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ABSTRACT

Performance Issues in Mobile
Wireless Networks. (August 1996)
P. Krishna, B.S.(Hons.), Regional Engineering College, Rourkela, India;
M.S., Texas A&M University

Co—Chairs of Advisory Committee: Dr. Dhiraj K. Pradhan
Dr. Nitin H. Vaidya

The research presented in this dissertation deals with the following performance
issues in mobile wireless networks: recovery, location management and routing.

The mobile wireless environment poses challenging fault-tolerant data manage-
ment problems due to the mobility of the users, limited bandwidth on the wireless
link, and power restrictions on the mobile hosts. Thus, traditional fault-tolerance
schemes cannot be directly applied to these systems. To this effect, extensions to
existing traditional recovery schemes are presented which suit this environment. An-
alytical models are built to analyze the performance of these schemes to determine
those environments where a particular recovery scheme is best suited. The trade-off
parameters to evaluate the recovery scheme are identified. It is determined that in ad-
dition to the failure rate of the host, the performance of a recovery scheme depended
on the mobility of the hosts and the wireless bandwidth.

In order to communicate with a user, one needs to know their location. The
network thus faces a problem of continuously keeping track of the location of every
user. An important issue in mobile wireless networks is the design and analysis of
location management schemes. This dissertation presents the design and analysis of

centralized and distributed location management schemes. Significant performance



v

improvements are obtained over existing protocols.

Dynamic mobile wireless networks consist of mobile hosts which can communicate
with each other over the wireless links (direct or indirect) without any static network
interaction. In such networks the mobile host has the capability to communicate
directly with another mobile host in its vicinity. The mobile hosts also have the
capability to forward (relay) packets. The problem in hand is the complexity of
updating the routing information in such a dynamic network. The dynamism in
the network is due to host mobility, and disconnections. This dissertation presents
a cluster-based methodology for routing in such dynamic networks. Algorithms for
cluster creation and maintenance are presented and analyzed. Compared to existing
and conventional routing protocols, the proposed cluster-based approach incurs lower

overhead during topology updates and also provides quicker reconvergence.
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CHAPTER 1

INTRODUCTION

Mobile wireless network gives users information access regardless of their location.
Users of portable computers carry their laptops with them whenever they move from
one place to another and would like to maintain transparent network access through
a wireless link. With the availability of wireless interface cards, mobile users are no
longer required to remain confined within the static network premises to get network
access. A host that can move while retaining its network connection is a mobile host
(mh) [31].

Mobility is not the same as wirelessness. Mobile host is one who has ability to
communicate anytime anywhere. On the other hand, a wireless host is one which is
physically untethered by a communication link, which is a capability of the physical
media in use. Clearly, wirelessness enables greater mobility than is possible with
wired communications. However, wide area network (WAN) mobility does not always
require wirelessness. It is easy to conceive ubiquitous internet ports which would
support mobility but not require wireless access. One could take a portable computer
from place to place, connecting via network taps to send and receive data; this would
comprise a mobile capability without involving any wireless technology.

Conversely, a wireless capability in a host does not necessarily imply unlimited
mobility. There are a number of wireless local area networks (LANs) [20, 31] which,
although free from the physical constraints of cables, cannot be considered to be

WANSs because of their limited range of operation.

The journal model is IEEE Transactions on Computers.



A. Classification of Mobile Wireless Networks

Mobile wireless networks can be classified broadly into two types : Infrastructure

networks and Dynamic networks.

1. Infrastructure Networks

Infrastructure networks are two tiered networks composed of a static backbone net-
work and peripheral wireless networks [9, 51, 58]. The static network comprises of
fixed hosts and communication links between them. Some of the fixed hosts, called
mobile support stations (MSS)' are augmented with a wireless interface, and, they
provide a gateway for communication between the wireless network and the static
network. Due to the limited range of wireless transceivers, a mobile host can commu-
nicate with a mobile support station only within a limited geographical region around
it. This region is referred to as a mobile support station’s cell. A mobile host com-
municates with one MSS at any given time. MSS is responsible for forwarding data
between the mobile host and static network. Communication to and from the mobile
host takes place via the static network. An example of infrastructure networks is the

new Personal Communication Systems (PCS) [20, 31].

2. Dynamic Networks

Dynamic networks consist of mobile hosts which can communicate with each other
over the wireless links (direct or indirect) without any static network interaction.
In such networks the mobile host has the capability to communicate directly with
another mobile host in its vicinity. The mobile hosts also have the capability to

forward (relay) packets. Examples of such networks are ad-hoc wireless local area

!Mobile support stations are also called base stations.



networks [17, 39, 47, 61] and packet radio networks [16, 40, 42, 59]. The term ad-hoc
network is in conformance with current usage within the IEEE 802.11 subcommit-
tee [17].

Example applications of such networks range from conference rooms to battle-
fields. To communicate with each other, each mobile user needs to connect to a static
network (wide area network, satellite network). However, there might be situations
where connecting each mobile user to a static network may not be possible due to
lack of facilities, or it may be expensive. In such situations, it would be preferable
for the mobile users to set up communication links between themselves without any

static network interaction [39].

B. Limitations and Challenges of Mobile Wireless Networks

The technical challenges that mobile computing must surmount to achieve its po-
tential are far from trivial. Some of the challenges in designing protocols for mobile
computing systems are quite different from those involved in the design of protocols
for today’s “immobile” networked systems. In the following we list the limitations

and challenges.

e Wireless Bandwidth: The bandwidth on the wireless medium is much lower
than the wired medium. Cutting-edge products for portable wireless communi-
cations achieve only 2 Mbps for local area networks [20]. The bandwidth avail-
ability in wide area wireless networks are much lower; in the order of tens of
Kbps (e.g., 19.2 Kbps for Cellular Digital Packet Data (CDPD) networks [15]).
Limitations on network bandwidth affect the performance of distributed proto-

cols and applications that require bulk data transfer over the wireless link.



e Unreliable Wireless Link: While the wired links on the static network offer
a virtually error free transmission medium ( Bit Error Rates (BER) of the order
of 1078 to 107'?), wireless links are much more unreliable. BER in wireless
links is of the order of 1072 to 107%, and they are highly sensitive to the direc-
tion of propagation, multipath fading, and other interference [9, 51]. Network
protocols such as TCP, ATM do not work well in wireless networks because
they were tailored for environments which offer a relatively stable and error free

transmission medium, unlike the much more hostile and error prone wireless

medium [6, 7, 8, 14].

e Mobility of Hosts: Wireless connection enables virtually unrestricted mobility
and connectivity from any location within the area of radio coverage. Mobility
is an important new component that will have far-reaching consequences for
system design. An important issue that stems out of mobility of hosts is design
and analysis of location management schemes in infrastructure networks [36,
37,49, 50, 57, 58]. In dynamic networks, mobility of hosts causes the network
topology to change. This in turn complicates the design of routing protocols in
such networks [16, 39,47, 59, 61]. Mobility also affects the design of applications.
In a client-server environment, mobile clients may find themselves far away from
their servers; servers may also move further away from their clients. Thus, the
system will have to adapt to changing spatial distribution of clients by dynamic

replication of data and services (for example [31]).

e Available Storage on Mobile Computers: The storage space available on
a mobile computer is limited by physical size and power requirements. Tradi-
tionally, disks provide large amounts of stable (non-volatile) storage. However,

in a mobile computer, disks are a liability. This is because, they consume more



power than memory chips. Moreover, they may not really be nonvolatile when
subject to the harsh environment that a portable computer faces [3]. This will
require any critical data (e.g., database logs, process checkpoint) to be stored
elsewhere other than the mobile computer. This in turn will impact performance

of protocols (e.g., recovery protocols) that require these critical data [1, 48, 65].

e Disconnections : Mobile units run on batteries; with limited capacity [20, 31].
Limitations in battery power and bandwidth make disconnections from the net-
work very frequent. Disconnections have various degrees depending on band-
width availability. Because of their frequency, disconnections must be treated
differently than failures or crashes. The difference between disconnection and
failure is its elective nature. Disconnections are to be treated as planned fail-
ures which can be anticipated and prepared for [20, 31, 68]. Disconnections
cause the network topology to change in dynamic networks. This is because the

disconnected mobile host can no longer be used for forwarding data.

These limitations and challenges have significant effect on the design and perfor-
mance of distributed algorithms, application recovery protocols, location management
protocols, routing protocols, file systems, database systems, and transport protocols,

for mobile wireless networks.

C. Overview of the Thesis

As our discussion in the previous section indicates, mobile computing is a large and
rapidly expanding area with number of problems yet to be solved. Since it is im-
possible to study the entire area in any depth in a single dissertation, we limit our
scope to only some of the issues. The research presented in this thesis deals with the

following issues:



e Application level recovery in infrastructure networks
e Location management in infrastructure networks

e Routing in dynamic networks

1. Recovery Issues

The mobile computing environment poses challenging fault-tolerant data management
problems due to the mobility of the users, limited bandwidth on the wireless link,
and power restrictions on the mobile hosts. Thus, traditional fault-tolerance schemes
cannot be directly applied to these systems. In this work we investigate the limitations
of the mobile wireless environment, and its impact on recovery protocols. To this
effect, extensions to existing traditional recovery schemes are presented which suit
this environment. We build analytical models to analyze the performance of these
schemes to determine those environments where a particular recovery scheme is best
suited. The trade-off parameters to evaluate the recovery scheme are identified. It
is determined that in addition to the failure rate of the host, the performance of a

recovery scheme depended on the mobility of the hosts and the wireless bandwidth.

2. Location Management

An important issue in personal communication networks is the design and analysis
of location management schemes. We classify the location management schemes into

centralized and distributed schemes.

a. Centralized Location Management

Centralized location management schemes assume that each host has a home server

named the home location server (HLS) which maintains the current location of the



host. There are existing standards for carrying out location management in a central-
ized manner, e.g., EIA/TIA Interim Standard 41 (IS-41) [58]. However, these schemes
are not efficient, due to increase in network load and location management costs. To
overcome these drawbacks, we propose forwarding techniques that augment the I5-41
scheme to provide efficient location management. Although, forwarding reduces net-
work load during updates, they may increase search cost due to long chain lengths.
We propose heuristics to limit the number of forwarding pointers traversed during a
search. We build analytical models to compare the performance of the proposed ap-
proach with the IS-41 scheme. We also present a strategy to perform search-updates.
A search-update occurs after a successful search, when the location information cor-
responding to the searched mobile host is updated at some hosts. Analysis shows that
for some network parameter values, performing search-updates significantly reduces

the search costs and total network load.

b. Distributed Location Management

Studies have indicated that in centralized location management schemes such as IS-
41, the bottleneck is the HLS [57, 58]. For a typical PCS environment, the HLS is
expected to experience a high update rate, and a very high search (or call-delivery)
rate [38]. It is thus evident that new network architectures need to be investigated
for PCS. In this work we use a network architecture that consists of a hierarchy of
location servers so that there is no single bottleneck in the network. We propose static
and adaptive location management schemes for this network architecture. A suite of
schemes is proposed, however, it is observed that no scheme outperforms others for
all call-mobility patterns. Thus, in order to obtain good performance using static
location management, the system designer should a priori have a fair idea of the

call-mobility pattern of the users. However, the user behavior is not always available



to the system designer. Thus, there is a need for adaptive location management.
We propose an adaptive scheme that dynamically estimates the future user behavior
with the help of past call-mobility patterns. Results indicate that the adaptive scheme

performs better than the static schemes for a wide range of call-mobility patterns.

3. Routing Protocol

The design and analysis of routing protocols is an important issue in dynamic net-
works such as packet radio and ad-hoc wireless networks. The conventional routing
protocols were not designed for networks where the topological connectivity is subject
to frequent, unpredictable changes. Most protocols exhibit their least desirable be-
havior for highly dynamic interconnection topology. We propose a new methodology
for routing and topology information maintenance in dynamic networks. The basic
idea behind the protocol is to divide the graph into number of overlapping clusters.
A change in the network topology corresponds to a change in cluster membership.
We present algorithms for creation of clusters, as well as algorithms to maintain them
in the presence of various network events. Compared to existing and conventional
routing protocols, the proposed cluster-based approach incurs lower overhead during
topology updates and also has quicker reconvergence. The effectiveness of this ap-
proach also lies in the fact that existing routing protocols can be directly applied to

the network — replacing the nodes by clusters.

D. Thesis Organization

In Chapter II we address the recovery issues in mobile wireless networks. Chapter 111
presents the centralized location management scheme. Chapter IV presents the dis-

tributed location management scheme. The cluster-based approach for routing in



dynamic networks is presented in Chapter V. Chapter VI summarizes the results of

this thesis and discusses possible extensions.
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CHAPTER II

RECOVERY IN MOBILE ENVIRONMENT

A. Introduction

This chapter deals with design of protocols to recover from a mobile host failure in
an infrastructure mobile wireless network. The system model of the infrastructure
network is the same as explained in Chapter I.

A mobile host may become unavailable due to (i) failure of the mobile host, (ii)
disconnection of the mobile host, and (iii) wireless link failure [20, 31, 48, 65]. Loss of
battery power make disconnections from the network frequent, and sometimes unpre-
dictable. Because of their frequency, disconnections must be treated differently than
failures. The difference between disconnection and failure is its elective nature. User
initiated disconnections can be treated as planned failures, which can be anticipated
and prepared for [20, 31, 68]. The wireless link is equivalent to an intermittently
faulty link, which transmits correct messages during fault-free conditions, and stops
any transmissions upon a failure. Disconnections and weak wireless links primarily
delay the system response, whereas a host failure affects the system state.

Strategies are developed in this paper to recover from various transient faults
in the mobile host. These are faults that are typically caused by environmental
upsets (e.g., wireless link failure, power glitches at the mobile host, electromagnetic
interference, radiation, etc.) or software errors (e.g., heisenbugs [38], rarely used code
paths, etc.). Transient failures are the most common mode of failure [64]. We assume
the well known fail-silent [64] model. In this model, upon a failure at a mobile host,
the host stops executing, and its state is lost. Failure detection is performed by

requiring a mobile host to send periodic “I am alive” messages to the base station.
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Transient failure recovery requires re-execution from a known good state or a
complete restart. Checkpointing and message logging techniques have been proposed

earlier for efficient rollback and recovery with minimal loss in performance [38, 64].

Table I. Difference Between Static Wired and Mobile Wireless Networks: Recovery

Perspective
Category Static Wired Networks || Mobile Wireless Networks
Network char. Uniform, Non-varying Non-uniform, Varying
Host’s local disk Stable Unstable
Stable storage location Static Mobile
Failure rate,
Key perf. parameter Failure rate wireless bandwidth,
mobility
State-saving cost State-saving cost,
Perf. metrics Recovery cost Recovery cost,
Handoff time

It will now be discussed why traditional fault-tolerance schemes cannot be applied
to a mobile wireless environment [48, 65]. Some of the differences between static and
mobile networks are enumerated in Table I.

Traditional fault-tolerance schemes like checkpointing and message logging [38,
64] require a stable storage for saving the checkpoint and the logs. It has been
pointed out [3] that while the disk storage on a static host is stable, the stability of
any storage on a mobile host is questionable, for reasons such as dropping of laptops

or effect of airport security systems [1]. Thus, a mobile host’s disk storage cannot
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be considered stable and is vulnerable to failures. Moreover, all mobile hosts are
not necessarily equipped with disk storage. Thus, we need the stable storage to be
located on a static host. An obvious candidate is the ‘local base station’, that is
the base station in charge of the cell in which the mobile host is currently residing.
Traditional recovery schemes are not applicable because the mobile hosts move from
cell to cell. Thus, a mobile host does not have a fixed base station to communicate
with. Also, recovery is complicated because successive checkpoints of a mobile host
may be stored at different base stations. This dynamic topological situation warrants

formulation of special techniques to recover from failures.

Wireless Networks

In-Building CampusArea Wide Area Regional Area
Medium WirelessLAN, Packet Relay Cdlular Satellite
Infrared
Asynchronous
Bandwidth >1Mbps > 64 K bps 10-30Kbps Up: < 10Kbps
Down: > 1 Mbps
. Vehicular
M obility Pedestrian Pedestrian Vehlculgr Pedestrian
Pedestrian :
Stationary

Fig. 1. Classification of Wireless Networks

Traditional fault-tolerant schemes do not consider the disparity in the network
characteristics (bandwidth, error) of the static network and the wireless network. As
shown in Fig. 1, the network and user characteristics (bandwidth, mobility) also
vary with the type of wireless network used (infrared, packet relay, satellite, etc.).
Over a length of a connection, the mobile host might be employing different types of

wireless networks. For example, within a building, infrared will be used; in a campus
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environment, packet relay will be used; and in a remote region, satellite will be used.
Available wireless bandwidth and error conditions will be different in each of these
wireless networks. Thus, the appropriate recovery protocol needs to be determined
adaptively, based on the characteristics of the underlying wireless network and users.

Performance of traditional recovery schemes primarily depends on the failure rate
of the host [63, 77]. However, in a mobile environment, due to mobility of the hosts
and limited bandwidth on the wireless links, parameters other than failure rate of the
mobile host play a key role in determining the effectiveness of a recovery scheme. A
mobile environment is determined by the mobility, wireless bandwidth and the failure

rate. This chapter presents the following:
e User transparent recovery from mobile host failure.
o Trade-offs for the recovery schemes proposed.
e Best recovery scheme for an environment.

We propose several schemes for recovery from a failure of a mobile host. These
proposed schemes have two major components: a state-saving scheme and a handoff
scheme. We propose two schemes for state-saving, namely, (i) No Logging (N) and (ii)
Logging (L), and three schemes for handoff, namely, (i) Pessimistic (P), (ii) Lazy (L),
and (iii) Trickle (T'). We denote a recovery scheme that employs a combination of a
state-saving scheme, X (X € {N, L}), and a handoff scheme, Y (Y € {P,L,T}), as
XY. For example, LL is a recovery scheme that uses a combination of the Logging
scheme for state-saving and the Lazy scheme for handoffs.

Each combination provides some level of availability and requires some amount
of resources: network bandwidth, memory, and processing power. Through analysis,

we show that there can be no single recovery scheme that performs well for all mobile
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environments. However, among the recovery schemes considered, we determine the

best recovery scheme for each environment, as shown in Fig. 2.

Wireless | Failure | Optimal

Mobility Bendwidth | Rate Scheme
Low LL
Low
High High NT
High All LT
Low All All LL

Fig. 2. Best Recovery Scheme

This chapter is organized as follows. Section B overviews related work. Section C
presents the recovery strategies. Section D gives the performance analysis of the

recovery strategies, and summary is found in Section E.

B. Related Work

Research in mobile computing primarily has focussed on mobility management, database
system issues, network protocols, disconnected operation and distributed algorithms
for mobile hosts [20, 31]. Work on fault-tolerance issues is very limited.

Alagar et.al. [2], demonstrate schemes to tolerate base station failures by repli-
cating the information stored at a base station, at several “secondary” base stations.
Strategies for selecting the secondary base stations were shown. These schemes can
easily be integrated with the recovery schemes presented in this chapter, to provide
a system that tolerates both base station and mobile host failures.

Rangarajan et.al. [67], present a fault-tolerant protocol for location directory
maintenance in mobile networks. The protocol tolerates base station failures and
host disconnections. Logical timestamps are used to distinguish between old and

new location information. The protocol also tolerates the corruption of these logical
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timestamps.

Lin [52], studies the recovery of mobility databases at the wvisitor location regis-
ter (VLR) and home location register (HLR) for personal communication networks.
Schemes with and without checkpointing are described and analyzed.

Acharya et.al. [1], identify the problems with checkpointing mobile distributed
applications, presenting an algorithm for recording global checkpoints for distributed
applications running on mobile hosts.

In this research, however, we consider protocols to recover from failure in a mobile
host, independent of other hosts in the system. Also, we study the effect of mobility

and wirelessness on such recovery protocols.

C. Recovery Strategies

A recovery strategy essentially has two components: a state-saving and a handoff
strategy. This Section presents two strategies for saving the state, and three strategies
for handoff, to achieve fault-tolerance. Strategies for saving the state are similar to

traditional fault-tolerance strategies.

1. State-Saving

State-saving strategies presented in this chapter are based on traditional checkpoint-
ing and message-logging techniques. In such strategies, the host periodically saves its
state at a stable storage. Thus, upon failure of the host, execution can be restarted
from the last-saved checkpoint.

It was indicated earlier [3] that a mobile host’s disk storage cannot be considered
stable. Thus, our algorithms use the storage available at the base station for the cell

in which the mobile host is currently residing, as the stable storage.
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Multiple hosts (both static and mobile) will take part in a distributed application.
Such applications require messages to be transferred between the hosts, and might
also require user inputs at the mobile hosts. While the user inputs may go directly
to the mobile host, the messages will first reach the base station in charge of the
cell in which the mobile host currently resides. The base station then forwards the
messages to the corresponding mobile host. Likewise, all messages sent by a mobile
host will first be sent to its base station, which will forward them to the destination
host (static or mobile).

Two strategies to save the process state [38] will be discussed here: (i) No Logging

and (ii) Logging. It is assumed that the mobile host remains in one cell during the
length of the application. This is followed by a discussion of three schemes that
address the recovery steps needed because of mobility.
e No Logging Approach (denoted as N): The state of the process can get altered,
either upon receipt of a message from another host, or upon user input. The messages
or inputs that modify the state are called write events. (If semantics of the message
are not known, in the worst case, we might have to assume that the state gets altered
upon receipt of every message or user input). In the No Logging approach, the state
of the mobile host is saved at the base station upon every write event on the mobile
host data.

After a failure, when the mobile host restarts, the host sends a message to the
base station, which then transfers the latest state to the mobile host. The mobile
host then loads the latest state and resumes operation. Importantly, need for frequent
transmission of state on the wireless link is a limiting factor for this scheme.

e Logging Approach (denoted as L): This approach is rooted in “pessimistic” log-
ging [13], used in static systems. In this scheme, a mobile host checkpoints its state

periodically. To facilitate recovery, the write events that take place in the interval
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between checkpoints are also logged. As defined earlier, the messages or inputs that
modify the state of the mobile host are called write events. If a write message is
received from another host, the base station first logs it, and then forwards it to the
mobile host for execution. Likewise, upon user input (write event), the mobile host
first forwards a copy of the user input to the base station, for logging. After log-
ging, the base station sends an acknowledgment back to the mobile host. The mobile
host can process the input, while waiting for the acknowledgment, but cannot send
a response. Only upon receipt of the acknowledgment does the mobile host send its
response.

The above procedure ensures that no messages or user inputs are lost due to
a failure of the mobile host. The logging of the write events continues until a new
checkpoint is backed up at the base station. The base station then purges the log of
the old write events, along with the previous checkpoint.

After a failure, when the mobile host restarts, the host sends a message to the
base station, which then transfers both the latest backed-up checkpoint of the host,
as well as the log of write events, to the mobile host. The mobile host then loads
the latest backed-up checkpoint and restarts executing, by replaying the write events
from its logs, thus reaching the state before failure. Below, the recovery steps are

considered which are needed, arising due to mobility of the hosts.

2. Handoff

The mobility warrants a special handoff process, described below. The key problem
to be addressed is how a recovery can be effected if a mobile host moves to a new
cell, as illustrated in the following example.

Consider the system in Fig. 3. BS: denotes ¢-th base station, and mhez denotes

2-th mobile host. Here, mobile hosts mhl and mhZ2 are executing a distributed algo-
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NETWORK

Fig. 3. Handoff in the Middle of an Execution

rithm. The mobile host mh2 has saved both its checkpoint and message log at B.S2.
In the middle of the execution, mh2 moves to the cell of BS3, and then to the cell
of BS4. Handoff occurs at both the boundaries of BS2 and BS3, and BS3 and BS4.
Let a failure of the mobile host mh2 occur upon reaching the cell of BS4. Had mh2
remained in the cell of BS2, the system would have recovered because the checkpoint
and the logs are saved at BS2. But since no state-saving took place at BS3 or BS54,
and since BS4 does not know where the last checkpoint of mhZ2 is stored, the recovery
procedure will now have to identify the base station where the checkpoint is saved.
This will warrant additional steps to identify the base station. Therefore, what is pro-
posed is transferring during the handoff process some information regarding the state
of the mobile host. The following delineates three ways to transfer this information

during the handoff process: (i) Pessimistic, (ii) Lazy, and (iii) Trickle.

a. Pessimistic Strategy (P)

When a mobile host moves from one cell to another, the checkpoint is transferred to
the new cell’s base station during handoff. If Logging strategy is being used, then
in addition to the checkpoint, the message log is also transferred to the new cell’s

base station. Upon receipt of the checkpoint and/or the log, the new cell’s base
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station sends an acknowledgment to the old base station. The old base station, upon
receiving the acknowledgment, purges its copy of the checkpoint and the log, since
the mobile host is no longer in its cell.

The chief disadvantage to this approach is that it requires a large volume of data
to be transferred during each handoff. Potentially, this can cause long disruptions
during handoffs. However it can be avoided if we use the Lazy or Trickle strategy, as

explained.

b. Lazy Strategy (L)

With Lazy strategy, during handoff, there is no transfer of checkpoint and log. In-
stead, the Lazy strategy creates a linked list of base stations of the cells visited by
the mobile host. The mobile host may be using either one of the state-saving strate-
gies (No Logging or Logging) described earlier. If the mobile host is using the No
Logging strategy, the checkpoint is saved at the current cell’s base station after every
write event. On the other hand, if Logging strategy is used, a log of write events is
maintained, in addition to the last checkpoint of the mobile host at the base station.
Upon a handoff, the new cell’s base station keeps a record of the preceding cell. Thus,
as a mobile host moves from cell to cell, the corresponding base stations effectively
form a linked list. One such linked list needs to be maintained at the base station for
each mobile host.

This strategy could lead to a problem it the checkpoint and logs of the mobile
host are unnecessarily saved at different base stations. To avoid this, upon taking a
checkpoint at a base station, a notification is sent to the last cell’s base station, to
purge the checkpoint and logs of the mobile host, if present. If a checkpoint is not
present, this base station forwards the notification to the preceding base station in

the linked list. This process continues, until a base station with an old checkpoint of
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the mobile host is encountered. All base stations receiving the notification purge any
state associated with the particular mobile host.

The Lazystrategy saves considerable network overhead during handoff, compared
to the Pessimistic strategy. Recovery, though, is more complicated. Upon a tailure, if
the base station does not have the process state, it obtains the logs and the checkpoint
from the base stations in the linked list. The base station then transfers the checkpoint
and the log of write events to the mobile host. The host then loads the checkpoint,

and replays the messages from the logs to reach the state just before failure.

c. Trickle Strategy (T')

Importantly, in the Lazy strategy, the scattering of logs in different base stations
increases as the mobility of the host increases, potentially making recovery time-
consuming. Moreover, a failure at any one base station containing the log renders the
entire state information useless.

To avoid this, a Trickle strategy is proposed. In this strategy, steps are taken to
ensure that the logs and the checkpoint are always at a nearby base station (which
may not be the current base station). In addition, care is taken so that the handoff
time is as low as with Lazy strategy.

We make sure that the logs and the checkpoint corresponding to the mobile host
are at the “preceding base station” of the current base station'. (The preceding base
station is the base station of the previous cell visited by the mobile host.) Thus,
assuming that neighboring base stations are one hop from each other (on the static
network), the checkpoint and the logs are always, at most, one hop from the current

base station.

Wariations of this scheme are possible where the checkpoint and logs are at a
bounded distance from current cell.
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To achieve the above, during handoff, a control message is sent to the preceding
base station to transfer any checkpoint or logs that had been stored for the particular
mobile host. Similar to Lazy strategy, the current base station also sends a control
message to the new cell’s base station identifying the preceding cell location of the
mobile host. Thus, the new cell’s base station, just retains the identification of the
mobile host’s preceding cell.

If a checkpoint is taken at the current base station, it sends a notification to the
preceding base station that has the last checkpoint and logs, to purge the process
state of the mobile host. During recovery, if the current base station does not have a
checkpoint of the process, it obtains the checkpoint and/or the logs from the preceding
base station?. The base station then transfers the checkpoint and/or the log to the
mobile host. The mobile host then loads the checkpoint and replays the messages

from the logs, to reach the state just before failure.

D. Performance Analysis

Basically, six schemes (combinations of state-saving and handoff) are possible. This
Section analyzes these schemes, determining which combination is best-suited for a

given environment.

1. Terms and Notations

The following terminology is used, the significance of which will be clearer later in
this Section.
’If No Logging strategy was used for state-saving, the checkpoint will be trans-

ferred. On the other hand, if Logging is used, the checkpoint and the log are
transferred.
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The term operation may refer to one of (i) checkpointing, (ii) logging, (iii)

handoff, or (iv) recovery.

Cost of an operation quantifies the network usage of the messages due to the
operation. In other words, it is the amount of time the network is busy trasmit-

ting the messages.

A: Failure rate of the mobile host. We assume that the time interval between

two failures follows an exponential distribution with a mean of 1/\.

p: Handoff rate of the host. We assume that the time interval between two

handoffs follows an exponential distribution with a mean of T'= 1/ p.

The time interval between two consecutive write events is assumed to be fixed
and equal to 1/5. Write events are comprised of user inputs and messages
from other hosts. Since we are only interested in the relative performance of
the various schemes proposed, this assumption will not significantly affect the

results.

r:  Communication-mobility ratio, defined as the expected number of write
events per handoff, equal to #/u. For a fixed 3, a small value of r implies

high mobility, and vice-versa.

p: Fraction of write events that are user inputs. If p is 1, then all the write
events are user inputs. This means that the application is not distributed in

nature, and that the mobile host is the only participant in this execution.

T.: Checkpoint interval, defined as the time spent between two consecutive
checkpoints executing the application. T. is fixed for all schemes under consid-

eration. Specifically, T, is 1/ for No Logging schemes.



23

k: Number of write events per checkpoint. For the Logging schemes, & = g7T..

For the No Logging schemes, k is always equal to 1.

a: Wireless network factor. This is the ratio of the cost of transferring a message
over one hop of a wireless network to the cost of transferring the message over
one hop of a wired network. The higher the value of «, the costlier is the wireless

transmission relative to the wired transmission.
N.(t): Number of checkpoints in ¢ time units.
Ni(t): Number of messages logged in ¢ time units.

C.: Average cost of transferring a checkpoint state over one hop of the wired

network.

C: Average cost of transferring an application message over one hop of the

wired network.

~: Relative logging cost. It is the ratio of the cost of transferring an application
message to the cost of transferring a checkpoint state over one hop of the wired

network (C;/C,).

Cp: Average cost of transferring a control message over one hop of the wired
network. The size of a control message is typically assumed to be much less

than the size of an application message.

¢: O /C. = Relative control message cost. It is the ratio of the cost of trans-
ferring a control message to the cost of transterring a checkpoint state over one

hop of the wired network.

Ch: Average cost of a handoff operation.



24

o (,: Average cost of a recovery operation.

o (;: Average total cost per handoff.

2. Modeling and Metrics

The interval between two handoffs is referred to as handoff interval. A handoff interval

can be represented using a 3-state discrete Markov chain [76, 77], as presented in Fig.

4.

Handoff
Start without failure

failure

Handoff
after recovery

Fig. 4. Markov Chain Representation

State 0 is the initial state when the handoff interval begins. During the handoff
interval, the host receives messages and/or user inputs (write events). Depending
upon the state-saving scheme, the host either takes a checkpoint or logs the write
events. A transition from State 0 to State 1 occurs if the handoff interval is completed
without a failure. If a failure occurs during the handoff interval, a transition is made
from State 0 to State 2. After State 2 is entered, a transition occurs to State 1
once the handoff interval is completed. To simplify the analysis, we have assumed
that, at most, one failure occurs during a handoff interval. This assumption does not
significantly affect the results when the average handoff interval is small, compared
to the mean time to failure.

Fig. 5 illustrates an example of the state transitions in a handoff interval. Fig.
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h(a) is a case when the handoff interval is greater than a checkpoint interval. Thus,
multiple checkpoint operations take place within a handoff interval. As seen in Fig.
h(a), the initial state is state 0. A transition to state 2 takes place after a failure.
State 2 begins with a recovery operation. A subsequent transition to state 1 takes
place after a handoff operation. Fig. 5(b) is a case when the checkpoint interval is
greater than a handoff interval. Thus, multiple handoff operations take place within

a checkpoint interval. State transitions are similar to the previous case.

D Handoff Operation D Recovery Operation
[ Checkpoint Operation X A Failure
State2 State O
State 1 State 0 \v i State 1l State 1
_ Saeo i State 2 | Vo
Tc T
_ _—
T Te

Fig. 5. State Intervals

FEach transition (a,b), from state a to state b in the Markov chain, has an as-
sociated transition probability P,; and a cost Cyy. Cost Cyp of a transition (a,b) is
the expected total cost of operations that take place during the time spent in state a
before making the transition to state b.

The transition probability Py, is the probability that a failure occurs within a

handoff interval. Let ¢y be the time of failure, and {;, be the time of handoff. Then:

Poa = Pty <tp) = /0 / Apre = NE e THTh drydry
Ty
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Solving the above, we get,

A
Poy = ——

by
The expected duration from the beginning of the checkpoint interval until the
time when the failure occurred, given that a failure occurs before the end of the

checkpoint interval is,

T

cexp —

dt =

/Tc tAe M 1 T,eMe
0o 1 —e e A1 — e

As stated earlier, N.(?) and N(t) denote the number of checkpoints and messages
logged in ¢ time units, respectively. Cost Cy; of transition (0,1) is the expected total
cost of operations that occur during the time spent in State 0 before making the

transition to State 1. Coy is as follows: (Recall that 7' is the mean handoff interval.)
Cor = (aC.) * N(T) + (aCp) * N(T) + C}, (2.1)

Performance metrics for the proposed schemes are:

e Handoff Time: The handoff time is the additional time required to transfer the

state information from one base station to other, with the overhead of fault-tolerance.
Basically it is the difference in the time duration of a handoff operation with fault
tolerance and the time duration of a handoff operation without fault tolerance.

e Recovery Cost: Upon a failure, this is the expected cost incurred by the recovery
scheme, to restore the host to the state just before the failure.

e Total Cost: This is the expected cost incurred during a handoff interval with and

without failure. The total cost is determined as follows:

Cy = Cor + FPo2Cy (2.2)

The costs will depend on the state-saving and handoff scheme used. We denote
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the total cost of a scheme that employs a combination of a state-saving scheme,
X (X € {N,L}), and a handoff scheme, Y (Y € {P,L,T}) as Cixy.

Now, we will derive the costs Cpy, €, and the handoff time for each scheme.
The total cost C} for each scheme can be determined by replacing the costs Cp; and
C, obtained, in (2.2). Our analysis assumes that the cost of transmitting a message
from one node to another depends on the number of hops between the two nodes.
We also assume that neighboring base stations are at a distance of one network hop

from each other.

3. No Logging-Pessimistic (NP) Scheme

A checkpoint operation takes place upon every write event. Thus, upon every write
event, the checkpoint is transferred over the wireless network to the base station,
incurring a cost of aC., on average. There are r write events during a handoff
interval. Since there is no logging operation involved, N;(t) = 0,¢ > 0. During a
handoff, the last checkpoint is transferred to the new base station, and in reply, an

acknowledgement is sent. Therefore, the cost of handoft ¢, = C. + C,,. Thus:
Cor = (TOé + 1)Cc + O

During recovery, the process state will be present at the current base station.
Therefore, the recovery cost is the cost of transmitting a request message from the
mobile host to the base station, and the cost of transmitting the state over one hop
of the wireless link. Thus:

C, = a(Co+ Cy)
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4. No Logging-Lazy (NL) Scheme

The checkpoint and logging operations are similar to the NP scheme in Section D.3.
However, upon the first checkpoint operation at the current base station, a control
message is sent to the base station that has the last checkpoint, requesting it to purge
that checkpoint. Let that base station be, on average, Nj, hops from that current base
station. Thus, the average cost of purging is N,C,,. A handoff operation includes
setting a pointer at the current base station, and transferring a control message
between the current and the new base stations. Since setting a pointer does not
involve any network usage, the cost of handoff, C}, is equal to the cost, C,,, of

transferring a control message between the two base stations. Thus:
CYOl — TOéCc + thm + Cm

Since a checkpoint operation takes place upon every write event, and the check-
point is not transferred to the new base station upon a handoff, the location of the
last checkpoint will depend on the number of handoffs since the last write event. The
upper bound on the number of hops traversed, to transfer the last checkpoint to the
current base station, will be the number of handoffs between two write events (or, in
this case, checkpoints). In addition to this, the cost of transferring the checkpoint
over the wireless link is incurred: aC.. The average number of handoff operations
completed since the last write event (or checkpoint event) until the time of failure is
Ny, where:

Nh = ﬂTcexp (23)

A cost is also incurred due to the request message from the mobile host for the

checkpoint. The cost is (a + Nj,)Cy,. Thus, an upper bound on the recovery cost is

Cr = (N4 a)(C.+Cy)
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We will use this €, to evaluate Cyyp. As this €, estimated is an upper bound,

(i1 estimated here is somewhat pessimistic.

5. No Logging-Trickle (NT) Scheme

The checkpoint and logging operations are the same as for the NP and N L schemes
described in Sections D.3 and D.4. As in the NI scheme, the handoff cost is the cost
of transferring a control message from the current to the new base station. In addition
to this, a control message is sent to the previous base station, requesting it to transfer
any state corresponding to the mobile host. This ensures that the maximum number
of hops traversed, to transfer the state during recovery, is one. The cost of the handoff
operation is, thus, the sum of the cost of transferring the state over one hop of wired
network, and the cost of sending two control messages. Thus, C} = C. 4 2C,,. It
should be noted, however, that the handoff time is only determined by C,,, for the
transfer of a control message between the current and the new base station. The time
spent due to the transfer of state is transparent to the user.

Upon the first checkpoint operation at the current base station, a control message
is sent to the base station that has the last checkpoint, requesting it to purge that
checkpoint. Let that base station be, on average, N; hops from the current base

station. Therefore, the cost of purging is N;C,,. Thus:
Cor = (ra+1)C. +2C,, + N,C,,

As stated earlier, during the recovery operation, the number of hops traversed

to transfer the state is, at most, one. Thus:
C,=(N] +a)(C.+ Cp) , where:

N, =1(1 — e ") 1 0(e™ ) = (1 — e7#Te) | (2.4)
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where e™#T¢ is the probability that the last checkpoint took place at the current base

station.

6. Logging-Pessimistic (LP) Scheme

For this scheme, the state of the process will contain a checkpoint and a log of write
events. The message log will contain the write events that have been processed since
the last checkpoint. The logging cost will involve only those write events that have to
traverse the wireless network to be logged at the base station. Only the user inputs
need to traverse the wireless network to be logged. On the other hand, write events
received from other hosts in the network come via the base station anyway, so they
get logged first, and then forwarded to the mobile host. Thus, no cost is incurred
due to logging of write events from other hosts. As stated earlier, p is the fraction
of write events that are user inputs. Thus, pr is the number of user inputs between
two handoffs. This is also the number of logging operations in a handoff interval. For
each logging operation, there is a cost for the acknowledgment message sent by the
base station over the wireless network. The cost of each acknowledgment message is
aC,,.

The handoff cost will now include the cost of transferring the state as well as
the message log, and the cost of transferring an acknowledgment. Let v denote the
average log size during handoff. Then, the average handoff cost will be (vC;4+C.+C,,).
Under the assumption of handoffs being a Poisson process, v = k% (Recall that k

is the number of write events per checkpoint.) Thus:

raC.

C’01 = L

+ praCi + praCy, + vCi + Ce 4 Oy

During recovery, the checkpoint and the log are present at the current base

station. Therefore, the recovery cost is the cost of transmitting a request message
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from the mobile host to the base station, and the cost of transmitting the checkpoint
and log over one hop of the wireless network. The expected size of the log at the time

of failure is v/. For Poisson failure arrivals, v’ = ]“2;1 Therefore:

C,=a(V'Ci+C.+Cy)

7. Logging-Lazy (LL) Scheme

The checkpoint and logging operations are the same as for the L P scheme described
in Section D.6. When a checkpoint takes place, the old checkpoint and logs at the
different base stations are purged. As also determined earlier in Section D.4, the

purging cost is NC,,, and the handoff cost is C,.

raC.

C’01 = L

+ praCi + praCly, + NiCop + C,

As determined earlier, the expected number of write events completed until the
time of failure since the last checkpoint is v/ = ]“2;1 This is distributed over differ-
ent base stations. The last checkpoint and the logs have to traverse, on an average,
Np, (2.3) hops on the wired network to reach the current base station, and an addi-
tional wireless hop to reach the mobile host. A cost of (N, + a)C,, is also incurred
due to the request message for the checkpoint and the logs (same as for N L scheme).

Therefore,
Ch=(Np+a)(V'Cr + C.+ Cp)

8. Logging-Trickle (L'T) Scheme

The checkpoint and logging operations are the same as in LP and LL. The cost of
handoff operation is, thus, the sum of the cost of sending two control messages (same

as for NT scheme), and the cost of transferring checkpoint and logs over one hop of
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wired network. Thus, C}, = vC; + C. + 2C,,. The cost of purging is N} C',. Thus:

raC.

k

Cor = + praCy + praCy, + vCi + C. + 20, + N, Cy,

Co= (N, + )V O+ C. 4 C)

9. Results

The above equations have been normalized with respect to C.. Recall that ~ is
the relative logging cost and is equal to C;/C.. Thus, C; = vC.. Recall that ¢ is the
relative control message cost and is equal to C,,,/C.. We assume that C,, < C. (which
is the case, in practice). We replace C, = 1, C; = v, and C,,, = € in the above equations
and determine the handoff time, recovery cost and the total cost. The rate of writes
3 is set to 1.

For our analysis, we assume that p = 0.5. (Recall that p is a fraction of write
events that are user inputs.) This means that the write events comprise an equal
percentage of user inputs and messages from other hosts. For our analysis, we fix the

relative control message cost, e = 107,

a. Optimum Checkpoint Interval

An optimum checkpoint interval is required to be determined only for the Logging
schemes. Recall that for a No Logging scheme, a checkpoint takes place upon every
write event. However, for a Logging scheme, a checkpoint takes place periodically
every T, units of time. Since the rate of writes [ is equal to 1, the number of write
events per checkpoint (k) is equal to T,.. A “good” value for k needs to be chosen
for the Logging schemes. We define a good value of £ to be the one that offers the
minimum total cost. This value of k (say, kop¢;y-, for a Logging scheme that uses

scheme Y for handoffs: Y € {P, L, T}) is a function of the failure rate A, relative
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logging cost v, wireless network factor @ and communication-mobility ratio r. Let
us consider the LL scheme as an example. The value of k., , for the LL scheme is

obtained as a solution of:

ac115LL — 0 and 62CtLL

ok P
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Fig. 6 illustrates the variation of k., with r and o for A = 107% and v = 0.1.
Note that k., , increases as r and « increase. For a given k, as r increases, the
number of checkpoints per handoff increases. This increases the total cost. As «a
increases, the cost due to a checkpoint increases. Thus, to lower the total cost, k
should also increase. Therefore, as r and/or « increases, kop;; also increases.

Fig. 7 illustrates the variation of k., ,, with v and A for » = 0.1 and o = 10.
Note that £,,;,, decreases as v and A increase. As v increases, the cost of the logging
operation increases. Thus, checkpoint interval size has to be reduced to decrease total

cost. Therefore, k., decreases as v increases. As A increases, the probability of
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failure increases. Thereby, the fraction of recovery cost in the total cost increases.
The recovery cost for the Logging schemes depends on the average log size during
failure. The average log size, in turn, depends on checkpoint interval size. To decrease
recovery cost, we need to reduce checkpoint interval size. Thus, as A increases, k,p¢; ,

decreases.
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Fig. 7. kopiyp vs. vand Ar a =10, r = 0.1

Similar behavior was observed for the LP and LT schemes. We used k = k¢,
for the analysis of the Logging scheme which uses scheme Y for handoffs, where
Y € {L, P,T}. We assume that relative logging cost v = 0.1. We vary « to represent
different classes of wireless networks. We vary A to represent different failure rates.
We vary the value of r to represent different user mobility patterns. We will now

illustrate the performance of each of the proposed schemes.
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b. Handoff Time

Recall that the handoff time is the additional time required, due to the transfer of
state information by the fault tolerance scheme during handoff operation. Let BW
be the bandwidth of a link on the wired network. Table II illustrates the handoff cost
and (handoff time x BW) of the various schemes. The Pessimistic handoff schemes
incur a very high handoff time compared to the Lazy and Trickle handoff schemes.
This is because in the Lazy scheme, there is no state transter during handoff. In the
Trickle scheme, the state transfer is performed separately from the handoff. Note,
however, that for a given state-saving scheme, the handoft cost of the Trickle handoff

scheme is almost equal to the Pessimistic handoff scheme.

Table II. Handoff Cost and (Handoff Time x BW)

Scheme | Handoff Cost || (Handoff Time x BW)
NP 14¢ 14+¢
NL € €
NT 14+ 2e¢ €
LP L+vy+e l+vy+e
LL € €
LT 1+ 2e+ vy €

c. Recovery Cost

In Fig. 8, we plot the recovery cost for all the schemes for a = 10, and A = 1072,
Similar behavior was observed for other values. As expected, the recovery cost of

the Logging schemes is more than the No Logging schemes. The recovery cost of the
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Fig. 8. Recovery Cost: A = 1072, o = 10

NP scheme is independent of r. The NP scheme incurs the lowest cost for all values
of r. This is because the last checkpoint state is always present at the current base
station. The recovery cost of the NT scheme is a constant for low r (r < 1), and
slightly more than the NP scheme. This is because the last checkpoint of the host is
always available one hop from the current base station. As stated earlier, 3 is fixed
for the analysis. For a fixed 3, as u (i.e.; mobility) decreases, r (= (/u) increases,
and the probability of the last checkpoint being available at the current base station
increases. Therefore, at high values of r (r > 1), the costs of NT and NP converge.

The recovery cost of the LP and the LT schemes is proportional to the size of
the log before failure. The size of the log depends on k. Since k (= Kopty p OF kOPtLT)
increases with r, the recovery cost also increases. Similar to NP and NT schemes,
at low values of r (r < 1), the recovery cost of the LT scheme is slightly higher than
LP scheme. However, at high values of r, the costs of LP and LT schemes become
similar.

For low values of r (r < 1), note that the recovery cost of the Lazy handoff (LL
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and N L) schemes are much larger than for the Pessimistic and the Trickle handoff
schemes. This is because the checkpoint state might not be at the current base station.
Secondly, the log of write events might be distributed at different base stations. Thus,
the cost of recovery will include the cost of transferring the checkpoint state and the
log from the various base stations to the current base station, and then forwarding
them to the mobile host over the wireless link. The LI scheme incurs a very high
recovery cost for low r. The lower the value of r, the greater the amount of scatter of
recovery information. As r increases, the possibility of a checkpoint operation taking
place at the current base station increases. Thus, the recovery cost decreases as r
increases. However, as r increases, k (= kopey ;) also increases. Thus, after some value
of r, the recovery cost starts increasing. On the other hand, the recovery cost of the
NL scheme continues to decrease as r increases. At high values of r (r > 1), the
cost of NL converges to NP and NT. Similarly, the cost of the L L scheme becomes
similar to LP and LT.

As expected, at high values of r (i.e., low mobility), the recovery cost becomes
almost independent of the handoff scheme used — the state-saving scheme determining

the recovery cost.

d. Total Cost

Fig. 9 illustrates the variation of total cost of various schemes with r, for A = 1072
and a = 10. The total cost is comprised of the failure-free cost and the recovery cost.
The total cost of the Pessimistic handoff scheme and the Trickle handoff scheme are
almost equal (NP ~ NT, and, LP ~ LT). The Lazy handoff scheme incurs a lower
total cost at low values of r (r < 1). At high values of r, the total cost of the different
handoff schemes converge. However, the difference in the total costs of the Logging

and No Logging schemes remains. The total cost of No Logging scheme is higher than
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the Logging scheme for all values of r. The LL scheme incurs the lowest total cost
for all r.

Fig. 10 illustrates the variation of the total cost with r, for A = 107°. Comparison
of Figures 9 and 10 indicates that, for the same «, as A decreases, the cost difference
between the handoff schemes for the Logging state-saving scheme increases. As the
probability of failure decreases, the Lazy handoff scheme becomes more justified. The
total costs of the Trickle and the Pessimistic handoff schemes are almost always equal,
and both are higher than the Lazy scheme.

Fig. 11 illustrates the variation of the total cost with r, for a = 500. The total
cost increases with a. Comparison of Figures 9 and 11 indicates that, for the same
A, as « increases, the cost difference between the handoff schemes reduces. Thus, the
performance of a scheme becomes more dependent on the state-saving scheme used

than on the handoff scheme.
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10. Discussion

Handoff time of Pessimistic handoff schemes is very high, and unacceptable for appli-
cations that require connection-oriented services. During a handoff period, there are
no packets sent or received by the mobile host. Thus, if handoff time is very high, the
communication protocols used for these connection-oriented services might timeout
and/or the mobile host might notice long disruption in service during handoffs [14].

Some applications might require a very quick recovery, and some other applica-
tions might require a very low total cost to be incurred by the recovery schemes. Some
hosts might be running the application in a high failure rate environment, and some
in a very low failure rate environment. As can be observed from the results, among
the schemes considered, there is no single recovery scheme that performs best (lowest
total cost, lowest recovery cost and lowest handoff time) for all environments.

We will now determine the environments where a particular recovery scheme
is best suited. For the sake of convenience, we divide the communication-mobility
ratio (r) space into two regions: low (r < 1), and high (r > 1). We divide the wireless
network factor («) space into two regions: low (o < 50), and high (o > 50). We also
divide the failure rate () space into two regions: low (A < 1073), and high (A > 1077).
In our discussions, we will refer to the regions instead of actual values. The summary
of the results are presented in Fig. 2.

In a low failure rate environment, failures occur very infrequently. The primary
goal of a recovery scheme in such an environment is to incur low failure-free cost. The
LL scheme incurs low failure-free cost for all values of r. However, for high « values,
the difference in the failure-free costs of the LI and LT schemes reduces. Since the
recovery time (as determined by recovery cost) of the LT scheme is much lower than

for the LL scheme for low values of r, it is preferable to choose LT for high a values.
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In a high failure rate environment, failures occur very frequently. The primary
goal of a recovery scheme is to incur low failure-free cost and low recovery cost. For
low r values, the recovery cost of the LL and NI schemes is very high. Thus, we
need to choose between NT or LT. When « is low, NT incurs a low failure-free
cost (slightly more than LT'), and provides a quicker recovery than LT. However,
when « is high, LT becomes preferable. For high r values, L L is preferable over other

schemes.

E. Summary

The new mobile wireless environment presents many challenges due to the mobile
nature of the hosts and the limited bandwidth on the wireless network. Presented in
this chapter are recovery schemes for a mobile wireless environment. The recovery
schemes are a combination of a state-saving strategy and a handoff strategy. Two
strategies for state-saving, namely, (i) No Logging and (ii) Logging, and three strate-
gies for handoff, namely, (i) Pessimistic, (ii) Lazy, and (iii) Trickle are discussed.
Our main goal here is to present the limitations of the new mobile computing
environment, and its effects on recovery protocols. The trade-off parameters to eval-
uate the recovery scheme were identified. It was determined that, in addition to
the failure rate of the host, the performance of a recovery scheme depended on the
mobility of the hosts and the wireless bandwidth. We analyzed the performance of
the various recovery schemes proposed in this chapter, and determined those mobile

environments where a particular recovery scheme is best-suited.
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CHAPTER III

CENTRALIZED LOCATION MANAGEMENT

A. Introduction

It is expected that existing wireless cellular networks will be upgraded for personal
communication services (PCS) [20, 31, 58]. An important issue in mobile wireless
networks is the design and analysis of location management schemes. In order to
communicate with any particular user, it is first necessary to locate the user in the
network. This is due to the fact that the users are mobile and they could be anywhere
in the area covered by the network.

An analysis in [57] shows that if location updates are to occur on each cell
crossing the resulting signalling load will have a major impact on the load of the
network. The additional signalling traffic on the SS7 signalling system (capacity of
56 Kbps) is expected to be 4-11 times greater for cellular networks than for ISDN and
3-4 times greater for future personal communication networks (PCN) than for cellular
networks. The signalling load due to updates alone increases network load by 70%.
Thus location updates will become a major bottleneck at the switches such as SS7,
and hence mechanisms to control the cost of location update are needed. It is thus
evident that new efficient location management strategies need to be investigated for
personal communication services (PCS).

Location management consists of location searches and updates. A search occurs
when a host wants to communicate with a mobile host whose location is unknown to
the requesting host. An update occurs when a mobile host changes location.

This chapter attempts to study the effect of forwarding pointers and search-

updates on location management in Personal Communication Networks (PCN). Lo-
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cation management for PCS utilize the fact that there is a home location server (H L.S)
for every mobile host. There are existing standards for carrying out location manage-
ment using home location servers (HLS), e.g., (EIA/TIA) Interim Standard 41 (IS-
41), and Global System for Mobile Communications (GSM) in Europe [58]. However,
these schemes are not efficient, due to increase in network load and location manage-
ment costs. To overcome these drawbacks, this chapter presents location management
strategies using forwarding pointers in addition to H LS. We present two heuristics to
limit the number of forwarding pointers traversed during a search, namely, movement-
based and search-based. We show that significant improvement can be obtained using
forwarding pointers in addition to HLS. The chapter also presents a strategy to
perform search-updates. A search-update occurs after a successful search, when the
location information corresponding to the searched mobile host is updated at some
hosts. Analysis shows that performing search-updates significantly reduces the search
costs. However, search-updates also increase the total network load. This extra net-
work load is due to forwarding pointer maintenance.

The performance of the proposed heuristics depend on (i) the relative cost of
setting and traversing the forwarding pointers (parameter «), and, (ii) call and mo-
bility patterns of the user (parameter r). Through analysis, we show that among the
schemes considered, there is no single location management scheme that performs
well for all values of r and . However, among the schemes considered, we determine
the best location management scheme for each environment, as shown in Fig. 12.
M is a parameter that determines the performance of the movement-based heuristic
scheme. It will be explained in detail in Section D.2.b.

On the downside, forwarding pointers are prone to failures anywhere along the
chain of pointers. Omission/corruption of a forwarding pointer could cause the host

to be intractable. This chapter proposes cost-effective techniques for fault tolerance
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and automatic recovery of the network, and also for forwarding pointer maintenance.
This chapter then shows that the memory overhead due to forwarding pointers is
insignificant when compared to savings in terms of network load.

This chapter is organized as follows. Review of related literature in location
management is presented in Section B. Section C presents a network architecture
for a distributed system with mobile hosts. Section D presents the proposed location
management scheme using forwarding pointers, and the corresponding performance
analysis. Section E presents the search-update strategy and the corresponding perfor-
mance analysis. Section F presents schemes to make the proposed location manage-
ment scheme robust. Memory overhead analysis is presented in Section G. Section H
discusses algorithms to determine the call-mobility ratio of the users. The work pre-
sented in this chapter is compared with other centralized approaches in Section I.

Summary is presented in Section J.

B. Related Work in Location Management

Numerous location strategies have been proposed in the recent years. One of the
earlier works which dealt with object tracking was done in 1986 by Fowler [21]. Fowler

deals with techniques to efficiently use forwarding addresses for finding decentralized
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objects. Our research borrows the idea of manipulating forwarding pointers upon a
successful search.

Awerbuch et.al. proposed a theoretical model for online tracking of mobile
hosts [4]. Their architecture consists of a hierarchy of “m-regional matching directo-
ries”. In their scheme, forwarding pointers and regional matching directories are used
to enable localized updates and searches.

Spreitzer et.al. proposed a network architecture which consists of user agents
and a location query service (LQS) [72]. There is a dedicated user agent per user
and these user agents are responsible to forward any communication to or from the
user. This scheme is mainly aimed for local networks — the kind used within building
premises. As the number of hosts in a network increase, it might not be efficient to
have a dedicated user agent per user.

Wu et. al. dealt with the idea of caching location data at the Internet Access
Point(IAP) [79]. Here, the [ AP will maintain location data of some of the hosts. This
becomes useful when optimal routing decisions are to be taken. If the TAP does not
have an entry for a host, the message is forwarded to the Mobile Router (MR) which
maintains information of all the hosts. It is a very simple idea that will be effective
for local networks. However, when the network sizes increase, the MR will become
a serious bottleneck, and one has to resort to more efficient location management
techniques.

loannidis et.al. proposed IP-based protocols for providing continuous networks
access for mobile computers using caching and forwarding technique [32]. However,
these protocols are primarily proposed for a campus environment with mobile com-
puters.

Badrinath et.al. examine strategies that reduce search costs and control the

volume of location updates by employing user profiles [5]. Their architecture consists



46

of a hierarchy of location servers which are connected to themselves and to the base
stations (or mobile support stations) by a static network. User profiles are used to
create partitions. It is only when the user crosses partitions that the update takes
place. However, in most cases, user profiles are not always available a priori.

A modified tree structure for location management was proposed in [19]. The
root and the some of the higher levels of the tree was replaced by a set-ary butterfly
network. This helped in balancing the search requests at the nodes. Also proposed
were schemes to make the protocol self-stabilizing.

The idea of location management with home location servers (HLS) has also
been proposed in [36, 37]. Caching [36] and forwarding [37] have been independently
proposed for Personal Communication Services (PCS). Similar to our work in this
chapter, these strategies augment the basic location strategy which uses HLS. Sec-
tion I compares them with the work presented in this chapter. Other techniques like
user profile replication [71] and local anchoring [29] have also been proposed to reduce
network load due to location management. In the next section we will present the

network architecture typically used in centralized location management schemes.

C. Network Architecture

Cells are grouped into registration areas. There is a location server in each registration
area. FEach mobile host is assumed to be permanently registered to a particular
registration area. The location server of that registration area is called the home
location server (HLS) for the mobile host. This association of a host with a particular
home location server is fully replicated across the whole network. The home location
server is responsible for keeping track of the location information of the mobile host.

A location server is also responsible for maintaining location information of the mobile
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hosts currently residing (visitors) in all cells within its registration area'.

The events that can cause change in the location information of a mobile host
are when the mobile host (i) Switches ON, (ii) Switches OFF, (iii) Handoffs, and (iv)
Crosses registration areas. The details of the events (i), (ii) and (iii) are discussed
in Appendix A. In this research we are primarily interested in analysing strategies
for location management due to registration area crossings, because these strategies
involve updates at the home location servers and thus increasing the network traffic.
In the next section we will discuss the location management strategies for registration

area crossings.

D. Location Management

In this section, we first present the scheme for updates and searches that is being
currently used in [S-41. We will then present the drawbacks of these schemes. Later
in this section we will present the proposed location management scheme using for-

warding pointers, and the corresponding performance analysis.

1. Overview of the Basic IS-41 Scheme

Location management with home location servers is being used in current personal

communication systems (PCS) standards proposals such as 1S-41 [58].

!The terminology used in IS-41 literature is slightly different. 1S-41 uses home
location register (HLR) and visitor location register (V LR) databases. However,
the information maintained in the H LR is same as what is maintained in HLS, the
information maintained in the V LR is maintained in the various location servers.
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a. Updates in the Basic IS-41 Scheme

Updates take place only when the mobile host (mh) enters a new registration area.
Let the old registration area be old, and the new registration area be new. Please refer
Fig. 13 for this discussion. Upon entering new, the mobile host (mh) informs the new
mobile support station (new_mss), which forwards the information to the location
server of registration area new, named new_ls (steps 1-2 in Fig. 13). The new_ls
looks up its database to determine the home location server (HLS) of mh (step 3).
The new_ls then sends a message to HLS notifying it about the new location of
mh (step 4). The HLS updates the location information of mh (i.e., changes the
current location server to new_ls), and sends the host information (user profile, etc.)
to new_ls (steps 5-6). The location server new_ls stores the user profiles, updates

its host database and sends an acknowledgement to new_mss (steps 7-8). The HLS
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also sends a message to the location server of registration area old, named old_ls,
requesting it to delete any host information stored at old_ls (step 9). The location
information of the mobile host is then purged from old_[s, after that, old_ls sends a

confirmation message to HLS (step 10).

b. Searches in the Basic IS-41 Scheme

Let us suppose that a mobile host src¢ wants to communicate with another mobile
host dest. Let src_mss be the MSS of the cell in which host src currently resides.
When sre wants to communicate with a mobile host dest, it has to first determine
the location of dest. Host sre sends a location query message to the mobile support
station for its cell, sreomss (step 1 in Fig. 14). The srcomss, forwards the query to
the location server (say src_ls) in its registration area (step 2 in Fig. 14). The location

server src_ls checks whether dest is in its registration area?. If dest is in its registration

?In 1S-41 standard, every call results in a query to the H LS of dest. In this chapter
we have altered the search procedure slightly to search the registration area of the
caller first. Thus, the search procedure of 1S-41 standard will in fact result in an even
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area, then it returns the location information. Otherwise, src_ls looks up its database
to determine the HLS of dest (say dest_HLS) (step 3). The location server src_ls
then forwards the location query message to dest_HLS (step 4). The dest_ HLS
maintains the identification of the location server (say dest_ls) of the registration
area in which the last update of the location of host dest took place (step 5). The
dest_HLS queries the dest_[s for the cell location of dest (step 6). In reply, dest_ls
sends the identifier of the mobile support station dest_mss. Upon getting the reply
from dest_ls (steps 7 and 8), dest_H LS returns the current location of dest to sre_ls,
which, in turn forwards it to srcomss (steps 9 and 10). The location information
is nothing but the address of the MSS (named dest_mss) of the cell in which the
mobile host dest currently resides. Thereafter, the call is set up between sre and dest

via sre-mss and dest_mss.

c. Drawbacks

o Increase in network traffic when the host crosses registration areas very fre-
quently: This can be due to a very mobile host going in some specific direction,
or because the host moves in and out of a registration area such that there are
lot of registration area boundary crossings. As every registration area crossing

causes an update at the host’s H LS, this scheme increases the network traffic.

o Inefficient location management: Updates on each registration area crossing is
useful to reduce the search costs (i.e., call set-up time), only if the user is being
called frequently. However, if the user is not being called frequently, updates
on each crossing are not necessary. In such scenarios, updates on each crossing

lead to inefficient location management.

higher network load than the search procedure presented here.
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2. Proposed Scheme

In this section we will discuss the proposed scheme that tries to avoid the drawbacks
of the above location management strategy. We use forwarding pointers in addition
of HLS to assist in location management. Our main goal is to avoid the increase
in network traffic due to updates at the HLS. We achieve this by not updating
the location information after every registration area crossing. Instead, forwarding
pointers are maintained at the location servers of the registration areas visited as
described below.

We classify location updates turther into two types, namely, updates and search-
updates. A update occurs when a mobile host changes location. A search-update (also
known as caching [36]) occurs after a successful search, when some hosts update the
location information corresponding to the searched mobile host. We discuss more

about search-updates in Section E.

a. Forwarding Pointers

A forwarding pointer maintained at some location server for a mobile host mh is a
data structure that contains the following: (i) identifier of mh, (ii) location of the
host mh. The key for the forwarding pointer database is the identifier of mh, i.e.,
there can be only one forwarding pointer per mobile host.

The forwarding pointers for a mobile host can be interpreted as forming a directed
graph with the location servers as vertices and with an edge from location server /s,
to location server [sy if and only if [s; has a forwarding pointer that points to lss.
The resulting graph will be a tree with edges directed towards the root, the current
location of the mobile host [21].

Example D.1: For an easier understanding we will illustrate with an example. Let
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the notation move(a,b) represent a move of the mobile host from registration area
a to registration area b. Let a mobile host make the following moves: move(1,2),
move(2,3), move(3,2), move(2,4), and move(4,5). The resulting graph due to the
forwarding pointers is shown in Fig. 15(a). Now, the mobile host makes the following

move, move(5,2). The mutation of the graph due to move(5,2) is shown in Fig. 15(b).

4 7 2

. s

(€Y (b)

Fig. 15. An Example of Forwarding Tree

The following obervations can be made [21]:
1) The graph due to the forwarding pointers will be a tree with edges directed towards
the root, the current location of the mobile host. O
2) The resulting graph after mutation due to a move of the mobile host still remains
a tree, however, with a different root, the new location of the mobile host. O
3) It follows from (1) and (2) that there are no loops in the graph formed by the
forwarding pointers. O
Transient Loops: Transient loops are unavoidable. Transient loops could be caused
due the following reason: A call for host A’ is set up based on a location of h’; however,
before the call reaches A’, host h’ moves to some other location. This will require the
call to traverse a path which might have loops. For example, in Fig. 15(a), let a
call be set-up from a host h in registration area 2 to a host A’ which is currently in
registration area 5. Thus, it will take the path along the chain of forwarding pointers,
2 — 4 — 5. Let the host A’ move to registration area 4 when the “call set-up”

message was in transit from 4 to 5. Thus, the “call set up” message has to traverse
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the forwarding pointer 5 — 4, thereby visiting registration area 4 twice. However,

these loops are short-lived, and do not exist under stable conditions.

b. Updates Using Forwarding Pointers

Whenever a mobile host leaves a registration area, say old, and enters a new regis-
tration area, say new, the host information (e.g., user profile, number of forwarding
pointers created due to the moves, etc.) is transferred from old_ls to new_ls, where,
old_ls (new_ls) is the location server for old (new) registration area. In addition, a
forwarding pointer is created at old_ls to point to new_ls to indicate that the host
has moved to new.

Update at the HLS does not take place for every registration area crossing.

When an update takes place is determined using one of the heuristics stated below:

e Movement-based heuristic: The location information of a host at the HLS is
updated when the number of registration area crossing by the host is M, where

M is a constant parameter that determines the performance of this heuristic.

e Secarch-based heuristic:  The location information of a host at the HLS is
updated when the number of search requests for the host is §, where § is a

constant parameter that determines the performance of this heuristic.

The procedure to update the HLS in the proposed scheme is same as the update
procedure in Section D.l.a. After such an update, the HLS will know the present
location of the mobile host, and no forwarding pointers need to be traversed (until

the mobile host moves from its present registration area).
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Fig. 16. Search using H LS and Forwarding Pointers

c. Location Searches Using Forwarding Pointers

Let us suppose that a mobile host src¢ wants to communicate with another mobile
host dest. Please refer Fig. 16 for this discussion. The first four steps of the search
procedure are identical to steps 1-4 in Fig. 14, until the location query is forwarded
to the home location server of dest, dest_HLS. Dest_H LS returns the address of the
location server (dest_ls) of the registration area in which the mobile host was residing
when the last update at dest_H LS took place (steps 5 and 6). Upon receiving the
address of dest_ls, src_ls sends a message query that traverses the chain of forwarding
pointers originating at dest_ls (step 7). Each location server on the chain looks up its
forwarding pointer database to determine the next location server on the chain, and
forwards the location query to it (e.g., steps 8 and 9 for dest_ls). This continues till
the end of the chain is reached (say curr_ls is the location server). The host dest will
be located in a cell in the registration area of curr_ls. The location server curr_ls
returns the current cell location to sre_ls, which in turn forwards it to sre-mss (steps

¢ and ¢ 4+ 1 in Fig. 16). Thereafter, the call is set up between sre and dest via the
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sre_mss and dest_mss.

d. Forwarding Pointer Maintenance

Forwarding pointers for a host may remain at the location servers for a long time
containing stale information and also increasing the storage requirements at the loca-
tion servers. A forwarding pointer can potentially be purged if it has not been used
for a “long” time. To avoid any inconsistencies in the location information due to
purging, we require the location servers to maintain a timestamp associated with each
forwarding pointer. While creating a forwarding pointer, the timestamp is the current
time at the location server when the pointer is created. Along with the timestamp,
the purge time interval ¢, for that pointer is also maintained. Every location server
purges the forwarding pointers which are older than purge time interval ¢, units of
time. Through this process, we avoid maintaining any stale forwarding pointers at
the location servers.

A Note: The above data structure contains a field to store time. The time entry
for a data structure on a location server, say /s, contains the local time at location
server [s when the data structure was last modified. It should be noted that the
correctness of the algorithms does not require the clocks at various location servers
to be tightly synchronized.

However, there might be “dangling” pointers due to inconsistent purging. For
example, let there be a chain 5 — 4 — 2. Thus, the current location of the host is
2. Suppose, 4 purges its pointer to 2 before 5 purges its pointer to 4. Then, 5 — 4 is
a “dangling” pointer because it does not lead to the location of the host i.e., 2. To

avoid this, a trivial solution is to keep a constant value of ¢, for all pointers®. Let

3This requires that clocks of all the location servers progress at an identical rate.
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it be T4 Let us consider the example again. Since, the pointer 4 — 2 is created
after pointer 5 — 4, the pointer 5 — 4 will be purged before pointer 4 — 2. Thus,
there will not be any “dangling” pointers.

We also need to ensure that the forwarding pointers do not get purged before an
H LS update takes place. Thus, the mobile host should update its location informa-
tion at its HLS at least once every T}, 4. units of time. This will ensure that even
if the forwarding pointers are purged, the H LS has the current location information
of the host. T4 will be a system design parameter. Larger the value of T},
lower will be the volume of HLS updates due to purging. However, larger the value
of Tyurge, longer will the forwarding pointers be in the system, thus increasing the
storage requirements at the location server. In a later section we derive the relation
between T4 and the memory overhead at the location servers.

In the analysis presented in the next section, we assume that T}, is large enough
(as compared to the time period between two H LS updates due to heuristics) such
that HLS updates due to timeout form a small fraction of all HLS updates. So, we
will ignore those cases. We now analyze the performance of the search-based heuristic

and the movement-based heuristic.

3. Performance Analysis

In this section we analyze the proposed location management scheme using forwarding

pointers and compare it with the basic scheme (1S5-41). We will then compare the

This may not be valid in practice, because, the clocks will have different rates. How-
ever, we can tackle this by having different purge time intervals for the location
servers. The difference between the purge time intervals at any two location servers
will mainly depend on the relative clock rate of the two location servers. For sim-
plicity of explanation we assume that clocks at all the location servers progress at an
identical rate.
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performance of the two heuristics presented in this chapter.

Calls between two hosts within the same registration area will not involve the
home location servers. Moves within the registration area will also not involve any
home location server interaction. Therefore, we analyze the performance of the lo-
cation management schemes for calls which arrive from outside the registration area
of a host (hereafter, we refer them simply as call arrivals), and for moves which are
registration area crossings. We define “cost” of sending a message as the amount of
network usage due to sending the message. In other words, it is the amount of time
the network is busy trasmitting the message.

The following terminology is used in the analysis:

e r = average number of calls per registration area crossing. We call this the

call-mobility ratio.

o (', = cost of an update per registration area crossing using [5-41. We will derive

an expression for ', later.

o (; = cost of a location search using 1S5-41. We will derive an expression for C

below.
o (', (! are the update and search cost, respectively, using forwarding pointers.
e cost(x — y) = cost of sending a message from z to y.

o A = average cost of sending a location query/reply message between M SS and

the LS within a registration area.

e B = average cost of sending a location query/reply message between a location
server and a home location server. This is thus the average cost of a HLS

interaction.
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o k = For a caller host, this is the number of forwarding pointers traversed before

locating the destination host.

o F' = cost of setting a forwarding pointer between two location servers. This
cost includes the cost of sending a message between the two location servers.
The cost of traversing a forwarding pointer also includes the cost of sending
a message between two location servers. The cost of traversing a forwarding

pointer is also assumed to be F.

o o = Relative forwarding cost = ci

In this chapter, our goal is to analyze the load on the static network. Therefore,

we do not consider the cost of message transfers over wireless links.

a. Performance Metrics

The performance metrics of the schemes are search cost (C,), and total cost (C)

where,

Cy = XC, + Y,

We need to choose X and ) such that the following holds:

e For users with low r (i.e., moves are more frequent than calls received), the
update cost is the governing factor in the total cost. Thus, in this case, the

search cost should be dampened.

e For users with high r (i.e., calls received are more frequent than moves), the
search cost is the governing factor in the total cost. In this case, the update

cost should be dampened.
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To achieve the above, we choose X' = %, and Y = r. Thus, the performance metric

of the schemes is:

1
Cy=-Cy +rC
T

Let, C; (= 2C,+rC,) be the total cost for the IS-41 scheme, and C} (= L) +rCY)
be the total cost for the proposed scheme using forwarding pointers. For the proposed
scheme to perform better than the IS-41 scheme, we require the following conditions
to be true:

e Condition 1: C] < (Y, and
e Condition 2: C! < RC.

If the proposed scheme satisfies both the conditions, the network load will be
reduced without considerably increasing the call set-up time for the user. The value
of R will depend on the quality of service of requirements of the user. We choose
R =2.

For the sake of convenience, we divide the r space into three regions: low (r <
0.1), moderate (0.1 < r < 5) and high (r > 5). We also divide the « space into two
regions: low (a < 0.5), and high (o > 0.5). In our discussions, we will refer to the

regions instead of actual values.

b. 1S-41 Scheme

Let a mobile host mh move from a registration area to a new registration area, and,
let the corresponding location servers be old_[s and new_ls respectively. Let the new
mobile support station be new_mss. Let the home location server of mh be HLS.

From the update scheme presented in Section D.1.a, and Fig. 13 we can obtain,

C, = cost(new-mss — new_ls) + cost(newls — HLS) + cost(HLS — new_ls)

+cost(new s — new-mss) + cost(H LS — old_ls) + cost(old_ls — HLS)
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= A+B+B+A+B+B

= 2A+4B

Step 1 involves message transfer over the wireless link, and hence is not considered in
the cost analysis. Steps 3 and 5 in Fig. 13 are database lookup and update operations,
and do not incur any network load. Thus, they too are not considered in the cost
analysis.

Let a mobile host sre call another mobile host dest. Let the location servers of
the registration areas in which src and dest are currently residing be src_ls and dest s
respectively. Let the home location server of dest be dest_HLS. From Section D.1.b

and Fig. 14, we can obtain,

Cs = cost(srcomss — src.ls) + cost(srels — dest_HLS)
+cost(dest_HLS — dest_s) + cost(dest s — dest_HLS)
tcost(HLS — srcls) + cost(srels — sremss)

— A+B+B+B+B+A

= 24 +4B (3.1)

Step 1, 3, 5, 7 do not incur any network load. Thus, they are also not considered in

the cost analysis.

c. Movement-based Heuristic

As stated earlier, the number of registration areas crossed by a host when the movement-
based heuristic scheme performs an update for that host is M. Thus, the number of
forwarding pointers due to moves by the host when an update takes place for that
host is (M — 1). Since the number of forwarding pointers for a host when an update

takes place is (M — 1), (M — 1)F is the total cost of creating forwarding pointers
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before an update takes place for that host. Therefore the update cost per registration

area crossing for the movement-based heuristic scheme is,

C, = ﬂ((M - HF+C,)

From Fig. 16 we can obtain the search cost for the movement-based scheme as follows:

C! = cost(srcomss — src.ls) + cost(srels — dest_HLS)
+cost(dest_HLS — src_ls) 4 cost(traversing the
forwarding pointers to curr_ls) 4 cost(curr_ls — sre_ls)

+cost(srels — srcomss)

Step 1 in Fig. 16 involves message transfer over the wireless link, and hence is not
considered in the cost analysis.

We make a conservative estimate of the cost (curr_ls — srels). In the worst
case, this cost will be equal to kF (the cost of traversing the forwarding pointers).

Therefore,

C! = A+B+B+kF+kF+A

= 2A+42B+2kF (3.2)

From equations (3.1) and (3.2), we get,

Cl=A+ % + 2k F
The average value of k is upper bounded by (M — 1)/2. Thus, the average search

cost 1s as follows:

Cs
C;:A+7+(M—1)F

We will now determine the relative total cost (C]/C}) and relative search cost (C?/C5).
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The relative total cost is given as follows:

g{ %C{L +rC!
G~ 10,10,
(Gt (M= DF) +r(A+ HC, +2(M — D)

- TG 10, (3.3)

We assume that the cost B of HLS interactions is the dominant cost in C; and C,.
This may not be true for all network architectures. This assumption was mainly
motivated by the studies which indicate HLS to be the bottleneck in PCNs. The
forwarding cost F'is assumed to be a fraction of the cost of update and searches, i.e.,

F = aC,, where, @ < 1. Substituting F' = aC\,, A < Cy, and C; = C, in (3.3)

yields,
oy 1 (14 Mr*)(142a(M —1))+1 (3.4)
Cy 2M 1+ 72 ‘
The relative search cost is given as follows:
o1

Using the above equations we will now determine the values of M that satisfies
the conditions stated in Section D.3.a. Condition 2 requires the search cost of the
proposed scheme to be less than or equal to twice than the search cost of the I5-41

scheme. For this condition to be satisified, following should hold:

M<3—|—20z
- 2«

Fig. 17 illustrates the variation of maximum allowable M with «. Note, that for
low o values, M > 5 is allowable. Figs. 18-20 illustrate the variation of relative total
cost with r for different values of M, for a = 0.2,0.5 and 0.8 respectively. It can be
observed that at high values of r, Condition 1 is violated for high values of M. In

other words, long chain lengths are not suitable at high values of . Thus, a small
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Fig. 17. Maximum Allowable Chain Length

M has to be chosen in order to obtain good performance for a wide range of r and
a. We keep M < 5 in our analysis. We analyze the performance of movement-based
heuristic scheme for M = 2, 3 and 4. Note that in Figs. 18-20, the relative total
cost of the movement-based scheme increases as r and « increases. Longer chain
lengths (i.e., larger M) are preferred at low values of . However, as r increases,
schemes using smaller chain lengths (smaller M) perform better. It can be seen in
Fig. 19 and Fig. 20 that for high « values, the performance of movement-based
heuristic with large M performs worse than the IS-41 scheme at high values of r.

Figs. 21-23 illustrate the variation of the relative search cost of the movement-
based heuristic scheme with r for « = 0.2,0.5 and 0.8 respectively. It can be observed
that the relative search cost of the movement-based heuristic scheme is independent of
r. However, the relative search cost increases with o. At high values of «, Condition
2 is violated for large values M.

Thus, it is recommended that the chain lengths be kept small (< 5). This is

because, schemes with long chain lengths perform poorly in terms of search cost as
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well as total cost for high values of « and r.

d. Search-based Heuristic

In this scheme, updates at the HLS occur once every S searches. Thus, the average

number of forwarding pointers traversed during a search is & f:o% = 52"';1. The

cost of update is only F' (cost of setting forwarding pointer). The search cost for

search-based heuristic scheme is,

C;:2A+2B—|—2(&)F:A—|—%—|—2(8+1
2r 2 2r

VF
The update cost for search-based heuristic scheme is,

r
C,=F+ =0,

Thus, the total cost is,

1 1 '
Cl=~CL41C, = ~(F + 5C) +r(A+ S +2Z—)F) (3.6)

S 2r

After substitutions similar to that in Section D.3.c, the relative total cost and relative

search cost for the search-based heuristic are as follows:

C;  28a(l+r(S+1)) +r(2+8r)

[ 2S(1 + 12) (3.7)
o1
o= T+ AS+ Ve (3:8)

Using the above equations, we will now determine a ‘good’ value of & that satisfies
the conditions stated in Section D.3.a. For Condition 2 to hold, the following should
hold:

3r — 2«
S <
- 2
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Fig. 24 illustrates the variation of maximum allowable & with r for a = 0.2. Note,
that for low values of r, the maximum allowable § is less than 1. This suggests that
HLS updates should take place more than once between two consecutive searches.
The maximum allowable & increases with r. For our analysis, we fix § = 1. This
is because, we observed that the performance of search-based heuristic scheme with
S =1 is quite close to that with ‘optimal’” &, in terms of relative total cost, where

the optimal S is the value of § that provides the minimum relative total cost.

10

Maximum S
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Fig. 24. Maximum Allowable Searches per HLS Update: o = 0.2

The variation of the relative total cost with r for the search-based heuristic
scheme is illustrated in Figs. 18-20. It can be observed that the relative total cost is
very low for low values and r and high values of r. At low values of r, HLS updates
occur very rarely (i.e., only during searches). Since the update cost is the dominating
factor in the total cost at low values of r, the relative total cost of the search-based
update heuristic is very low. On the other hand, H LS updates occur very often at
high values of r. This causes the search cost to be very low. Since the search cost is

the dominating factor in the total cost at high values of r, the relative total cost of the
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search-based heuristic is very low. However at moderate values of r, the performance
of search-based heuristic scheme is worse than the 1S-41 scheme.

Figs. 21-23 illustrate the variation of relative search costs with r for a =
0.2, 0.5 and 0.8 respectively. It can be observed that the search cost is very high
for low values of r. This is because for small r, the HLS updates occur infrequently,
and the moves frequently. Thus, each search has to traverse a long chain of forwarding
pointers. Moreover, there is a rapid decrease in search costs as r increases. This is

because the length of chain of forwarding pointers reduces as calls arrive more often.

e. Observations

e For movement-based heuristic to perform well over a wide range of r and «, a

small value of M should be chosen.

e The relative total cost of the search-based heuristic is much lower than the IS-
41 scheme and the movement-based heuristic scheme for low and high values of
r (r < 0.1 and r > 5). This is true for a wide range of a. However, the search

cost of the search-based heuristic is unacceptably high for low values of r.

e For moderate values of r (0.1 < r < 5), the relative total cost of the movement-
based heuristic scheme is lower than the IS-41 scheme and the search-based
heuristic scheme. However, this is true only for low values of a (< 0.5). At
high values of «, a small value M (M < 3) should be chosen for movement-
based heuristic scheme to perform well for moderate r. Also search cost of

movement-based heuristic is unacceptably high for high values of «.

Thus, it can be concluded that although forwarding pointers do reduce the total
network load, the search cost (i.e., call set-up time) increases. In the next section we

present a search-update strategy to reduce the search cost.



70

E. A Search-Update Strategy

The search cost could be reduced by eliminating the cost of querying the H LS for the
destination host. This can be achieved by having a location entry at the src.ls (in
Fig. 16) pointing to the start of the chain of forwarding pointers. This is called a
“search-update”. A search-update occurs after a successful search, when the location
server of the requesting host updates the location information corresponding to the
mobile host. Search-updates might reduce the search cost (call set-up time). In this

work, we will use a particular search-update strategy called jump update.

1. Jump Update

In jump update a location entry is created at the location server (src.ls) of the
caller (src) for the destination host (dest) after a successful search. As stated earlier,
for search-based heuristic, an update at the H LS take place only after a search. For
jump update, in addition to updating the HLS, the location information of dest at
src_ls is also updated. If there were no location entries for dest at src_ls, a location
entry is created. The cost of jump update is the cost of setting a forwarding pointer.
The motivation behind this kind of update is based on the assumption that sre
communicates frequently with dest. Therefore, the subsequent search by srec for dest

will potentially be lower.

2. Altered Search Procedure for Search-Updates

The search procedure needs to be altered to make use of the location information (if
available) at the location server. If dest is not in the registration area of sre_ls, check
if src_ls has a location entry for dest. The location entry for dest at src_ls might be

either the current location of dest, or the start of a chain of forwarding pointers to
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the current location of dest. Thus, when the location entry can be found in src_ls, a
HLS query could be avoided. The chain of forwarding pointers is traversed to get to
the current location of dest. Else, if the location entry for dest is not found in src_ls,

follow the previously explained search procedure (Section D.2.c¢).

3. Forwarding Pointer Maintenance for Search-Updates

In the forwarding pointer maintenance procedure described in Section D.2.d, we were
not concerned about the stale forwarding pointers at the location servers, because all
the searches (Section D.2.c) went to the HLS first. We ensure that the HLS does
not have stale location information by updating the HLS at least once every T, 4.
units of time. The location servers also purge forwarding pointers that are older than
Thurge units of time, thus, ensuring that stale forwarding pointers are not encountered
during a search. However, if the search procedure of a host is altered as in Section E.2
it should be ensured that the forwarding pointers at the location server are not stale
at any point of time.

A location information at a location server is purged or updated (when search-

update scheme is used) in the following events:
e During search-updates.

o When an HLS update takes place.

e When a mobile host disconnects.

Search-updates: The timestamp of a forwarding pointer for the host is updated with
the current time at the location server whenever a search-update for the host takes

place at the location server.
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HLS update: For the movement-based heuristic, H LS update takes place after M
registration area crossings. Apart from the periodic purging (due to timeouts), we
have to purge the forwarding pointers which become stale after an update at the
HLS. This will bound the maximum length of forwarding pointers traversed during
a search to (M — 1). Such purging is possible, if the pointers are bi-directional, i.e.,
there are backward pointers in addition to the forwarding pointers. Therefore, after
an HLS update, purge messages are sent to the location servers containing stale
forwarding pointers for the host. These location servers are determined using the
backward pointers. If forwarding pointers are purged after an H LS update, then the
average number of pointers for a host in the network at any time is upper bounded
by (M — 1)+ rM. The explanation is as follows: The maximum length of the chain
before an update at the HLS is (M —1), i.e, there is a maximum of (M — 1) location
servers which have a forwarding pointer for a host due to moves before an H .S update
takes place for the host. If search-updates are used, then each call for the host from
a location server will lead to a forwarding pointer for the host at the location server.
The average number of calls that can occur before an H LS update is r M. Therefore,
the average number of location servers that have forwarding pointers created due to
search-updates is upper bounded by rM. This is because there can be more than
one call from the area served by a location server. Therefore, for the movement-based
heuristic, the average number of purge messages sent during an H LS update is upper
bounded by (M — 1) 4+ rM).

If search-based heuristic is used, both H LS update and search-update take place
during a search. The average number of moves made by the user between two searches
is % Therefore, due to moves, the average number of location servers with forwarding
pointers for the host is upper bounded by % This is because the host may visit the

same cell. In addition, there is at most one location server that has a forwarding
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pointer for the host due to the previous search-update. Therefore, for the search-
based heuristic, the average number of purge messages sent during an H LS update

is upper bounded by (1 + 1).

Disconnection: Disconnections can also cause inconsistency in location information.
It a host disconnects, its location information should be purged from all location
servers. The HLS of the host will know the last location of the host before it dis-
connects (Appendix A). The HLS will also know the location of the host whenever
it reconnects/switches ON (Appendix A). However, if the host switches ON at a
location different from the location where it had earlier disconnected, the location
servers which had forwarding pointers to the old location, have stale and incorrect
information. Thus, if the altered search procedure (Section E.2) is used, we need to
purge the stale and incorrect location information at these location servers. This will
require purge messages to be sent to the location servers which have the forwarding
pointers for the disconnected host. Subsequent search for the host initiated from
these location servers will be forwarded to the HLS of the host. The HLS will not
have incorrect location information of the host. Any search query for a disconnected
host initiated from these location servers while the purge is in progress will lead to
a location server [s; which has no information of the host. The location server [s;
sends back an error message to the location server which initiated the search. Upon
receiving an error message, the location server will purge its forwarding pointer, and
forward the search query to the HLS of the host.

Forwarding pointer maintenance for search-updates require messages to be sent
over the network. We include the purge costs in the update cost during our analysis
of the search-update scheme. Since we are mainly concerned with the network load

due to host movement, we do not consider the network load due to disconnections in
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our analysis.

4. Performance Analysis of Search-Update Scheme

In the analysis presented here, we assume that Tp,.¢ is large enough (as compared to
the time period between two H LS updates due to heuristics) such that H LS updates
due to timeout form a small fraction of all H LS updates. Therefore, we assume that
updates at the HLS take place only upon searches (with search-based heuristic) or

upon moves (with movement-based heuristic). Let:

o s = Hit probability. It is the probability that a forwarding pointer to the desti-

nation host exists at the location server of the caller’s registration area.

o CICU CT C] are the update, search, search-update and total cost using for-

warding pointers and search-updates. C7 = £C/ + r(C + C7).

e /' = For a caller host, thisis the average number of forwarding pointers traversed

before locating the destination host when search-updates are used.

a. Movement-based Heuristic and Search-Updates

The update cost for schemes using search-updates will also include the purge costs

incurred due to forwarding pointer maintenance.

1
Cl=C!+ ﬂ(purge cost)

Purge cost is the cost of sending purge messages to all the location servers containing
stale forwarding pointers for the host. As stated earlier, the average number of
forwarding pointers for a host in the network when search-updates are used is upper

bounded by ((M — 1)+ rM). If we assume that the cost of sending a purge message
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is equal to the cost of setting or traversing a forwarding pointer, then the average

purge cost is upper bounded by (M — 1) + rM)F. Therefore,

€= Lt (M= 1) M)

C" = s(cost(srcomss — srcls) + cost(traversing the forwarding pointers from
sre.ls to curr_ls) + cost(curr_ls — sre.ls) +
cost(srcls — srcomss)) + (1 — s)(CY)

= S(A+KFF+KFF+A) +(1—3)(24+2B+2KF)

= 2A42KF +2(1 —s)B

= (O — (3(% —A)+ F(M-1)— Zk’)) where,

C'! is the search cost for the movement-based heuristic scheme without search-udpates.

As stated earlier, the cost of search-update, C” . is the cost of sending a message to

su?

sre_ls to create a location entry. Therefore, C” is equal to F.

1
Cl = Ol r(Cl+Cl)
r

= (Ot (M- M) +

(0= (oG = A+ FM = 1) 2k £ F)

1

We substitute F' = aC\y,, AL C,, Cs =Cy, C] = %C{L + rC’. The expressions for g—tt

O//
and £ are as follows:

S r rs nooal(r+ M —1)

C,  C, 1412 (2 +ra((M —1) =2k M ra) (3.9)
cy L (s :
=5 (5 +a(m—1-2)) (3.10)



76

For movement-based heuristic scheme with search-updates to be beneficial, we require

of o G

<& in (3.9). The value of s for movement-based heuristic scheme with search-

updates to be beneficial is given as,

SZQQ(%—(M—Q—%’))

We determine the value of s and &’ for different values of M using the markov
state analysis presented in Appendix B. Using the s and &’ value obtained from
Appendix, we determine the relative total cost (in (3.9)) and the relative search
cost (in (3.10)). Figs. 25-27 illustrate the variation of relative total cost with r for
a = 0.2,0.5 and 0.8 respectively. Similarly, Figs. 28-30 illustrate the variation of
relative search cost with r for @ = 0.2,0.5 and 0.8 respectively. It can be observed
that the relative search cost has considerably reduced as compared to the schemes
without search-updates. Moreover, the relative search cost is less than R (equal to 2)
for a wide range of o and r. However, for r < 1.0, the relative total cost is greater than
the relative total cost for movement-based heuristic without search-updates. This is
due to the additional purging costs.

As r increases, the hit probability (s) increases, thus decreasing the search cost.
Therefore, for higher values of r, the relative total cost of movement-based heuris-
tic using search-updates is much lower than the movement-based heuristic without
search-updates.

It should be noted that for high a values, the movement-based heuristic using
search-updates performs worse than the IS-41 scheme. This is due to the high purge

costs involved.
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b. Search-based Heuristic and Search-Updates

As stated earlier in Section D.2.d, we fix & = 1. Similar to the movement-based
heuristic, the update cost will also include the purge costs incurred due to forwarding
pointer maintenance. As determined earlier in Section E.3, the upper bound on

average purge cost for the search-based heuristic when search-updates are used is
(1+ %)F Therefore,
1
Cl=Cl +r (1 + —) F where,
r

C! is the update cost for search-based heuristic scheme without search-updates. Sim-
ilar to the movement-based heuristic scheme with search-updates, the search cost for

the search-based heuristic with search-updates is,

1= ( (G- ) 30 (1)) i

7

C'! is the search cost for search-based heuristic scheme without search-updates. The

total cost C}" is determined as,

Cf = Cl+r(Cl+C3)

1 5 1 !
_ CL—I—r(l—I——)F—I—r(Cg—s(%—A)—I—ZF(——k)—I—F)
T T

. . . c o ..
After substitutions, we determine & and Z* for the search-based heuristic scheme

with search-updates as,

cy r srooalr+1) 1 ,

C, O + 142 (2 r —|—2roz(r k) —ra (3.11)
cy  C s 1 ,
G5 ot ) o

For search-based heuristic scheme with search-updates to be beneficial, we require

Cc—él < g—f in (3.11). The value of s for search-based heuristic scheme with search-
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updates to be beneficial is given as:

SZMHQO_%_%/)

r? r

We determine the value of s and &' using the markov state analysis presented in
Appendix C. Using the s and &' value obtained from Appendix, we determine the
relative total cost (in (3.11)) and the relative search cost (in (3.12)). As seen in Figs.
28-30, the relative search cost of the search-based heuristic scheme has considerably
reduced upon using search-updates. This has happened at the expense of a small
increase in the relative total cost (Figs. 25-27). It should however be noted that at
high « values, search-updates are not suitable for search-based heuristic scheme. This

is because of the high purging cost involved.

c.  Observations for Search-Updates

In this section we have presented a scheme for search-update. We augment the for-
warding strategy with this search-update scheme and analyze its performance. One
of our concerns with forwarding was the increase in search cost. It is somewhat al-
leviated using search-updates; the search-based heuristic using search-updates has
very low search costs for all values of r, and the movement-based heuristic using
search-updates have low search costs at high . However, this saving in search cost
comes with an increase in the total cost. This increase in total cost becomes very
significant at high values of « (relative forwarding cost). It is observed that both the
heuristics using search-updates performs poorly compared to 1S-41 at high values of
«. Therefore, search-updates are not suitable at high values of a.

Fig. 31 presents a summary of the results. This figure has been repeated from
Section A for convenience. As stated earlier, we divide the r space into three regions:

low (r < 0.1), moderate (0.1 < r < 5) and high (r > 5). We divide the « space into
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two regions: low (o < 0.5), and high (alpha > 0.5).
This figure gives us a fair idea about when forwarding pointers and search-
updates are beneficial. If they are beneficial, the table shows which combination

performs the best.

r ’ Low High
Search-_ based Movermnent-based
Low with
Search-Updates (M<5)
Moderate | MOvement-based MOV?ATL%nt-ba%d
with (M<3)
Search-Updates
High (M<5) Search-based

Fig. 31. Performance Chart

. Fault Tolerance

The use of forwarding pointers introduces the issue of corruption/omission of a for-
warding pointer due to a transient failure at a location server. It is assumed that the
protocol software is stored in some stable storage and hence does not get corrupted
due to these failures. Thus, if a location server crashes and recovers, the location
information (includes forwarding pointers) stored in the volatile memory may be ini-
tialized randomly.

Fault tolerance requires that regardless of the initial state, the system will even-
tually converge to the correct state [18, 19]. The correct state in the scope of location
management is that the location servers have the correct location information of the
hosts. To recover from forwarding pointer corruption due to a transient failure, the
location servers have to periodically send the pointer information to other location

servers reachable using the bi-directional pointers. An inconsistency can occur if a
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location server [s has a pointer for a host h to another location server /sy, and the
location information of h at [sy is corrupted by a transient failure. Thus, periodic
exchange of information along the bi-directional pointers will ensure consistent for-
warding pointer information to be stored in the location servers. Apart from the
forwarding pointers, the host database (which stores the cell location of the host in
its registration area) at the location server should also be fault tolerant. This will
require periodic exchange of information between the MSSs in the registration area
and the location server. An inconsistency can occur if according to the location server
database, a host is located in more than one cell, or not located in any cell although
the host is present in some M.SS’s cell in the registration area.

If the location server crashes and recovers at a later time, its database will be
initialized to an inconsistent state with respect to the rest of the system. Thus, the
system will have to eventually converge to the correct state. This can be ensured in
the following manner. The failed location server, upon recovery, informs the MSSs
in its registration area and the other neighboring location servers about its recov-
ery. Upon receiving the recovery message from the location server, the other location
servers check their forwarding pointer database for any forwarding pointers to/from
the recovered location server. This is possible because we assume bi-directional point-
ers. The location servers will send the forwarding pointer information to the recovered
location server, which in turn will update its forwarding pointer database. The M S Ss
upon receiving the recovery message from the location server send the list of hosts
in their cell to the location server so that the location server can initialize the host
database (which stores the cell location of the host in its registration area).

The table which represents the mapping of each mobile host to its home location
server is assumed to be stored in the stable storage (e.g., disk) and thus is unaffected

by any failures. It is a safe assumption because this table needs to be always error-free
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and consistent with rest of the system (which includes other location servers), and is

also not updated as often as the forwarding pointer database or the host database.

G. Memory Overhead

A Timitation of the forwarding pointer approach could be the memory overhead at
the location servers. In this section we try to analyze the memory overhead of the

forwarding pointers. To assist in our analysis, we classify the pointers into two types:

e Forwarding Pointers: A forwarding pointer for a host is created at a location

server when the host goes out of the location server’s registration area.

e Bi-directional Pointers: This is required if the network needs to be fault-
tolerant, or if search-updates are going to be used. In this case, a pointer
for a host is created at a location server when, (i) the host enters the location
server’s registration area, (ii) the host goes out of the location server’s regis-
tration area, or (iii) there is a call originating from the location server for the

host.

We use the following notations and data for our analysis. The data is obtained

from [58]. Let:
o U = Total number of users in the network = 2.87 million.
e N = number of registration areas in the network = 128.
e p = mean density of the users = 390/sq.km.
o [ = Registration area boundary length = 30.3 km.

e v = average speed of the user = 5.6 km/hr.
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e )\ = Rate of call origination and delivery = 1.4/hr/user.

By = Size of a forwarding pointer in bytes.

By = Size of a bi-directional pointer in bytes.

1, = purge time interval for the pointers.

A forwarding pointer has the following fields: (i) identity of the mobile user, (ii)
identity of the next registration area (destination of the forwarding pointer), (iii)
timestamp indicating the time of creation of the pointer, and (iv) purge time interval,
t,. We assume that we require (844) bytes to store the timestamp and ¢, respectively.
In our analysis, we assume ¢, is same for all the pointers and is equal to 1 hour. The

size of a forwarding pointer By is given by [M}

+ 12. Replacing the values
we get, By = 16 bytes.

The rate of registration area crossing R is given as % [75]. Replacing the values,
we obtain R = 5.85/s. Let the maximum number of pointers that exist at a location
server at any time be P. Let us consider forwarding pointers first. Since pointers are
created only due to moves, P = R *1,. The memory required for forwarding pointers
is My = P * By =5.85* 3600 % 16 ~ 337K bytes.

Let us consider bi-directional pointers now. The bi-directional pointer will have
the following fields: (i) identity of the mobile user, (ii) identity of the next registration
area (destination of the forwarding pointer), (iii) identity of the previous registration

area (source of the forwarding pointer), (iv) timestamp indicating the time of creation

of the pointer, and (v) purge time interval, t,. Thus, the size of a bi-directional pointer

By is given by (l°g2(U)+82*log2(N)1

+ 12. Replacing the values we get, By = 17 bytes.
Bi-directional pointers are created due to moves in and out of the registration

area, and also due to calls. Thus, P =2 Rx 1, + % * t,. The memory required for
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bi-directional pointers is My = P x By = (2% 5.85% 3600 + 1.4 % 2.87 x 10°/128) % 17 ~
1250 K bytes.
The figures above indicate the memory overhead required to implement the for-

warding pointer scheme is insignificant when compared to the savings in terms of

network bandwidth.

H. Estimation of Call-Mobility Ratio r

As stated earlier, the performance of the proposed scheme depends on the call-
mobility ratio (r) and the relative cost of forwarding pointers («). High network
load is encountered if forwarding strategies are applied in networks where « is high
and users have low r. The value of « is network dependent and should be known to
the system designer. However, user’s call-mobility ratio is not known a priori to the
system designer. Thus, it is important to estimate the call-mobility ratio of the users
so that the proper forwarding strategy could be applied. Various techniques have
been proposed in literature to estimate r. A detailed investigation of the algorithms
for estimating r, namely, running average, and reset-K were presented in [36]. In
Chapter 1V [46], we propose algorithms to estimate r based on the history of call
and mobility patterns. The basic assumption behind these algorithms are that past

history of the user’s call mobility patterns will reflect the behavior in future.

I. Comparison with Other Centralized Schemes

Our work presented in this chapter [49, 50] differs from other centralized schemes [36,

37] in the following respect:

e A new heuristic (search-based) is proposed in this work. In [37] only movement-

based heuristic is discussed.
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e This chapter studies the impact of combining forwarding and caching on the
perfomance. We show that caching in addition to forwarding does improve

performance over schemes that employ only forwarding.

e However, combining caching and forwarding brings about unique problems with
forwarding pointer maintenance. In this chapter we propose schemes for for-
warding pointer maintenance. We also account for the overhead incurred due to
maintenance in our analysis. Forwarding pointer maintenance and its associated

cost was not taken into account in [37].

o We propose schemes to make location management strategy robust in the pres-

ence of failures.

e To assist in maintenance and fault-tolerance, we employ bi-directional pointers

instead of uni-directional pointers [37].

J.  Summary

This chapter presents location management strategies using forwarding pointers and
search-updates for network architectures with HLSs. Also presented are two heuris-
tics to limit the length of the chain of forwarding pointers namely, movement-based
heuristic and search-based heuristic. We analyze the performance of these heuristics,
and compare them with the scheme used in the 1S-41 standard. It is observed that
using forwarding pointers is beneficial for most of the call-mobility ratios. However,
the search cost of some of the schemes became very high and unacceptable for some
parameter values. A scheme for search-update is presented to reduce the search costs.
The performance of location strategies using forwarding pointers and search-updates

are analyzed.
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The main assumptions made in this chapter are: (1) H LS interaction cost is the
dominant cost, and (2) the length of the chain is a non-decreasing function of the
moves. Assumption (1) may not be true for all network architectures. This assump-
tion is mainly motivated by the studies which indicate HLS to be the bottleneck in
PCNs [36, 37, 58]. On the other hand, assumption (2) helps in determining the lower
bounds for the performance of our schemes.

Using the results from our performance analysis, an appropriate forwarding and
search-update strategy can be selected for the user based on the user’s call-mobility
ratio (r) and the network design parameter («). This will result in lower network load
enabling the network to support more mobile hosts than it would using the location

management strategy proposed in [S-41 standard.
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CHAPTER IV

DISTRIBUTED LOCATION MANAGEMENT

A. Introduction

As the cell size decreases, the number of calls transferred from one cell to another
increases. This causes the signalling traffic to increase and spurs requirements for
more efficient location management schemes. We believe that the signalling traffic
generated by moving hosts in a distributed location management scheme will be lower
than the current existing centralized algorithms (Chapter III). This improvement
can be accomplished by storing the location information of a mobile host in various
location servers. The network architecture consists of a hierarchy of location servers
which are connected to themselves and to the base stations by a static network.
Another advantage of hierarchical schemes is that the location address of a host can
be permanent. This is a desirable feature for a user who want the same address (e.g.,
telephone number) associated with them for their entire life, irrespective of whether
they change service providers or residence. However, in centralized schemes using
home location servers (HLS'), the user’s address determines the HLS of the user. If
a user changes service providers, there is a strong possibility that the HLS of the
user will also change. Same will be true if the user shifts to a new residence. For
example, if a user is a resident of Texas, the user’s H LS will typically be somewhere
in Texas. Now, if the user wishes to shift residence to New York, the user’s H LS will
no longer be in Texas for it will be cost prohibitive. Instead, the user will have a new
HLS somewhere in New York. This will change the user’s address. Thus, life-long
addressing will not be possible in HLS based schemes without decoupling the HLS

from service providers and geographical locations.
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In this chapter we present several location management strategies based on a
hierarchical tree structure database. These strategies try to satisfy the goal of pro-
viding efficient searches and updates. A location management strategy is a combi-
nation of a search strategy, an update strategy, and a search-update strategy. Static
location management uses one fixed combination of search, update and search-update
strategies. This chapter presents the results of simulations carried out to evaluate the
performance of various static location management strategies for various call-mobility
patterns.

It the system designer has a priori knowledge of the call-mobility pattern of the
user, the strategy which performs best for the given values of call and mobility can be
selected. However, this information is not always available. Thus, there is a need for
adaptive location management. The basic philosophy behind adaptive management
is that the past history of the system will reflect the behavior in the future, and
hence by keeping track of the past history and modifying the management strategy
accordingly, one expects to perform well for any call-mobility pattern. In this chapter
we present preliminary ideas and results for adaptive location management.

Unlike in previous chapter, we resort to simulations to analyze the schemes pre-
sented in this chapter so that we can accomodate non-uniform call-mobility patterns.
Real-life call-mobility traces are expected to be non-uniform and we show in this
chapter that adaptive location management performs well in such conditions.

The review of related work in location management can be found in Chapter III.
This chapter is organized as follows. Section B presents the static location manage-
ment strategies, and Section C presents the simulation results for the various static
location management strategies. Section D presents the adaptive location manage-

ment scheme and summary is presented in Section E.
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B. Static Location Management

A location management strategy will be a combination of a search strategy, an update
strategy, and a search-update strategy. Fig. 32 illustrates the space of location man-
agement strategies discussed in this chapter. In this chapter, we are going to discuss
location management strategies in the absence of a home location server (HLS).

Search Strategy

WithHLS @

Without HLS @

® ® ® Update
imi Strat
No Update Lazy Limited Full egy
Update Update Update
Jump Update
Path Compression
Update
Search-Update
Strategy

Fig. 32. Space of Location Management Strategies

1. Logical Network Architecture (LN A)

Mobile systems consist of mobile hosts, mobile support stations (base stations), and
location servers. The logical network architecture (LNA) is a hierarchical struc-
ture (tree) consisting of mobile support stations and location servers'. As shown in
Fig. 33, the mobile support stations (MSS) are located at the leaf level of the tree.
Each MSS maintains information of the hosts residing in its cell. The other nodes

in the tree structure are called location servers (LS). Each location server maintains

Typically location servers correspond to the mobile switching centers.
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information regarding mobile hosts residing in the subtree beneath it.

Root LS

Fig. 33. Logical Network Architecture

2. Data Structures

There is an unique “home” address for every mobile host. The home address is
the identifier or name of the mobile host. The “physical” addresses of a mobile
host might change, but its home address remains the same, irrespective of the host’s
location [74, 78]. Each LS maintains an address mapping table that maps the home
address to the physical address of the mobile hosts residing in the subtree beneath
it. Thus, the problem of location management basically focuses on the management
of the address mapping table.

There is a location entry in LS corresponding to a host A, if the host & is in
one of the cells in the subtree of a location server LS. If the host A moves to a cell
which is not in the subtree of LS, then the entry corresponding to h is updated (as
explained later) at LS. All the nodes maintain location information using 3-tuples
which have the following elements : (i) Mobile host identifier (¢d), (ii) Forwarding

pointer destination (fp-dest), and, (iii) Time at which last forwarding pointer update
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took place (fp_time). Each location server maintains a 3-tuple for each mobile host
residing in the subtree beneath it, and each mobile support station maintains a 3-tuple
for each mobile host residing in its cell.

At the location servers and the M SS, forwarding pointer destination ( fp_dest) is
the location of the mobile host. At the M SS, the fp_time value for a host residing in
its cell is NULL. Let us illustrate the use of forwarding pointers with an example. Let
us suppose that we are using a strategy which uses forwarding pointers for location
updates. Let a host h reside initially in cell ¢. The MSS of the cell ¢ will have an
entry (h,c, NULL). Let there be a location server [ which maintains information of
the hosts residing in cell ¢. There will be an entry (h,¢,t;) corresponding to host h
at L, where t; is the local time at I at which the entry was recorded at L. Let host
h move to a new cell ¢/. Let t be the local time at the MSS of cell ¢ at which the
change of location of A is recorded at the M SS. Let ¢ be the local time at L at which
the change of location of & is recorded at L. Thus, the location information of A will
be (h,d,t') at L, and, (h,c,t) at MSS of cell c.

A Note: The above data structures contain fp_time field to store time. The
fp_time entry for a data structure on a node, say v, contains the local time at node v
when the data structure was last modified. It should be noted that the correctness of

the algorithms does not require the clocks at various nodes to be tightly synchronized.

3. Initial Conditions

It is assumed that, initially, the location information of the mobile hosts is stored
in the corresponding location servers, i.e., each location server (L5) should have the
correct location information for all the hosts residing in the cells in its subtree. Thus,
the root location server should have the correct location information of all the hosts in

the system. Let us illustrate this with an example. In Fig. 34, nodes 1-7 are location



94

servers, and 8-15 are mobile support stations. There are two mobile hosts Al and h2.
In the initial state, host A1 isin cell 8, and h21isin cell 12. Initially, the correct location
information of host k1 will be available at the location servers {4,2,1}. Likewise, the
location information of h2 will be available at the location servers {6,3,1}. Thus, the
location information of a host is available at all the location servers located on the

path from its current MSS to the root.

Location
Servers

MSS 8 5
I \
1 \
() (¢}
hl h2

Fig. 34. An Example of Location Information Maintenance

4. Update Protocols

The strategies for updating the location information at the location servers and the

2, are as follows.

mobile support stations, when the host moves
Let src and dest be the identifiers of the source and destination cells, respectively.
Let h be the identifier of the mobile host. Let ¢ be the local time at the node at which

the change of location of & is recorded at the node. i.e., for example, ¢ is the local

time at the MSS of dest at which a location entry is recorded at the MSS.

2A move occurs when the host crosses cell boundary.
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a. Lazy Updates (LU)

This is the simplest update scheme. Updates take place only at the M 5SS of the source
and destination cells. A forwarding pointer is kept at the source M SS. The updated
entry at the source M SS becomes (h,dest,t). An entry for host h, (h,dest, NULL)
is added at the destination MSS. The location information at the location servers
are not updated. The cost of update is zero, because there are no update messages

being sent.

b. Full Updates (FU)

Upon a move, apart from the MSSs involved (i.e., the MSS of the source and
destination cells), location updates take place in all the LSs located on the path from
the M SS of the source and destination cells to the root. The scheme and an example

follows.

Source cell:

1. At the MSS : For host h, set fp_dest = dest, and fp_time = t. The updated

entry for host h at the MSS becomes (h,dest,t).

2. All location servers on the path from sre to the root : The MSS of sre sends
update message to these location servers. Upon receipt of the update message,
the location servers update the entry for h to (h,dest,t;), where #; is the local

time at the location server.

Destination cell:

1. At the MSS : An entry (h,dest, NULL) is added for host h. If there was an

old entry for A, it is overwritten by this new entry. There can be only one entry
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per host in the MSS and the LS.

2. All location servers on the path from dest to the root : The MSS of dest sends
update message to these location servers. Upon receipt of the update message,
the location servers create an entry (h, dest,t;), where t; is the local time at the

location server. If there was an old entry, it is overwritten by this new entry.

Therefore, in an H-level tree, the update cost per move is 2(H — 1), where, the
cost metric is the number of messages. Let us illustrate this scheme with an example.
Suppose in Fig. 34, host A1 moves from 8 to 14. Forwarding pointer to 14 will be kept
at MSS 8. MSS 8 sends update message to {4,2,1}, and these location servers also
maintain forwarding pointer to 14. An entry for h1 will be made at MSS 14. MSS
14 sends update message to the location servers {7,3,1}, and these location servers

also make an entry for host hl.

c. Limited Updates (LMU)

Update in the location information takes place at a limited number of levels of location
servers in the tree. Here updates occur at m(< H) lower levels of location servers on
the path to the root. Updates at these location servers are similar to the F'U scheme.
The location servers at levels higher than m are not updated. Thus, the update cost
per move is 2m. Let us illustrate this scheme with an example. Let the value of m be
chosen to be 1. Suppose in Fig. 34, host Al moves from cell 8 to cell 14. Forwarding
pointer to 14 will be kept at MSS 8. MSS 8 sends an update message to {4}, and 4
maintains forwarding pointer to 14. An entry for A1 will be made at M SS 14. MSS

14 sends an update message to {7}, and 7 makes an entry for host Al.
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5. Search Protocol

If a host A in cell C' wants to communicate with another host A’, & has to know the
location of A'. This requires that host & search for host A'. As stated earlier, we do
not make explicit use of home location server (HLS) for searches. The search process
in the absence of a HLS is as follows. If the mobile support station of ' has no
location information for &', it forwards the location query to the next higher level
location server on the path to the root. If that location server does not have any
location information for &', it again forwards the location query to the next higher
level location server on the path to the root. This process repeats until a location
server which has location information for A’ is reached. In this process if the root
location server is reached, and the root also does not have the location information for
k', then the root broadcasts to find out the location of the host A’. In our schemes we
make sure that the root has location information (as explained later), so the broadcast
will not be necessary. Once the location information (cell identifier) for A’ is obtained,
the location query is forwarded to the M SS of the cell. Host A’ is either in the cell of
MSS, or, MSS has a forwarding pointer corresponding to &’. If host £’ is in the cell
of MSS, the search is complete. Else, a chain of forwarding pointers is traversed till
the MSS containing the host &’ is reached. The search protocol is as shown in Fig.
35.

6. Search-Update Protocols

The idea of manipulating forwarding pointers upon a successful search was earlier
suggested in [21]. It was used to track objects in a decentralized object oriented com-
puter system. Location management becomes more efficient if the location updates

also take place after a successful search. For example, suppose there is a host h that
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Initially, the search_cell is C.
Step 1 : If the MSS of the search_cell has an entry for A’,
If fp_dest = search_cell,
host A is in the search_cell. Search for k' is complete.
Else search_cell = fp_dest. Repeat step 1.
Else forward the query to the next higher level location server
on the path to the root.
Step 2 : If the location server has an entry (h', fp_dest, fp_time) for b’
search_cell = fp_dest. Go to step 1.
Else If the location server is the root
Root broadcasts to find out location of A’. The location server that has
an entry (h', fp-dest, fp_time) forwards the location query to fp_dest.
Set search_cell = fp_dest. Go to step 1.
Else Forward the query to the next higher level location server
on the path to the root.

Go to Step 2.

Fig. 35. Search Protocol
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frequently calls A'. It makes sense to update the location information of 2’ after a
successful search, so that in the future if & calls again, the search cost is likely to
reduce. The location information update takes place at the M SS of the caller. Let
host & be the caller, and host A’ be the destination host. Let the location of h and A’
be €' and (" respectively. Following are the strategies to update location information

upon a search.

a. No Update (NU)

In this strategy, there are no location updates. But, the fp_time field of the entry
corresponding to A’ at the M SSs on the search path are updated to the current time
at the MSS. The cost is zero. This is because the update of the time field could
be done during the search process itself, and no additional messages need to be sent
for this purpose. The update in fp_time is done to avoid purging of the forwarding
pointer data at the MSSs. The purge protocol is explained in the next section.

4 2 1

®

Jump Update /

8
8 4 2 1 12
*o—06 =060 —0

Path Compression Update

Fig. 36. Search Updates

b. Jump Update (JU)

In this strategy, a location update takes place only at the caller’s MSS. i.e., MSS
of the cell C. The entry for A’ at the MSS of cell C is set to (h',C",t), where

t is the local time at the M SS when the location information is updated. Let us
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illustrate with an example. In Fig. 34, let host A1 call host h2. Suppose the location
information of A2 is available only at the location servers {6,3,1}. Using the search
protocol described previously, the search path willbe 8 — 4 — 2 — 1 — 12 (as shown
in Fig. 36). During a jump update [21] following the search, the location information
at 8 is updated. Thus, 8 jumps from wherever it is in the forwarding path to having
the current location information (as shown in Fig. 36). The update cost is 1. This is
because only one message needs to be sent from the M SS of C’ notifying the location

information of host A'.

c. Path Compression Update (PCU)

In this strategy, upon a successful search, a location update takes place at all the
nodes in the search path. All the location servers on the search path have the entry
of b’ updated to (h',C’,t), where t is the local time at the location server when the
location information is updated. All the MSSs on the search path including the
caller’s M SS have an entry of A’ updated to (h',C’,t), where ¢ is the local time
at the MSS when the location information is updated. Let us illustrate with an
example. In Fig. 34, let host A1 call host h2. Suppose the location information of h2
is available only at the location servers {6,3,1}. As shown in Fig. 36, the search path
will be 8 = 4 — 2 — 1 — 12. During a path compression update [21] following the
search, location updates take place at location servers {4,2,1}, and M SS 8. Thus, all
the nodes in the search path have the current location information (as shown in Fig.

36). The update cost is the length of the search path, which in this example is 4.

7. Purging of Forwarding Pointers

We need to periodically purge the stale forwarding pointers at the location servers

and the mobile support stations. This should be done in order to (i) save storage
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space at the nodes, and (ii) avoid storing stale location information. It does not
make any sense to keep the forwarding pointer information for a host &, if no other
host is going to query this location server for the location information of . We use a
design parameter purge interval (PI) to decide whether to purge a forwarding pointer
information or not.

The storage requirement at the location servers for forwarding pointers is a linear
function of the purge time interval. For a typical personal communications network,
it was determined that the memory required at the first level (the parents of the leaf
level nodes) location servers for PI equal to 1 hour, was about 340 Kbytes when no
search updates were used, and, about 840 Kbytes when jump updates were used [46].

Let the current time be curr_time. If fptime # NULL, and curr_time —
fp_time > PI, then the entry for the host is purged from the M SS 2. If curr_time —
fp_time < PI, it means that there is some other host in the system which has recently
used the forwarding pointer information of ¢.

In the location servers, if curr_time — fp_time > PI for a host, the location

entry for the host is purged.

a. Updating of Forwarding Pointers with a Purge

When LU and LMU strategies are used, the forwarding pointers at higher level loca-
tion servers do not get updated, and become stale. Thus, these forwarding pointers
get purged periodically. However, some of the searches for the host might reach the
higher levels. If the location servers at the higher levels do not have the information

of the host, the root has to broadcast to find out the location. To avoid this, the

*Note that the fp_time value for a host residing in the cell will be NULL. So we
are considering hosts which are currently not residing in the M SS’s cell and whose
forwarding pointer information is stored at the M SS.
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forwarding pointers at the location servers on the path to the root from the current
MSS must be updated periodically along with purging. This is achieved by the cur-
rent MSS of each mobile host by sending a location update message to the location

servers on the path to the root.

C. Simulations

A trade-off exists between the cost of updates (upon moves and searches) and cost
of searches. The parameters that affect this trade-off are (i) call frequency, and (ii)
mobility. In this chapter we will evaluate the effects of mobility and call frequency
on the cost of updates, search-updates and searches. As stated earlier, the location
management strategy is a combination of a search strategy, an update strategy and a
search-update strategy. The search protocol is the same for all location management
strategies. A total of 9 static location strategies are obtained using above strategies for
updates and search-updates. We performed simulations to analyze the performance of
the proposed location management strategies for various call frequency and mobility
values. The location management strategies simulated were obtained by choosing
one update strategy (say XX, where XX = LU, FU or LMU) and one search-update
strategy (say YY, where YY = NU, JU or PCU). The location management strategy

thus obtained is denoted as XX-YY.

1. Model

We assume a binary tree as the logical network architecture for the simulations. The
height of the tree is H. The number of location servers in the network is 2(H#=1 — 1,

and the number of mobile support stations (or the number of cells) is 27=1). Physical

proximity of the cells under the same location server is assumed. This will help in



103

determining short and long moves. The height of the tree H was chosen to be 10 for
the simulations®. Thus, there were 512 cells in the network.

The main aim of the chapter is to develop protocols for efficient searches and
updates, i.e., reduce the number of messages due to location updates, without in-
creasing the number of messages required for searches. We assume that the message
delays are negligible. Since, message delays are small compared to the time between
calls or moves, performance of the schemes will not be significantly affected by this
assumption.

Simulations were performed for two types of environments : (i) arbitrary moves
and arbitrary callers, (ii) short moves and a set of callers. In type (i), the user can
move to any location (cell), and, get calls from any other host in the network. This
is not necessarily true in real life, but it gives a fair idea of the performance of the
location management schemes in such extreme conditions. Type (ii) is closer to real
life mobile environments. Users are expected to make a lot of short moves to nearby
destinations, and are expected to receive calls from a specific set of callers (e.g. family,

business colleagues)®.

a. Call and Mobility Distribution for Type (i)

The time between moves of a host is assumed to follow an exponential distribution
with a mean M. The destination cell is chosen randomly among the 512 cells. The

time between calls for a host is assumed to follow an exponential distribution with a

In existing networks like GSM or Internet, the height will be 3 to 4. Since a binary
tree was assumed for the simulations, we needed to have higher number of levels to
have a sizeable number of cells in the network. However, similar performance trends
are expected for other networks.

*The callers are assumed to be immobile. They are either part of the static
network, or, do not leave their cell.
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mean C'. The caller’s cell is chosen randomly from among the 512 cells.

b. Call and Mobility Distribution for Type (ii)

Type (ii) consists of generating calls from a specific set of callers and short moves.
One option to generate short moves is to put an upper limit on the length of the
move, in terms of the difference between the source and destination cell identifiers,
and randomly vary the length of the move within the upper limit. For example, in
Fig. 34, if we keep an upper limit of 1, the host h2 will be able to move to any cell
in the set {11,12,13}. But, our logical network architecture just assumes proximity
of cells which are under the same location server. Thus, a move from 12 — 11 is not

equivalent to a move from 12 — 13.

p(h) W\

1 h (H-1)

Fig. 37. Probability Distribution Function in Terms of Height

We use a different approach to characterize short moves. We randomly choose
the number of levels of location servers where an update would have occurred due
to the move, if F'U update strategy were to be used. The number of levels can be
between from 1 to (H — 1). Level 0 is the M SS level. Smaller the number of levels

chosen, shorter is the length of the move. The probability distribution function of
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the length of the move in terms of height (number of levels) is shown in Fig. 37.

2

P = G =)

« (H—1-nh).

The cumulative distribution function (cdf) is as follows: cdf(h) = X"_, p(x).
We randomly chose a height i based on the given probability distribution function.
The number of choices for the destination cell is 2*. Let the identifier of the current
cell (i.e., the source cell) be curr. Knowing the height h and curr, one can easily
determine the ancestor of curr at level h in the binary tree. Let it be [s. Knowing
Is, the set of destination cells possible is {ls* 2" [s* 2" 41, ... lsx 2" 4+ 2" — 1} A
destination cell is chosen randomly from this set. Let us illustrate with an example.
In Fig. 34, for host h2, let the h obtained randomly be 2. Thus the number of choices
is 4. The location server at level 2 is 3. Thus, the destination cell is randomly chosen
from {12,13,14,15}. This is in coherence with the assumption of proximity of cells
under the same location server. It should be noted that when the destination cell is
same as the current cell, there are no location updates. The time between moves of
a host is assumed to follow an exponential distribution with a mean M.

In type (ii), for each mobile host, callers were chosen from a specific set of cells.
The size of the set was chosen to be 20. The set was chosen arbitrarily, and were not
necessarily neighboring cells. The calls always originate from those cells. The time

between calls for a host is assumed to follow an exponential distribution with a mean

C.

c. Purge

Purge is performed periodically every PI units of time. The value of PI (purge inter-
val) was chosen to be 10 units of time. We simulate the purge operation (described

in Section B.7), however, we do not consider the cost due to purging in our analysis.
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2. Cost Model

The cost metric is the number of messages required for each operation (search, up-
date, and search-update). Thus, the cost of an update is the number of location
servers which update the location information of the host. The cost of a search is
the number of location servers and mobile support stations visited before locating
the host. Cost of a search-update is the number of location servers which update the
location information of the host.

The performance parameter of interest is the total cost, defined as the sum of
average update cost, average search cost, and the average search-update cost. Other

cost metrics are also possible (For example, see Chapter II1.D.3.a).

3. Results

Simulations were performed to analyze the performance of the various location man-
agement strategies. Results were obtained for the two type of environments, Type (i)
and (ii). The values of C' and M were both varied from 1 to 15 units of time. Value
of € was changed to vary the time interval between two successive calls. Value of
M was changed to vary the mobility of the host. For example, C' =1 and M =1

characterizes a communication intensive and ultra-mobile environment.

Type(i) : It was observed that the LU-PC strategy outperforms all the other strate-
gies for all values of M and C'. Therefore, we have only plotted the curves for LU-PC.
The strategies using I'U and LMU suffered due to the high cost of updates upon each
move. LU-NU strategy suffered due to very high search costs. Because the callers
were arbitrary, LU-JU strategy did not perform well as the update upon a successtul
search was not helping in reducing the search cost. Fig. 38 plots the total cost for the

LU-PC strategy as a function of C for different values of M. As seen in the figure,
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Fig. 38. Performance of LU-PC for Type(i)

the total cost increases with increasing €', and decreases with increasing M. This is
because as (' increases, the calls become infrequent, and the hosts might have moved
to new locations, requiring new searches. Thus the reduction in search cost by path
compression is not much effective. We also observe that the rise in total cost with '
is higher for lower values of M. Lower the value of M, higher is the mobility, and
thus the search cost will be higher. At high values of M, the difference in the total
costs due to different values of M is low. This is because as M increases, the host
movement reduces. Beyond a point, increasing M does not affect the total costs, and

the curves converge to a single curve.

Type(ii) : It was observed that the LU-PC and the LU-JU strategies outperformed
all the other strategies for all values of M and C. In contrast to Type (i) scenario, LU-

JU performed well, because, there is a specific set of callers. Thus, the jump update
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Fig. 39. Comparison of LU-PC and LU-JU for Type(ii)

at the caller is much more effective in reducing the search cost, because the caller is
going to call the host again with a higher probability than in Type (i) environment.
Fig. 39 plots the total cost for the LU-JU strategy and the LU-PC strategy as a
function of C for different values of M. Asseen, LU-JU performs better than LU-PC
in high-communication and low-mobility, and, low-communication and high-mobility
environments. In these environments, the search cost for LU-PC and LU-JU are
comparable. Since the search-update cost is same as the search cost for LU-PC', the
total cost for LU-PC' is simply twice the search cost. Whereas, the average search-
update cost for LU-JU is equal to 1. Thus, the total cost of LU-JU is lower than
LU-PC. LU-PC performs better for other values of M and C' because the search cost
for LU-JU becomes large compared to LU-PC'. Fig. 40 demonstrates the average
search cost for the LU-JU strategy and the LU-PC strategy as a function of C for

different values of M. As seen, LU-PC has a much lower search cost than LU-JU.
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The search cost of LU-JU is slightly lower than LU-PC' for high-communication and

low-mobility environment.
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Fig. 40. Comparison of Search Costs of LU-PC and LU-JU for Type(ii)

4. Discussion

It was noticed that performing search-updates significantly reduced the search and
total costs. For the logical network architecture assumed, it is seen that the LU-PC
strategy performs better than the other strategies for most of the values of ' and M.
It is expected that LU-PC will perform well in other network models too. For other
cost models, we expect the other proposed strategies to perform well, and sometimes
better than the LU-PC' strategy for some values of M and C'. As shown in Fig. 41a,
we expect zones in the M-C' plane, where one scheme will outperform others for the
call frequency and mobility values in the zone. This was evident in the Type (ii)

environment. As shown in Fig. 41b, the M-C' plane is divided in two zones, LU-JU
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and LU-PC. Thus, if the behavior of the mobile hosts (call frequency, mobility) is
known a priori, the designer can obtain such an M-C chart and decide which location

strategy will best suit the system.

2~ 4 LU-LU
7 LU-PC
1%’ 3
c c LU-U
_— _—
(@ Generic Scenario (b) Type (ii) Environment

Fig. 41. Partitioning of the M-C Plane

In the next section we will present some preliminary ideas and results for adaptive

location management.

D. Adaptive Location Management

The system designer does not always have prior knowledge of the call-mobility pattern
of the hosts. In these cases, one would require a location management scheme that
can dynamically change the update and search-update strategy, such that the overall
overhead incurred due to updates and searches is minimized. At the same time, we
would not want to use up the battery power of the mobile hosts to determine the

appropriate strategy dynamically. We require the M 5SS to take up the responsibility.

1. Data Structures

Let 7 be the current time at the mobile host h. M(h) is the sequence of moves of

the host h. M(h) = {my, ma,...,m,}, where, my; = (11, src,dest), i.e., element my is
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a move by the host & at time #; from src to dest, and t; < t5... < t,. (The time of
move is observed at the mobile host h.) Each element of the set M(h), m,, contains
two identifiers — the source cell identifier, and the destination cell identifier. If both
identifiers are the same, then the host has not left the cell. This kind of entry is not
necessary (hence will not be present), because it does not affect the location database.
But if the identifiers are different, the source cell should determine whether the move
is long or short.

Cyu(h) is the sequence of costs incurred due to updates upon the moves M(h).
Cu(h) = {cu1, Cuzy ooy Cun}, Where ¢,; = cost of update upon a move m;.

If another host A’ wants to communicate with h, and if 2 is not in the same
cell or if the MSS of 2’ does not know the cell identifier of h, A’ has to search for
h. A set S(h) is maintained at the current MSS of h. S(h) = {s1, 82, ..., 8.}, where
si = (tsi, h'); i.e., there was a call from R’ for h at time 5, and t5 < fe... < tg.
Again, the time of call is observed at the mobile host h.

Cs(h) is the sequence of costs incurred due to the searches S(h). C,(h) =
{€s1, €525 .., Csn }, Where ¢5; = cost of search s;. Cy,(h) is the sequence of costs incurred
due to search-updates upon searches S(h). Cou(h) = {Couss Csuys oo Couy b5 Where gy,
= cost of search-update upon the search s;.

The data structures are obtained as explained in the next section.

2. Basic Idea

The above data structures are stored at the current MSS of the host. They get
transferred to the new MSS during handoff. The decision of the type of updates
and search-updates are done by the current MSS. The current MSS uses the data
structures to determine the best suited strategy. The appropriate update and search-

update strategy will be one of the proposed static location management update and
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search-update strategies.

It is assumed that the mobile host & knows the identifier of the cell it is currently
residing in. When a host h moves, h sends a message (containing the identifier of its
old cell, and the time of move) to the new MSS. The new MSS forwards a copy
of this message to the old M SS. The move is recorded as a new element m; in the
sequence M(h). The old MSS takes a local decision (explained later) regarding the
updates. The cost of the update is recorded as a new element ¢,; in the sequence C,.
The new MSS requests the old MSS for the data structures corresponding to h. If
the new M SS makes any updates, the cost of the update is added to ¢,; in C,.

When a host &’ wants to communicate with &, and if & is not in the same cell
or if the M SS of A’ does not know the identifier of the cell of A, A’ has to search for
h. A location query message is sent during the search. This message has a field to
store the search cost. At any time, the search cost field indicates the cost incurred
due to the search till now. The search cost gets incremented as the location query
message is forwarded to a new location server or a mobile support station. Once h is
located, a new element s; is added to the sequence S(h) at the MSS of h. The time
of the call is the time observed at the mobile host &. The search cost is recorded as
a new element ¢;; to Cs(h). The MSS decides upon the appropriate search-update
strategy. It is determined based on the call history (explained later). For example, if
a host A’ frequently calls host A, it makes sense to use JU to reduce the subsequent

search cost for A’. The cost of the search-update is recorded as a new element Csu; 1O

Csu(h) at the MSS.
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3. Mobility and Call Frequency
a. Determining Mobility

Let at time t = 7, M(h) = {my, ma,...,m,}, where m,, = (¢, sre, dest), and t, < 7.
Thus, m,, describes the move of host A that took place at time ¢, from a cell src to
a cell dest. Thus, the average time interval between successive moves At,,, = %

We assume a system parameter maximum threshold move interval (MTMI). If
there are no moves by the host for MT M I amount of time, the host can be declared
to be immobile or stationary. The sets M(h) and C,(h) maintained at the current
MSS are stale because the history does not reflect the behavior in future anymore.
Therefore, they are deleted. In the absence of M(h) set, the host is assumed to have
a high mobility upon the first move.

We have defined two degrees of mobility — (i) low mobility, and (ii) high mobility.
At any time 7, let ¢, be the time of the last move by the host. If At,,, < MTMI,

the host has a high mobility, else if At,,, > MTMI, the host has a low mobility.

b. Determining Call Frequency

Let at time ¢t = 7, S(h) = {s1,52,..., 8.}, where s, = (t5,, ), and t5, < 7. s,
describes the call for host & from A’ that took place at time t,,. We define an average
time interval between calls for each caller to host h. The average time interval
(] = S A

between successive calls of caller h', At L —= where, n’ is the number of

Savg
calls made by A’, and the At,’s are the time intervals between two consecutive calls
made by host A’.

We assume a system parameter mazimum threshold call interval (MTCT). If

there are no calls by host A’ for MTCI amount of time, the host A’ can be declared

to have no communication with 4. The elements corresponding to host £’ in the set
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S(h) are stale because the history does not reflect the behavior in future anymore.
Therefore, they are deleted. In the absence of S(h) set, the caller i is assumed to be
a frequent caller upon the first call of A’ to host h, i.e., Aty = 0.

Similar to mobility, based on the degree of call frequency, we have two types of
caller — (i) non-frequent caller, and (ii) frequent caller. Then, if At,,,,[A] < MTCI,

the caller is a frequent caller, else if At,,,[h'] > MTCI, the caller is a non-frequent

caller.

c. Size of Data Structures

The maximum size n of the move set M(h) and search set S(h) can be chosen as
a design parameter. Larger the value of n, better will be the learning of the host
behavior, and thus a better predictability will be attained. However, the storage
capacity available at the M SS restricts the value of n. The MSS has to maintain
these sets for each mobile host in its cell. Thus, larger the value of n, larger is the

storage cost.

4. An Example

In this section we will present an example algorithm for adaptive location manage-
ment. It is for the network model assumed for static location management strategies.
The knowledge of Fig. 41b, and the fact that LU-PC' is the best scheme for long
moves, will prove to be useful in dynamically determining the best strategy. From
the previous section, we have the techniques to classify the moves, calls and the mo-
bility of the host. If a host has a lot of frequent callers, the host is being frequently
searched, else, if a host has a lot of non-frequent callers, the host is not frequently
searched. The algorithm is as shown in Fig. 42.

We present an example where a simple algorithm adaptive as shown in Fig. 42
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Algorithm adaptive

if (host makes a lot of long moves)
Employ LU-PC.

else if ((frequently searched) and (low mobility))
Employ LU-JU.

else if ((frequently searched) and (high mobility))
Employ LU-PC.

else if ((Not frequently searched) and (high mobility))
Employ LU-JU.

else Employ LU-PC.

Fig. 42. adaptive - An Adaptive Location Management Algorithm

performs better than the static location management strategies. Simulations were
performed for type (ii) environment. As stated earlier, a mobile host makes a lot
of short moves in type (ii) environment. Thus, the adaptive location management
algorithm adaptive makes a choice between LU-JU and LU-PC based on call fre-
quency and mobility of the host. Fig. 43 illustrates the mobility distribution of an
user. The x-axis represents the time at which the user moves, and the y-axis repre-
sents the length of the move. Fig. 44 illustrates the incoming call distribution for
the user. The x-axis represents the time at which the call is made for the user, and
y-axis represents the distance of the caller from the user. The value of MT'C'[ and
MTMI was chosen to be 10 units of time. For this non-uniform call and mobility
distribution, we evaluated the LU-PC, LU-JU and adaptive strategies. We define
the aggregate cost at time t as the sum of update cost, search cost, and the search-

update cost for the event that occurs at time ¢. Figs. 45-47 illustrate the aggregate
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cost for LU-JU, LU-PC and adaptive strategies. For the given call and mobility
distribution, results were obtained for different sizes of the move and call sets. It was
observed that the minimum size of the move and call sets that was required for good
performance of adaptive strategy was 7. Fig. 48 illustrates the difference of aggre-
gate cost between adaptive and LU-JU schemes. Fig. 49 illustrates the difference
of aggregate cost between adaptive and LU-PC. In Figs. 48-49, negative difference
implies that adaptive is better. As seen in Fig. 48 and Fig. 49, LU-JU performs
poorly during periods of high-communication, and LU-PC performs poorly during
periods of low-communication. However, on the average, adaptive performs better
than both the schemes during periods of low and high communication, as illustrated
in Table 1. Time interval 100.0-200.0 is the high communication period (107 calls
or 1.07 calls per unit time). During this period, if the system designer uses LU-JU
instead of adaptive, the network load (in terms of number of messages) will increase
by 33%. Time interval 400.0-600.0 is the low communication period (91 calls or 0.45
calls per unit time). During this period, if the system designer uses LU-PC' instead
of adaptive, the network load (in terms of number of messages) will increase by 12%.

For the given call and mobility distribution (shown in Fig. 44 and Fig. 43), the total
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savings of adaptive over LU-PC is 4% and over LU-JU is 17% (as shown in Table
[IT). Thus, the results show that a simple adaptive location management algorithm
as shown in Fig. 42 performs better than the static location management strategies

for a wide range of call-mobility patterns.
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E. Summary

Presented in this chapter are strategies for updates, search-updates, and a search

protocol for a hierarchical network architecture. A location management strategy is
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Table ITI. Comparison of Average Costs for Non-Uniform Distribution

Interval | # Calls | LU-PC | LU-JU | adaptive Savings Savings
over LU-PC | over LU-JU
100-200 107 3.32 4.08 3.1 6% 33%
400-600 91 3.36 3.02 3.0 12% 1%
0-1000 562 3.35 3.73 3.2 4% 17%

ence’ ——
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a combination of the search strategy, a update strategy, and a search-update strat-
egy. Simulations were carried out to evaluate the performance of the various location
management strategies. It was noticed that performing search-updates significantly
reduced total costs. For the logical network architecture assumed, it is seen that
the LU-PC (combination lazy updates and path compression search-update) strat-
egy performs better than the other strategies for most call-mobility patterns. It is
expected that LU-PC will perform well in other network models too.

Static location management uses one combination of search, update and search-
update strategies throughout the execution. In order to obtain good performance
using static location management, the system designer should a priori have a fair
idea of the call-mobility pattern of the users. The host behavior (call frequency,
mobility) is not always available to the system designer. Thus, there is a need for
an adaptive location management. In this chapter we present preliminary ideas for
adaptive location management. The basic philosophy behind adaptive management
is that the past history of the system will reflect the behavior in the future and
hence by keeping track of the past history and modifying the management strategy
accordingly, one expects to perform well for any call-mobility pattern. Simulation
results show that the performance of adaptive location management can be better
than static location management. Adaptive location management results in lower
network load, enabling the network to support more mobile hosts than it would using

static location management.
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CHAPTER V

ROUTING IN DYNAMIC NETWORKS

A. Introduction

A dynamic network composes of a set of mobile hosts that can communicate with
each other over the wireless links (direct or indirect) without any static network
interaction. Example of such networks are ad-hoc networks [17, 39, 61], and packet
radio networks [16, 40, 42].

An important issue in dynamic networks is the design and analysis of routing
schemes. This chapter investigates the consequence of mobility and disconnections of
mobile hosts on the design and performance of routing protocol in a dynamic network.

In the existing proposals for infrastructure wireless networks, routing information
of each mobile host is maintained in some database (HLR and VLR in 1S-41 [46, 58],
home agent and foreign agent in mobile I P [32, 62]) which is located in the static
network. However, there is no such database available for dynamic networks. Due
to limited range of the wireless transreceivers, a mobile host can communicate with
another host only within a limited geographical region around it. Thus, it may be
necessary for a mobile host to require the aid of other mobile hosts in forwarding data
packets to its destination. The routing information will thus be maintained at the
mobile hosts to assist in forwarding packets to other hosts. The problem here is the
complexity of updating the routing information in such a dynamic network. Let us
illustrate it with an example.

Fxample A.1: Fig. 50(a) is an example of a dynamic network. Routing informa-
tion is maintained at each host. For example, routing table at M H4 requires packets

destined for M H1 to be forwarded to M H2, which in turn will forward the packets to
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Fig. 50. A Dynamic Network

M H1. However, due to the movement of host M H1, the network topology changes.
The communication link between M H2 and M H1 breaks, and, there is a new link
between M H3 and M H1. Thus, the routing tables at the hosts have to be updated
to indicate this change in topology. For example, the routing table at M H4 has to
be updated to indicate that the packets destined to M H1 have to be forwarded to
MH3 and not M H2. The network topology also changes due to host disconnections.
As illustrated in Fig. 50(b), the network gets partitioned due to the disconnection of
host M H5. Thus, the routing information at the hosts have to updated to indicate

the change in topology during disconnections too. O

1. Previous Work

Numerous routing protocols have been proposed in the recent years. One of the

most popular techniques for routing in communication networks is via distributed
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algorithms for finding shortest paths in weighted graphs [24, 35, 69, 55]. These dis-
tributed algorithms differ in the way the routing tables at each host are constructed,

maintained and updated. The primary attributes for any routing protocol are :

e Simplicity : Simple protocols are preferred for implementation in operational

networks [61].

o Loop-free : At any moment, the paths implied from the routing tables of all
hosts taken together should not have loops. Looping of data packets results in

considerable overhead.

o Convergence characteristics : Time required to converge to new routes after a
topology change should not be high. Quick convergence is possible by requiring

the nodes to frequently broadcast the updates in the routing tables.

e Storage overhead : Memory overhead incurred due to the storage of the routing

information should be low.

Conventional routing protocols can be broadly classified as distance vector and link
state protocols. Distance vector routing uses the classical distributed Bellman-Ford
algorithm [11, 30, 40, 55]. Each host maintains for each destination a set of distances
through each of its neighbors. In order to maintain up-to-date information, each host
periodically broadcasts to each of its neighbors, its current estimate of the shortest
path to every other host in the network. For each destination, the host determines a
neighbor to be the next hop for that destination if the neighbor has the shortest path
to the destination.

Link state routing requires each host to have knowledge of the entire network
topology [56]. To maintain consistent information, each host monitors the cost of each

communication link to each of its neighbors, and periodically broadcasts an update
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in this information to all other hosts in the network. Based on this information of the
cost of each link in the network, each host computes the shortest path to each possible
destination host. The processing overhead and the network bandwidth overhead of
link state protocols are generally more than distance vector protocols.

The problems in using conventional routing protocols in a dynamic network have
been discussed in great detail in [39, 61]. For completeness sake, we briefly list the

problems in the following.

e The conventional routing protocols were not designed for networks where the
topological connectivity is subject to frequent, unpredictable change as evident
in dynamic networks. Most of them exhibit their least desirable behavior for

highly dynamic networks.

e Existing protocols could place heavy computational burden on mobile comput-

ers in terms of battery power, and the wireless networks in terms of network

bandwidth.

e Convergence characteristics of these protocols are not good enough to suit the

needs of dynamic networks.

The protocol described in [61] addresses some of the above stated problems by
modifying the Bellman-Ford routing algorithm. They use sequence numbers to pre-
vent routing table loops, and, settling-time data for damping out fluctuations in route
table updates. The convergence on the average is rapid, however, the worst case con-
vergence is large. Moreover, their protocol required frequent broadcasts of the routing
table by the mobile hosts. The overhead of the frequent broadcasts goes up as the
population of mobile hosts increases. Another scheme based on distance vector path-

finding algorithm was proposed by [59]. Although loops are avoided completely, all
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the nodes end up sending an update message to their neighbors during a topology
update operation. In dynamic networks, where topology updates are frequent, the
update overhead may be very high.

Johnson propose a new routing method for ad-hoc networks based on separate
route discovery and route maintenance protocols [39]. The concept of Address Res-
olution Protocol (ARP) is extended to discover routes. However, if proper measures
are not taken, the network performance can degrade due to the propagation of redun-
dant route discovery requests. Route maintenance is achieved by using hop-by-hop
acknowledgement. However, due to such relaxed maintenance measures, the hosts
can be using poor (long) routes when better (shorter) routes are available. This will
degrade the network performance.

A loop-free routing protocol for dynamic networks is proposed in [22]. Routing
optimality is of secondary importance. Rather, their goal is to maintain connectivity
between the hosts in a fast changing topology. A distributed routing protocol for
mobile packet radio networks is proposed by Corson et al. [16]. Similar to [22],
routing optimality is of secondary importance. Instead of maintaining distances from
all sources to a destination, the protocol guarantees route maintenance only for those
sources that actually desire routes. This property helps in reducing the topology
update overhead. However, because of the query-based synchronization approach to

achieve loop-free paths, the communication complexity could be high.

2. Proposed Approach

This chapter presents a new methodology for routing and topology information main-
tenance in dynamic networks [47]. Our approach is motivated by our study of exis-
tence of clusters (size greater than 2) in random graphs. The basic idea behind the

protocol is to divide the graph into number of overlapping clusters. A change in the



125

network topology corresponds to a change in the cluster membership. The perfor-
mance of the proposed routing protocol (reconvergence time, and topology update
overhead) will then be determined by the average cluster size in the network.

For future reference, let us formally define clusters.

Definition 1: A k-cluster is defined by a subset of nodes which are ‘reachable’ to
each other by a path of length at most k for some fized k. A k-cluster with k =1 is

a cliqgue. O

This work deals with clusters of k = 1, i.e., I-clusters. (Hereafter, we refer I-cluster
simply as cluster.) However, we can also generalize our protocols with values of k

greater than one. Fach cluster is identified by its members.

Definition 2: The size, S(C) of a cluster C is the number of nodes in C.0

Definition 3: Edges of a cluster comprise of edges between nodes that are mem-

bers of the cluster.

Definition 4: A graph is cluster-connected if it satisfies the following two condi-
tions :
1) The union of the clusters cover the whole graph.
2) For a connected graph, there is a path from each node to every other node through

the edges of the clusters in the graph. O

The main problem here is to develop protocols for cluster maintenance. The
protocols should be simple, and should incur low overhead. To this effect, we develop
simple protocols to detect, and, build clusters in a graph. We maintain a small
number of clusters based on the connectivity criteria (Definition 4). Section B presents

the problem of routing in dynamic networks. Protocols to create and maintain the
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clusters are presented in Section C. Section D presents the proposed routing protocol
based on clusters. Section E presents the performance evaluation of the cluster-
based approach. Section F presents an overview of the other clustering approaches in

literature. Summary is presented in Section G.

B. Preliminaries

The problem addressed in this chapter can be defined as follows:

Given: A dynamic network configuration.

Problem: Find a ‘good’ loop-free routing between each pair of mobile hosts in the net-
work, where the topological connectivity is subject to frequent unpredictable changes.

The problem requires a loop-free distributed routing protocol which determines
an acyclic route between each pair of hosts whenever a change in the topology is
detected. The protocol is intended for use in networks where the rate of topological
change is not so fast as to make “flooding”! the only viable routing method, but not so
slow as to make any static topology routing applicable. In a loop-free? route, the path
from one host to another does not traverse through the same node twice. Loop-free
routing is desirable to minimize the consumption of resources during routing.

Our algorithm determines ‘good’ routes from one host to another which are not
necessarily the shortest paths. In an environment of frequent topological change, a
‘good’ route’s length is comparable to the shortest route. Each host maintains a
data-structure describing the network topology and some routing information. The

Flooding is an algorithm whereby a node broadcasts a message packet to its
neighbors, who in turn broadcast the packet to all their neighbors, except the neighbor
from which it was received. This process goes on till the message packet reaches the

intended destination. This happens provided the destination is connected to the node

which originated the flood [16].

?Loop-free routing requires prevention of loops in the routing tables. Here, exis-
tence of temporary loops are not of concern.
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routing protocol adapts in a distributed fashion to arbitrary changes in topology in
the absence of global topological knowledge. Let an undirected graph, G = (V,F),
represent a network of mobile hosts. Each node u, in the graph denotes a mobile
host H,. Due to the limited range of wireless transreceivers, a mobile host can
communicate with another host only within a limited geographical region around it.
This region is called the host coverage area — d being the radius. The geographical
area covered by a host coverage area is a function of the medium used for wireless
communication. A host H, is in the vicinity of H, if the distance between nodes u
and v is less than or equal to d. An edge (u,v) connects node u and node v if the
corresponding hosts are in the vicinity and have a communication link established
between each other. A host may sometime be isolated where there is no other mobile
hosts in its vicinity. Such a host will be represented in the graph by a disconnected
node. A host H,; is connected to another host H,, if there exists at least one path
from node vl to v2.

Similar to [16, 59], an underlying link-level protocol is assumed which assures

the following:
e A node is aware of all its neighbors at all times.

o All packets transmitted over a link are received correctly and in proper sequence

within a finite time.

o All control messages are processed one at a time at the nodes in the order in

which they occur.

Fxample B.1: The graph in Fig. 51(a) is formed based on geographical locations of 18
mobile hosts. In this example, the graph is connected as each node is reachable from

every other node. It can be observed that based on the positions, some nodes form
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clusters. The graph can be divided into nine clusters as shown in Fig. 51(b). The
clusters and their respective members are as follows : A (1,2,3), B (3,4), C (4,5,6,7),
D (78), F (8,9,10,11), F' (8,12), G (12,13,14,15), H (8,16) and [ (16,17,18). If the
routing information is based on clusters, routing from node 1 to node 16 will be done
through the edges of the clusters A, B, C', D and F. The graph in Fig. 51(b) is
cluster-connected because, (i) the union of the clusters covers the whole graph, and

(ii) there is a path from each node to every other node using the cluster edges. O

(b)

Fig. 51. An Example of Clusters

A topological change in the mobile host network corresponds to a change in the

graph structure G(V,E) to G'(V',E’). We outline four events that can cause changes
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in the graph (in the following H4 and Hp are mobile hosts) :
A) H, switching ON: A host H4 switching ON will include itself in the graph and

make connection with all the hosts in its ‘vicinity’. Hence, V' =V U {A} and F' =
E U {(u,A), s.t. H, is connected to H,4}.
B) Ha switching OFF: A host H,4 switching OFF will exclude itself from the graph

and delete all its edges. Hence, V! = V—{A} and £’ = E — {(u, A), s.t. (u, A)EE}.

C) H, gets connected to Hg: Here, an edge between A and B will be added to the

graph. Hence, V' =V and F' = F U {(A, B)}.

D) H, gets disconnected from Hpg: Here, the edge between A and B will be removed

from the graph. Hence, V! =V and E' = E— {(A, B)}.
A routing protocol will change its routing information based on the above four
types of changes in the graph. We now present some definitions and properties which

will assist in describing the proposed routing protocol.

Definition 5: The cluster set S, of a node n is defined as the set of all clusters

in which n is a member. O

Definition 6: If cluster-connectivity between any pair of nodes (n,n’) is not af-

fected due to removal of a cluster C, then cluster C' is redundant. O

In other words, if two nodes initially cluster-connected, are no longer cluster-connected
after the removal of a cluster C', then cluster C' is not redundant (i.e., irredundant).

For example, in Fig. 51(b), there are no redundant clusters.

Definition 7: A node is a boundary node if it is a member of more than one

cluster. O

In Fig. 51(b), node 3 is a boundary node as it belongs to two clusters, (1,2,3) and

(3,4). However, node 1 is not a boundary node as it only belongs to (1,2,3).
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Property 1: Addition of each new node to the graph adds at least one new irre-
dundant cluster. However, when the new cluster is added to the graph, the new cluster

may cause one or more clusters to be redundant. O

At least one new cluster should be added to include the new node. Otherwise, the

graph will not remain cluster-connected after addition of the new node.

C. Cluster Formation

Our proposed routing protocol is based on the formation of clusters. Hence, efficient
cluster formation will be the crux of a routing protocol of this nature. Clusters
should be formed in such a way that the resulting graph is cluster-connected (See
Definition 4). Routing from one node to another will consist of routing inside a
cluster and routing from cluster to cluster. A change in the dynamic network may
or may not result in a change in the cluster compositions. Here, we have assumed
clusters with k = 1 (See Definition 1). As mentioned in Section B, we have identified
four different possible types of changes in the dynamic network graph in the occurance
of a single event. We assume that each cluster has an unique identifier, :d. Each node
maintains a list of its neighbors, a list of clusters (Clus_List) in the network, and a
list of boundary nodes (Bound_List) in the network. There can be multiple boundary
nodes between overlapping clusters. If there are multiple boundary nodes between
clusters, one with the biggest cluster set is chosen to be the boundary node and is
maintained in the Bound_List. Note that a node can be a boundary node for more
than two overlapping clusters.

In a connected network, Clus_List is the same in all the nodes. It is not true in
a partitioned network. This is because nodes in a partitioned network may not be

aware of all the clusters in the network. Unless otherwise mentioned, the following
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discussions of the protocols consider a connected graph. Thus, unless otherwise men-
tioned, all the nodes in the network have the same Clus_List. We now present the

protocols for cluster updates with each type of topological change.

1. Host H4 Switches ON

The new graph structure G'(V',E’) is formed with the added node. The new node A
will result in at least one new cluster so that with the cluster, node A can route to the
rest of the graph. However, if A connects two disjoint subgraphs, it may result in more
than one added cluster. These new clusters are denoted by essential clusters and are
determined by A itself. The addition of new clusters may result in zero or one or more
clusters being redundant. The two tasks performed during the topological change are
(i) addition of new clusters, and (ii) removal of redundant clusters. The goal is to
have small number of clusters such that the network remains cluster-connected. The
protocol initiated by new node A is shown in Table IV.

The new node A broadcasts a message to its neighbors indicating its arrival.
Upon receipt of the arrival message, the neighbors send a list of their neighbors, and
Clus_List to A. Based on the neighbor information received from its neighbors, A
determines the possible clusters using Create Clusters function shown in Table V,
and stores them in All_List. The clusters that Create Clusters function determines
depends heavily on the order in which each node is added in the network. This
function will not return the maximum clique for all the orders. This function uses a
‘first-fit” strategy to generate clusters, which does not necessarily produce maximum

sized clusters. The time complexity of the Create Clusters function is O(D?).

Property 2: The clusters returned by the Cluster Create function are charac-

teristic of the order in which each node is added to the network., O
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Procedure Switch ON(A);

10.
11.

12.

Begin;

A sends messages to its neighbors about its arrival;

Each neighbor sends list of its neighbors and Clus_List to A;

A determines those clusters that are included in the cluster set of
its neighbors and stores them in Local_List;

A uses the neighbor information and creates new clusters using
Create Clusters (A) and stores them in All_List ;

A executes Find Essential(A,All_List);

A assigns new uds to the FEssential Clusters;

A appends the Essential Clusters to Local_List;

A executes Find Redundant (Local_List) ;

A appends Local_List returned by Find Redundant to Clus_List;
A determines new boundary nodes from the updated Clus_List ;
A broadcasts the updated boundary node list ( Bound_List) and
cluster list (Clus_List) to its neighbors;

Updated boundary node list and cluster list is then propagated to rest
of the network by only the boundary nodes;

End;
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Function Create Clusters(A);

Data Structures:
C; = t-th Cluster;
Neighbor(n) = List of neighbors of node n that are also neighbors of A;
DONE(n) = Indicator of whether clusters including node n have been
already created or not.
Initialization:
1 <n <|V]|, DONE(n) = FALSE;
All_List = {0}
1= 1;
Begin;
For each node x in Neighbor(A) do
C;={x, A} ;
For each node y in Netghbor(x) do
if DONE(y) = FALSE
if C; € Neighbor(y)
Ci=CiU{y};
else
All_List = All . ListU C; ;1 =14 1;
Ci={xz,y,A}
All_List = All . ListU C; ;1 =14 1;
DONE(z) = TRUE ;
End;
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Fig. 52 illustrates an example where different node numbering (i.e., order in which a
node is added to the network) leads to two different set of clusters being created at the
new node (Node 6) by the Create Clusters function. One can note that a cluster
of the largest size may or may not be determined by the algorithm?® presented in
Create Clusters function. However, as has been shown later, the algorithm ensures

the connectivity of the new node with its neighbors through the clusters.

1536
14,6
12,6
53,6
3,4,2,6
42,6
2,6

Order

Fig. 52. Different Clusters Created at New Node for Different Orders of Node Addition

Once, the clusters are created using Create Clusters, the new node A then
executes Find Essential function shown in Table VI. The Find Essential function
sorts the clusters in All_List in a non-descending order of their sizes. Initially all the
clusters are marked essential. Each essential cluster C' is then examined to find if a
node (other than the new node A)in C is a member of any other essential clusters. If
so, it marks the cluster C' as non-essential. This will ensure that a node (other than
the new node A) is a member of no more than one essential cluster. Moreover, since
the clusters are sorted in a non-descending order of their sizes, the Find Essential
function returns the largest clusters possible. The essential clusters determined by

Find Essential function are stored in Fssential Clusters.

*Finding the largest size cluster is NP-Hard [26].
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Table VI. I'ind Essential Function

Function Find Essential(A, All_List);

10.

11.

Begin;
Sort the clusters in All_List in a non-descending order of their sizes;
For each cluster CeAll_List do
Mark(C) :=essential ;
For each cluster (C'€list) A (Mark(C') =essential) do
For each node (neC) A (n # A) do
For each cluster (C'€ All_List) A (C" # C) N (Mark(C') =essential) do
if (neC”)
Mark(C') :=non-essential,
break;
if (Mark(C') =essential)

Essential Clusters := Essential Clusters U ()

End;
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Function Find Redundant(Local_List);

10.
11.
12.

13.
14.
15.
16.
17.

Initialization; Set of nodes: S = {0}; T'= {0};
Begin;
Sort the clusters in Local_List in non-descending order of their size.
Clusters of same size are sorted in non-descending order of their id;
For each cluster C'€ Local_List do

S =S UC; /* Nodes in C are appended to S */
For each cluster C' € Local_List do

T =A{0};

VC' s.t., C" € Local_List, Mark(C") = FALSE;

For each cluster C" € Local_List N(C" # C) N (Mark(C") = FALSE)

if(1 = {0})
T=TUC"; /* Nodes in C’ get appended to T' */
Mark(C") = TRUE ;
else for each node (i € T)
For each cluster C” € Local_List N(C" # C') A
(Mark(C") = FALSE)
if(i € C")
T=TUC”; /* Nodes in C" get appended to T’ */
Mark(C") = TRUE ;
if(1T' = S) /* Cluster-connectivity maintained */
Local_List := Local_List — C';
End;
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The new node A determines the new cluster zds of the essential clusters based
on the information in the cluster list (Clus_List) obtained from its neighbors. It
then appends the essential clusters to list of local clusters (Local_List). The list of
local clusters (Local_List) is obtained from Clus_List (Step 3 of Switch ON). Local
clusters are those clusters in Clus_List which are also included in the cluster set of
A’s neighbors.

Addition of the essential clusters may make one or more existing clusters re-
dundant. The new node A then executes the Find Redundant function shown in
Table VII. Node A first sorts the clusters in the Local_List in ascending order of
size. Clusters of same size are sorted in the order of ascending ids. The Find Re-
dundant function then determines redundant clusters based on Definition 6. The
new cluster list is then obtained by appending the clusters remaining in Local_List
after removing the redundant clusters, to Clus_List. Node A then determines the
list of boundary nodes (Bound_List) from the updated Clus_List. If there are mul-
tiple boundary nodes between overlapping clusters, one with the biggest cluster set
is chosen to be the boundary node. Node A then broadcasts the updated boundary
node list (Bound_List) and cluster list Clus_List to its neighbors. The neighbors
then replace their cluster list and boundary node list with the ones obtained from
A. The updated boundary node list (Bound_List) and cluster list Clus_List is then
propagated to the rest of the network only by the boundary nodes.

It B is the upper bound on the number of boundary nodes, and D the maximum
nodal degree, the message complexity of Switch ON is O(B+D). The number of
boundary nodes, B, is upper bounded by the number of nodes in the network, .
Fxample C.1: For an easier understanding, Fig. 53 gives an example involving a
network with 4 nodes. Fig. 53(a) has 4 nodes and two clusters, namely, (1,2,3)

and (2,3,4). When node 5 is switched ON, it sends messages to nodes 1, 3, and
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4 (Fig. 53(b)). On receiving information back from the nodes 1, 3 and 4, node 5
forms clusters (1,3,5), (3,4,5) and (4,5) as seen in Fig. 53(c). It chooses (3,4,5) as
the essential cluster and then determines redundant clusters from the cluster list of
{(1,2,3), (2,3,4), (3,4,5)}. In the redundant removal phase, the new node 5 detects
the cluster (2,3,4) to be redundant. The final clusters are (1,2,3) and (3,4,5) as in
Fig. 53(d).0

(© (d)

Fig. 53. An Example of a Node Addition

2. Host H4 Switches OFF

When host H4 turns OFF, its disappearance will only be detected by its neighbors.

The clusters in the cluster-set of node A shrinks in size. The neighbors of node A
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who are cluster-mates of the shrunk cluster will ‘expand’ the cluster. By expanding
a cluster, we mean that the neighbor will determine new nodes to become a member
of that cluster. Neighbors of node A that are not cluster-mates of A will not initiate
any update procedures.

There could be more than one node detecting the removal of a node. Switch
OFF procedure is similar to Switch ON procedure in the sense that, there are new
clusters formed and redundant clusters removed. Concurrent independent executions
of Switch OFF procedure could lead to violation of the cluster-connectivity condi-
tion. We use an arbitration procedure to avoid concurrent independent executions.
We require the node (neighbor of A, say, B) that is a cluster-mate of A in most num-
ber of clusters, to initiate the Switch OFF procedure*. The execution of Switch
OFF procedure will expand those clusters in the cluster-set of A that node B is a
member of. However, there still remains clusters in the cluster-set of A which do not
contain B. In those remaining clusters, we determine the node (say, C') that is a
member of most number of clusters. This process continues till all the clusters in the
cluster-set of A is covered. Unlike node B, node C' will not execute Switch OFF
procedure. However, node (' will just try to expand the shrunk clusters that it is part
of, and not remove any redundant clusters. The new boundary list (Bound_List) and
the new cluster list (Clus_List) is determined by C' and broadcast to its neighbors.
The lists are then further propagated to the rest of the network only by the boundary
nodes.

The procedure initiated by node B is shown in Table VIII. Let us illustrate it
with an example.

Frxample C.2: Fig. 54 shows the cluster formations when a node is turned OFF in

If there are multiple such nodes, we use a tie-breaking test; e.g., node with the
larger vdente frer.
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Table VIII. Switch OFF Procedure

Procedure Switch OFF(A,B);

10.

Begin;

B requests the list of neighbors and Clus_List from the cluster mates
of the shrinked cluster(s);

The cluster mates send the list of its neighbors and Clus_List to B;

B determines those clusters that are included in the cluster set of

its cluster mates and stores them in Local_List,

Using the neighbor information, B expands the cluster(s). The ids of the
cluster(s) do not change;

B appends the expanded cluster(s) to Local_List;

B executes Find Redundant (Local_List) ;

B appends Local_List returned by Find Redundant to Clus_List;

B determines new boundary nodes from the updated Clus_List ;

B broadcasts the updated boundary node list (Bound_List) and
cluster list (Clus_List) to its neighbors;

Updated boundary node list and cluster list is then propagated to rest
of the network by only the boundary nodes;

End;
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a network. Fig. 54(a) has six nodes with three clusters, namely, (1,2,3), (2,3,4) and
(4,5,6). When node 6 is turned OFF, the cluster (4,5,6) shrinks to (4,5) (Fig. 54(b)).
Node 4 and 5 detect node 6 switching OFF. Since, node 5 has the higher identifier,
it initiates the Switch OFF procedure. Node 5 gets neighbor information and the
cluster list from 3 and 4. It then expands the cluster (4,5) to (3,4,5) (Fig. 54(c)).
Node 5 now has {(1,2,3), (2,3,4), (3,4,5)} in the cluster list. In the redundant removal
phase, node 5 detects the cluster (2,3,4) to be redundant. The final clusters are (1,2,3)

and (3,4,5) as in Fig. 54(d). O

Fig. 54. An Example of a Node Removal

The message complexity of Switch OFF is also O(B+D), where, B is the upper
bound on the number of boundary nodes, and D the maximum nodal degree. As

stated earlier, the number of boundary nodes, B, is upper bounded by the number of
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nodes in the network, V.

3. Host H4 Gets Connected to Host Hg

The new connection between hosts H4 and Hp could be detected simultaneously
by both the nodes. We require that only the node with the larger® identifier to
execute the procedure to determine new clusters due to the new connection. This
is possible because each node periodically sends a beacon which includes the node
identifier (Section D.3). Let the node with the larger identifier be A, and the other
node with a smaller identifier be B. Node A then initiates the Switch ON procedure.
Node B becomes one of the neighbors taking part in the Switch ON procedure by
sending the neighbor list and the cluster list to node A. The new cluster list and
the boundary node list is determined and propagated to the rest of the network as

explained earlier in Section C.1.

4. Host H,4 Disconnects Host Hg

Here, we identify two cases as follows.

1. Node A was not a cluster-mate of node B: The topological change will result

in no change in any clusters in the network.

2. Nodes A and B belong to same clusters: Here, the topological change will re-

sult in the shrinking of the involved clusters. Both A and B will detect that
the link between them has broken. They will both initiate the Switch OFF
protocol. Switch OFF protocol comprises of adding new clusters and remov-
ing redundant clusters. Concurrent independent executions of Switch OFF

protocols at two different nodes could lead to violation of cluster-connectivity

®Any tie-breaking test will suffice.



143

condition. We avoid independent executions of Switch OFF protocols at two
different nodes by requiring only the node with the larger id (say, A) to execute
the Switch OFF protocol. The other node with smaller ¢d (say, B) provides
new tds to the shrunk clusters, updates Clust_List, determines new boundary
node list (Bound_List) and broadcasts both these lists to its cluster mates. The
lists are then further propagated to the rest of the network only by the bound-
ary nodes. Thus, node B (i.e., the node with smaller id) does not remove any
redundant clusters. Redundant cluster determination and removal is done only
by A during its execution of Switch OFF protocol. The new cluster list and
the boundary node list is determined and propagated to the rest of the network

as explained earlier in Section C.2.

D. Routing Protocol

We first discuss the necessary data structures to be maintained at each node for
the routing protocol. We will then explain the route construction and maintenance

procedures in the network.

1. Data Structures

As stated earlier, the following lists are maintained at each node :
o Clus_List: This list provides the mapping between the clusters and its members.

o Bound_List: This list maintains the ‘designated’ boundary nodes between over-
lapping clusters. As stated earlier, there may be more than one boundary node
between overlapping clusters. Only one among them is chosen to be the desig-

nated boundary node (Section C).
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Using the information in Clus_List and Bound_List, each node then generates the
routing tables used for routing packets. Each entry in the routing table contains the
destination identifier, the next hop node and the number of hops it takes to reach the
destination via that next hop node. This is similar to the routing tables maintained

in distance-vector protocols. The routing tables are as follows:

o AllRouteTable: For each destination node, this table maintains route informa-
tion of all possible paths via clusters from the node. This table is used to
determine the shortest ‘available’ path to each destination node, which is main-

tained in RouteTable.

o RouteTable: For each destination node, the node maintains identifier of the next
hop node, say n, and the number of hops it will take to reach the destination

node via n. This is the table which is referred to while routing a packet.

The Clus_List and Bound_List for the network in Fig. 51 are shown in Tables IX and
X. The AllRouteTable for Fig. 51, happens to be same as its RouteTable (Table XI),
because, there is just one possible path via clusters between any two nodes. On the
other hand, if there were multiple paths via clusters then, for each additional path,

there would have been two additional columns for next hop node and number of hops

in the AllRouteTable.

2. Protocol

A routing protocol can be divided into two phases, namely, route construction and
route maintenance. During the route construction phase, routes are constructed be-
tween all pairs of nodes. The route maintenance phase takes care of maintaining

loop-free routes in the face of unpredictable topological changes.
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Table XI. RouteTable at Node 6, Cluster C

DestNode | NextHop | Hops
1 4 3
2 4 3
3 4 2
4 - 1
5 - 1
6 - 0
7 - 1
8 7 2
9 7 3
10 7 3
11 7 3
12 7 3
13 7 4
14 7 4
15 7 4
16 7 3
17 7 4
18 7 4
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a. Route Construction Phase

The protocols to maintain clusters in the face of various network events have been
explained earlier. Upon receipt of new cluster information, a boundary node stores
the new cluster list in its Clus_List, the new boundary list in its Bound_List, and then
rebroadcasts the information. A boundary node has to forward the new information
only once. Nodes other than the boundary nodes listen to this information and
just update their tables. In this manner, the information of each network event is
distributed to all the nodes. Each node now has the topology information of the
whole network. Based on the information in Clus_List and Bound_List, each node
then generates the RouteTable and AllRoute Table.

Each message packet contains the identifier of the destination node in its header.
When a node receives a message packet, it looks up the RouteTable to determine
the next hop node for the packet’s destination. The node then forwards the message
packet to the next hop node. This process of forwarding continues till the packet

reaches its destination.

b. Route Maintenance Phase

This phase begins when there is a change in the network topology (host connec-
tion/disconnection, link failure/recovery). The route maintenance in our approach
basically boils down to cluster maintenance. The protocols for cluster maintenance
have been explained previously. After a change in topology, all the nodes have the
complete topology information in the form of cluster list (Clus_List) and boundary
node list (Bound_List). If all the nodes have a consistent view of the topology, routing
loops are not formed. However, due to long propagation delays, partitioned network,

etc., some nodes may have inconsistent topology information. This might lead to
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formation of routing loops. However, these loops are short-term, because they dis-
appear within bounded time (required to traverse the diameter of the network) [56].
Even these loops can be avoided if each route table entry is tagged with a sequence
number so that nodes can quickly distinguish stale routes from the new ones and
avoid formation of routing loops [61].

The new cluster information will be propagated throughout the network. It
should be noted that only the boundary nodes are responsible for broadcasting and re-
broadcasting any new information. This helps in quick dissemination of information
across the network. Thus, the reconvergence of the cluster-based protocols is very
quick. Let us illustrate it with an example. Let node 2 in Fig. 51 disconnect. This
event will be detected by nodes 1 and 3. Since node 1 is not a boundary node, it
will just update its tables to indicate the change. Node 3 being the boundary node
broadcasts the new cluster information. Node 4, a boundary node, upon receipt of
the new cluster information from node 3, re-broadcasts it. This broadcast will be
received by nodes 3, 5, 6 and 7. Since node 3 has already broadcasted this cluster
information, it neglects this information. Nodes 5 and 6 being non-boundary nodes
just update their tables. However, node 7 being a boundary node, updates its tables
and rebroadcasts the new cluster information. Similarly, other boundary nodes 8, 12
and 16 upon receipt of the new cluster information re-broadcast it so that every node
in the network have the new cluster information. And, the non-boundary nodes just

listen and update their tables and do not re-broadcast.

3. Implementation Details

e Detection of a new link : Each host periodically broadcasts a beacon which
includes its identifier. If a host & receives a beacon from another host A’ which

is not in its current neighbor set, it means that there is a prospective new link to
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[ B=y

Fig. 55. Movements That Cause Unnecessary Link Creations/Deletions

be created. However, the Switch ON procedure is not immediately initiated.
Only after a certain number of successive beacons is received from the same host
is the Switch ON procedure initiated. This is to avoid unnecessary oscillations
due to the host A’ moving in and out of host A’s vicinity. Fig. 55 shows the
scenarios where the movement of 2’ could cause a sequence of unnecessary link

creations/deletions.

o Detection of a link break : If a host & does not receive a certain number of con-
secutive beacons from its neighbor A’, it will assume that either A’ has moved out
of its vicinity or that A’ is disconnected. Host A will then follow the procedure

for host disappearance as explained in Section C.2.

E. Performance Evaluation

1. Complexity

This section compares the cluster-based approach’s worst-case performance with the
performance of Distributed Bellman-Ford (DBF) [11], Ideal Link State (ILS) [25], Dif-
fusing Update Algorithm (DUAL) [25], NP [16] and flooding. The ILS protocol [25]
requires that each topology change be transmitted to every node. The DUAL pro-
tocol [25] is a distance-vector loop-free algorithm based on internodal coordination

spanning multiple hops. DUAL is known to be the lowest complexity distance-vector
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algorithm. NP protocol [16] is source-initiated routing protocol that provides loop-
free routing only to desired destinations in a dynamic network. Flooding does not
have any control overhead due to topology updates/maintenance. Everytime a node
wants to send a packet to a destination, the node broadcasts the packet to its neigh-
bors, who in turn broadcast the packet to all their neighbors, except the neighbor
from which it was received. This process goes on till the message packet reaches the
intended destination.

The performance metrics are the time complexity (TC) and the communication
complexity (CC) [25]. Time complexity is defined as the number of steps required
for the network to reconverge after a topology change. The number of messages
required to accomplish the reconvergence is called the communication complexity.
The assumptions made while making the comparisons are same as in [25]. They are

as follows:

e The routing algorithm behaves synchronously, so that every host in the network

executes a step of the algorithm simultaneously at fixed points in time.

o At each step, the host receives and processes all the inputs originated during

the preceding step and, if required, sends update messages at the same step.

We borrow the complexity computations of DBF, ILS, and DUAL from [25].
Table XII lists the protocols with the complexities. The complexity parameters are

as follows:

e N: Number of nodes in the network.
e [5: Number of links in the network.

o d: Diameter of the network. The diameter of a network is defined as the length

of the longest shortest path in hops between any two nodes [25].
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o D: Maximum degree of a node.

e B: Upper bound on the number of unigue boundary nodes in the network.
Overlapping clusters may have more than one boundary node between them.
However, only one of them will be considered as the boundary node and will
be used to pass messages between clusters. The other boundary nodes are
considered as non-boundary nodes. The procedure to select a boundary node

has been described in Section C.
e x: Number of nodes affected by the topological change.

o I: Diameter of the affected network segment.

Table XII. Complexity Comparison

Protocol | TC | CC
DBF [11] | O(N)| O(N?)
ILS [25] | O(d) | O(E)

DUAL [25] | O(x) | O(Dx)
NP [16] | O() | O(x)
Cluster | O(d) | O(B +D)
Flooding | 0 0

Since, flooding does not have any topology update overhead, the time complexity
and communication complexity of flooding is zero. The complexities of DUAL and
NP will be high if # ~ N (This is true in the situations when a node fails or switches
off.), i.e., when most of the nodes in the network are affected by the topological

change. In such cases, the diameter of the affected segment, | ~ d. The perfor-
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mance of the cluster-based approach depends on number of boundary nodes and the
maximum degree of a node. We resort to simulations to determine the variation of
number of boundary nodes, cluster size, with degree of the network. We will show
through simulations that even for low nodal degrees, the number of boundary nodes
in a network is much less than the total number of nodes in the network. We also

determine the routing overhead of the cluster-based approach.

2. Simulations

Simulations are performed to determine average cluster size, and number of boundary
nodes for random graphs. The routing overhead of the cluster-based approach is also
determined. Routing overhead is ratio of the path length between a source and a
destination as determined by the cluster-based approach and the actual shortest path
length between them.

Random graphs are generated using the random graph generator function pre-
sented in the Appendix E. The clusters are determined using the Switch ON proce-
dure described in Section C.1. Input to the simulations are (i) N (number of nodes),
and (ii) D (average degree in the network). As shown in Fig. 56, the average cluster
size increases as N increases. It also increases when D increases. Fig. 56 shows that
there is a large region of values of N and D where the average cluster size is greater
than 2. In these scenarios, clustering will benefit. Fig. 57 and Fig. 58 illustrate the
variation of number of clusters and number of boundary nodes with degree, respec-
tively. Note that the number of clusters and boundary nodes in the network decrease
as degree increases. Also note that they increase as number of nodes in a network
increases. The maximum number of boundary nodes for a given N occurs when D
is low. However, the maximum number of boundary nodes is much less than N. For

example, for N=10, the maximum number of boundary nodes is 5 (with D = 2).
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Variation of Avg. Cluster Size with Degree
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Fig. 56. Variation of Average Cluster Size with Degree
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Variation of Num. Boundary Nodes with Degree
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Fig. 58. Variation of Number of Boundary Nodes with Degree

In other words, in such a network, if cluster-based approach is used, the number of
nodes taking part in the topology update protocol will be less than 50% of the total
number of nodes in the network. Fig. 59 and Fig. 60 illustrate the variation of
average path length of the cluster-based approach and flooding with degree for N=10
and N=30 respectively. The average path length is computed as the average of the
path lengths between each source and destination in the network. Flooding always
determines the shortest path between two nodes. Note that the average path length
determined by the cluster-based approach is higher than the average path length
determined by flooding. The routing overhead determined as the ratio of the path
lengths determined by clustering and flooding is observed to be less than 2 for both
the cases considered (N=10 and N=30). Compared to savings in network load due

to updates, the routing overhead of the cluster-based approach is not high.
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F. Other Clustering Approaches

The problem of clustering in networks has been discussed earlier in literature [23, 34,

41, 66, 70]. Our work differs from the earlier works in the following respect:

o Clustering was proposed as a hierarchical approach in earlier literature to re-
duce the amount of routing information stored at individual hosts. The entire
network is thought of as a tree of hierarchies, in which each node at a higher
level is made up of one or more nodes from lower levels. Each host has to take
part in two updating procedures: one local within its cluster, and the other
global with other distant nodes. In this paper, clustering is restricted to a sin-
gle level. The main advantage behind using cluster-based approaches is that the
way we maintain the clusters, which, limits the number of nodes taking part
in the topology-update operation, thereby, reducing the network load during

topology updates.

o The cluster creation and maintenance algorithms have not been discussed in
most of the literature where if it is discussed, it either is specifically for regular
graph structures [41, 70], or employs a cluster controller (or leader) [66]. In
this work we create and maintain a small number of clusters (cliques) in an
arbitrary graph. The cluster graph is created using a sequence of Switch ON
procedures (one procedure call for each node being added). The cluster is
maintained in the face of different network events by calling the appropriate

algorithms as explained in this work.

o Cluster overlapping in some approaches requires each node to be included in
more than one cluster [66, 70]. However, in this work we do not require all the

nodes to be included in more than one cluster.



157

e Unlike the previous approaches, we require our clustering algorithms to cre-
ate and maintain clusters such that they satisfy the cluster-connectivity crite-
rion (Definition 4). Since, we require the network to be cluster-connected, we
can apply any routing protocol directly by just replacing the nodes by clusters.
Thus, we can enjoy the advantages of a chosen routing protocol (loop-free routes,

etc.), and also the cluster-based approach (low topology update overhead, etc.).

G. Summary

Proposed in this chapter is a new methodology for routing in mobile wireless networks.
Simple distributed algorithms are proposed for cluster creation and maintenance.
This chapter shows that routing protocols based on clusters could obtain performance
improvements over previous approaches. Cluster-based protocols allow the network
to enjoy the liberty of maintaining routes between all pairs of nodes at all times,
without causing much network overhead. Thus, a compromise on routing optimality
as suggested in [16] to avoid network congestion might not be required.

Quick reconvergence in some protocols like DSDV [61] is obtained by quick re-
broadcast by each and every recipient of the broadcast, causing degradation of the
availability of the wireless medium. However, in our approach, re-broadcast is done
only by the boundary nodes. Nodes other than boundary nodes just listen and update
their tables.

Similar to [16, 22] the cluster-based approach does not guarantee shortest path.
This is due to the fact that the clusters are created using the first-fit approach, which
does not produce the maximum clusters in the graph. However, it has been shown

that the routing overhead of the cluster-based approach is not high.
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CHAPTER VI

CONCLUSION
This chapter contains a summary of results presented in this dissertation, followed

by suggestions for future work.

A, Summary of Results

We classify the mobile wireless networks into infrastructure networks and dynamic
networks. Infrastructure networks are typically two-tiered network composing of a
static backbone network and a peripheral wireless network. Dynamic networks on the
other hand comprises of only mobile hosts that communicate with one another using
wireless links. This dissertation studies the following performance issues in mobile
wireless networks — recovery issues in infrastructure networks, location management
issues in infrastructure networks, and routing in dynamic networks.

Mobility of users and limited wireless bandwidth bring forth interesting dimen-
sions into design of recovery protocols in a mobile wireless networks. Work in this
dissertation is the first effort to study the effect of mobility and wirelessness on the de-
sign and performance of recovery protocols. Presented in this dissertation are recovery
schemes for a mobile wireless environment. The recovery schemes are a combination
of a state-saving and a handoff scheme. Fach combination provides some level of
availability and requires some amount of resources: network bandwidth, memory,
and processing power. A fundamental relationship between the performance of re-
covery schemes, failure rate, mobility and wireless bandwidth is established. Through
analysis, it is shown that there can be no single recovery scheme that performs well
for all mobile environments. However, we determine the optimal recovery scheme

for each environment, where an environment is determined by the mobility, wireless
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bandwidth and the failure rate.

Location management is one of the most important issues in infrastructure mobile
wireless networks. In order to communicate with an user, one needs to know the
user’s location. Thus, the network faces a problem of continuously keeping track
of the location of each and every user. This problem becomes noticeable when the
network sizes are large. This dissertation presents centralized and distributed location
management schemes.

Centralized schemes like [5-41 use home location servers for location manage-
ment. The location management schemes in [S-41 are inefficient because they incur a
very heavy load on the network and the home location servers due to location updates
and searches. Forwarding technique is used to lower the network load due to updates
in the network and at the home location servers due to user mobility. However, for-
warding increases the search cost (call set-up time). Two heuristics are presented
to limit the search cost. A search-update (caching) strategy is presented to further
reduce the search cost and also the call-delivery rate at the home location server. The
performance of the schemes depend on (i) call-mobility pattern of the user, and (ii)
cost of forwarding. Analytical models are built to compare the performance of the
proposed schemes with the IS-41 scheme. It is determined that the proposed schemes
perform significantly better than the IS-41 scheme for most call-mobility patterns and
forwarding costs. Although beneficial, forwarding and search-updates complicate the
maintenance, and fault-tolerance issues. To overcome these problems, this disserta-
tion also presents cost-effective techniques for fault tolerance and forwarding pointer
maintenance.

The bottleneck in the centralized schemes are the home location servers. Instead
of a home location server, a hierarchy of location servers is proposed for location

management. The signalling load is now distributed over various location servers. A
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suite of location management schemes for such a network architecture is presented.
Each scheme is a combination of a search strategy, update strategy and a search-
update strategy. A static location management scheme requires a single combination
to be executing always. It is observed that there is no combination that outperformed
others for all call-mobility patterns. Since, the user behavior (call-mobility pattern)
is not always available to the system designer, there is need for adaptive location
management. An adaptive scheme is presented that is based on the assumption that
the past history of the system reflects the behavior in the future. Results indicate
that the adaptive scheme performs better than the static scheme for a wide range of
call-mobility patterns.

The conventional routing protocols were not designed for dynamic networks (e.g.,
ad-hoc networks, packet radio networks) where the topological connectivity is subject
to frequent, unpredictable change. In addition to host and link failures, changes in
topology can occur due to host mobility and disconnections. Due to limited band-
width available on the wireless links, the amount of information exchanged or prop-
agated during topology updates has to be kept low in such networks. To achieve
this goal, we propose a cluster-based methodology for routing in dynamic networks.
The basic idea behind the protocol is to divide the graph into number of overlap-
ping clusters. The main advantage of our approach is that it limits the number of
nodes taking part in the topology-update operation, thereby, reducing the network
load during topology updates. We propose simple protocols for cluster creation and
maintenance. Compared to existing and conventional routing protocols, the proposed
cluster-based approach incurs lower overhead during topology updates and also pro-

vides quicker reconvergence. Although, the cluster-based approach does not guarantee
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shortest path, it is determined using simulations that the routing overhead® of the

cluster-based approach is small.

B. Future Work

The field of mobile computing is still relatively new. There are many challenging and
interesting areas of future research that can stem out of the work presented in this
dissertation. The following presents a summary.

Chapter II dealt with application-level recovery protocols in a mobile environ-
ment. An opportunity for further research exists in other fault-tolerance issues in
mobile computing, such as recovery from failure of a base station, fault-tolerant broad-
cast/multicast protocols, and development of new and efficient distributed recovery
schemes. Although, the analysis presented in this research is used to analyze recov-
ery protocols, we feel that this analytical framework could also be used with some
variations to analyze the effect of mobility, wireless bandwidth and disconnections on
the performance of file systems, and database systems.

Chapter III presented schemes to improve the performance of location manage-
ment schemes in a personal communication network. Chapter IV presented location
management schemes for a network comprising of a hierarchy of location servers.
The schemes were analyzed using analytical modeling or simulations. It would be
interesting to determine the performance of these schemes using real call-mobility
traces. Secondly, in this work we did not consider variance in the call set-up times.
From a user’s perspective, apart from the mean call set-up time, the variance is also
a key parameter. Future work should involve development of schemes that reduce

'"Routing overhead is ratio of the path length between the source and the destina-

tion as determined by the cluster-based approach and the actual shortest path length
between them.
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the variance. It was shown in Chapter IV that a simple adaptive scheme performs
better than static schemes for non-uniform call-mobility patterns. A potential area of
research is to study other sophisticated adaptive location management schemes that
is able to better predict user behavior.

A cluster-based approach for routing in dynamic networks was presented in Chap-
ter V. Protocols for cluster creation and maintenance were presented. A number of
different issues remain to be studied: (a) Extensions of these protocols to support
concurrent events. (b) Load balancing among multiple boundary nodes. In our work,
there is only one unique boundary node selected between any two clusters for propa-
gating update information. (c) Algorithms to create and maintain clusters such that
there is always more than one boundary node between any two overlapping clus-
ters. This will add robustness during a boundary node failure. (d) Generalization
of 1-clusters to k-clusters (where k& > 1). This will require design of more complex
algorithms for cluster creation and maintenance. The interesting issue will be to
determine if there is any performance improvement using k-clusters (where k > 1)

instead of 1-clusters.
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APPENDIX A

NETWORK EVENTS IN MOBILE WIRELESS NETWORK

This appendix presents an overview of the network events that occur in a mobile
wireless network (Chapter I1I).
Switch ON

Each MSS periodically transmits a beacon identifying itself and the registration
area it is located in. Each mobile host generates a registration message identifying
itself when it switches on (step 1 in Fig. 61) [9]. When a MSS receives a registration
message from a mobile host, it forwards the message to its location server (step 2 in
Fig. 61)). The location server updates its database to indicate the current cell location
of the mobile host (step 3). The location server determines the HLS of the mobile
host from the mobile host identifier (step 4). It then informs the HLS of the current
location of the mobile host (step 5). The HLS upon updating the database (step 6)
sends back an acknowledgment to the location server (step 7) which in turn sends an
acknowledgment to the MSS (step 8), thus, completing the registration process.
Switch OFF

Whenever the mobile host switches off, it sends a de-registration message (which
includes its identifier) to the MSS, which forwards it to the current location server.
The location server determines the HLS of the mobile host from the mobile host
identifier. It then informs the HLS of the location of the host. Thus, the HLS knows
the last location of the mobile host before the mobile host switched off.
Handoffs

The mobile host can be idle (not engaged in a call or data transfer) or active (en-

gaged in a call or data transfer) when the host crosses cell boundary. The problem of
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active handoffs are beyond the scope of this work. Apart from location management,

active handoffs involve connection management issues, e.g., connectivity, in-order de-

livery (in wireless ATM) etc. Here we will describe a procedure for idle handoffs [9].

Please refer to Fig. 62 for this discussion. The mobile host mh upon detecting a

id MSS 5
=
mh| mssl->mss2
4
6
2
mssl %% mss2
Cell 1 R
®---=>0

Fig. 62. Handoff

stronger signal from mss2 initiates the handoff procedure by sending a handoff-init

message to mss2 (step 1 in Fig. 62). This message includes the identifiers of mh and
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the old M SS, i.e., mssl. The mss2 upon receiving the handoff-init message requests
mssl to transfer the host information (user profile, etc.) (steps 2 and 3). The mss2
then sends an update message to the location server (Is) of its registration area (step
4). The [s updates its database and sends back an acknowledgment (steps 5 and 6).
The HLS database is not updated during handoffs.
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APPENDIX B

SEARCH-UPDATES ANALYSIS FOR MOVEMENT-BASED HEURISTIC

This appendix presents the analysis of search-updates for movement-based heuristic

(Chapter III). For the analysis, note the following:

e The moves are such that the number of the forwarding pointers traversed during

a search never decreases due to a move.
o HLS update takes place every M registration area crossings.

o We assume that at any time, the maximum length of the chain of forwarding

pointers will be K = M — 1.
o We assume Jump Updates.
e The total number of registration areas (location servers) is N.

e The number of forwarding pointers traversed during a search decreases only due
to calls. We assume that the probability of a call originating from a location

server is equal for all location servers.

The state transition diagram based on above assumptions is as shown in Fig. 63. We
model the length of a chain for a host at a particular location server by a markov
process. State ¢, where, 0 < ¢ < K and ¢ # v, represents the state where the length
of the chain at the location server is ¢. The state v is the state when the location
server has no forwarding pointer for the host, hence, a search for the host originating

from the location server requires a HLS query.
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AIN H

Fig. 63. State Transitions when Search-Updates are used with Movement-based

Heuristic

Let the probability of the process being in state ¢ be P;, 0 < < K. Let the

probability of the process being in state @ be Py. Let r be the call-mobility ratio,
defined as A/p.

A K
nPo = (Pu+ ) F)
=1
Simplifying it we get,
”

r+ N

Py =

For 1 < < K, the state transition equation is as follows;

K

r r
1+ )P=Pa++- > P
N N.Z1

Now, the state transition equation for state ¢,

7

Py = N

Py

The average chain length, &' = > i P, and the hit probability, s = 1 — P,.
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For M = 3, the value of £’ and s can be obtained as follows:

;L Nr(3N + 2r)
N (N +7r)(2r2 +2Nr 4+ N?)

3rN? + ANr? 4 273
(N +7r)(2r2 +2Nr 4+ N?)

For N = 50, Fig. 64 illustrates the variation of &’ when r changes, and Fig. 65
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Fig. 64. Variation of &’ with r for M =3
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Fig. 65. Variation of s with r for M =3

illustrates the variation of s with r. As shown in Fig. 65, we see that s increases as r

increases. This is becauses, at high values of r, calls are more frequent than moves,
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and since we are using jump updates, the probability of the location information

being obtained from the location server itself is high.
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APPENDIX C

SEARCH-UPDATES ANALYSIS FOR SEARCH-BASED HEURISTIC

This appendix presents the analysis of search-updates for search-based heuristic (Chap-

ter II1). For the analysis, note the following:

e The moves are such that the number of the forwarding pointers traversed during

a search never decreases due to a move.
o HLS update takes place upon every search, i.e., & = 1.
o We assume Jump Updates.
e The total number of registration areas (location servers) is N.

e The number of forwarding pointers traversed during a search decreases only due
to calls. We assume that the probability of a call originating from a location

server is equal for all location servers.

e The maximum chain length is equal to N, i.e., the number of registration areas
in the network. In other words, at least one HLS update is assumed to take

place before the chain length exceeds N.

The state transition diagram based on above assumptions is as shown in Fig. 66. The

state equations for this state diagram are as follows:

7

r+ N(1+r)

Py =

For « > 0,
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Fig. 66. State Transitions when Search-Updates are used with Search-based Heuristic
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The average chain length and the hit probability are determined as follows:

P, =

N

b LA+ NN
k_;”%_ r(L+ )N+ N(L+1))
L B (1—|—T)N+1—1
sEL B s O N N )

12 ¢

0.8
0.6 -

Avg. Chain Length
-

0.4 -
0.2

O L
0.01 1 10
Call Mobility Ratio

Fig. 67. Variation of k’ with r (Search-based) for N=>50
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For N = 50, Fig. 67 illustrates the variation of & when r changes, and Fig. 68
illustrates the variation of s with r. Unlike the movement-based heuristic, the hit
probability for search-based heuristic is very low and also reduces with increasing r.
This is because in search-based heuristic an H LS update takes upon every search.
The forwarding pointer maintenance policy explained in Section 3 requires that the
forwarding pointers be purged during every H LS update. Thus, as r increases, the
lifetime of forwarding pointer at a location server reduces, thus the hit probability

reduces too.
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APPENDIX D

PROOF OF CORRECTNESS

This appendix presents an outline of the proof of correctness for the algorithms pre-
sented in Chapter V.

For the sake of convenience, let us introduce two terms, namely, root node and
affected node. A root node is a node that initiates the cluster update algorithm,
whereas affected node is a node whose clusters may be affected by the algorithm
initiated by the root node. For the various types of events listed in Chapter V. let us

determine the root node(s) and the affected node(s).

e Switch ON: The new node is the root node. The neighbors of the new node

are the affected nodes.

e Switch OFF: The node n that is determined using the arbitration procedure
explained in Section C.2, is the root node. The neighbors of the node n are the

affected nodes.

e Connection between nodes A and B: The node (A or B) with the larger

td 1s the root node. The common neighbors of A and B are the affected nodes.

e Disconnection between nodes A and B: The node (say, A) with the larger
td is the root node. The neighbors of the root node are the affected nodes. The
node (say, B) other than the root node adds new clusters and does not remove

any clusters.

Each algorithm comprises of the following basic steps:
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e The root node(s) gets from each affected node, the affected node’s neighbor

information and its cluster set.

e The root node(s) determines the possible clusters using Create Clusters func-

tion.

e From these clusters, the root node(s) determines the essential clusters using

Find Essential function.

e The root node(s) adds the essential clusters to list of clusters it has obtained
from the affected nodes. The root node(s) then determines and removes the

redundant clusters using the Find Redundant function.

e The new cluster information is then broadcast by the root node to the affected

nodes.

Lemma 1: The root node has connectivity to each affected node through at least

one of the clusters returned by the Create Clusters function.

Proof: Step 2 of the Create Clusters (Table V) function ensures that at least one
cluster is created with root node and an affected node as its members. Thus, the root
node will have connectivity to each affected node through at least one of the clusters.
O

As shown in Fig. 69, the root node along with the affected nodesform a star graph
with the root node at the center and the affected nodes at the fringes. Some of the
affected nodes may be connected to each other, and they form a connected segment.
On the other hand, some of the connected segments may not connected with other
connected segments, and they form disconnected segments (e.g., A, B and C in Fig.

69(a)), R being the root node. In the worst case, a connected segment is a node (e.g.,
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C in Fig. 69(a). In such a case, all affected nodes are disconnected from each other.
When the root node R switches ON or moves into the vicinity of the nodes in A, B and
C, the root node provides connectivity between the disconnected segments through it.
It should thus be ensured that the affected nodes in the disconnected segments become
cluster-connected after the execution of Find Essential function at the root node (as
in Fig. 69(c)). This is because, even if there is a path between these disconnected
segments through the root node, there may not be any path between them using

clusters. This will violate the cluster-connectivity criteria.

B B__.

[N
’ )
" e,
N

o8

(a) Disconnected Segments (b) New nodeR

- - - Connected Segment

—— Essentia Cluster

(c) After Find Essential

Fig. 69. Clusters formed by Find-Essential

Lemma 2: The affected nodes in the different disconnected segments become

cluster-connected after the execution of Find Essential function at the root node.

Proof: Steps 4-9 of the Find Essential function ensures that there is an essen-
tial cluster between at least one node in each connected segment and the root node.
Thus, after the execution of Find Essential, there is cluster-connectivity between

the affected nodes in different disconnected segments. O
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Lemma 3: Nodes that were cluster-connected before the network event occurred,

will remain cluster-connected after the removal of redundant clusters by the root node.

Proof: The root node executes the Find Redundant function to determine redun-
dant clusters. This function determines redundant clusters based on Definition 6,
which ensures that if a cluster is redundant, removal of the cluster does not affect the

cluster-connectivity of the graph. O

Theorem 1: Given a cluster-connected graph, the graph remains cluster-connected

after any network event.

Proof: The proof follows from Lemma 1, Lemma 2 and Lemma 3. O
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APPENDIX E

RANDOM GRAPH GENERATOR

This appendix presents the algorithm used to generate random graphs (Chapter V).
The random graph generator is based on the ‘labeling’ algorithm presented in [27].
The input to this graph generator is N and D, where N is the number of nodes in the
network, and D is the average degree of the network. We use a ‘labeling’ algorithm to
generate random spanning trees with N nodes. Then we randomly add (22— (N —1))
links, so that the average degree in the final network is D. The algorithm is presented

in Table XIII.



Table XIII. Random Graph Generator Procedure

Procedure Random_Graph_Generator(/N,D);

10.
11.
12.

Begin;
Node list I = [1...N]; Edge list T'= 0 ;
Generate a sequence S of (N — 2) random labels in the range [1,N];
while (|S] > 0)
Look for the smallest label ¢; in I that is not in S}
T=TU/ i1,1);
Remove 7; from [ and s; from 5 ;
T =TU/ i1,12) ;
remaining = NQ—D —(N—-1);
while (remaining > 0)
Randomly generate 2 labels (i,j) s.t., (¢,7) ¢ T ;
T=1TU(,j);
rematning = remaining — 1 ;

End;
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