
SELFISH MISBEHAVIOR AT MEDIUM ACCESS CONTROL
LAYER IN WIRELESS NETWORKS

BY

PRADEEP NARAYANASWAMY KYASANUR

B.E., Mangalore University, 2001

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2003

Urbana, Illinois

Selfish Misbehavior at Medium Access Control

Layer in Wireless Networks

Approved by
Dr. N. H. Vaidya

ABSTRACT

Wireless medium access control (MAC) protocols, such as IEEE 802.11, use distributed

contention resolution mechanisms for sharing the wireless channel. In public area wireless

networks, such as those used at airports, it is possible that the participating hosts may

deviate from the specified MAC protocol. Selfish hosts that fail to conform to the MAC

protocol may obtain an unfair throughput share. For example, IEEE 802.11 requires

hosts competing for access to the channel to wait for a “backoff” interval, randomly

selected from a specified range, before initiating a transmission. Selfish hosts may wait for

smaller backoff intervals than well-behaved hosts, thereby obtaining an unfair advantage.

Thus, with the increasing popularity of public area wireless networks, there is a need

for mechanisms that detect selfish users attempting to obtain an unfair advantage. In

this thesis, we identify certain selfish misbehavior possible in IEEE 802.11 networks.

We present modifications to the IEEE 802.11 protocol to simplify detection of such

selfish hosts, and analyze the optimality of the detection strategy. We also present a

penalty scheme for punishing selfish misbehavior, to act as a disincentive for future

misbehavior. We develop two misbehavior models to capture the behavior of misbehaving

hosts. Simulation results under these misbehavior models indicate that our detection and

penalty schemes are successful in handling MAC layer misbehavior.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Nitin Vaidya, for his guidance and support. I am

indebted to my family members and friends for the encouragement and help they have

provided.

I also acknowledge UIUC Campus Research Board for financially supporting my thesis

research.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Details of DCF and illustration of possible misbehavior 2

CHAPTER 2 RELATED WORK . 5

CHAPTER 3 OVERVIEW OF THE PROPOSED PROTOCOL 9
3.1 Terminology used in the thesis . 9
3.2 Motivation and assumptions . 10
3.3 Brief overview of the proposed protocol 10

CHAPTER 4 PROPOSED PROTOCOL . 13
4.1 Identifying deviations from the protocol 13
4.2 Penalty Scheme . 18
4.3 Diagnosis Scheme . 19
4.4 Proof of existence of optimal threshold 21
4.5 Analysis of required additional penalty 25

CHAPTER 5 EXTENSIONS TO THE PROTOCOL 31
5.1 Handling receiver misbehavior . 31
5.2 Reducing misdiagnosis . 33
5.3 Using multiple observers . 35

CHAPTER 6 SIMULATION RESULTS . 37
6.1 Simulation topology and simulation metrics 38
6.2 Misbehavior Models . 40
6.3 Results for protocol performance in the absence of misbehavior 41
6.4 Results for persistent misbehavior model 44

6.4.1 Diagnosis Accuracy . 44
6.4.2 Throughput in the presence of misbehavior 45
6.4.3 Responsiveness of Diagnosis Scheme 46

v

6.4.4 Protocol performance with random topologies 47
6.5 Results for adaptive misbehavior model 49
6.6 Results for extensions to the protocol . 50

CHAPTER 7 CONCLUSION AND FUTURE WORK 52

REFERENCES . 53

vi

LIST OF FIGURES

Figure Page

4.1 Receiver - Sender interaction in modified IEEE 802.11 14
4.2 Protocol for retransmissions . 16

5.1 Scenario where misdiagnosis occurs . 34
5.2 Using multiple observers to improve diagnosis accuracy and to detect col-

lusion . 35

6.1 Simulation setup . 39
6.2 Throughput comparison without misbehavior for varying network sizes . 43
6.3 Comparison of fairness index between IEEE 802.11 and proposed scheme 43
6.4 Diagnosis accuracy for varying magnitude of misbehavior 45
6.5 Throughput comparison between IEEE 802.11 and proposed scheme . . . 46
6.6 Evaluation of responsiveness of misbehavior diagnosis scheme 48
6.7 Protocol performance for random topology with 40 hosts in 1500m X 700m

area . 48
6.8 Protocol performance with adaptive misbehavior 50
6.9 Performance with extensions to protocol 51

vii

CHAPTER 1

INTRODUCTION

Wireless medium access control (MAC) protocols such as IEEE 802.11 [1] use distributed

contention resolution mechanisms for sharing the wireless channel. The contention reso-

lution mechanism is typically based on cooperative protocols (e.g., random backoff before

transmission) that attempt to ensure a reasonably fair throughput share for all the par-

ticipating hosts. In environments where hosts in the network are untrusted, some hosts

may misbehave by failing to adhere to the network protocols, with the intent of obtain-

ing an unfair share of the channel. The presence of selfish hosts that deviate from the

contention resolution protocol can reduce the throughput share received by conforming

hosts. Thus, development of mechanisms for detecting and handling selfish misbehavior

is essential.

Wireless networks can be classified into infrastructure-based networks and ad hoc net-

works. Infrastructure-based networks have a centralized base station. Hosts in the wire-

less network communicate with each other, and with other hosts on the wired network,

through the base station. Infrastructure-based networks are commonly used to provide

wireless network services in numerous environments such as college campuses, airports,

homes, etc. Ad hoc networks are characterized by the absence of any infrastructure

support. Hosts in the network are self-organized, and forward packets on behalf of each

other, enabling communication over multi-hop routes. Ad hoc networks are envisaged

for use in battlefield communication, sensor communication, etc. IEEE 802.11 is a MAC

1

layer protocol that can be used in infrastructure-based networks as well as in ad hoc

networks.

IEEE 802.11 has two mechanisms for contention resolution; a centralized mechanism

called point coordination function (PCF), and a fully distributed mechanism called dis-

tributed coordination function (DCF). PCF needs a centralized controller (located at the

base station), and can be used only in infrastructure-based networks. PCF is an optional

feature in IEEE 802.11, and is not supported by all IEEE 802.11 implementations. DCF

provides distributed access, and is the only contention resolution mechanism that can be

used for ad hoc networks. DCF is also suitable when the number of hosts and load in the

network is not fixed. Consequently, DCF is widely used in practice for infrastructure-

based networks as well. In this thesis, we address a misbehavior possible in the DCF

mode. Using PCF, instead of DCF, in infrastructure-based networks may alleviate the

selfish misbehavior that we identify, but this results in degraded performance when the

incidence of misbehavior is low.

1.1 Details of DCF and illustration of possible mis-

behavior

DCF uses CSMA/CA (carrier sense multiple access/collision avoidance) for resolving

contention among multiple hosts accessing the channel. A host (sender) with data to

transmit on the channel selects a random backoff value from range [0, CW], where CW

(Contention Window) is a variable maintained by each host. While the channel is idle,

the backoff counter is decremented by one after every time slot (time slot is a fixed inter-

val of time defined in IEEE 802.11 standard), and the counter is frozen when the channel

becomes busy. The host may access the channel when the backoff counter is decremented

2

to zero.

After the backoff counter is decremented to zero, the sender may reserve the channel

for the duration of the data transfer by exchanging control packets on the channel. The

sender first sends a RTS (request to send) packet to the receiver host. The receiver re-

sponds with a CTS (clear to send) packet and this exchange reserves the channel for the

duration of data transmission (RTS-CTS exchange is optional in IEEE 802.11). Both the

RTS and the CTS contain the proposed duration of data transmission. Other hosts which

overhear either the RTS or the CTS (or both) are required to defer transmissions on the

channel for the duration specified in RTS/CTS. After a successful RTS/CTS exchange,

the sender transmits a data packet. The receiver responds with an ACK (acknowledg-

ment) packet to acknowledge successful reception of the data packet. If a host’s data

transmission is successful, the host resets its CW to a minimum value (CWmin); other-

wise, if a host’s data transmission is unsuccessful (detected by the absence of a CTS or

the absence of an ACK), CW is doubled, subject to a maximum of CWmax.

A misbehaving host may obtain more than its fair share of the bandwidth by

• Selecting backoff values from a different distribution with smaller average backoff

value, than the distribution specified by DCF (e.g., by selecting backoff values from

range [0,CW
4

] instead of [0,CW], or by always selecting a fixed backoff of 1 slot).

• Using a different retransmission strategy that does not double the CW value after

collision.

Such selfish misbehavior can seriously degrade the throughput of well-behaved hosts. For

example, our simulation results (Section 6) show that for a network containing 8 hosts

sending packets to a common receiver, with one of the 8 hosts misbehaving by selecting

backoff values from range [0,CW
4

], the throughput of the other 7 hosts is degraded by

as much as 50%. In this thesis, we propose modifications to IEEE 802.11 for simplifying

3

the detection of such misbehaving hosts as well as for penalizing hosts detected to be

misbehaving.

The rest of the thesis is organized as follows. A discussion of related work is presented

in Chapter 2. The motivation for using MAC layer mechanisms to detect misbehavior,

and a brief overview of the proposed protocol is outlined in Chapter 3. Details of the

proposed protocol for detecting and penalizing misbehavior are presented in Chapter 4.

Extensions to the proposed protocol for detecting receiver misbehavior, and improving

diagnosis accuracy are in Chapter 5. Two models for misbehavior, and evaluation of the

proposed protocol under the two models is presented in Chapter 6. Our conclusions and

a discussion of future work is in Chapter 7.

4

CHAPTER 2

RELATED WORK

Most research addressing selfish misbehavior assume that selfish hosts misbehave pri-

marily to improve their own performance (throughput, latency, energy, etc.). Selfish

hosts are assumed to desist from attempting to degrade the performance of other hosts,

when such an attempt does not improve their own performance. In contrast, research

addressing wireless security are primarily focused on addressing malicious misbehavior,

which is misbehavior aimed at disrupting normal network operation, possibly with no

performance gain to the misbehaving host. Selfish misbehavior includes hosts that refuse

to forward packets on behalf of other hosts to conserve energy, hosts that select small

backoff values to obtain larger throughput share (the misbehavior that we address), etc.

Malicious misbehavior includes denial of service attacks that disrupt routing operation,

jamming the wireless channel to prevent communication, etc. Good discussions on vari-

ous security issues in wireless networks are in [2, 3, 4].

Several approaches have been proposed for addressing selfish misbehavior at the network

layer in wireless networks. One approach, proposed by Marti et al. [5], is to identify

misbehaving hosts, and avoid using misbehaving hosts for network operations such as

routing. Another approach, proposed by Buchegger et al. [6, 7], is to design proto-

cols that encourage cooperation by penalizing misbehavior. A complementary approach,

proposed by Buttyan et al. [8, 9], is to provide incentives for hosts to cooperate by us-

ing payment mechanisms. Network layer mechanisms address network layer misbehavior

5

such as dropping, delaying or mis-routing packets. The scheme we propose addresses

selfish misbehavior at the MAC layer, and can complement network layer mechanisms.

However, we adopt techniques from network layer mechanisms, such as the approach of

first detecting misbehavior, and then using suitable mechanisms for penalizing misbe-

havior. We incorporate these features into IEEE 802.11, to improve its resilience against

misbehavior.

A related approach is to design protocols which are resilient to misbehavior. In the con-

text of TCP, Savage et al. [10, 11] identify certain receiver misbehavior that may allow a

misbehaving receiver to gain a throughput advantage over other well-behaved receivers,

by exploiting weaknesses in the TCP congestion control algorithm used by the sender.

Savage et al. propose simple modifications to TCP, which prevent a misbehaving receiver

from gaining significant throughput advantage. The modifications we propose to IEEE

802.11 protocol are based on a similar design philosophy of incorporating features in a

protocol that help detect or discourage misbehavior.

Game-theoretic techniques have been used to develop protocols which are resilient to

misbehavior. Game-theoretic approach assumes that all users are selfish and rational.

Rational hosts always select a strategy that maximizes their utility (utility is a mea-

sure of the benefit obtained by a host). Protocols are designed that reach a equilibrium

state called the “Nash equilibrium”, where a selfish host cannot gain any advantage over

well-behaved hosts. Game-theoretic approaches are well suited for designing protocols

resilient to selfish misbehavior, and we discuss in detail below, some representative work.

Michiardi et al. [12] study mechanisms to address selfish misbehavior at the routing

layer. They model the hosts in the network as participants in a non-cooperative game

with each host attempting to maximize its own utility. By imposing suitable costs on

each network operation such as packet forwarding, the game reaches a Nash equilibrium.

In practice, selecting the right cost for each operation is hard. In addition, a pricing

6

infrastructure must be available to ensure hosts pay for the services that they obtain.

Mackenzie et al. [13, 14] consider selfish misbehavior in Aloha protocol. Hosts are as-

sumed to incur a cost for each transmission (e.g., energy required for the transmission),

and each host is assumed to have perfect knowledge of channel conditions and backlogged

hosts (in practice, this knowledge may not be available to hosts in the network). Un-

der this setting, it is shown that the protocol has a Nash equilibrium. When all hosts

follow the strategy proposed by MacKenzie et al., there is no scope for selfish misbehavior.

Konorski [15, 16] studies selfish MAC layer misbehavior, where hosts deviate from the

specified backoff strategy. Konorski proposes a modified backoff algorithm using black-

bursts, and with a game-theoretic analysis shows that the protocol is resilient to selfish

misbehavior. Konorski’s work assumes that all hosts can accurately measure the duration

and originator of each black-burst, which is hard to guarantee in a wireless network.

Most of the protocols using game-theoretic techniques are based on the assumption of

“Perfect Information”, i.e., every host can observe all the actions of other hosts in the

network. This assumption is hard to realize in practice, especially in the context of a

wireless network (with fading channels, hidden terminals, etc.). In addition, protocols

developed with game-theoretic techniques may not achieve the performance of protocols

developed under the assumption that all hosts are well-behaved and cooperate with each

other (e.g., IEEE 802.11). The scheme we propose retains the performance of IEEE

802.11 (a protocol based on cooperation among hosts), while ensuring detection of mis-

behavior.

Intrusion detection and tolerance techniques are used as tools for diagnosing and tolerat-

ing misbehavior [17, 18, 19, 20]. Intrusion detection approaches are based on developing a

long-term profile of normal activities, and identify intrusion by observing deviations from

the long-term profile. On the other hand, our proposed modifications are not dependent

7

on the availability of a long-term profile of normal behavior (when the topology, channel

conditions and traffic patterns are dynamic, such a profile may not be accurate).

This thesis is based on an extension of our earlier conference paper [21] on detecting and

handling MAC layer misbehavior.

8

CHAPTER 3

OVERVIEW OF THE PROPOSED PROTOCOL

In this chapter we define the terminology used in the rest of the thesis. We then dis-

cuss the motivation for using MAC layer detection and penalty schemes, and state our

assumptions in developing the proposed protocol. This is followed by a brief overview of

the proposed protocol.

3.1 Terminology used in the thesis

The following terminology used in presenting the proposed protocol.

• Sender: Sender is a host which wants to transmit a data packet to another host.

• Receiver: Receiver is a host which receives a data packet from a sender host. The

receiver monitors the sender host to detect sender’s misbehavior.

Sender and receiver are the different roles a host can perform. A host may assume the

roles of a sender and a receiver at different times. Recall that in the case of IEEE 802.11

DCF, the sender host transmits a data packet to a receiver host after an optional RTS-

CTS exchange. In Chapter 5, we define extensions to the protocol, where the sender and

receiver may be monitored by other nodes which are not directly involved in the com-

munication between the sender and the receiver. We designate these nodes as observers.

9

3.2 Motivation and assumptions

The proposed protocol is designed to require minimal modifications to IEEE 802.11 DCF,

and allows a receiver to detect sender misbehavior identified earlier. Detecting sender

misbehavior is important, for example, in infrastructure-based public wireless networks

(e.g., public wireless networks in airports). In public wireless networks, the base stations

are maintained by the network service providers, and can be trusted. Since the base

station is well-behaved, there is no misbehavior when it is sending. On the other hand,

wireless hosts sending data to the base station using the DCF mode are untrusted, and

may misbehave to gain higher throughput share than competing hosts. Hence, the base

station (receiver) is required to detect misbehavior of wireless hosts (senders).

We assume that the receivers are well-behaved while presenting the proposed protocol.

We discuss mechanisms to address receiver misbehavior in Chapter 5. We also assume

that there is no collusion between the sender and the receiver. For example, these as-

sumptions are valid in the infrastructure-based wireless networks with a trusted base

station. The proposed protocol can also be applied to ad hoc networks (self organized

networks without a central authority) to detect misbehavior as discussed later. The pro-

posed protocol addresses selfish misbehavior (hosts intending to obtain higher throughput

or lower delay), and does not consider malicious attacks such as jamming the channel.

3.3 Brief overview of the proposed protocol

The proposed protocol is designed to handle selfish MAC layer misbehavior in hosts

using IEEE 802.11 DCF mode. A goal of the proposed protocol is to simplify misbe-

havior detection. In IEEE 802.11 protocol, a sender transmits a RTS after waiting for

a randomly selected number of slots in the range [0,CW]. Consequently, the time inter-

val between consecutive transmissions by the sender can be any value within the above

10

range. Hence, a receiver that observes the time interval between consecutive transmis-

sions from the sender cannot distinguish between a well-behaved sender that legitimately

selected a small random backoff, and a misbehaving sender that maliciously selected a

non-random small backoff. It may be possible to detect sender misbehavior by observing

the behavior of senders over a large sequence of transmissions, but this may introduce

a large delay in detecting misbehavior. In addition, it may not be feasible to monitor

the behavior of senders over a large sequence of transmissions, when host mobility is high.

Hence, we propose modifications to the IEEE 802.11 protocol that enables a receiver to

identify sender misbehavior within a small observation interval. Instead of the sender

selecting random backoff values to initialize the backoff counter, the receiver selects a

random backoff value and sends it in the CTS and ACK packets to the sender. The

sender uses this assigned backoff value in the next transmission to the receiver. With

these modifications, a receiver knows the exact backoff value sender is expected to use.

Hence, the receiver can identify a sender deviating from the protocol by observing the

number of idle slots between consecutive transmissions from the sender. If this observed

number of idle slots is less than the assigned backoff, then the sender may have deviated

from the protocol. The magnitude of observed deviations over a small history of received

packets is used to diagnose sender misbehavior with high probability.

The proposed protocol also attempts to negate any throughput advantage that the mis-

behaving hosts may obtain. To achieve this, deviating senders are penalized thereby

discouraging misbehavior. When the receiver perceives a sender to have waited for less

than the assigned backoff, it adds a penalty to the next backoff assigned to that sender.

If the sender does not backoff for the duration specified by the penalty (or backs off for a

small fraction of the duration), it significantly increases the probability of detecting mis-

behavior reliably (as explained later). On the other hand, a misbehaving sender which

backs off for the duration specified by the penalty (or a large fraction of it) does not

obtain significant throughput advantage over other well-behaved hosts. Hence, with the

11

proposed protocol, it is difficult for a misbehaving host to obtain an unfair share of the

channel bandwidth while eluding detection.

12

CHAPTER 4

PROPOSED PROTOCOL

The proposed protocol has three components. First, the receiver decides at the end of a

transmission from the sender, whether the sender deviated from the protocol for that par-

ticular transmission. A deviation does not always indicate that the sender is misbehaving

(as explained later). Next, if the sender has identified a deviation for a transmission from

the sender, it penalizes the sender, based on the magnitude of the perceived deviation

for that particular transmission (penalty scheme). Last, based on the magnitude of the

perceived deviation over multiple transmissions from the sender, the receiver identifies

senders that are indeed misbehaving (diagnosis scheme). Extensions to the protocol for

detecting receiver misbehavior, and improving detection accuracy are in Chapter 5.

4.1 Identifying deviations from the protocol

In the proposed protocol, hosts follow the rules of IEEE 802.11 DCF except for some

suitable modifications to the backoff scheme, as explained below. Proposed modifications

to the backoff scheme enable a receiver R, to dictate the backoff values to be used by

a sender S that is sending packets to R. The first time S sends a packet to R, S may

use an arbitrarily selected backoff value. For all subsequent transmissions, the sender

has to use the backoff values provided by the receiver. For example, Figure 4.1 depicts

the receiver-sender interaction in the modified protocol. When the receiver R receives a

13

 RECEIVER

SENDER (S)

 (R)
estimation = B

R
T

S

R
T

S

exp

D
A

T
A

act

 b slots

C
T

S
(b

)

C
T

S
(b

)

A
C

K
 (

b)

B = bAssign Backoff

Figure 4.1 Receiver - Sender interaction in modified IEEE 802.11

RTS1 from the sender S, R assigns a backoff value Bexp = b to S in the CTS packet as

well as the subsequent ACK packet as shown in Figure 4.1 (the assigned backoff may be

included in either of CTS or ACK when RTS/CTS exchange precedes data transfer). S

is required to use this backoff value b for sending the next packet to R.

The receiver selects the backoff values Bexp assigned to the sender, from the range

[0, CWmin] (CWmin is the minimum contention window value used by IEEE 802.11).

The sender may misbehave by backing off for a smaller duration than Bexp. The receiver

observes the channel status during the interval between the sending of an ACK by R,

and the reception of the next RTS from S. The receiver notes down the length of this

interval in slots, K, as well as the number of slots that were idle Bact during this interval.

The sender is designated as deviating from the protocol if the observed number of idle

slots Bact is smaller than a specified fraction α of the assigned backoff Bexp, i.e.,

Bact < α ∗ Bexp , 0 < α ≤ 1 (4.1)

A deviation does not necessarily indicate that the sender is misbehaving as the channel

conditions seen by the sender and receiver may be different. For example, if the sender

senses the channel to be idle and counts down its backoff timer, while the receiver senses

1We assume RTS/CTS exchange is used before data transmission. However, the proposed protocol
can be applied even when RTS/CTS exchange is not used.

14

the channel to be busy and does not count down its timer, then the transmission from

the sender may be falsely designated as a deviation. The parameter α in equation 4.1

can be suitably chosen, based on the channel conditions, to reduce the incidence of false

deviations. For example, if α is chosen to be 0.9, a sender is designated as deviating only

when the observed backoff Bact is less than 90% of the assigned backoff Bexp. However,

selecting α to be too small may enable misbehaving senders to elude detection. Hence,

we select α to be reasonably high and use the diagnosis scheme, presented in Chapter

4.3, for accurately diagnosing misbehaving hosts.

A threshold scheme, which compares the observed backoff Bact with a threshold (based on

the assigned backoff B and total slots K) is optimal in maximizing detection percentage,

subject to a maximum allowed misdiagnosis percentage (proof in Chapter 4.4). In this

thesis, we use a constant fraction α of B as the threshold to simplify the protocol. Accu-

rate selection of the threshold may require more information about channel parameters,

which may not be available.

We now describe the extensions to IEEE 802.11 for handling sender misbehavior during

packet retransmissions. Every RTS sent by the sender has an attempt number included

in a new field in the RTS header. Sender sets the attempt number to 1 after a suc-

cessful transmission, and increments it by 1 after every unsuccessful transmission (indi-

cated by the absence of a CTS following a RTS, or the absence of an ACK following a

DATA packet). The contention window CW , maintained by the sender, is set to CWmin

after a successful transmission, and after an unsuccessful transmission, CW is set to

min((CWmin + 1) ∗ 2i−1 − 1 , CWmax) for the ith transmission attempt, as in IEEE

802.11.

Figure 4.2 demonstrates the working of the protocol after a collision. In the figure, the

number in parenthesis next to the RTS is the value of the attempt number. When a RTS

15

R
T

S(1)

R
T

S(3)

R
T

S(2)

b f(b,S,3)*127f(b,S,2)*63

RECEIVER

Backoff Value expected by receiver: B = b + f(b,S,2)*63 + f(b,S,3)*127exp

A
C

K
 (

b)

COLLISIONS

 estimation = B

Assign Backoff: b
CWmin = 31

SENDER (S)

 (R)
act

Figure 4.2 Protocol for retransmissions

transmission is unsuccessful, sender increments the attempt number, and chooses a new

backoff value using a deterministic function f as follows:

New Backoff = f(backoff, senderId, attempt) ∗ CW

where backoff is the backoff previously assigned by the receiver, senderId is the unique

sender identifier, and attempt is the attempt number maintained by the sender. In Figure

4.2, backoff=b, senderId=S, and the attempt numbers are 1, 2 and 3.

The function f used by the sender for computing backoff values for retransmission at-

tempt is given by :-

f(backoff, senderId, attempt) = (aX + c) mod (CWmin + 1)

where a = 5, c = 2 ∗ attempt + 1 and X = (backoff + senderId) mod (CWmin + 1).

The function f generates a uniform random number between [0,CWmin] and dividing

the number by CWmin gives the required fraction between 0 and 1. The deterministic

function f that we use has been carefully chosen (more details about function f is in

a related technical report [22], and a good discussion on pseudo-random generation is

in [23]) to ensure that after collisions, the colliding senders will select different backoff

16

values with high probability.

When a RTS is successfully received at the receiver (after possibly multiple transmission

attempts by the sender), the receiver can estimate the number of retransmission attempts

by using the attempt number field included in the RTS. An attempt number value greater

than 1 indicates that there was at least 1 unsuccessful transmission attempt by the sender.

The receiver can then estimate the total time, Bexp, for which the sender was expected

to backoff for, applying the same deterministic function f used by the sender as,

Bexp = backoff +
attempt

∑

i=2

f(backoff, senderId, i) ∗ CWi

where attempt is the attempt number in the received RTS, backoff is the backoff assigned

to the sender by the receiver, senderId is the sender’s identifier and CWi is the con-

tention window for the ith transmission attempt (computed as in IEEE 802.11) given by

CWi = min((CWmin + 1) ∗ 2i−1 − 1 , CWmax). This estimated backoff is then used

in checking for possible deviation, by applying equation 4.1 as explained before. Note

that if a deterministic function is not used by the sender, then the receiver cannot easily

estimate the backoff value used by the sender after a collision.

It may be possible for the sender to provide incorrect attempt number values in the

RTS. To ensure that senders provide correct attempt numbers, the receiver can sense

the channel to identify high collision intervals (when the channel is mostly busy but few

transmissions are successful). During these intervals, the receiver can analyze the traffic

to identify any sender S achieving larger number of successful transmissions than other

hosts, or having smaller average attempt values than other hosts. If such a sender S

exists, the receiver can intentionally drop RTS packets from S occasionally, and verify

that S increments the attempt number in the retransmission of RTS. Even a single failure

by S to increment the attempt number in the retransmission is an immediate proof of

misbehavior. As S does not know which RTS packets are lost due to collisions and which

are intentionally dropped by the receiver, it will be harder for such misbehaving senders

17

to persistently send incorrect attempt numbers without being detected. Dropping RTS

packets occasionally will not significantly affect the throughput of S.

4.2 Penalty Scheme

Hosts deviating from the protocol may obtain a larger throughput share than conforming

hosts. The penalty scheme penalizes deviating hosts by assigning larger backoff values to

them than those assigned to conforming hosts. We use the principle that hosts deviating

more should be assigned larger penalties. Hence, when the receiver detects a deviation

(using equation 4.1), it measures the deviation D = max(α ∗ Bexp − Bact , 0), and

assigns this measured deviation as a penalty to the sender.

From analysis and simulations (details are in Section 4.5), we identified the need for

additional penalty to effectively penalize the misbehaving hosts. So, the total penalty

P is equal to the sum of D and the additional penalty. The next backoff value assigned

to the deviating sender is the sum of a random value, selected as in IEEE 802.11 from

range [0, CWmin], and the computed penalty P . Thus, the deviating sender is dictated

to back off for a longer interval, before initiating the next transmission, than it would

have needed to without the penalty.

Since the penalty scheme adds a penalty for every perceived deviation, a well-behaved

sender may be penalized if the receiver incorrectly identifies the sender as deviating from

the protocol. As described earlier, this scenario may arise when the channel conditions

at a well-behaved sender differs significantly from the channel conditions at the receiver.

However, we decided to use the approach of adding a penalty for every perceived devia-

tion to prevent a misbehaving host from trying to adapt to any protocol parameters, and

thereby obtain a throughput advantage over well-behaved hosts. Furthermore, in most

cases the magnitude of deviation for well-behaved senders is very small. As the penalty

18

added is proportional to the magnitude of deviation, this penalty will be small in most

cases for a well-behaved host. Our simulation results show that the average throughput

obtained by well-behaved hosts when the penalty scheme is enabled is comparable to that

obtained when using IEEE 802.11 protocol.

4.3 Diagnosis Scheme

The diagnosis scheme uses two protocol parameters W and Thresh. The receiver main-

tains a moving window containing information about the last W packets received from

each sender. When a new packet is received, the difference Bexp − Bact is stored in the

moving window (Bexp is the expected backoff and Bact is the observed backoff). A posi-

tive (negative) difference indicates that the sender waited for less (more) than the backoff

duration expected by the receiver. If the sum of these differences in the previous W pack-

ets from the sender is greater than a threshold Thresh, then the sender is designated as

“Misbehaving”.

We add both positive differences (sender has waited for less than the required duration,

i.e., a “deviation”) and negative differences (the sender has waited for more than the

required duration) since a well-behaved host perceived as deviating for a packet may be

perceived to backoff for larger than the expected backoff for some other packet. How-

ever, a persistently misbehaving host will have positive differences for most packets and

is likely to be diagnosed. The choice of W and Thresh does not affect the penalty scheme.

Hence, a sender adapting to W and Thresh will still have a penalty added for every per-

ceived deviation, even if the host is not immediately diagnosed to be misbehaving. The

parameter Thresh used in the protocol may be adaptively selected, based on the channel

conditions, to maximize the probability of correct diagnosis of misbehavior, while mini-

mizing the probability of misdiagnosis (we defer adaptive selection to future work).

19

The penalty scheme is used to penalize potentially misbehaving hosts. However, the

penalty scheme is not effective if a misbehaving host does not backoff for at least a sig-

nificant fraction of the assigned penalty when it transmits its next packet. On the other

hand, the magnitude of the observed deviation for a sender host that backs off for a small

fraction of the assigned penalty will be large, and the diagnosis scheme can identify such

hosts with high probability. Thus, penalty and diagnosis schemes together ensure that a

misbehaving host cannot obtain a larger than fair share of the bandwidth without being

diagnosed as misbehaving.

After the diagnosis scheme identifies a host to be misbehaving, MAC layer may refuse

to accept packets from the misbehaving host (by not responding with a CTS). Alter-

natively, higher layers can be informed of the misbehavior. Using this information, the

higher layers or the system administrator may take suitable action. For example, in

ad hoc networks, hosts forward packets on behalf of each other. When misbehavior is

diagnosed, network layer protocols may use the diagnosis information to route around

misbehaving hosts. Network layer protocols can also refuse to forward packets originating

from misbehaving hosts.

The proposed protocol can be used in conjunction with the upper layers to detect other

types of MAC layer misbehavior as well. For example, a misbehaving host may use dif-

ferent MAC addresses for different packet transmissions. A receiver monitoring such a

sender cannot effectively penalize the misbehaving host, as the receiver associates differ-

ent MAC addresses with different hosts. The proposed protocol can be augmented with

authentication mechanisms provided by higher layers to identify such misbehaving hosts.

20

4.4 Proof of existence of optimal threshold

In this section, we show that comparing the observed backoff against a threshold, as

proposed in the diagnosis scheme, is indeed optimal. The aim of the diagnosis scheme

is to maximize the correct diagnosis probability, while restricting the misdiagnosis (i.e.,

false alarm) percentage below a specified threshold β. The diagnosis problem can be

formulated under Neyman-Pearson hypothesis testing framework [24].

On receiving a packet from the sender, the receiver has to decide if the sender misbehaved.

The information available at the receiver in diagnosing sender behavior is the status of the

channel (idle or busy), in all the slots between the previous transmission from the sender

and the current transmission, and characteristics of the channel. Using this information,

the receiver has to choose one of the following two hypotheses:

• Hypothesis H0: Sender is well-behaved.

• Hypothesis H1: Sender is misbehaving.

We first prove under a general model for the channel that a scheme that compares the

likelihood ratio (defined later) to a threshold is optimal for maximizing correct diagnosis

probability. We then present a simple channel model, and demonstrate that for this

model it is sufficient to compare the observed backoff (instead of the likelihood ratio)

against a threshold.

Both the sender and the receiver observe the channel. The channel in each slot may either

be idle (I) or busy (B). The sender is assigned a backoff value B by the receiver. Say the

sender waits for K slots on the channel (both idle and busy slots), before transmitting

a packet. The channel conditions observed by the sender can be represented by a string

s of length K, derived from an alphabet {I,B}, with I (B) at position i in the string

indicating slot i was observed idle (busy) by the sender. The receiver observes a string so

(possibly different from s because of varying channel conditions), also of length K. The

21

receiver has to select, based on the assigned backoff B, and the observed string so, the

more likely hypothesis. This can be extended to a more general model which uses the

past history of observed strings in addition to the newly observed string.

If hypothesis H0 is true, sender will have selected the string s from a set SG (set of good

strings) that have at least B idle slots. Otherwise, the string s will be selected from a set

SB (set of bad strings) that have less than B idle slots. The channel is specified using

a conditional probability distribution (PC) of observing a string s at the sender when

string so is observed at the receiver.

Under the above model, we can derive the probabilities for hypothesis H0 and H1 being

true, given the observation so as

P(H0 is true given so was observed) PH0 =
∑

s∈SG

PC(s/so)

P(H1 is true given so was observed) PH1 =
∑

s∈SB

PC(s/so)

The likelihood-ratio L is defined as:

L =
PH1

PH0

Applying the Neyman-Pearson theorem [24], the optimal decision rule for maximizing the

probability of diagnosis, while restricting the misdiagnosis percentage below a specified

value β, is of the form:

• Choose hypothesis H1 if L > T

• Choose hypothesis H1 with probability γ if L = T

• Choose hypothesis H0 if L < T

where the threshold T , and probability γ can be computed from β and distributions of

PH1 and PH0 as shown in [24].

22

Next, we use a simple channel model and prove that for this model, comparing observed

backoff against a threshold is optimal. We assume that the receiver has a probability p

of sensing a slot, observed by the sender as idle, to be busy. On the other hand, when

the sender senses a slot to be busy, the receiver too senses the slot to be busy. Such a

model approximates a scenario in practice, when the carrier sensing threshold of IEEE

802.11 at the receiver is chosen to be significantly lower2 than the receive threshold. In

this scenario, receiver senses most of the transmissions sensed by the sender, but may

also sense some other transmissions that are not sensed by the sender (as is the case in

the model).

In the proposed protocol, the receiver counts the total number of slots K between two

transmissions by the sender, as well as the number of idle slots Bo observed on the chan-

nel in that interval. The receiver is also aware of the backoff B that it had assigned to

the sender.

We assume that a well-behaved sender waits for at least B idle slots, before transmitting

a packet (alternatively, we could model a well-behaved sender to wait for exactly B idle

slots, and the same analysis as below applies for that scenario also). Under the assumed

channel model, the number of idle slots observed by the receiver is less than or equal to

that observed by the sender. Thus, when Bo ≥ B, the sender has waited for at least

B slots and is well-behaved. On the other hand, if Bo < B, we can apply the general

formula derived earlier (replacing the observed event as number of idle slots, instead of

a specific string so). As a result PH0 can be computed as,

PH0 = 1, Bo ≥ B

PH0 =
K
∑

i=B

PC(i/Bo), Bo < B

2Lower value of threshold implies that signals received with lower power are detected, enabling the
sensing of further away transmissions

23

PC(i/Bo) is the probability that the sender waited for exactly i idle slots (out of K total

slots) given that the receiver observed Bo idle slots. Similarly, we can compute PH1 as,

PH1 = 0, Bo ≥ B

PH1 =
B−1
∑

i=Bo

PC(i/Bo), Bo < B

The likelihood ratio L is 0 for Bo ≥ B, and for Bo < B is given by

L =
PH1

PH0

=
1

PH0

− 1, (because PH0 + PH1 = 1)

=
1

∑K
i=B PC(i/Bo)

− 1

When Bo increases, PC(i/Bo) increases if the probability p of receiver sensing a slot,

observed to be idle by the sender, to be busy is less than 0.5. When Bo increases, we are

conditioning on receiver making fewer mistakes (i − Bo is the number of mistakes), and

this probability increases whenever p < 0.5. Under this condition, the likelihood ratio

L is monotonically decreasing with increasing Bo (until L reaches 0). Therefore, in the

Neyman-Pearson rule, instead of comparing L against a threshold T , we can compare Bo

with a new threshold T ′, suitably derived from T .

Hence, the optimal decision rule is,

1. The sender is misbehaving if Bo < T ′

2. The sender is misbehaving with some probability γ, if Bo = T ′

3. The sender is well-behaved if Bo > T ′

Note that the threshold itself is some function of B and K, though in the proposed pro-

tocol we choose a constant fraction (α) of B as the threshold for simplicity.

24

4.5 Analysis of required additional penalty

In this section, we identify the need for additional penalty in the penalty scheme to

effectively penalize misbehaving hosts, and describe a mechanism for estimating the ad-

ditional penalty. On simulating the approach of adding measured deviation as penalty,

we found that the misbehaving hosts still obtain a bigger throughput share than con-

forming hosts, although the share obtained by misbehaving hosts is far lesser than what

they would have obtained without any correction. Misbehaving hosts obtain a higher

throughput share because they suffer lesser number of collisions per successful transmis-

sion compared to well behaved hosts. Note that the expected backoff Bexp is computed

based on the number of attempts made by the sender host before successfully transmit-

ting. However, the misbehaving hosts by backing off for lesser duration on an average,

suffer fewer collisions per successful transmission. To illustrate this, consider a network

containing only two hosts A and B. Host A misbehaves by transmitting packets at a

higher rate than the well-behaved host B (assume that the channel capacity is greater

than the transmission rate of either of them). Then, the total collisions suffered by both

the hosts is the same, but the number of collisions per successful transmission is less for

the misbehaving host as it transmits more often. So, the correction scheme should also

penalize the misbehaving hosts for the benefit gained from having fewer collisions per

successful transmission.

We analytically estimate (and thereby demonstrate) the fewer number of collisions that

a misbehaving host suffers in comparison to a well-behaved host. We model the channel

access behavior of hosts by access probabilities. We follow the approach used by Cali et

al. [25] in our analysis. As mentioned while presenting our backoff protocol, the average

expected backoff for our modified scheme is the same as that of IEEE 802.11 and hence

we can apply the approach of Cali et al. We assume that at any instant there are N active

hosts in the network (N varies with time). Active hosts are those that have a packet

to send to the base station at the instant under consideration. Each conforming active

25

host accesses the channel every idle slot with a probability p (p is the parameter of a

geometric distribution). Thus, in any idle slot a conforming active host has a probability

p of transmitting a packet. In reality, the access probabilities depend on the Contention

Window value which in turn depends on the number of collisions that a host suffers

while transmitting a packet. In [25] the access probabilities are assumed to be inversely

proportional to the average contention window size. These assumptions are reasonably

accurate for sufficiently large number of hosts in the network. It has been shown in [25]

that the results are fairly accurate even for small networks containing around 10 hosts.

We analyze the behavior of a misbehaving host, designated as MB, that accesses the

channel with probability pmb such that pmb > p. For the sake of this analysis, we assume

that the rest of the hosts in the network are well-behaved. When MB transmits a packet,

the transmission is successful if no other host attempts to transmit a packet in that slot.

Thus, the probability of an attempted transmission being successful is given by

P (attempted transmission successful) , Psucc = (1 − p)N−1

The probability that an attempted transmission is unsuccessful is given by

P (attempted transmission fails) , Pfail = 1 − Psucc

Assuming that each retransmission attempt is independent, the probability that exactly

ith attempted transmission is the successful is given by

P (exactly ith attempt successful) = P i−1

fail Psucc

Hence the expected number of attempts needed for a successful transmission for misbe-

having host MB is (using standard algebraic identities)

E(attempts for MB) , Emb =
1

Psucc

=
1

(1 − p)N−1

Using a similar analysis, the expected number of attempts needed for a successful trans-

mission for a conforming host is

26

Econf =
1

P (success for conforming host)

=
1

(1 − pmb)(1 − p)N−2

Since the misbehaving host backs off for some fraction of its assigned backoff value, its

access probability is higher than that of the conforming hosts. When pmb > p, 1

1−pmb

>

1

1−p
. Hence, using this in the equations above we see that the conforming hosts suffer

more collisions per successful transmission than the misbehaving host. The difference in

number of collisions must be accounted in the misbehavior correction mechanism. This

is given by

Ediff = Econf − Emb (4.2)

=
1

(1 − pmb)(1 − p)N−2
−

1

(1 − p)N−1
(4.3)

=
1

(1 − pmb)(1 − p)N−1
∗ (pmb − p) (4.4)

The next step is to compute this value. In practice, when we are computing the penalty

to be added, we know that Bact (the actual time the host under observation has backed

off for) is smaller than α ∗ Bexp (Bexp is the expected backoff). By our model, the

access probability of a host is inversely proportional to its average contention window

value. When the misbehaving host waits for a fraction of its assigned backoff value, this

behavior is equivalent to the misbehaving host waiting completely for a backoff value

which is selected from a smaller range (in comparison with other conforming hosts). The

average contention window value (denoted as ACW) can be computed as the ratio of

the average total backoff per successful transmission (denoted as ATB) to the average

number of attempts per successful transmission. Hence,

p ∝
1

ACW

where average contention window ACW is computed as,

ACW =
ATB

Average number of attempts

27

We expect the average number of attempts for a successful transmission (in the long run)

to be the same for misbehaving hosts and well-behaved hosts when the correction scheme

is enabled. Our aim is to compute the benefit gained by the misbehaving host for the

observed deviation from protocol. If the misbehaving host persists with misbehavior, then

its average total backoff will be proportional to Bact while the average total backoff (ATB)

of well-behaved hosts will be proportional to Bexp. Assuming persistent misbehavior, the

ratio of access probabilities of well-behaved host to misbehaving host is given by,

p

pmb

=
Bact

Bexp

We denote this ratio of observed backoff interval to expected backoff interval by β. Hence

p = β pmb. For accurate computation of the ratio of access probabilities we need to use

the average total backoff. However, we make the above approximations to obtain an

approximate estimate of the ratio of access probabilities using the observed host behavior.

Using this substitution, we can rewrite equation 4.4 as,

Ediff =
pmb

(1 − pmb)(1 − p)N−1
∗ (1 − β)

The term (1−pmb)(1−p)N−1 is the probability that a slot is idle. By using the correction

scheme, we expect the access probability of the misbehaving host in the long run to be

roughly equal to the access probability of conforming hosts, thus pmb ≈ p. Using this

approximation, the number of collisions that the misbehaving host has saved by backing

off for less than the assigned value is given by,

Ediff ≈
p ∗ (1 − β)

P (Slot is idle)
(4.5)

This is one of the several possible ways of estimating Ediff starting from equation 4.4.

We can directly estimate p and N using the approach of Cali et al. in [25] and compute

Ediff from that. However, our approach is simpler to implement.

We use a idleCounter (informally described in section 4.1) for estimating the idle prob-

ability. The idleCounter is incremented by 1 for every idle slot and is frozen when the

28

channel becomes busy. The number of idle slots between two successive transmissions

i and (i + 1) on the channel is calculated as the difference X in idleCounter values at

the end of the ith transmission and at the end of (i + 1)th transmission. In our analysis,

each transmission is assumed to be 1 slot in length (the idle slot in which a host accesses

the channel and begins a transmission) irrespective of the length of the transmission (a

single transmission may involve exchange of RTS-CTS-DATA-ACK packets). Hence, the

total number of slots between ith and (i + 1)th transmission is X + 1.

Idle probability can be approximated to be equal to the ratio of number of idle slots

between two successive transmissions to the total number of slots between two successive

transmissions. Hence, the idle probability is given by,

P (Channel idle) =
X

X + 1

where X is the number of idle slots between successive transmissions.

The average idle probability Pidle is estimated using the idle probability computed for

each transmission and a smoothening factor δ as follows

Pidle = δ ∗ Pidle + (1 − δ) ∗ P (Channel idle)

where 0 < δ < 1 and Pidle is initialized to 1.

As discussed earlier, the average access probability p is estimated as the reciprocal of the

average number of slots a host waits per transmission attempt ACW (including one slot

for the attempted transmission itself). Thus,

p =
1

ACW + 1

where the average contention window ACW is calculated as,

ACW =
Average expected backoff

Attempts per successful transmission

29

The average expected backoff is calculated by the receiver based on the backoff values

that the receiver has assigned. The average number of attempts per successful transmis-

sion is calculated from the attemptNumber field of RTS packets received from the senders.

Using the calculated values of p, β and Pidle, Ediff is computed by substituting these

values in equation 4.5. Once we have estimated Ediff, we compute the additional penalty

as the number of slots the misbehaving node would have additionally backed off for, if it

had actually suffered Ediff additional collisions.

AdditionalPenalty =

attempt+Ediff
∑

i=attempt+1

f(backoff, senderId, i) ∗ CWi

where attempt is the attempt number included in the RTS, backoff is the backoff assigned

by the receiver, CWi is the contention window size for the ith transmission attempt, and

senderId is the identifier of the misbehaving node.

30

CHAPTER 5

EXTENSIONS TO THE PROTOCOL

In this chapter, we propose extensions to the base protocol described in Chapter 4,

for handling receiver misbehavior, improving diagnosis accuracy, and utilizing multiple

observers.

5.1 Handling receiver misbehavior

In the proposed scheme, there exists a possibility that the receiver may misbehave in as-

signing backoff values. As discussed before, in the case of infrastructure-based networks,

base station is trusted, and is not expected to misbehave. However, in the case of ad hoc

networks, receivers cannot be trusted, and may misbehave.

One receiver misbehavior is assigning small backoff values to a preferred sender to receive

data from that sender at a higher rate. This type of attack is possible, say, when the

receiver is expecting some data from a particular sender, and seeks to obtain that data

with minimal latency.

This misbehavior can be detected using an approach similar to that used for detecting

sender misbehavior. For example, the receiver can be required to select the initial backoff

values (i.e., backoff value before penalty is added) using some well-known deterministic

function g, which the sender is aware of. Hence, the sender can detect a receiver assign-

31

ing small backoff values. Senders can choose to use larger of the backoff assigned by the

receiver, and the backoff expected by the sender. This solution is not sufficient in case

the sender and the receiver collude. Mechanisms to address collusion are discussed later.

An alternate approach is based on the observation that receiver assigns the backoff values

to the sender to enable the receiver to know the exact backoff sender is expected to count

down. The same goal can be achieved by requiring the sender to publish its backoff

for next transmission, with the constraint that these values have to be picked using a

well-known deterministic function g. This is similar to the approach used in SEEDEX

protocol [26], where senders inform receivers the transmission schedule by publishing the

seed of the random number generator. When the receiver gets the schedule, it has to

first verify that the published schedule has been legitimately chosen, and then has to

verify for each transmission whether the sender counted down the required backoff using

the approach described earlier. The drawback of using this approach is that receiver

can no longer punish misbehaving senders using a simple penalty mechanism as we pro-

posed earlier. Receivers can just drop packets from potentially misbehaving senders,

but if packets are dropped from well-behaved senders, it may drastically degrade their

throughput (e.g., if TCP is being used, TCP may timeout to recover from lost packets,

leading to severe degradation in throughput). Hence, dropping packets, in contrast to

adding additional backoff as penalty, may have a detrimental effect on throughput of

misdiagnosed well-behaved hosts.

Another receiver misbehavior is for the receiver to assign large backoff values to a sender.

We do not address this misbehavior in our scheme, as this misbehavior is equivalent to

the receiver refusing to accept packets from the sender. To encourage the receiver to

accept packets from the sender, higher level solutions (e.g., incentive based mechanisms)

may be used.

32

5.2 Reducing misdiagnosis

In IEEE 802.11, the channel is said to be busy in a slot in the following cases:

• When that slot has been reserved by a RTS or a CTS, or a host is receiving a

packet1.

• When the strength of the received signal on the channel (including noise and in-

terference) is above a threshold called the “Carrier Sense threshold” (even if the

packet is not decoded correctly). Carrier sense threshold is often chosen such that

the maximum distance from which a transmission can be sensed, called the car-

rier sense range, is approximately twice the distance from which a packet can be

correctly received. This enables a host to sense transmissions originating from

its two-hop neighbors, and avoid colliding with them. (More details are in IEEE

standard [1].)

We identify a scenario where misdiagnosis may occur, and propose a solution. In Figure

5.1, bold lines connecting two hosts indicate that they can receive packets from each

other. Dashed lines indicate that the two hosts can sense each other’s transmission, but

cannot successfully receive packets. In Figure 5.1, sender S attempts to communicate

with the receiver R. Transmissions from host 1 in the vicinity of R can be sensed by S,

but packets from host 1 cannot be received at S. R can only sense transmissions from

host 2, while S cannot even sense transmissions from host 2. Hence, host 2 is hidden

from S, but not from R.

In this scenario, when host 2 starts a transmission, receiver R senses the channel to be

busy, but the sender S does not. Later, when a packet is received from S, R may de-

cide that S did not backoff for sufficient number of idle slots (this is a problem arising

out of “hidden terminals” [27]), and may conclude that S is misbehaving. This leads to

misdiagnosis. The protocol conservatively chooses parameters to reduce the incidence of

1A packet is being received on the channel, when the preamble sent by the sender has been correctly
decoded.

33

 S R

1

2

Figure 5.1 Scenario where misdiagnosis occurs

misdiagnosis, but the misdiagnosis percentage may be high if the above scenario persists.

We propose an optional modification to the proposed scheme to address this problem.

Observe that the problem illustrated above would not have arisen, if R had counted the

slots in which host 2 was transmitting to be idle. So, if the receiver classifies a slot to

be busy only when an overheard RTS/CTS has reserved the slot, or a packet is being

received (and not when only sensing some transmission but not receiving anything cor-

rectly), then the receiver in most cases will identify a slot to be idle whenever the sender

senses a slot as idle. This will reduce the incidence of misdiagnosis. Note that senders

are still required to count a slot as busy if they sense a transmission, as in IEEE 802.11.

Furthermore, this modification is used to decide if a sender is misbehaving. If the sender

is classified as misbehaving, then the penalty is added based on a counter that counts

busy slots as before (even slots where transmissions are just sensed are counted as busy).

This ensures that appropriate penalty will be added once a sender is diagnosed to be

misbehaving.

With this modification, the receiver may now classify some slots to be idle, when the

sender actually senses the slots as busy (e.g., when the sender and receiver are reversed

in Figure 5.1). Misbehaving hosts aware of this modification may try to intelligently mis-

behave, and leverage the conservative behavior of the receiver. However, a misbehaving

sender cannot decide with certainty, whether the receiver has classified a busy slot as

idle, and thus, does not have a guaranteed strategy for obtaining better performance.

34

S R

2

3

1

Figure 5.2 Using multiple observers to improve diagnosis accuracy and to detect collu-
sion

We evaluate the impact of this modification in Chapter 6.6.

5.3 Using multiple observers

In the discussions so far, we have required the receiver to monitor sender behavior. We

can easily extend the protocol to allow other hosts in the vicinity of the sender to monitor

sender behavior. For example, in Figure 5.2, host 1 can receive packets from both the

sender S and the receiver R. When host 1 receives a CTS from R intended for S, host

1 knows the backoff assigned to S. Later, when S sends a packet, host 1 can decide if

the sender S waited for the assigned number of idle slots. These additional observers

can also be used to detect collusion. For example, host 1 can monitor the backoff values

assigned by the receiver R, and decide if R is assigning small backoff values to any par-

ticular sender. In addition, host 1 can also monitor the sender S, and verify if a receiver

is correctly punishing sender misbehavior (otherwise, a receiver may intentionally ignore

misbehavior of a preferred sender).

Multiple observers can also be used to improve diagnosis accuracy. In an infrastructure-

based network, the observers may be neighboring base stations, or other specially installed

35

monitoring hosts. In ad hoc networks, observers may belong to a common trust group,

and can share diagnosis information (e.g., hosts 1, 2, 3 in Figure 5.2). As discussed before,

misdiagnosis incidence may be high in certain scenarios. But, when multiple observers

are used, not all observers incorrectly diagnose misbehavior. So, intelligently combining

information from multiple observers can reduce misdiagnosis percentage. Similarly, we

can improve the correct diagnosis percentage as well. We defer for future work analysis

of scenarios where multiple observers are beneficial, and strategies to be used for com-

bining information from multiple observers (a simple strategy is to take a majority vote,

but more sophisticated strategies may be developed using signal processing techniques).

Another question of interest for infrastructure-based networks is the locations where ob-

servers need to be placed to maximize diagnosis accuracy.

36

CHAPTER 6

SIMULATION RESULTS

We use the ns-2 [28] simulator for our simulations. The simulator has been extended

with modifications needed for our protocol. We have also incorporated modifications

to the physical carrier sensing to account for variations in channel conditions at the

granularity of a slot. We use the shadowing channel model [28]. The shadowing channel

model captures the variations in channel conditions over time and space by using a

Gaussian random variable, XdB, with zero mean and σdB standard deviation. The model

is represented as
[Pr(d)

Pr(d0)

]

dB
= −10 β log

(d

d0

)

+ XdB

β is called the Path Loss Exponent, d is the distance between the sender and receiver,

Pr(d) is the received power and Pr(d0) is the power at some reference distance d0 [28].

For free space propagation β is 2 and we use this value in our simulations. We set σdB

to 1 and the Carrier Sense and Receive Thresholds are selected such that a transmission

is received with 50% probability at a distance of 250m, and sensed with 50% probability

at a distance of 550m. For example, the carrier sense (receive) threshold is set to the

received signal strength at 550m (250m) when Xdb is set to 0 in the above equation (we

assume all senders use the same transmit power).

In our simulations, all the sender hosts in the network are backlogged. The traffic from

the senders to the receivers is a CBR (constant bit rate) flow with rate 2 Mbps and size

of CBR packets is 512 bytes. The channel bit rate is 2 Mbps. The simulation time for

37

each run is 50 seconds. The results are averaged over 30 runs of the simulation. Each

run is seeded by a different seed and the set of seeds used for different data points is the

same. Hosts are stationary in all simulations.

6.1 Simulation topology and simulation metrics

We first simulate our proposed protocol for a network having a well-behaved receiver R,

and multiple senders transmitting to R. We use this simple network setting to simplify

the evaluation of the proposed protocol’s effectiveness in handling sender misbehavior,

and identify the various trade-offs involved. However, the simulation setup includes other

traffic in the vicinity of the receiver that can affect the carrier sensing at the receiver

R, and the senders that communicate with it. We also present later in this chapter,

simulation results for multiple senders and receivers randomly placed in the network.

Figure 6.1 shows the simulated network. The number of sender hosts around the receiver

R is 8 (numbered 1 through 8 in the figure) with host 3 misbehaving. The 8 sender

hosts are placed in a circle of radius 150 meters around R, equidistant from each other.

There are 4 other hosts A, B, C, and D in the network, with constant bit rate (CBR)

flows of rate 500 Kbps from A to B, and from C to D. The flows A-B and C-D are at a

distance of 500 meters on either side of the receiver R as shown in Figure 6.1. The flows

are positioned such that the transmissions on these flows A-B and C-D are sensed with

high probability by the receiver R, while farther away sender hosts do not sense these

transmissions with high probability. For example, in Figure 6.1, when A sends a packet

to B, host 3 may not sense the transmission, while R may sense the transmission.

We evaluate our protocol under three different scenarios by enabling or disabling traffic

on flows A-B and C-D:

38

RA

B

C

D

500 m

150 m
2

3

4

5
6

7

8

1

Figure 6.1 Simulation setup

1. ZERO-FLOW: In this scenario, both traffic flows A-B and C-D are turned off. This

gives a symmetric topology with 8 senders sending to a common receiver R. This

models the case when background traffic is small.

2. ONE-FLOW: In this scenario, only traffic flow C-D is turned on. In this scenario,

receiver R and hosts 1 through 5 sense the transmission from C to D with high

probability, while hosts 6, 7, and 8 do not. Consequently, hosts 6, 7, and 8 may

occasionally appear to be deviating from the protocol (as they sense the channel to

be idle while receiver R senses the channel to be busy). We select host 3 to be the

misbehaving host. Hence, this scenario tests our protocol performance when host

3 is actually misbehaving, while hosts 6-8 may falsely appear to be misbehaving.

3. TWO-FLOW: In this scenario, both traffic flows A-B and C-D are turned on. Now,

all the senders occasionally appear to be deviating from the protocol (as they sense

the channel to be idle when the flow farthest from them is transmitting, while the

receiver senses the channel to be busy).

Simulation Metrics: The metrics used in the protocol evaluation are:

1. Correct Diagnosis: This is computed as the percentage of packets transmitted by

misbehaving senders, which are correctly diagnosed by the receiver (i.e., by the

39

diagnosis scheme) as packets from a misbehaving sender. A packet received at the

receiver R from a sender S is classified to be from a misbehaving sender only if the

measured deviation over the previous W packets from S is greater than Thresh, as

explained in Chapter 4.3.

2. Misdiagnosis: This is computed as the percentage of packets sent by well-behaved

senders which are wrongly diagnosed by the receiver as packets from misbehaving

senders.

3. Average throughput of well-behaved hosts: This is the average throughput per well-

behaved sender.

4. Misbehaving host throughput: This is the average throughput per misbehaving

sender.

6.2 Misbehavior Models

We evaluate our protocols under two misbehavior models that capture the behavior of a

misbehaving host. The first model, termed the “Persistent Misbehavior Model”, captures

the behavior of a misbehaving host that always misbehaves using a fixed strategy. In this

model, we characterize various levels of misbehavior, with a parameter called “Percent-

age of Misbehavior” (PM). A misbehaving host with PM=x% transmits a packet after

counting down to (100-x)% of the assigned backoff value. The PM parameter is used

to quantify the magnitude of misbehavior, with larger values of PM indicating greater

misbehavior. Hence, a host with PM=0% fully counts down the assigned backoff and is

well-behaved, whereas a host with PM=100% transmits a packet without counting down

any backoff at all. Misbehaving hosts persist with this behavior irrespective of the magni-

tude of assigned backoff. This captures the behavior of a host which misbehaves without

adapting to the assigned penalties. Although, this is a simple misbehavior model, we use

this model for for most simulations to simplify the evaluation.

40

The second model we use, termed as “Adaptive Misbehavior Model”, captures the be-

havior of a misbehaving host which changes the magnitude of misbehavior based on the

magnitude of penalty assigned by the receiver. This is intended to model a misbehaving

host which tries to obtain a higher throughput share without getting caught. This model

also uses a variable called “Percentage of Misbehavior” (PM) that is used to decide what

fraction of the assigned backoff a host will wait for, as described for the persistent mis-

behavior model. However, the value of this variable is changed based on the penalty

assigned by the receiver. If the receiver assigns a penalty, misbehaving sender decreases

its PM, and in the absence of a penalty, PM is increased. Intuitively, the misbehaving

host tries to misbehave more when the receiver cannot diagnose the misbehavior (and

therefore does not assign a penalty). In this model, PM is initially set to 0. For every

packet transmission not assigned a penalty by the receiver (penalty is said to be not

assigned, if assigned backoff is not greater than CWmin), the value of PM is increased

by a additive factor called “Additive Increase Percentage”. If a penalty is assigned, then

the value of PM is reduced by half (multiplicative decrease). In our evaluations, we vary

the “Additive Increase Percentage” from 1% to 20% to model varying aggressiveness of

misbehavior.

6.3 Results for protocol performance in the absence

of misbehavior

We first evaluate the performance of our protocol (without the extensions proposed in

Chapter 5) in the absence of misbehavior. The proposed scheme adds a penalty for ev-

ery observed deviation from the protocol. With varying channel conditions between the

sender and the receiver, well-behaved senders may be incorrectly designated as deviating,

and some penalty may be added, possibly degrading their throughput. Hence, we evalu-

ate our protocol in the absence of misbehavior, to characterize the effect of occasionally

41

penalizing well-behaved hosts. Our evaluation indicates that the average throughput, as

well as the fairness of the proposed scheme, is comparable to that of IEEE 802.11 in the

absence of misbehavior.

The number of senders communicating with the receiver R is varied from 1 to 64 (replac-

ing the 8 senders in Figure 6.1). All senders are well-behaved. Figure 6.2 compares the

average throughput obtained by hosts when using IEEE 802.11 (curve “802.11”) with

that obtained when using the proposed scheme (curve “CORRECT”) for varying net-

work sizes under ZERO-FLOW, ONE-FLOW, and TWO-FLOW scenarios. As we can

see from the figure, the average throughput obtained when using the proposed scheme is

comparable with IEEE 802.11 across different network sizes (the two curves almost over-

lap in Figure 6.2). Hence, the penalty scheme does not degrade the aggregate throughput

of the network.

We are also interested in comparing the fairness properties of the penalty scheme with

that obtained using IEEE 802.11. We use Jain’s Fairness Index [29] as a fairness metric,

defined as,

Fairness Index =
(
∑

f Tf)
2

N ∗
∑

f T 2
f

where Tf represents the throughput of a flow f (between a sender host and receiver R),

and N is total the number of flows. Fairness index values closer to 1 indicate better

fairness. Figure 6.3 compares the fairness index of IEEE 802.11 and the penalty scheme

for varying network sizes under ZERO-FLOW, ONE-FLOW and TWO-FLOW scenar-

ios. For the ZERO-FLOW scenario, the fairness index of penalty scheme is comparable

to that of IEEE 802.11. For the ONE-FLOW and TWO-FLOW scenarios, the fairness

index of our scheme is slightly lesser that that of 802.11. This indicates that our scheme

degrades the throughput of some senders minimally, while increasing the throughput of

some other senders, since the average throughput (Figure 6.2) is the same as in IEEE

802.11. This is because, in ONE-FLOW and TWO-FLOW scenarios, a few sender hosts

42

1

4

16

64

256

1024

4096

10 20 30 40 50 60

T
hr

ou
gh

pu
t (

K
bp

s
pe

r
no

de
)

(l
og

sc
al

e)

Number of sender nodes

ZERO-FLOW

802.11
CORRECT

1
2
4
8

16
32
64

128
256
512

1024

10 20 30 40 50 60T
hr

ou
gh

pu
t (

K
bp

s
pe

r
no

de
)

(l
og

sc
al

e)

Number of sender nodes

ONE-FLOW

802.11
CORRECT

1
2
4
8

16
32
64

128
256
512

1024

10 20 30 40 50 60

T
hr

ou
gh

pu
t (

K
bp

s
pe

r
no

de
)

(l
og

sc
al

e)

Number of sender nodes

TWO-FLOW

802.11
CORRECT

Figure 6.2 Throughput comparison without misbehavior for varying network sizes

0

0.5

1

1.5

2

10 20 30 40 50 60

Fa
ir

ne
ss

 in
de

x

Number of sender nodes

ZERO-FLOW

802.11
CORRECT

0

0.5

1

1.5

2

10 20 30 40 50 60

Fa
ir

ne
ss

 in
de

x

Number of sender nodes

ONE-FLOW

802.11
CORRECT

0

0.5

1

1.5

2

10 20 30 40 50 60

Fa
ir

ne
ss

 in
de

x

Number of sender nodes

TWO-FLOW

802.11
CORRECT

Figure 6.3 Comparison of fairness index between IEEE 802.11 and proposed scheme

occasionally appear to be deviating from the protocol (from the perspective of the re-

ceiver), leading to the addition of a penalty, and thereby resulting in a slight degradation

in their throughput. However, the penalty added in those cases is small, resulting in

fairness index that is still close to that of 802.11.

There is a trade-off involved between penalizing misbehaving hosts versus ensuring the

fairness of well-behaved hosts. If we use a conservative approach of adding smaller penal-

ties, then misbehaving hosts may obtain a higher throughput share. On the other hand,

an aggressive strategy of adding larger penalties may unnecessarily penalize some well-

behaved hosts, degrading fairness. We balance this to an extent by penalizing hosts in

proportion to their measured deviation. Thus, large penalties are assigned to misbehav-

ing hosts with significant levels of misbehavior, while minimal penalty is assigned for

misdiagnosed hosts.

43

6.4 Results for persistent misbehavior model

In this section, we evaluate our proposed scheme (without the extensions of Chapter

5), under the persistent misbehavior model. The protocol parameters W and Thresh

are used by the diagnosis scheme to identify misbehaving hosts, and α is used by the

penalty scheme for computing the penalty. W has to be chosen to be a small value to

allow reasonably fast misbehavior diagnosis. Thresh also has to be reasonably small (a

few slots per packet) for diagnosing most misbehavior, but not too small so as to reduce

misdiagnosis. Similarly, α has to be close to one to penalize most misbehavior. Based on

this intuition, W, Thresh and α are set to 5 packets, 20 slots (i.e., 4 slots per packet) and

0.9 respectively (simulation results are similar with other reasonable values of W, Thresh

and α as well). Adaptive selection of protocol parameters based on channel conditions

has been deferred to future work.

6.4.1 Diagnosis Accuracy

Figure 6.4 plots the correct diagnosis percentage and misdiagnosis percentage for the

ZERO-FLOW, ONE-FLOW and TWO-FLOW scenarios. In the ZERO-FLOW scenario,

misdiagnosis percentage is close to 0, and the correct diagnosis percentage is quite high

once the extent of misbehavior becomes high. We observe a sharp increase in the cor-

rect diagnosis percentage when PM increases above 50%. Since we have conservatively

selected the Thresh parameter (host is designated as misbehaving only when the total de-

viation for previous W=5 packets is greater than Thresh=20 slots), the correct diagnosis

percentage is small when the extent of misbehavior is less (however, with the benefit of

low misdiagnosis percentage). As the misbehavior increases, the observed deviation rises

above Thresh=20 slots, and there is a rapid increase in the correct diagnosis percentage.

Similarly for the ONE-FLOW scenario, the correct misbehavior percentage is quite high.

In the ONE-FLOW scenario, flow C-D is on, resulting in misdiagnosis of some hosts,

44

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

Pe
rc

en
ta

ge

Percentage of misbehavior

ZERO-FLOW

Correct Diagnosis
Misdiagnosis

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

Pe
rc

en
ta

ge

Percentage of misbehavior

ONE-FLOW

Correct Diagnosis
Misdiagnosis

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

Pe
rc

en
ta

ge

Percentage of misbehavior

TWO-FLOW

Correct Diagnosis
Misdiagnosis

Figure 6.4 Diagnosis accuracy for varying magnitude of misbehavior

but the misdiagnosis percentage is small because our choice of protocol parameters is

conservative.

In the TWO-FLOW scenario, correct diagnosis percentage is fairly high even when the

extent of misbehavior is small, but at the price of a higher misdiagnosis percentage.

In this scenario, both traffic flows A-B and C-D are on leading to an increase in the

magnitude of the observed deviations over the ZERO-FLOW scenario. As a result, the

Thresh value is not sufficiently high to prevent misdiagnosis. Hence, we observe higher

misdiagnosis percentage as well as higher correct diagnosis percentage. Thus, there is a

trade-off involved in achieving low misdiagnosis percentage versus achieving high correct

diagnosis percentage.

6.4.2 Throughput in the presence of misbehavior

Figure 6.5 compares the throughput obtained by a misbehaving host (designated as MSB)

using the proposed scheme (designated as CORRECT) with that obtained using IEEE

802.11 protocol (designated as 802.11). The figure also plots the average throughput

obtained by the 7 well-behaved senders (1, 2, and 4 through 8) when using both the

schemes (designated as AVG). We define fair share as the throughput obtained by a

host when it is using IEEE 802.11 protocol and fully conforming to the protocol (i.e.,

PM=0%). As seen from the figure, throughput of the misbehaving host (“CORRECT -

MSB” curve) is restricted to its fair share (except when PM is close to 100%), while for

45

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s
pe

r
no

de
)

Percentage of misbehavior

ZERO-FLOW

802.11 -AVG
CORRECT -AVG
802.11 - MSB
CORRECT - MSB

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s
pe

r
no

de
)

Percentage of misbehavior

ONE-FLOW

802.11 -AVG
CORRECT -AVG
802.11 - MSB
CORRECT - MSB

0
100
200
300
400
500
600
700
800
900

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s
pe

r
no

de
)

Percentage of misbehavior

TWO-FLOW

802.11 -AVG
CORRECT -AVG
802.11 - MSB
CORRECT - MSB

Figure 6.5 Throughput comparison between IEEE 802.11 and proposed scheme

802.11 (“802.11 - MSB” curve), the misbehaving host obtains a large throughput share

even when extent of misbehavior is not too high. In addition, the throughput of well-

behaved hosts using the proposed scheme (“CORRECT - AVG” curve) is not affected,

except when PM is close to 100%. On the other hand, the throughput of well-behaved

hosts using IEEE 802.11 (“802.11 - AVG” curve) starts degrading even when extent of

misbehavior is not too high. Hence, the proposed penalty scheme is fairly successful in

ensuring reasonable throughput for well-behaved hosts, in the presence of misbehaving

hosts. When PM is close to 100%, the misbehaving host backs off for a small frac-

tion of the assigned backoff, and consequently the proposed scheme cannot restrict the

throughput of the misbehaving host. However, we can see from Figure 6.4 that the

correct diagnosis percentage is significantly high when PM is close to 100%, and in this

case, higher layers can be informed of the host misbehavior (as discussed in Chapter 4.3).

6.4.3 Responsiveness of Diagnosis Scheme

Figure 6.6(a) shows the variation of correct diagnosis percentage with time, measured

using the TWO-FLOW scenario, for a persistent misbehaving sender with PM% mis-

behavior. We measure the correct diagnosis percentage over 1 second intervals starting

from time 0, and the results are averaged over 30 runs. For example, the correct di-

agnosis percentage plotted at 1 second is computed based on the packets received in

the interval [1,2] seconds. As seen from Figure 6.6(a) the correct diagnosis percentage

46

rapidly reaches a upper threshold, with the value of the threshold dependent on the ex-

tent of misbehavior. For example, when the extent of misbehavior is large (PM=80%),

the correct diagnosis percentage is consistently above 90%, while it is around 60% when

extent of misbehavior is small (PM=40%). With mild misbehavior, the diagnosis scheme

cannot always diagnose misbehavior, and thus the correct diagnosis percentage stabilizes

at a lower level. We can increase the correct diagnosis percentage by modifying the W

and Thresh parameters of the diagnosis scheme, but that may increase the misdiagnosis

percentage.

Figure 6.6(b) plots the variation of correct diagnosis percentage for a misbehaving sender

(namely sender 3) that picks a fixed backoff interval for all packets, irrespective of the

backoff assigned by the receiver. In the figure, CONST=1 models a misbehaving sender

waiting for exactly 1 idle slot before transmitting a RTS (irrespective of the backoff as-

signed by the sender), and similarly CONST=16 models a misbehaving sender waiting

for exactly 16 idle slots before transmitting a RTS. We can see from the figure that the

correct diagnosis percentage reaches a high value at the end of the first 1 second inter-

val itself, implying misbehavior is quickly identified. The penalty added by the penalty

scheme increases when a misbehaving host waits for a very small fraction of the pre-

viously assigned backoff. A host continuing to misbehave can be easily diagnosed as

misbehaving, since the measured deviations become large. Thus, the prediction accuracy

rapidly reaches a high value.

6.4.4 Protocol performance with random topologies

Figure 6.7 compares the protocol performance for 30 different random topologies. 40

hosts are placed at random locations in a 1500m by 700m area. 5 hosts, selected at ran-

dom, are misbehaving. Each host sets up a CBR connection with one of its neighbors,

and the connections are always backlogged. Figure 6.7(a) plots the correct diagnosis

percentage and misdiagnosis percentage for different PM (Percentage of Misbehavior)

47

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45

C
or

re
ct

 d
ia

gn
os

is
 p

er
ce

nt
ag

e

Time Interval

Partially Compliant Sender

PM=80%
PM=60%
PM=40%

(a) Partially compliant sender

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45

C
or

re
ct

 d
ia

gn
os

is
 p

er
ce

nt
ag

e

Time Interval

Constant Backoff values

CONST=16
CONST=1

(b) Non-conformant sender

Figure 6.6 Evaluation of responsiveness of misbehavior diagnosis scheme

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

Pe
rc

en
ta

ge

Percentage of misbehavior

Diagnosis Accuracy

Correct Diagnosis
Misdiagnosis

(a) Diagnosis Accuracy

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s
pe

r
no

de
)

Percentage of misbehavior

Throughput Comparison

802.11 -AVG
CORRECT -AVG
802.11 - MSB
CORRECT - MSB

(b) Throughput comparison

Figure 6.7 Protocol performance for random topology with 40 hosts in 1500m X 700m
area

values. As we can see from the figure, the correct diagnosis percentage is high when ex-

tent of misbehavior is large, and the misdiagnosis percentage is reasonably small across

all values of PM. Figure 6.7(b) compares the throughput obtained by the misbehaving

hosts and the average throughput, for IEEE 802.11 and the proposed penalty scheme

(the notations used are those described earlier for Figure 6.5). When the extent of mis-

behavior is small, the penalty scheme is fairly successful in restricting the misbehaving

hosts to a fair share, thereby ensuring that the throughput of well-behaved hosts are not

affected. When the extent of misbehavior is large, the penalty scheme is not as successful,

but the misbehavior is diagnosed with high probability (as seen from Figure 6.7(a)).

48

6.5 Results for adaptive misbehavior model

We have proposed the penalty scheme as a mechanism to discourage misbehavior. By

adding a penalty, hosts that ignore the penalty have higher probability of being detected.

In this section, we evaluate the benefit a misbehaving host can obtain, while not ignoring

the assigned penalty. We assume that the misbehaving host follows the adaptive misbe-

havior strategy defined earlier.

Figure 6.8(a) plots the correct diagnosis percentage when the misbehaving host uses an

adaptive misbehavior strategy. As we can see from the figure, the misbehaving host can

evade diagnosis most of the times (low diagnosis accuracy) in all three flow scenarios, but

the accuracy improves when the misbehaving host uses an aggressive misbehavior policy

(large additive increase percentages).

The low diagnosis accuracy has to be compared with the throughput obtained by the

misbehaving host, shown in Figure 6.8(b). In the figure, for the three curves, the value

when Additive Increase Percentage is equal to 0 is the throughput the misbehaving host

would have obtained if it was well-behaved. The ZERO-FLOW curve starts at a higher

value than the other two curves, because in the ZERO-FLOW scenario there is no back-

ground traffic, allowing all hosts to obtain higher throughput. For each of the curves,

with increasing additive increase percentage, there is an increase in the throughput,

till a saturation level is reached. This indicates that the misbehaving host gains some

throughput advantage, but the benefit is not significant, as can be seen from the figure.

This throughput gain is obtained because the penalty added by the penalty scheme is

conservatively chosen to ensure large penalties are not assigned to well-behaved hosts.

Although, adaptive misbehaving hosts may gain some throughput advantage by exploit-

ing the conservative penalty scheme, in the absence of the penalty scheme, misbehaving

hosts can obtain significantly larger benefits (e.g., comparing with the “802.11 - MSB”

49

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

C
or

re
ct

 D
ia

gn
os

is
 P

er
ce

nt
ag

e

Additive Increase Percentage

ZERO-FLOW
ONE-FLOW
TWO-FLOW

(a) Diagnosis Accuracy

0

50

100

150

200

250

0 5 10 15 20

T
hr

ou
gh

pu
t (

K
bp

s)

Additive Increase Percentage

ZERO-FLOW
ONE-FLOW
TWO-FLOW

(b) Throughput comparison

Figure 6.8 Protocol performance with adaptive misbehavior

curve in Figure 6.5).

6.6 Results for extensions to the protocol

In this section, we evaluate the optional extensions to the protocol for reducing mis-

diagnosis, discussed in Chapter 5.2. As we noted there, by modifying the receiver to

conservatively classify slots as idle, we can reduce misdiagnosis, but allow a misbehaving

host to gain larger throughput. To ascertain the impact of the extension, we evaluate

the extended protocol under adaptive misbehavior model.

With the modified protocol, the misdiagnosis percentage is zero for all three scenarios

(we have not included that figure here as the curves overlap with x-axis). Figure 6.9(a)

plots the correct diagnosis percentage for the modified protocol. As we can see from

the figure, the diagnosis accuracy is lower than that obtained with the base protocol

under adaptive misbehavior model (Figure 6.8(a)). The low diagnosis accuracy is a con-

sequence of conservatively classifying some busy slots to be idle, thereby not diagnosing

some misbehavior instances. However, the diagnosis accuracy is high under persistent

misbehavior model (those results are similar to the results for the base protocol and are

50

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

C
or

re
ct

 D
ia

gn
os

is
 P

er
ce

nt
ag

e

Additive Increase Percentage

ZERO-FLOW
ONE-FLOW
TWO-FLOW

(a) Diagnosis Accuracy

0

50

100

150

200

250

0 5 10 15 20

T
hr

ou
gh

pu
t (

K
bp

s)

Additive Increase Percentage

ZERO-FLOW
ONE-FLOW
TWO-FLOW

(b) Throughput comparison

Figure 6.9 Performance with extensions to protocol

omitted here). The throughput curves for the extended protocol in Figure 6.9(b) are also

similar to that of the base protocol (Figure 6.8(b)), with the misbehaving host obtaining

only a small increase in throughput. Hence, the extension to the protocol does not allow

a misbehaving host to gain significant benefits. We postpone for future work evaluation

of the extended protocol under alternate misbehavior strategies that may be designed to

specifically exploit these protocol extensions.

51

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we identified certain selfish misbehavior possible in IEEE 802.11 networks.

With the growing popularity of IEEE 802.11 based wireless networks, handling selfish

misbehavior is necessary to ensure a reasonable throughput share for well-behaved hosts

in the presence of misbehaving hosts. We presented simple modifications to IEEE 802.11

that preserve most of the features of IEEE 802.11 MAC protocol, while enabling de-

tection of misbehavior. A key contribution of the thesis was to demonstrate that even

simple modifications to a protocol can greatly improve its resilience to misbehavior. We

also proposed a scheme to penalize misbehaving hosts. The combination of diagnosis and

penalty schemes ensures that selfish hosts are detected or prevented from misbehaving.

We proposed extensions to the base protocol to enable detection of more sophisticated

receiver misbehavior, and outlined techniques to reduce misdiagnosis.

Future work includes detecting other types of host misbehavior, such as a host using

multiple MAC addresses for obtaining higher bandwidth share, with the support of higher

layers. Designing strategies for combining information from multiple observers, as well

as optimally placing the observers are also part of future work. Another area of research

is adaptive selection of protocol parameters.

52

REFERENCES

[1] IEEE Standard for Wireless LAN-Medium Access Control and Physical Layer Spec-

ification, P802.11, 1999.

[2] F. Stajano and R. Anderson, “The Resurrecting Duckling: Security Issues for Ad-hoc

Wireless Networks,” in Security Protocols, 7th International Workshop Proceedings,

vol. 2133 of LNCS, Springer, April 1999, pp. 172–194.

[3] J. Hubaux, L. Buttyan, and S. Capkun, “The Quest for Security in Mobile Ad Hoc

Networks,” in Proceedings of ACM Symposium on Mobile Ad Hoc Networking and

Computing (MobiHOC), Long Beach, CA, October 2001.

[4] L. Buttyan and J. H. (eds), “Report on a Working Session on Security in Wireless Ad

Hoc Networks,” Mobile Computing and Communications Review, vol. 6, November

2002.

[5] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in

Mobile Ad hoc Networks,” in Proceedings of Mobile Computing and Networking,

2000, pp. 255–265.

[6] S. Buchegger and J. Le Boudec, “Nodes Bearing Grudges: Towards Routing Security,

Fairness, and Robustness in Mobile Ad Hoc Networks,” in Proceedings of the Tenth

Euromicro Workshop on Parallel, Distributed and Network-based Processing, Canary

Islands, Spain, IEEE Computer Society, January 2002, pp. 403 – 410.

53

[7] S. Buchegger and J. Le Boudec, “Performance Analysis of the CONFIDANT Pro-

tocol: Cooperation Of Nodes — Fairness In Dynamic Ad-hoc NeTworks,” in Pro-

ceedings of IEEE/ACM Symposium on Mobile Ad Hoc Networking and Computing

(MobiHOC), Lausanne, CH, IEEE, June 2002.

[8] L. Buttyan and J. Hubaux, “Stimulating Cooperation in Self-Organizing Mobile Ad

Hoc Networks,” Tech. Rep. DSC/2001/046, EPFL-DI-ICA, August 2001.

[9] L. Buttyan and J. Hubaux, “Enforcing Service Availability in Mobile Ad-Hoc

WANs,” in Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking

and Computing (MobiHOC), Boston, MA, USA, August 2000.

[10] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP Congestion Control

with a Misbehaving Receiver,” ACM Computer Communications Review,, pp. 71–78,

October 1999.

[11] D. Ely, N. Spring, D. Wetherall, S. Savage, and T. Anderson, “Robust Congestion

Signaling,” in Proceedings of the 2001 International Conference on Network Proto-

cols,Riverside, CA, November 2001.

[12] P. Michiardi and R. Molva, “Game theoretic analysis of security in mobile ad hoc

networks,” Tech. Rep. RR-02-070, Institut Eurecom, April 2002.

[13] A. B. MacKenzie and S. B. Wicker, “Stability of Multipacket Slotted Aloha with

Selfish Users and Perfect Information,” in Proceedings of Infocom 2003, San Fran-

cisco, CA, IEEE, April 2003.

[14] A. B. Mackenzie and S. B. Wicker, “Game Theory and the Design of Self-

Configuring, Adaptive Wireless Networks,” IEEE Communications Magazine,

vol. 39, no. 11, pp. 126– 131, 2000.

[15] J. Konorski, “Protection of Fairness for Multimedia Traffic Streams in a Non-

cooperative Wireless LAN Setting,” in PROMS, vol. 2213 of LNCS, Springer, 2001.

54

[16] J. Konorski, “Multiple Access in Ad-Hoc Wireless LANs with Noncooperative Sta-

tions,” in NETWORKING, vol. 2345 of LNCS, Springer, 2002.

[17] Y. Zhang and W. Lee, “Intrusion detection in wireless ad-hoc networks,” in Pro-

ceedings of Mobile Computing and Networking, 2000, pp. 275–283.

[18] D. J. Burroughs, L. F. Wilson, and G. V. Cybenko, “Analysis of Distributed Intru-

sion Detection Systems Using Bayesian Methods,” in Proceedings of IEEE Interna-

tional Performance Computing and Communication Conference, April 2002.

[19] W. H. Sanders, M. Cukier, F. Webber, P. Pal, and R. Watro, “Probabilistic Valida-

tion of Intrusion Tolerance,” in Digest of Fast Abstracts: The International Confer-

ence on Dependable Systems and Networks, Bethesda, Maryland, June 2002.

[20] K. Goseva-Popstojanova, F. Wang, R. Wang, F. Gong, K. Vaidyanathan, K. Trivedi,

and B.Muthusamy, “Characterizing Intrusion Tolerant Systems using a State Tran-

sition Model,” in Proceedings of DARPA Information Survivability Conference and

Exposition II (DISCEX‘01), 2001.

[21] P. Kyasanur and N. H. Vaidya, “Detection and Handling of MAC Layer Misbehav-

ior in Wireless Networks,” in Proceedings of the 2003 International Conference on

Dependable Systems and Networks, San Francisco, CA, June 2003, pp. 173–182.

[22] P. Kyasanur and N. H. Vaidya, “Detection and Handling of MAC Layer Misbehavior

in Wireless Networks,” tech. rep., Coordinated Science Laboratory, University of

Illinois at Urbana-Champaign, August 2002.

[23] D. E. Knuth, The Art of Computer Programming, vol. 2, ch. 3, pp. 10–17. Addison-

Wesley, 3 ed., 2000.

[24] V. Poor, An Introduction to Signal Detection and Estimation, vol. 1, ch. 2, pp. 22–29.

Springer-Verlag, 2 ed., 1994.

55

[25] F. Cali, M. Conti, and E. Gregori, “IEEE 802.11 Protocol: Design and Performance

Evaluation of an Adaptive Backoff Mechanism,” IEEE Journal on Selected Areas in

Communication, vol. 18, no. 9, 2000.

[26] R. Rozovsky and P. R. Kumar, “SEEDEX: A MAC protocol for ad hoc networks.,”

in Proceedings of ACM Symposium on Mobile Ad Hoc Networking and Computing,

October 2001, pp. 67–75.

[27] P. Karn, “MACA - A New Channel Access Method for Packet Radio,” in Proceedings

of 9th Annual ARRL Networking Conference, London, Ontario, Cananda, 1990.

[28] K. Fall and K. Varadhan, “ns notes and documentation,” tech. rep., UC Berkley,

LBL, USC/ISI, Xerox PARC, 2002.

[29] R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, call establishment latency

and other performance metrics,” Tech. Rep. ATM Forum/96-1173, ATM Forum

Document, August 1996.

56

