage).

As the misbehavior increases, the observed deviation rises above Thresh=20 slots, and there is

a rapid increase in the correct diagnosis percentage. Similarly for the ONE-FLOW scenario,

the correct misbehavior percentage is quite high. In the ONE-FLOW scenario, flow C-D is on,

resulting in misdiagnosis of some hosts, but the misdiagnosis percentage is small because our
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Fig. 8. Diagnosis accuracy for varying magnitude of misbehavior

choice of protocol parameters is conservative. In the TWO-FLOW scenario, correct diagnosis

percentage is fairly high even when the extent of misbehavior is small, but at the price of a

higher misdiagnosis percentage. In this scenario, both traffic flows A-B and C-D are on leading

to an increase in the magnitude of the observed deviations over the ZERO-FLOW scenario. As

a result, the Thresh value is not sufficiently high to prevent misdiagnosis. Hence, we observe

higher misdiagnosis percentage as well as higher correct diagnosis percentage. Thus, there is

a trade-off involved in achieving low misdiagnosis percentage versus achieving high correct

diagnosis percentage.

Throughput in the presence of misbehavior: Figure 9 compares the throughput obtained by

a misbehaving host (designated as MSB) using the proposed scheme (designated as CORRECT)

with that obtained using IEEE 802.11 protocol (designated as 802.11). The figure also plots

the average throughput obtained by the 7 well-behaved senders (1, 2, and 4 through 8) when

using both the schemes (designated as AVG). We define fair share as the throughput obtained

by a host when it is using IEEE 802.11 protocol and fully conforming to the protocol (i.e.,

PM=0%). As seen from the figure, throughput of the misbehaving host (“CORRECT - MSB”

curve) is restricted to its fair share (except when PM is close to 100%), while for 802.11

(“802.11 - MSB” curve), the misbehaving host obtains a large throughput share even when

extent of misbehavior is not too high. In addition, the throughput of well-behaved hosts using

the proposed scheme (“CORRECT - AVG” curve) is not affected, except when PM is close to

100%. On the other hand, the throughput of well-behaved hosts using IEEE 802.11 (“802.11

- AVG” curve) starts degrading even when extent of misbehavior is not too high. Hence, the

proposed penalty scheme is fairly successful in ensuring reasonable throughput for well-behaved
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Fig. 9. Throughput comparison between IEEE 802.11 and proposed scheme

hosts, in the presence of misbehaving hosts. When PM is close to 100%, the misbehaving host

backs off for a small fraction of the assigned backoff, and consequently the proposed scheme

cannot restrict the throughput of the misbehaving host. However, we can see from Figure 8 that

the correct diagnosis percentage is significantly high when PM is close to 100%, and in this

case, higher layers can be informed of the host misbehavior (as discussed in section IV-C).

Sensitivity of misbehavior detection to protocol parameters: Figure 10 compares the

sensitivity of correct diagnosis and misdiagnosis with different values of W and Thresh in TWO-

FLOW scenario. As we can see from the results, the correct diagnosis percentage is not very

sensitive to variations in parameter values. Misdiagnosis percentage is higher when a small

window (W=1) is chosen, but is not very sensitive to exact window value when larger values are

chosen. When the window of observation is small, channel variations may increase the possibility

of misdiagnosis, but with larger window values, such effect is minimized. Furthermore, we can

observe from the figure that increasing Thresh, while keeping W fixed decreases misdiagnosis,

but with a reduction in correct diagnosis percentage. A similar effect can be observed when W

is increased, while keeping the ratio between W and Thresh constant.

From our simulations, we observe that W has to be set to a small value to allow reasonably

fast misbehavior diagnosis, but not too small so as to reduce misdiagnosis. Thresh also has to

be reasonably small (a few slots per packet) for diagnosing most misbehavior. Similarly, α has

to be close to one to penalize most misbehavior. The results for different α are not included

here for lack of space, but we found that results are not sensitive to α between 0.8 to 1.0. Based

on these experiments, W, Thresh and α are set to 5 packets, 20 slots (i.e., 4 slots per packet)

and 0.9 respectively for most simulations. Adaptive selection of protocol parameters based on
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Fig. 10. Sensitivity of proposed protocol with varying parameters

channel conditions has been deferred to future work.

Protocol performance with random topologies: Figure 11 compares the protocol per-

formance for 30 different random topologies. 40 hosts are placed at random locations in a

1500m by 700m area. 5 hosts, selected at random, are misbehaving. Each host sets up a CBR

connection with one of its neighbors, and the connections are always backlogged. Figure 11(a)

plots the correct diagnosis percentage and misdiagnosis percentage for different PM (Percentage

of Misbehavior) values. As we can see from the figure, the correct diagnosis percentage is high

when extent of misbehavior is large, and the misdiagnosis percentage is reasonably small across

all values of PM. Figure 11(b) compares the throughput obtained by the misbehaving hosts and

the average throughput, for IEEE 802.11 and the proposed penalty scheme (the notations used

are those described earlier for Figure 9). When the extent of misbehavior is small, the penalty

scheme is fairly successful in restricting the misbehaving hosts to a fair share, thereby ensuring

that the throughput of well-behaved hosts are not affected. When the extent of misbehavior

is large, the penalty scheme is not as successful, but the misbehavior is diagnosed with high

probability (as seen from Figure 11(a)).

C. Results for adaptive misbehavior model

We have proposed the penalty scheme as a mechanism to discourage misbehavior. By adding

a penalty, hosts that ignore the penalty have higher probability of being detected. In this section,

we evaluate the benefit a misbehaving host can obtain, while not ignoring the assigned penalty.

We assume that the misbehaving host follows the adaptive misbehavior strategy defined earlier.
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Fig. 11. Protocol performance for random topology with 40 hosts in 1500m X 700m area

Figure 12(a) plots the correct diagnosis percentage when the misbehaving host uses an adaptive

misbehavior strategy. As we can see from the figure, the misbehaving host can evade diagnosis

most of the times (low diagnosis accuracy) in all three flow scenarios, but the accuracy improves

when the misbehaving host uses an aggressive misbehavior policy (large additive increase per-

centages). ZERO-FLOW scenario has lower diagnosis accuracy than other scenarios because the

absence of background traffic enables the misbehaving host to adapt better proposed protocol,

thereby evading diagnosis.

Although diagnosis accuracy is low, throughput gain obtained by the misbehaving host (Figure

12(b)) is not large because the penalty scheme reacts to each detected “deviation”. In the

figure, for the three curves, the value when Additive Increase Percentage is equal to 0 is the

throughput the misbehaving host would have obtained if it was well-behaved. The ZERO-FLOW

curve starts at a higher value than the other two curves, because in the ZERO-FLOW scenario

there is no background traffic, allowing all hosts to obtain higher throughput. For each of the

curves, with increasing additive increase percentage, there is an increase in the throughput, till a

saturation level is reached. This indicates that the misbehaving host does gain some throughput

advantage. This throughput gain is obtained because the penalty added by the penalty scheme is

conservatively chosen to ensure large penalties are not assigned to well-behaved hosts. Although,

adaptive misbehaving hosts may gain some throughput advantage by exploiting the conservative

penalty scheme, in the absence of the penalty scheme, misbehaving hosts can obtain significantly

larger benefits (e.g., comparing with the “802.11 - MSB” curve in Figure 9).
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Fig. 12. Protocol performance with adaptive misbehavior

D. Results for extensions to the protocol

In this section, we evaluate the optional extensions to the protocol for reducing misdiagnosis,

discussed in Section V-B. As we noted there, by modifying the receiver to conservatively classify

slots as idle, we can reduce misdiagnosis, but allow a misbehaving host to gain larger throughput.

To ascertain the impact of the extension, we evaluate the extended protocol under adaptive

misbehavior model.

With the modified protocol, the misdiagnosis percentage is zero for all three scenarios (we

have not included that figure here as the curves overlap with x-axis). Figure 13(a) plots the correct

diagnosis percentage for the modified protocol. As we can see from the figure, the diagnosis

accuracy is lower than that obtained with the base protocol under adaptive misbehavior model

(Figure 12(a)). The low diagnosis accuracy is a consequence of conservatively classifying some

busy slots to be idle, thereby not diagnosing some misbehavior instances. However, the diagnosis

accuracy is high under persistent misbehavior model (those results are similar to the results for

the base protocol and are omitted here). The throughput curves for the extended protocol in

Figure 13(b) are also similar to that of the base protocol (Figure 12(b)), with the misbehaving

host obtaining only a small increase in throughput. Hence, the extension to the protocol does not

allow a misbehaving host to gain significant benefits. We postpone for future work evaluation of

the extended protocol under alternate misbehavior strategies that may be designed to specifically

exploit these protocol extensions.
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Fig. 13. Performance with extensions to protocol

VII. CONCLUSION AND FUTURE WORK

Handling MAC layer misbehavior is an important requirement in ensuring a reasonable through-

put share for well-behaved hosts in the presence of misbehaving hosts. In this paper, we have

presented modifications to IEEE 802.11 MAC protocol that simplifies misbehavior detection.

Simulation results have indicated that our scheme provides fairly accurate misbehavior diagnosis.

The penalty scheme we have proposed is effective in restricting the throughput of selfish hosts

to a fair share.

We plan to extend the proposed scheme for detecting other types of host misbehavior, such

as a host using multiple MAC addresses for obtaining higher throughput, with the support of

higher layers. Designing strategies for combining information from multiple observers, as well

as optimally placing the observers are part of future work. We also plan to incorporate adaptive

selection of protocol parameters into the proposed scheme.
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APPENDIX I

PROOF OF EXISTENCE OF OPTIMAL THRESHOLD

The aim of the diagnosis process is to maximize the correct diagnosis probability, while

restricting the misdiagnosis (i.e., false alarm) percentage below a specified threshold β. The

diagnosis problem can be formulated under Neyman-Pearson hypothesis testing framework [26].

On receiving a packet from the sender, the receiver has to decide if the sender misbehaved.

The information available at the receiver in diagnosing sender behavior is the status of the

channel (idle or busy), in all the slots between the previous transmission from the sender and

the current transmission, and characteristics of the channel. Using this information, the receiver

has to choose one among the following two hypotheses:

• Hypothesis H0: Sender is well-behaved.



• Hypothesis H1: Sender is misbehaving.

We first prove under a general model for the channel that a scheme that compares the likelihood

ratio (defined later) to a threshold is optimal for maximizing correct diagnosis probability. We

then present a simple channel model, and demonstrate that for this model it is sufficient to

compare the observed backoff (instead of the likelihood ratio) against a threshold.

Both the sender and the receiver observe the channel. The channel in each slot may either be

idle (I) or busy (B). The sender is assigned a backoff value B by the receiver. Say the sender

waits for K slots on the channel (both idle and busy slots), before transmitting a packet. The

channel conditions observed by the sender can be represented by a string s of length K, derived

from an alphabet {I,B}, with I (B) at position i in the string indicating slot i was observed idle

(busy) by the sender. The receiver observes a string so (possibly different from s because of

varying channel conditions), also of length K. The receiver has to select, based on the assigned

backoff B, and the observed string so, the more likely hypothesis. This can be extended to a

more general model where the receivers past history of observed strings is used in addition to

the newly observed string.

If hypothesis H0 is true, sender will have selected the string s from a set SG (set of good

strings) that have at least B idle slots. Otherwise, the string s will be selected from a set SB

(set of bad strings) that have less than B idle slots. The channel is specified using a conditional

probability distribution (PC) of observing a string s at the sender when string so is observed at

the receiver.

Under the above model, we can derive the probabilities for hypothesis H0 and H1 being true,

given the observation so as

P(H0 is true given so was observed) PH0 =
∑

s∈SG

PC(s/so)

P(H1 is true given so was observed) PH1 =
∑

s∈SB

PC(s/so)

The likelihood-ratio L is defined as:

L =
PH1

PH0

Applying the Neyman-Pearson theorem [26], the optimal decision rule for maximizing the

probability of diagnosis, while restricting the misdiagnosis percentage below a specified value

β, is of the form:



• Choose hypothesis H1 if L > T

• Choose hypothesis H1 with probability γ if L = T

• Choose hypothesis H0 if L < T

where the threshold T , and probability γ can be computed from β and distributions of PH1

and PH0 as shown in [26].

Next, we use a simple channel model and prove that for this model, comparing observed

backoff against a threshold is optimal. We assume that the receiver has a probability p of sensing

a slot, observed by the sender as idle, to be busy (p is used in analysis, the actual protocol does

not require p to be computed). On the other hand, when the sender senses a slot to be busy, the

receiver too senses the slot to be busy. Such a model approximates a scenario in practice, when

the carrier sensing threshold of IEEE 802.11 at the receiver is chosen to be significantly lower3

than the receive threshold. In this scenario, receiver senses most of the transmissions sensed by

the sender, but may also sense some other transmissions that are not sensed by the sender (as

is the case in the model).

In the proposed scheme, the receiver counts the total number of slots K between two trans-

missions by the sender, as well as the number of idle slots Bo observed on the channel in that

interval. The receiver is also aware of the backoff B that it had assigned to the sender.

We assume that a well-behaved sender waits for at least B idle slots, before transmitting a

packet (alternatively, we could model a well-behaved sender to wait for exactly B idle slots, and

the same analysis as below applies for that scenario also). Under the assumed channel model,

the number of idle slots observed by the receiver is less than or equal to that observed by the

sender. Thus, when Bo ≥ B, the sender has waited for at least B slots and is well-behaved.

On the other hand, if Bo < B, we can apply the general formula derived earlier (replacing the

observed event as number of idle slots, instead of a specific string so). As a result PH0 can be

computed as,

PH0 = 1, Bo ≥ B

PH0 =
K

∑

i=B

PC(i/Bo), Bo < B

3Lower value of threshold implies that signals received with lower power are detected, enabling the sensing of further away

transmissions



PC(i/Bo) is the probability that the sender waited for exactly i idle slots (out of K total slots)

given that the receiver observed Bo idle slots. Similarly, we can compute PH1 as,

PH1 = 0, Bo ≥ B

PH1 =
B−1
∑

i=Bo

PC(i/Bo), Bo < B

The likelihood ratio L is 0 for Bo ≥ B, and for Bo < B is given by

L =
PH1

PH0

=
1

PH0
− 1, (because PH0 + PH1 = 1)

=
1

∑K
i=B PC(i/Bo)

− 1

When Bo increases, PC(i/Bo) increases if the probability p of receiver sensing a slot, observed

to be idle by the sender, to be busy is less than 0.5. When Bo increases, we are conditioning on

receiver making fewer mistakes (i−Bo is the number of mistakes), and this probability increases

whenever p < 0.5. Under this condition, the likelihood ratio L is monotonically decreasing with

increasing Bo (until L reaches 0). Therefore, in the Neyman-Pearson rule, instead of comparing

L against a threshold T , we can compare Bo with a new threshold T ′, suitably derived from T .

Hence, the optimal decision rule is,

1) The sender is misbehaving if Bo < T ′

2) The sender is misbehaving with some probability γ, if Bo = T ′

3) The sender is well-behaved if Bo > T ′

Note that the threshold itself is some function of B and K, though in the proposed scheme

we choose a constant fraction (α) of B as the threshold for simplicity.


