
PERFORMANCE AND RECOVERABILITY OFDISTRIBUTED SHARED MEMORY SYSTEMSUSING COMPETITIVE UPDATEA DissertationbyJAI-HOON KIMSubmitted to the O�ce of Graduate Studies ofTexas A&M Universityin partial ful�llment of the requirements for the degree ofDOCTOR OF PHILOSOPHY
August 1997Major Subject: Computer Science

PERFORMANCE AND RECOVERABILITY OFDISTRIBUTED SHARED MEMORY SYSTEMSUSING COMPETITIVE UPDATEA DissertationbyJAI-HOON KIMSubmitted to Texas A&M Universityin partial ful�llment of the requirementsfor the degree ofDOCTOR OF PHILOSOPHYApproved as to style and content by:Nitin H. Vaidya(Chair of Committee)Fabrizio Lombardi(Member) Jennifer Welch(Member)Gwan S. Choi(Member) Richard Volz(Head of Department)August 1997Major Subject: Computer Science

iiiABSTRACTPerformance and Recoverability ofDistributed Shared Memory SystemsUsing Competitive Update. (August 1997)Jai-Hoon Kim, B.S., Seoul National University;M.S., Indiana UniversityChair of Advisory Committee: Dr. Nitin H. VaidyaSoftware distributed shared memory (DSM) systems have many advantagesover message passing systems. Since DSM provides a user a simple shared memoryabstraction, the user does not have to be concerned with data movement betweenhosts.This dissertation presents a simple approach for implementing adaptive DSM ona network of workstations. The approach is illustrated with the example of an adap-tive DSM based on the invalidate and competitive update protocols. The proposedscheme allows each node to independently choose (at run-time) a di�erent protocolfor each page. This adaptive scheme is then modi�ed to also include a migratoryprotocol. In software DSM systems, the migratory protocol is not necessarily optimalfor a migratory access pattern. We de�ne some conditions under which the migratoryprotocol is preferred over other candidate protocols. Experimental evaluation of theadaptive DSM indicates that it is able to adapt to the memory access pattern of manyapplications.In the competitive update protocol, multiple copies of each page may be main-tained at di�erent nodes. However, it is also possible for a page to exist in onlyone node, as some copies of the page may be invalidated. This dissertation proposes

ivan implementation that makes the competitive update protocol recoverable from asingle node failure, by guaranteeing that at least two copies of each page exist. Thedissertation presents evaluation of the recoverable DSM using an implementation ona network of workstations. The dissertation also compares overhead of the singlefault-tolerant DSM with a consistent checkpointing scheme and a two-level recoveryscheme.Finally, this dissertation presents a new cost analysis model for competitive up-date protocol. Input parameter for the cost analysis model proposed here is theprobability density function of the number of remote updates in a segment. Usingthe proposed model, we compute the cost of the competitive update protocol for eachupdate limit. This cost function is used to determine the optimal update limit forcompetitive update protocol. The proposed model is validated by comparing analyt-ical results obtained using the model to experimental results.

v
To My Parents, Wife, and Daughters

viACKNOWLEDGMENTSFirst of all, I am greatly indebted to my advisor Professor Nitin H. Vaidya for hisguidance, encouragement, and all the support necessary to �nish my Ph.D. research.He educated me all about research and how to communicate my research results withenthusiasm and understanding. Without his help, I could not �nish this dissertation.I wish to thank the advisory committee members, Fabrizio Lombardi, JenniferWelch, Gwan S. Choi for their valuable comments and suggestions. I also wish tothank Professor Gregory D. Reinhart for serving as the Graduate Council Represen-tative.I also wish to thank teachers and friends of my school years, and bosses andcolleagues of my industrial career. Their in
uence has given me the backgroundnecessary for this research.Most of all, I would like to thank my parents, parents of my wife, brother, sister,and relatives for their encouragement and support necessary to succeed in this Ph.D.study. Last but not least, I would like to thank my wife (Joo-Hyun) and daughters(Ji-Ho and Sarah) for their patience and love during this study.

viiTABLE OF CONTENTSCHAPTER PageI INTRODUCTION : 1A. Distributed Shared Memory : : : : : : : : : : : : : : : : : 1B. Adaptive Distributed Shared Memory : : : : : : : : : : : : 4C. Adaptive Migratory Distributed Shared Memory : : : : : : 5D. Single Fault-Tolerant Distributed Shared Memory Us-ing Competitive Update : : : : : : : : : : : : : : : : : : : 6E. Analysis of Failure Recovery Schemes : : : : : : : : : : : : 7F. Cost Model for Distributed Shared Memory Using Com-petitive Update : 7G. Dissertation Organization : : : : : : : : : : : : : : : : : : 8II ADAPTIVE DISTRIBUTED SHARED MEMORY : : : : : : : 9A. Related Work : 9B. Adaptive Protocol : 131. Cost Analysis : 142. Implementation : 23C. Performance Evaluation : : : : : : : : : : : : : : : : : : : 28D. Summary : 45III ADAPTIVE MIGRATORY DISTRIBUTED SHARED MEMORY 46A. Related Work : 46B. Adaptive Migratory Scheme : : : : : : : : : : : : : : : : : 481. Implementation : 52C. Performance Evaluation : : : : : : : : : : : : : : : : : : : 56D. Summary : 63IV SINGLE FAULT-TOLERANTDISTRIBUTED SHAREDMEM-ORY USING COMPETITIVE UPDATE : : : : : : : : : : : : : 65A. Related Work : 65B. Recoverable Competitive Update Protocol : : : : : : : : : 671. Recoverable Shared Data : : : : : : : : : : : : : : : : 682. Recoverable Process Local State Consistent withShared Data : 74

viiiCHAPTER Page3. Recovery : 76C. Performance Evaluation : : : : : : : : : : : : : : : : : : : 78D. Summary : 88V ANALYSIS OF FAILURE RECOVERY SCHEMES : : : : : : : 97A. Related Work : 97B. Recoverable DSM Schemes : : : : : : : : : : : : : : : : : : 981. Multiple Fault-Tolerant Scheme : : : : : : : : : : : : : 992. Single Fault-Tolerant Scheme : : : : : : : : : : : : : : 993. Two-level Recovery Scheme : : : : : : : : : : : : : : : 99C. Performance Analysis : 1001. Multiple Fault-Tolerant Scheme : : : : : : : : : : : : : 1002. Single Fault-Tolerant Scheme : : : : : : : : : : : : : : 1053. Two-Level Scheme : 111D. Summary : 114VI A COST MODEL FOR DISTRIBUTED SHARED MEM-ORY USING COMPETITIVE UPDATE : : : : : : : : : : : : : 116A. Related Work : 116B. Cost Analysis : 117C. Application of the Cost Model : : : : : : : : : : : : : : : : 118D. Validation of the Proposed Model : : : : : : : : : : : : : : 123E. Summary : 136VII CONCLUSION AND FUTURE WORK : : : : : : : : : : : : : : 137A. Contribution : 1371. Adaptive Distributed Shared Memory : : : : : : : : : 1372. Migratory Adaptive Distributed Shared Memory : : : 1383. Single Fault-Tolerant Distributed Shared MemoryUsing Competitive Update : : : : : : : : : : : : : : : 1384. Analysis of Failure Recovery Schemes : : : : : : : : : 1395. A Cost Model for Distributed Shared Memory Us-ing Competitive Update : : : : : : : : : : : : : : : : : 139B. Future Work : 1401. Adaptive Distributed Shared Memory : : : : : : : : : 1402. Single Fault-Tolerant Distributed Shared Memory : : 1403. A Cost Model for Distributed Shared Memory : : : : 141REFERENCES : 142

ixCHAPTER PageAPPENDIX A : 152APPENDIX B : 159APPENDIX C : 167VITA : 169

xLIST OF TABLESTABLE PageI Performance Comparison (I) (other applications) : : : : : : : : : : : 35II Adaptive Protocols : 49III Performance Comparison (II) (other applications) : : : : : : : : : : : 61IV The Number of Messages (qtest: Read Ratio = 90 %) : : : : : : : : 153V The Amount of Data (qtest: Read Ratio = 90 %) : : : : : : : : : : : 153VI The Number of Messages (qtest: Read Ratio = 80 %) : : : : : : : : 154VII The Amount of Data (qtest: Read Ratio = 80 %) : : : : : : : : : : : 154VIII The Number of Messages (qtest: Read Ratio = 60 %) : : : : : : : : 155IX The Amount of Data (qtest: Read Ratio = 60 %) : : : : : : : : : : : 155X The Number of Messages (qtest: Read Ratio = 40 %) : : : : : : : : 156XI The Amount of Data (qtest: Read Ratio = 40 %) : : : : : : : : : : : 156XII The Number of Messages (qtest: Read Ratio = 20 %) : : : : : : : : 157XIII The Amount of Data (qtest: Read Ratio = 20 %) : : : : : : : : : : : 157XIV The Number of Messages (qtest: Read Ratio = 0 %) : : : : : : : : : 158XV The Amount of Data (qtest: Read Ratio = 0 %) : : : : : : : : : : : 158XVI The Number of Messages (Floyd-Warshall) : : : : : : : : : : : : : : : 160XVII The Amount of Data (Floyd-Warshall) : : : : : : : : : : : : : : : : : 160XVIII The Number of Messages (SOR) : 161XIX The Amount of Data (SOR) : 161

xiTABLE PageXX The Number of Messages (ProdCons) : : : : : : : : : : : : : : : : : : 162XXI The Amount of Data (ProdCons) : 162XXII The Number of Messages (Isort) : 163XXIII The Amount of Data (Isort) : 163XXIV The Number of Messages (Reader/Writer) : : : : : : : : : : : : : : : 164XXV The Amount of Data (Reader/Writer) : : : : : : : : : : : : : : : : : 164XXVI The Number of Messages (Matmult) : : : : : : : : : : : : : : : : : : 165XXVII The Amount of Data (Matmult) : 165XXVIII The Number of Messages (Jacobi) : : : : : : : : : : : : : : : : : : : 166XXIX The Amount of Data (Jacobi) : 166

xiiLIST OF FIGURESFIGURE Page1 Distributed Shared Memory : 22 Segments : 153 Illustrations for memory access and cost (update protocol) : : : : : : 174 Illustrations for memory access and cost (invalidate protocol) : : : : 175 Segments and Sampling Periods : 246 qtest1: Average Number of Updates (U) and Messages per Transaction 307 qtest1: Amount of Data (Bytes) Transferred per Transaction : : : : : 308 qtest2: Average Number of Updates (U) and Messages per Transaction 339 qtest2: Amount of Data (Bytes) Transferred per Transaction : : : : : 3310 Floyd-Warshall : 3611 SOR : 3712 Matmult : 3813 Jacobi : 3914 ProdCons : 4015 Isort : 4116 Reader/Writer : 4217 Number of Messages per Segment (for Migratory Memory AccessPattern) : 5118 Protocol Selection (NS = 2, Ucritical = 4) : : : : : : : : : : : : : : : : 55

xiiiFIGURE Page19 qtest1: Average Number of Updates (U) and Messages per Transaction 5720 qtest1: Amount of Data (Bytes) Transferred per Transaction : : : : : 5721 qtest2: Average Number of Updates (U) and Messages per Transaction 5922 qtest2: Amount of Data (Bytes) Transferred per Transaction : : : : : 5923 Cost Comparisons (Number of Messages) : : : : : : : : : : : : : : : : 6224 Cost Comparisons (Amount of Data Transferred) : : : : : : : : : : : 6225 Cost Comparisons (Execution Time) : : : : : : : : : : : : : : : : : : 6326 Update Counter for Recoverable DSM : : : : : : : : : : : : : : : : : 7127 qtest (Read Ratio = 90 %): The Number of Messages : : : : : : : : 8028 qtest (Read Ratio = 90 %): The Amount of Data Transferred : : : : 8029 qtest (Read Ratio = 80 %): The Number of Messages : : : : : : : : 8130 qtest (Read Ratio = 80 %): The Amount of Data Transferred : : : : 8131 qtest (Read Ratio = 60 %): The Number of Messages : : : : : : : : 8232 qtest (Read Ratio = 60 %): The Amount of Data Transferred : : : : 8233 qtest (Read Ratio = 40 %): The Number of Messages : : : : : : : : 8334 qtest (Read Ratio = 40 %): The Amount of Data Transferred : : : : 8335 qtest (Read Ratio = 20 %): The Number of Messages : : : : : : : : 8436 qtest (Read Ratio = 20 %): The Amount of Data Transferred : : : : 8437 qtest (Read Ratio = 0 %): The Number of Messages : : : : : : : : : 8538 qtest (Read Ratio = 0 %): The Amount of Data Transferred : : : : : 8539 Overhead for qtest: The Number of Messages : : : : : : : : : : : : : 8640 Overhead for qtest: The Amount of Data Transferred : : : : : : : : : 86

xivFIGURE Page41 Floyd-Warshall: The Number of Messages : : : : : : : : : : : : : : : 8942 Floyd-Warshall: The Amount of Data Transferred : : : : : : : : : : : 8943 SOR: The Number of Messages : 9044 SOR: The Amount of Data Transferred : : : : : : : : : : : : : : : : : 9045 ProdCons: The Number of Messages : : : : : : : : : : : : : : : : : : 9146 ProdCons: The Amount of Data Transferred : : : : : : : : : : : : : : 9147 Isort: The Number of Messages : 9248 Isort: The Amount of Data Transferred : : : : : : : : : : : : : : : : 9249 Reader/Writer: The Number of Messages : : : : : : : : : : : : : : : 9350 Reader/Writer: The Amount of Data Transferred : : : : : : : : : : : 9351 Matmult: The Number of Messages : : : : : : : : : : : : : : : : : : : 9452 Matmult: The Amount of Data Transferred : : : : : : : : : : : : : : 9453 Jacobi: The Number of Messages : 9554 Jacobi: The Amount of Data Transferred : : : : : : : : : : : : : : : 9555 Overhead for Other Applications: The Number of Messages : : : : : 9656 Overhead for Other Applications: The Amount of Data Transferred : 9657 Markov Chain for a Checkpoint Interval : : : : : : : : : : : : : : : : 10058 Checkpoint and Rollback Recovery Scheme : : : : : : : : : : : : : : 10259 Re-Do Overhead (� = 0:01) : 10460 Re-Do Overhead (� = 0:001) : 10461 Single Fault-Tolerant Scheme : 10562 Overhead by Varying Failure-Free Overhead : : : : : : : : : : : : : : 109

xvFIGURE Page63 Overhead by Varying Task Length : : : : : : : : : : : : : : : : : : : 10964 Single Fault-Tolerant vs. Checkpoint Scheme : : : : : : : : : : : : : 11065 Failure-free Execution : 11166 Minimum Achieved When Tc = 20 � 1:1 : : : : : : : : : : : : : : : : 11267 Minimum Achieved When Tc = 24:9 : : : : : : : : : : : : : : : : : : 11368 Cost (pdf1) : 12069 Cost (pdf2) : 12070 Cost (pdf3) : 12171 Cost (pdf4) : 12172 Cost (pdf5) : 12273 Cost (pdf6) : 12274 Cost by Varying c(pupdate) : 12475 Cost by Varying c(ppage) : 12476 qtest (read ratio = 50%) : 12677 qtest (read ratio = 10%) : 12678 Floyd-Warshall (size = 128) : 12779 Isort (size = 3200) : 12780 Jacobi (size = 128) : 12881 SOR (size = 512) : 12882 pdf (qtest: L = 3, read ratio = 10 %) : : : : : : : : : : : : : : : : : : 13083 pdf (qtest: L = 8, read ratio = 10 %) : : : : : : : : : : : : : : : : : : 13084 pdf (Jacobi: L = 3, size = 128) : 131

xviFIGURE Page85 pdf (Jacobi: L = 8, size = 128) : 13186 pdf (Floyd-Warshall: L = 3, size = 128) : : : : : : : : : : : : : : : : 13287 pdf (Floyd-Warshall: L = 8, size = 128) : : : : : : : : : : : : : : : : 13288 pdf (Isort: L = 3, size = 3200) : 13389 pdf (Isort: L = 8, size = 3200) : 13390 pdf (qtest: read ratio = 50 %) : 13491 pdf (Jacobi: size = 128) : 13492 pdf (SOR: size = 512) : 13593 pdf (Floyd-Warshall: size = 128) : 135

1CHAPTER IINTRODUCTIONA. Distributed Shared MemoryCommunication between nodes in a multiprocessor system can be performed eitherusing messages or shared memory. In contrast to message-passing, shared memoryprovides processes in a system with a shared address space. For distributed systems,no physically shared memory exists to support a shared memory abstraction. How-ever, a software layer can be implemented to provide a shared memory abstraction.Shared memory implemented on loosely coupled systems is called distributed sharedmemory [60].Distributed shared memory (DSM) systems have many advantages over messagepassing systems [47, 60]. Since DSM provides a user a simple shared memory ab-straction, the user does not have to be concerned with data movement between hosts.Users can use the DSM as if the shared memory is available locally. Many applica-tions programmed for a multiprocessor system with shared memory can be executedon a DSM system without signi�cant modi�cations. In this dissertation, we considerDSM implementation achieved using a software layer (without adding special hard-ware). Such an implementation is often called software DSM. Software DSMs havebeen implemented on cluster of workstations.Figure 1 shows a system con�guration using DSM system. Each node has pro-cessor, memory, and connection to a network. Memory is divided into pages, and apage can have multiple copies in di�erent nodes. DSM maintains memory consistencyacross the nodes by using a message passing mechanism. Each application processThe journal model is IEEE Transactions on Automatic Control.

2
NETWORK

1 2 3 4

DSM layer DSM layer DSM layer DSM layer

processor processor processor processor

Fig. 1. Distributed Shared Memorycan transparently access the distributed shared memory in the same node as if it islocal memory.In a protocol that performs write-update, when a node accesses a page for the�rst time, a copy of the page is brought into the local memory of the node. Thiscopy of the page is updated whenever another node modi�es the page. In contrast,in protocols based on write-invalidate, whenever a remote node modi�es a page, thelocal copy is invalidated.A disadvantage of the update protocol is that, over the course of the execution,many nodes may obtain a copy of the page in their local memory. Whenever anynode modi�es the page, an update message must be sent to all these nodes, incurringsigni�cant overhead. Two approaches have been used to mitigate this overhead.First, a relaxed consistency model such as release consistency [12] is used in recentimplementations. Second, some copies of a page are invalidated if they are not likelyto be used in the near future (some heuristic may be used to determine which copies

3can be invalidated, e.g., competitive update protocol [23]). Now, we summarize eachof these approaches.Release ConsistencyThe release consistency protocol is based on the observation that, in a typicalprogram, accesses to shared variables are separated by synchronization operations {in release consistency [12], these operations are termed acquire and release. If anaccess by a process to some shared data is likely to cause a race condition, then theprocess �rst performs an acquire operation. When the process has completed itsaccesses to the shared data, it performs a release operation. If one process has al-ready performed an acquire, another process' acquire will block until the �rst processperforms a release. This ensures that while one process is modifying some shareddata, another process will not attempt to access the data. Implementations of re-lease consistency can take advantage of this observation to improve performance, asfollows. Consider a process on node A that has performed an acquire, subsequentlyperformed multiple writes to shared data, and is now performing a release operation.Because of release consistency, it is adequate if node A sends a single update message(to all nodes that have a copy of the modi�ed pages) corresponding to all the writesperformed by the process since its most recent acquire [12]. In implementations thatuse sequential consistency (instead of release consistency), it is necessary to send oneupdate message for every write performed by node A. Due to release consistency, itis necessary to perform at most one update for every release performed by a process.This implementation of release consistency reduces the number of messages, poten-tially improving performance. Note that in the implementation under considerationhere, the release operation blocks until the updates are propagated to all relevant

4nodes and acknowledgments are received from them.Competitive Update ProtocolThe basic idea of the competitive update protocol [28, 23] is to update thosecopies of a page that are expected to be used in the near future, while selectivelyinvalidating other copies. The competitive update protocol is de�ned using a \thresh-old" parameter { in this dissertation, we will refer to the threshold as \update limit"or just \limit". When using the competitive update protocol with limit L (L � 0), anode A invalidates the local copy of a page P if and when the (L + 1)-th update tothe page by other nodes occurs since the previous access of page P by node A. Thebasic idea of the competitive update protocol [28, 23] is to update those copies of apage that are expected to be used in the near future, while selectively invalidatingother copies. The traditional update protocol can be obtained by choosing L = 1.The protocol obtained when L = 0 is similar to the traditional invalidate protocol.B. Adaptive Distributed Shared MemoryMany approaches have been proposed to implement distributed shared memory [10,12, 30, 33, 44, 55, 60]. Most DSM implementations are based on variations of write-invalidate and/or write-update protocols. As no single protocol is optimal for allapplications, researchers have proposed DSM implementations that provide a choiceof multiple consistency protocols (e.g., [12]). The programmer may specify the ap-propriate protocol to be used for each shared memory object (or page). While thisapproach has the potential for achieving good performance, it imposes undue burdenon the programmer. An adaptive implementation that automatically chooses the ap-propriate protocol (at run-time) for each shared memory page will ease the task of

5programming for DSM. We consider a simple but e�ective approach for implementingadaptive DSM. This approach is similar to adaptive mechanisms used to solve manyother problems1, and can be summarized as follows:1. Collect statistics over a \sampling period". (Accesses to each memory page aredivided into sampling periods.)2. Using the statistics, determine the protocol that minimizes the \cost" for eachpage P .3. Use the minimum cost protocol for each page P to maintain consistency of pageP over the next sampling period.4. Repeat above steps.Essentially, the proposed implementation would use statistics collected during cur-rent execution to predict the optimal consistency protocol for the near-future. Thisprediction will be quite accurate, provided that memory access patterns change rel-atively infrequently. To demonstrate our approach, we present an adaptive schemethat chooses between the invalidate protocol and the competitive update protocol[28, 17, 18, 23]. Experimental results show that our adaptive scheme performs wellbecause memory access patterns do not change frequently in many applications.C. Adaptive Migratory Distributed Shared MemoryIn migratory sharing, a page is accessed by a single node at any given instance. Apage is modi�ed within a critical section to maintain mutual exclusion. Every access1For example, to predict the next CPU burst of a task, a Shortest-Job-First CPUscheduling algorithm may use an exponential average of the measured lengths ofprevious CPU bursts [49].

6for a page is ordered by a sequence of acquire, shared memory access, and release.We present an adaptive migratory scheme for software Distributed Shared Memory(DSM). The proposed DSM system allows each node to independently choose oneof the following three protocols: migratory, invalidate, and competitive update. Insoftware DSM systems the migratory protocol is not necessarily better than otherprotocols for a migratory access pattern. (For an example, if two nodes access apage of migratory sharing, then the competitive update protocol is better than themigratory protocol.) Additionally, it is not always possible to detect a migratoryaccess pattern. We de�ne some conditions under which the migratory protocol isto be preferred over other candidate protocols. Experimental results show that thisnew scheme is often able to improve performance by choosing the migratory protocolwhen appropriate.D. Single Fault-Tolerant Distributed Shared Memory Using Competitive UpdateIn the competitive update protocol, multiple copies of each page may be maintainedat di�erent nodes. However, it is also possible for a page to exist in only one node,as some copies of the page may be invalidated. We propose an implementation thatmakes the competitive update protocol recoverable from a single node failure, byguaranteeing that at least two copies of each page exist. We also present a mechanismthat maintains consistency between shared data and process local state after recovery,by updating shared data and process local state atomically. The dissertation presentsevaluation of the recoverable DSM using an implementation. It is shown that theoverhead of making the DSM recoverable measured in terms of the number of messagesand the amount of data transferred is small in many applications.

7E. Analysis of Failure Recovery SchemesWhen a process rolls back and re-executes from the last checkpoint, the time requiredto re-do the lost computation is t time units (excluding time units required to roll-back) when the node fails after t time units from the last checkpoint. However, thecost (loss) occurred by re-doing the lost computation may be larger than that to ex-ecute the original computation in time critical applications (e.g., real-time systems).This dissertation analyzes how re-do overhead a�ects cost for recoverable DSM us-ing consistent checkpoint, and analyzes optimal checkpoint interval by varying there-do overhead factor (k). The proposed single fault-tolerant DSM can be combinedwith a checkpointing scheme to recover from single and multiple-node failure. Thedissertation presents an analysis of this two-level scheme as well.F. Cost Model for Distributed Shared Memory Using Competitive UpdateWe present a new \cost" analysis model for a distributed shared memory (DSM)using the competitive update protocol. The cost metric of interest here is the over-head of message passing necessary to implement DSM. This approach is based onthe segment model proposed previously [39] { a segment is de�ned as a sequence ofremote updates between two consecutive local accesses by a node. Input parameterfor the cost analysis model proposed here is the probability density function of thenumber of remote updates in a segment. The proposed model is validated by com-paring analytical results obtained using the model to experimental results. Using theproposed model, we compute the cost of the competitive update protocol for eachupdate limit. This cost function is used to determine the optimal update limit forcompetitive update protocol.

8G. Dissertation OrganizationIn summary, this dissertation deals with issues related to performance and recover-ability of a DSM using competitive update protocol. For performance improvement,we present an on-line algorithm using competitive update protocol, that automati-cally chooses the appropriate update limit (at run-time) for each shared memory page(Chapter II). This algorithm is then modi�ed to include a migratory protocol as aprotocol choice (Chapter III). We also present an o�-line algorithm to determine theoptimal update limit for competitive update protocol (Chapter VI). For recoverabil-ity, we propose a single fault-tolerant scheme by guaranteeing that at least two copiesof each page exist (Chapter IV), and analytically compare the performance of thesingle fault-tolerant scheme to those of other recovery schemes (Chapter V).

9CHAPTER IIADAPTIVE DISTRIBUTED SHARED MEMORYThe performance of DSM depends on chosen consistency protocols and applicationbehavior. This chapter presents a simple approach for implementing adaptive DSMsthat can choose appropriate protocol at a run-time. The approach is illustrated withthe example of an adaptive DSM based on the invalidate and competitive updateprotocols. The objective of the adaptive scheme is to minimize a pre-de�ned \cost"function. The cost functions considered here are number of messages, amount of datatransfer, and execution time. The proposed scheme allows each node to independentlychoose a di�erent protocol for each page at run-time [37, 39].A. Related WorkMany schemes have been proposed to reduce overhead by adapting to memory accesspatterns for cache-coherent multiprocessors and DSM systems, as summarized below.� Anderson and Karlin [3], and Raynaud et al. [54] present adaptive schemes.The scheme in [3] varies the invalidate threshold for each block by using write-run model [19]. Write-run is a sequence of local writes between two consecutiveremote accesses. They use write-run lengths collected during the run time inorder to determine the invalidation threshold for the block in the future.The scheme in [54] predicts update-distance for a block. Update-distance is thenumber of updates received between two consecutive local accesses. The \seg-ment" model used in this dissertation is similar to update-distance. A directoryrecords the update patterns observed and then uses them to selectively send up-dates and invalidations to processors. In our scheme, each node independently

10decides to update or invalidate a local copy of a page.� Munin [11, 12] incorporates an update timeout mechanism. The main idea ofthis mechanism is to invalidate local copy of a page that has not been accessedfor a certain period of time (freeze time) after it was last updated. Althoughthe two approaches (competitive update and timeout) have similar goals, they donot behave identically. Whereas the time limit (freeze time) is �xed in Munin,our adaptive protocol can adapt to time-varying memory access patterns bychanging the update limit at run-time.� ThreadMarks [2] uses lazy release consistency [29] to reduce communicationoverhead. In lazy release consistency, the update message from a node A isdelayed until some other node B performs acquire. Acquiring node B determinesthe modi�cations it needs to receive to satisfy release consistency. This schemecan reduce the amount of communication, because update message is sent tothe next acquiring node only (while update message is sent to all nodes thathave a copy of associated page in eager release consistency, such as in Munin).� Veenstra and Fowler [66] evaluate the performance of three types of o�-linealgorithms: (i) an algorithm that chooses statically, at the beginning of theprogram, either invalidate or update protocols on a per-page basis, (ii) an al-gorithm that chooses statically either invalidate or update protocols for eachcache block, and (iii) an algorithm that can choose invalidate or update proto-cols at each write. Algorithms (i) and (ii) are similar to multiple protocols in[11, 12, 33], and (iii) is similar to our adaptive protocols which can choose theappropriate protocol at run-time. However, [66] considers o�-line algorithms,for a bus-based system. On the other hand, this dissertation considers adaptive(on-line) algorithms that are applicable to distributed systems. Also, in [66], the

11chosen protocol is used for all copies of a cache block, whereas in our scheme,the update limit used for each copy of a page may be di�erent.� Veenstra and Fowler [67] examine the performance of on-line hybrid protocolsthat combine the best aspects of several protocols (invalidate protocol, updateprotocol, migratory protocol, etc.), on bus-based cache-coherent multiproces-sors. The results shows that the hybrid protocols outperform any single pureprotocol in most applications.� Lebeck and Wood [43] present dynamic self-invalidation (DSI) scheme to reduceoverhead in directory-based write-invalidate cache coherence protocol. The di-rectory identi�es blocks for self-invalidation. The directory conveys the self-invalidation information to the cache when responding to a cache miss, and thecache controller self-invalidates the blocks. In our scheme, each node decidesinvalidation of local copy.� Optimizations for migratory sharing have also been proposed [16, 17, 46, 59].These protocols dynamically identify migratory shared data and switch to mi-gratory protocol in order to reduce the overhead. [16, 59] are based on invalidateprotocol, and [17, 46] are based on competitive update protocol.� Ramachandran et al. [53] and Shah et al. [57] present new mechanisms forexplicit communication in shared memory multiprocessors which allows selec-tively updating a set of processors, or requesting a stream of data ahead of itsintended use (prefetch). Their scheme can also adapt to time-varying sharingpattern by dynamically changing the set of nodes to be updated (or invalidated).The basic di�erence between our approach and [53] is that our scheme does notneed to know whether a particular synchronization controls access to a given

12shared memory page or not. The scheme in [53] makes use of such informationto determine whether a copy of the page should be updated or invalidated.� Tempest [21, 55] allows programmers and compilers to use user-level mechanismto implement shared memory \policies" that are appropriate to a particularprogram or data structure. Tempest consists of four types of mechanisms (low-overhead messaging, bulk data transfer, virtual memory management, and �ne-grained memory access control).� Multiple consistency protocol was proposed in [11, 12]. Several categories ofshared data objects are identi�ed: conventional, read-only, migratory, write-shared, and synchronization. They developed many memory coherence tech-niques that perform e�ciently for these categories of shared data objects. Butprogrammer should know the memory access behaviors on each shared variableto specify a protocol used for the variable.� Hybrid protocol is more appropriate than a \pure" protocol for a DSM, ifthe access pattern for the same page is di�erent in each node. TOP-1 [48], atightly coupled snoop-cache-based multiprocessor, has a hybrid coherence pro-tocol which allows an update protocol and an invalidate protocol, which can bedynamically changed, to coexist simultaneously. However, TOP-1 needs addi-tional hardware design, cache mode register (to specify a cache mode: updatemode and invalidate mode) and CH (Cache Hit) bus line (to indicate a snoophit). Our software DSM system (many other software DSMs also) is imple-mented on a workstation cluster which does not requires change of hardware oroperating system.

13� Yang et al. [69] presents an adaptive cache coherence protocol based on ahardware approach that handles multiple shared reads e�ciently. Their protocolallows multiple copies of a shared data block in a hierarchical network withminimum cache coherence overhead by dynamically partitioning the networkinto sharing and nonsharing regions based on program behavior.Our adaptive DSM is based on cost comparison using segment model. Let usfocus on the shared memory accesses to a particular page P as observed at a nodeA. These accesses can be partitioned into \segments". A new segment begins withthe �rst access by node A following an update to the page by another node. Othersimilar models have been proposed previously for analyzing shared memory. Eggers[19] presents a write-run model to predict the cache coherency overhead for the busbased multiprocessor system. The write-run is a sequence of local writes between twoconsecutive remote accesses. Anderson and Karlin [3] vary the invalidate thresholdfor each block by using write-run model. Bennett et al. [6] present a no-synch runmodel. The no-synch run is a sequence of accesses to a single object by any threadbetween two synchronization points in a particular thread. Stumm and Zhou [60]present an analysis of DSM based on many parameters such as read-write ratio, pagefault ratio, and cost of sending/receiving a page.B. Adaptive ProtocolOur objective is to implement an adaptive DSM that can adapt to the time-varyingmemory access patterns of an application. Our initial goal was to design a heuristicto dynamically choose between the invalidate and the update protocols. However, forreasons that will be apparent later, the proposed adaptive scheme actually choosesbetween the invalidate and competitive update [17] protocols.

14The competitive update protocol is de�ned using an \update limit" or just \limit"L. The traditional update protocol can be obtained by choosing L =1. The protocolobtained when L = 0 is similar to the traditional invalidate protocol. Thus, thecompetitive update protocol is convenient for designing an adaptive scheme { theproblem of choosing appropriate protocol (invalidate or update) is now reduced tothe problem of choosing the appropriate limit (0 or 1) { the proposed adaptivescheme actually chooses 0 or a non-zero �nite limit, as explained later.The proposed adaptive scheme collects run-time data on number and size of mes-sages; the data is used to periodically determine the new value of limit for each copyof a page. The protocol is completely distributed in that each node independentlydetermines the limit to be used for each page it has in its local memory. (Thus,di�erent nodes may choose di�erent limits for the same page.) Now, we present acost analysis to motivate our heuristics for choosing the appropriate limit.1. Cost AnalysisThe objective of our adaptive protocol is to minimize the \cost" metric of interest.Three cost metrics considered here are: (i) number of messages, (ii) amount of datatransferred, and (iii) execution time. In this section, we evaluate the above costmetrics for the consistency protocols of interest. Our analysis assumes that theDSM uses release consistency and dynamic distributed ownership (no �xed page ownerexist, which maintains information about the page) analogous to Munin [11, 12]. Indynamic distributed ownership mechanism, page owner that has information for thepage changes dynamically.Minimizing the Number of MessagesWe now consider number of messages as the cost metric. Let us focus on the

15
Page P

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C write B write

Segment 1 Segment 2

A read A read A write
A write

C write D write B writeB write

time

Seg-
ment 3

local access
by node A

segments

A read A writeA read A write

by other nodes
remote writes

Fig. 2. Segmentsaccesses to a particular page P as observed at a node A. These accesses can bepartitioned into \segments". A new segment begins with the �rst access by nodeA following an update to the page by another node. Segments are de�ned fromthe point of view of each node. Therefore, for the same page, di�erent nodes mayobserve di�erent segments. Figure 2 illustrates segments observed at a node A withan example: (a) segment 1 for page P at node A starts at time 1 when node A readspage P , (b) copy of page P on node A is then updated by nodes B, C, and D. Afterthat, (c) node A starts segment 2 by a local access at time 6. Similarly, (d) node Astarts segment 3 by local access at time 11 following remote updates by nodes B andC at time 9 and 10, respectively.Now we evaluate the number of messages sent during each segment for invalidateprotocol (i.e., competitive update protocol with limit L = 0) and update protocol(i.e., competitive update protocol with limit L = 1). For simplicity, in the presentdiscussion, we do not consider the messages required to perform an acquire. (Thenumber of messages for an acquire is same for both protocols.)� update protocol (limit L =1): When L =1, a copy of the page P is neverinvalidated. To evaluate the number of messages sent in each segment, we needto measure the number of updates made by other nodes during the segment. Let

16U be the number of such updates to the local copy of page P during a segment.An acknowledgement is sent for each update message received. Therefore, thenumber of messages needed in one segment, denoted by Mupdate, is 2U . Asshown in Figure 3, for example, 6 messages are needed in segment 1 becausepage P is updated 3 times by other nodes. (The numbers in parentheses in the�gure denote number of messages associated with an event.) Similarly, 4 and 2messages are needed in segment 2 and segment 3, respectively (refer Figure 3).� invalidate protocol (limit L = 0): From the de�nition of a segment, it isclear that, when L = 0, each segment begins with a page fault. On a page fault,F +2 messages are required to obtain the page, where F is the number of timesthe request for the page is forwarded (due to dynamic distributed ownership)before reaching the owner1 { one additional message is required to send the page,and one message to acknowledge receipt of the page. With L = 0, when the �rstupdate message for the page (during the segment) is received from another node,the local copy of the page is invalidated. This invalidation requires two messages{ one for the update message and one for a negative acknowledgement to thesender of the update. Note that node A sending update message does not knowwhether node B receiving update message will invalidate or update a copy of thepage in node B. Thus, node A always sends update message instead of controlmessage for invalidation. Ideally, once a page is invalidated, no more updatemessages will be sent to the node during the segment. (In reality, however,1This analysis and implementation of adaptive DSM are based on another DSM,called Quarks, from University of Utah. In original Quarks, a request for the page isforwarded before reaching a node that has a copy of the page. However, we modifythis scheme for the owner to maintain a copyset that is close to the \real" copyset.This scheme can reduce the chance of sending update message to a node whose localcopy has been already invalidated (\false update").

17a node that has invalidated local copy of a page P may sometime receive anupdate for page P.) Therefore, when L = 0, (ideally) the number of messagesneeded in one segment (denoted byMinvalidate), is F +4. As shown in Figure 4,F + 4 messages are needed in a segment. Note that the actual value of F maybe di�erent in each segment.
Page P

segments

0 1 2 3 4 5 6 7 8 9 11 13

C write B write

Segment 1 Segment 2

10

B write C write D write B write

12

A write
A read A writeA readA writeA read A read A write

update (2)

update (2)update (2) update (2)
update (2)

update (2)

local access
time

by node A

(#message)
events

Seg-
ment 3

by other nodes
remote writes

Fig. 3. Illustrations for memory access and cost (update protocol)
Page P

C write B write

0 1 2 3 4 5 6 7 8 9 11 13

A read A write

Segment 1 Segment 2

page fault (F+2) page fault (F+2) page fault (F+2)

update (2)

page fault (F+2)

update (2)update (2)

A read A read A write
A write

B writeB write D writeC write

10 12

A writeA read

events
(#message)

segments

local access
by node A

Seg-
ment 3

by other nodes

time

remote writes

Fig. 4. Illustrations for memory access and cost (invalidate protocol)Critical value of the number of updates, Ucritical, where L = 0 and L =1 require

18the same number of messages, is computed as follows:Mupdate = Minvalidate) 2Ucritical = F + 4) Ucritical = F + 42 :Therefore, if U > F+42 , invalidate protocol has a lower cost. If U < F+42 , updateprotocol performs better. Based on this observation, the following adaptive schemeis derived (this scheme will be modi�ed soon for better performance).� As the value of U may be di�erent in each segment, each node collects data fora few consecutive segments (termed \sampling period") and estimates averagevalue of U and F .� At the end of the sampling period, if U � F+42 then the invalidate protocol(L = 0) is chosen for the next sampling period, otherwise, the update protocol(L =1) is chosen.The above protocol is modi�ed in two ways as described next.1. It is hard to estimate F accurately (without additional message overhead) whenthe limit L is non-zero. Therefore, we assume a constant value for F . In ourexperiments with up to 10 nodes, we assume F = 4. Clearly, F must depend onthe application and on the number of nodes (processors) used. Thus, F = 4 isnot likely to be always accurate (e.g., when the number of nodes is less than 5).This assumption could cause the adaptive scheme to achieve worse performancethan it potentially can. Yet, as shown here, the approximate heuristic performsreasonably well for the applications and number of nodes considered here. With

19the above assumption, Ucritical = 4.2. The above adaptive scheme chooses L = 1 when estimated U is less thanUcritical. The motivation for this choice is the following: if U was small inthe recent past, it is expected to be small in the near future. However, whenthis guess turns out to be incorrect, the adaptive scheme ends up having madea wrong choice. Therefore, instead of choosing L = 1 when U < Ucritical,we choose L = Ucritical � 1 = 3. When L = 3, a local copy of a page isinvalidated if the page is updated 4 times by other nodes within one segment.(The adaptive scheme will perform comparably if L were chosen to be Ucriticalinstead of Ucritical � 1.)With the above modi�cations, the adaptive scheme that attempts to minimize thenumber of messages can be summarized as follows:� Each node collects data over a \sampling period" for each local page, andestimates the average value of U .� At the end of the sampling period, if U � Ucritical then the invalidate protocol(L = 0) is chosen for the next sampling period for that page, otherwise, thecompetitive update protocol (with L = 3) is chosen. Ucritical is assumed to be 4in our experiments with up to 10 nodes.As a reference, the number of messages required in a segment when using acompetitive update protocol (with limit L, 0 < L <1) is computed below:� competitive update protocol (0 < L <1): A copy of the page is updated untilit receives L update messages from other nodes (between two consecutive localaccesses). Upon receiving (L+ 1)-th update message, local copy of the page isinvalidated. If the number of update messages (U) received during the segment

20is at most L, then the page is not invalidated. In the case of competitive updateprotocol, it is convenient to include the messages required to bring a page froma remote node when counting the number of messages for the segment in whichthe page was invalidated (rather than when counting the number of messages forthe next segment). Thus, if U � L, then Mcompetitive is 2U , similar to Mupdate.Else, however, Mcompetitive = 2 (L + 1) + (F + 2) = 2L +Minvalidate. (2(L + 1)messages for L+1 updates and their acknowledgements, and F +2 for bringinga page on the page fault when the next local access is attempted.)Minimizing the Amount of Data TransferredIn the above analysis, we consider the number of messages as the cost. Now, weconsider the amount of data transferred as the cost metric. The average amount ofdata transferred per segment is evaluated below.� Let Dinvalidate denote the average amount of data transferred per segment whenusing the invalidate protocol (L = 0). Then, Dinvalidate = pupdate + (F +2) pcontrol + ppage, where pupdate is the average size of an update message thatcauses the local copy of the page to be invalidated, pcontrol is the size of a controlmessage (page request, acknowledgment of update, etc.), ppage is the size of amessage that is required to send a page from one node to another, and F is theaverage number of times a page request is forwarded.� LetDupdate denote the average amount of data transferred in one segment for theupdate protocol (L =1). Then, it follows that, Dupdate = (pupdate + pcontrol)Uwhere U now denotes the average number of remote updates in a segment.Critical value of U (Ucritical), where the two protocols require the same amount

21of data transfer, is computed as follows (assuming F = 4):Dupdate = Dinvalidate) (pupdate + pcontrol)Ucritical = pupdate + (F + 2) pcontrol + ppage) Ucritical = pupdate + (F + 2) pcontrol + ppagepupdate + pcontrol) Ucritical = pupdate + 6 pcontrol + ppagepupdate + pcontrolNote that Ucritical is di�erent when minimizing amount of data as compared to whenminimizing number of messages.Having determined Ucritical, L = 0 is chosen if U measured at run-time is equalto or greater than Ucritical. To evaluate Ucritical, pupdate is also estimated at run-time.For a reason similar to that described previously when minimizing the number ofmessages, we do not choose L = 1 when U < Ucritical. Instead, when U < Ucritical,we choose the competitive update protocol with limit = Ucritical. Choosing limit =Ucritical � 1 would also result in similar cost. Because we chose limit = Ucritical � 1for minimizing the number of messages, as an illustration, we decided to use limit =Ucritical for minimizing amount of data.Minimizing the General CostThe cost of a message of size m is denoted as c(m). For instance, c(m) may be1 { this means that the cost metric simply counts the number of messages. Anotherpossibility is c(m) = m, which would mean that the total amount of data sent bymessages is used as the cost metric. In general, any suitable function of m may beused as the cost. For instance, c(m) = K1 + K2m, where K1 and K2 are someconstants. A procedure similar to that described above can be used to choose theappropriate value of L for such a cost function.

22Let the \cost" of sending or receiving a message of size m be a function of m,say c(m). For example, c(m) may be K1 +K2m, where K1;K2 are constants. Totalcost, C, is computed below:� Cupdate = (c(pupdate) + c(pcontrol))U� Cinvalidate = c(pupdate) + (2 + F) c(pcontrol) + c(ppage),where c(pupdate) denotes the average cost of an update message.Critical value of U (Ucritical), where the two protocols require the same \cost" iscomputed as follows: Cupdate = Cinvalidate) (c(pupdate) + c(pcontrol))Ucritical = c(pupdate) + (F + 2) c(pcontrol) + c(ppage)) Ucritical = c(pupdate) + (F + 2) c(pcontrol) + c(ppage)c(pupdate) + c(pcontrol)) Ucritical = c(pupdate) + 6 c(pcontrol) + c(ppage)c(pupdate) + c(pcontrol) assuming F = 4.Appropriate limit can be chosen at run-time, as in minimizing the amount ofdata transferred.For adaptive DSM minimizing execution time, we compute critical value of U(Ucritical) and update limit (L) for competitive update protocol (if it is chosen) byusing the similar cost analysis for minimizing the general cost. By experiment on8-node workstation cluster connected via ethernet, the time required to request apage and receiving the page of size 4,096 bytes (tf) is 30 msec, and the time requiredto send update message of size m and receive response (tu(m)) is approximatelytu(m) = C1 + C2 mppage , where C1 = 3:8, C2 = 8, and ppage = 4; 096 (size of messagefor page sending) Total cost, T , is computed below:

23� Tupdate = tu(pupdate)U� Tinvalidate = tu(pupdate) + tfCritical value of U (Ucritical), where the two protocols require the same executiontime is computed as follows: Tupdate = Tinvalidate) tu(pupdate)Ucritical = tu(pupdate) + tf) Ucritical = tu(pupdate) + tftu(pupdate)) Ucritical = 1 + tftu(pupdate)) Ucritical = 1 + tfC1 + C2 pupdateppage) Ucritical = 1 + 303:8 + 8 pupdate4;096 :2. ImplementationAs shown in the above analysis, the average number of updates since the last localaccess (U) and the average size of update message (pupdate) are important factors todecide which protocol is better. Our adaptive protocol estimates these values overconsecutive Ns segments (let us call it a \sampling period") and selects appropriateprotocol for the next sampling period. Figure 5 illustrates segments and samplingperiods. The U and pupdate values estimated during sampling period i are used todetermine the value of limit L to be used during sampling period i+ 1.Each node independently estimates U and pupdate for each page. To facilitateestimation of U and pupdate at run-time, each node maintains the following informationfor each page.

24
Sampling Period 1

1 2 3 Ns 1 2 3 Ns 1 2 3 Ns
Ns Segments Ns Segments Ns Segments

Sampling Period 2 Sampling Period 3Fig. 5. Segments and Sampling Periods� version: Counts how many times this page has been updated since the beginningof execution of the application. version is initialized to zero at the beginning ofexecution.� dynamic version: The version (de�ned above) of the page at the last localaccess. dynamic version is initialized to zero at the beginning of execution, andset to version after a page fault or on performing an update. dynamic versiondoes not have to be updated on every local access.� xdata: Total amount of data transferred for updating copies of this page sincethe beginning of execution of the application. xdata is initialized to zero at thebeginning of execution. (xdata is mnemonic for \exchanged data".)� dynamic xdata: The xdata (de�ned above) of the page at the last local access.dynamic xdata is initialized to zero at the beginning of execution and set toxdata after a page fault or on performing an update (as described below).� update: The number of updates by other nodes during the current samplingperiod. update is initialized to zero at the beginning of execution and is clearedto zero at the end of every sampling period.� d update: The amount of data received to update local copy of the page inthe current sampling period. d update is initialized to zero at the beginning of

25execution and is cleared to zero at the end of every sampling period.� counter: Total number of segments during the current sampling period. counteris initialized to zero at the beginning of execution and is cleared to zero at theend of every sampling period.The procedure for estimating U and pupdate is as follows. In the following, wefocus on a single page P at a node A { the same procedure is used for each page ateach node.1. On receiving an update message for page P, node A increments the version ofpage P by 1, and increments xdata by the size of the update message. Similarly,when node A modi�es page P and sends update messages to other nodes thathave a copy of page P, version is incremented by 1, and xdata is incrementedby the size of the update message. This can be summarized as:version � version + 1xdata � xdata + size of the update messageIn addition, when node A sends update messages, dynamic version is set equalto version and dynamic xdata is set equal to xdata.dynamic version � versiondynamic xdata � xdata2. New segment start at the �rst local access following updates by other nodes.There are two cases at that time: (1) if node A does not have a copy of pageP , page fault occurs, (2) if node A has a copy of page P , page fault occurs dueto protected access permission (because the page is protected to detect the �rstlocal access following updates by other nodes). One of the following proceduresis performed in each case:

26� If node A does not have a copy of page P : on a page fault, when a copy ofpage P is received by node A, the sender of the page also sends its xdataand version along with the page. On receiving the page, xdata and versionin the local page table entry (for page P) at node A are set equal to thosereceived with the page.version � version received with the pagexdata � xdata received with the pageAlso, dynamic version and dynamic xdata in the local page table entry arecompared to version and xdata, respectively, received with the page.� If node A has a copy of page P : In this case, access protection causes apage fault. In the page fault handler, dynamic version and dynamic xdataare compared to version and xdata, respectively, in the local page tableentry.The comparison in the above step is followed by the following procedures inboth cases. Let d = version� dynamic version. Then the update variable forpage P (at node A) is incremented by d, d update is incremented by (xdata�dynamic xdata), and the counter incremented by one. That is, if d > 0, then:update � update + (version � dynamic version)d update � d update + (xdata � dynamic xdata)counter � counter + 1At this point, a new segment begins. Therefore, the dynamic version is setequal to version and dynamic xdata is set equal to xdata.dynamic version � versiondynamic xdata � xdata

273. When counter becomes Ns, a sampling period is completed. Now, U and pupdateare estimated as U = updateNs , and pupdate = d updateupdate , and update, d update, andcounter are cleared to zero.The estimated values of U and pupdate for page P at node A are used to decidewhich protocol is better. If U � Ucritical, invalidate protocol (L = 0) is selected;else, competitive update protocol with appropriate limit is selected (as described insubsection 1). The chosen L is used for page P at node A during the next samplingperiod. Due to the distributed nature of the protocol, and possible di�erences inaccess patterns of di�erent nodes, di�erent nodes may simultaneously use di�erentlimits for the same page.Correctness and Cost for Protocol SwitchOur scheme is designed for software DSM using release consistency (such as[11, 12]), and each node independently chooses appropriate protocol by dynamicallydeciding whether to invalidate or update local copy of a page. This does not causeany consistency problem. The change in the choice of limit only determines when acopy of a page is invalidated. Thus, the adaptive protocol is much like the competitiveupdate protocol, but the decision-rule for page invalidation may change over time.No extra messages are required for the adaptive protocol (or protocol switch)because each node independently estimates the average number of updates by othernodes in one segment (U) and the average amount of data for update message (pupdate)to select an appropriate protocol, without sending additional messages. To keep trackof statistics, some message sizes may be larger by a few bytes.

28C. Performance EvaluationExperiments are performed to evaluate the performance of the adaptive DSM byrunning applications on an implementation of the adaptive protocol. We implementedthe adaptive protocol by modifying another DSM, named Quarks (Beta release 0.8)[10, 33]. This section presents the experimental results.We evaluated the adaptive scheme using synthetic applications (qtest, ProdCons,and Reader/Writer) as well as other applications (Floyd-Warshall, SOR, Isort, Mat-mult, and Jacobi). qtest is a simple shared memory application based on a programavailable with the Quarks release [33]: all nodes access the shared data concurrently.A process acquires mutual exclusion before each access and releases it after that. Wemeasured the cost (i.e., number of messages and size of data transferred) by executingdi�erent instances of the synthetic application, as described below. Floyd-Warshall,Isort, and Jacobi applications used in the experiments were written at Texas A&MUniversity. SOR and Matmult are available with the Quarks release [33]. ProdConsand Reader/Writer are based on qtest. Sampling period (Ns) is chosen to be 2 forall applications. We use Limit L = 3 for a competitive update protocol in all exper-iments.Results for qtest ApplicationThe body of the �rst instance of the qtest program (named qtest1) is as follows:qtest1: repeat NLOOP times {acquire(lock_id);for (n = 1 to NSIZE)shmem[n]++; /* increment shared memory location */release(lock_id);

29}Each node performs the above task. All the shared data accessed in this applica-tion is con�ned to a single page. Each node executes the repeat loop 300 times, i.e.,NLOOP = 300. 300 iterations were su�cient for the results to converge. The size ofshared data (NSIZE) is 2048 bytes { all in one page { page size being 4096 bytes.(The next experiment considers small NSIZE.) The adaptive protocol initializes L to3 for each page at each node. At the end of each sampling period (Ns = 2), eachnode estimates U and pupdate for the page and selects the appropriate L { this L isused during the next sampling period.For this application, Figures 6 and 7 show the measured cost by increasing thenumber of nodes (N). The costs are plotted per \transaction" basis. A transactiondenotes a sequence of operations { namely, acquire, shared memory access, and release{ in one loop of the qtest1 main routine. The curve for the adaptive scheme in Figure6 is plotted using the heuristic for minimizing the number of messages. The curve inFigure 7 is plotted using the heuristic for minimizing the amount of data transferred.(Note that the adaptive DSM does not minimize number of messages and amount ofdata transferred simultaneously { either one of them can be minimized at any timeby the choice of appropriate heuristic.) Costs required for acquire are included in theexperimental results. (We did not consider the costs required for acquire in our cost-comparison analysis, as the cost required for acquire is independent of the protocolused.)In Figure 6, the curve named \protocol" denotes the number of messages requiredby the speci�ed protocol, and \#update" denotes the average number of updates persegment (U) calculated over the entire application. As number of nodes N increases,the average number of updates per segment (U) increases proportionally. In spite

30
0

5

10

15

20

25

2 3 4 5 6 7 8 9 10N
um

be
r

of
 M

es
sa

ge
s

pe
r

T
ra

ns
ac

tio
n

Number of Node (N)

invalidate
update

competitive
adaptive
#updates

Fig. 6. qtest1: Average Number of Updates (U) and Messages per Transaction
2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 3 4 5 6 7 8 9 10

A
m

ou
nt

 o
f

D
at

a
T

ra
ns

fe
rr

ed
 p

er
 T

ra
ns

ac
tio

n

Number of Node (N)

invalidate
update

competitive
adaptive

Fig. 7. qtest1: Amount of Data (Bytes) Transferred per Transaction

31of the approximate estimate of Ucritical used in our analysis, the adaptive protocolperforms well. For small N , the adaptive scheme performs similar to update schemes(which are optimal for small N), and for large N the adaptive scheme performs similarto the invalidate scheme (which is optimal for large N). We assume F = 4 in ourcost-comparison analysis. This assumption is incorrect for small N (N < 5). But,near the critical value Ucritical, it is roughly correct. Thus, our adaptive algorithmcan choose an appropriate protocol in spite of the �xed value of F in our experimentswith up to 10 nodes. In summary, the number of messages required by the adaptiveprotocol is near the minimum of invalidate (L = 0) and competitive update (L = 3)protocols.Figure 7 shows the comparison of the amount of data transferred per transaction.Since qtest1 application modi�es large amount of data (NSIZE = 2; 048 bytes), anupdate protocol requires larger amount of data transfer as the number of nodes (N)increases. However, an invalidate protocol requires nearly constant amount of datatransfer (per transaction) for all N . Competitive protocol requires large amount ofdata transfer when N > 4 because it cannot adapt to minimize the amount of datatransferred. Adaptive protocol chooses the appropriate protocol for all values of N ,thereby minimizing the amount of data transferred.The second experiment was performed with the main loop (qtest2) shown below:qtest2: repeat NLOOP times {acquire(lock_id);if (random() < read_ratio)/* 0 <= random <= 1 */for (n = 1 to NSIZE)/* read shared memory */

32r_value = shmem[n];elsefor (n = 1 to NSIZE)/* write shared memory */shmem[n] = w_value;release(lock_id);}All the shared data accessed in qtest2 is con�ned to a single page. For thisexperiment, we assume a small amount of shared data access per iteration of therepeat loop (NSIZE = 4). Additionally, each iteration of the repeat loop eitherreads or writes the shared data depending on whether a random number (random())is smaller than the read ratio or not. This allows us to control the frequency ofwrite accesses to the shared data. 8 nodes access the shared data 100 times each(NLOOP = 100). (We observed that the results converge quite quickly.) Figure 8presents the number of messages per transaction (i.e., acquire, shared memory access,and release). As shown, the adaptive scheme performs well for all read ratios.Figure 9 shows the comparison of the amount of data transferred per transaction.Since qtest2 application modi�es small amount of data (NSIZE = 4 bytes), ouradaptive protocol chooses a competitive protocol with large update limit (L) (refer toSection 1). Therefore, the adaptive protocol requires small amount of data transfer.Competitive update protocol with limit L = 3 (or small L, in general) results inrelatively larger amount of data transfer when the average size of an update message,pupdate, is small.

33
0
2
4
6
8

10
12
14
16
18
20

0 10 20 30 40 50 60 70 80 90N
um

be
r

of
 M

es
sa

ge
s

pe
r

T
ra

ns
ac

tio
n

Read Ratio

invalidate
update

competitive
adaptive
#updates

Fig. 8. qtest2: Average Number of Updates (U) and Messages per Transaction
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0 10 20 30 40 50 60 70 80 90

A
m

ou
nt

 o
f

D
at

a
T

ra
ns

fe
rr

ed
 p

er
 T

ra
ns

ac
tio

n

Read Ratio

invalidate
update

competitive
adaptive

Fig. 9. qtest2: Amount of Data (Bytes) Transferred per Transaction

34Results for Other ApplicationsWe now evaluate our adaptive scheme by executing seven additional applications(Floyd-Warshall, SOR, ProdCons, Isort, Reader/Writer, Matmult, and Jacobi) on 8nodes. Floyd-Warshall is all-pair-shortest-path algorithm. (We use 128 vertices asinput.) SOR is Successive Over-Relaxation algorithm which executes simple itera-tive relaxation algorithm. (We use 512 � 512 grid.) ProdCons is implementation ofa simple Producer/Consumer model. Producers make data which will be used byconsumers. (We execute total 4,000 \transactions" for ProdCons. A transaction de-notes a sequence of operations { namely, acquire, shared memory access, and release{ similar to as de�ned in qtest.) Isort is Integer Sorting algorithm. (We use 3,200keys of 100 range.) Reader/Writer is implemented by modifying the qtest to evaluateperformance in time-varying memory access patterns. Execution time is divided into4 stages and memory access pattern is di�erent for each stage. A node can be eithera reader or a writer for each page depending on the execution stage. The size of datafor write is di�erent for each stage. (Total 1,920 transactions are executed.) Matmultis a matrix multiplication program which compute An. (We compute A10, where A isa 128� 128 matrix.) Jacobi is a linear system solver by using iteration method. (Wesolve a linear system of size 128.)We execute at least 10 times for each application and for each protocol. Ta-ble I shows experimental results: average number of messages (Messages), amountof data transferred (Data (KBytes)), execution time (Time (seconds)), and standarddeviations of these values (S.D.).Floyd-Warshall, SOR, Matmult, and Jacobi use barriers for synchronization.Floyd-Warshall and SOR have small value of U . However, as shown in Figures 10and 11, update protocol unexpectedly shows bad performance (except for the amountof data transferred for Floyd-Warshall). Recall that we use a DSM implementation

35Table I. Performance Comparison (I) (other applications)Application Messages (S.D.) Data (KB) (S.D.) Time (sec.) (S.D.)Floyd-WarshallInvalidate 9676 (1143) 4674 (65) 25.4 (4.29)Update 27873 (340) 2392 (2) 26.5 (3.39)Competitive 8633 (605) 1562 (2) 26.5 (3.39)Adaptive 8360 (53) 1910 (12.8) 14.6 (1.66)SORInvalidate 16436 (994) 12204 (87) 46.0 (8.92)Update 101172 (715) 58518 (3) 237.7 (5.37)Competitive 13753 (679) 4588 (3) 30.6 (2.45)Adaptive 13877 (746) 4589 (3) 32.2 (2.12)ProdConsInvalidate 65428 (2221) 17790 (222) 155.7 (32.15)Update 76636 (517) 1387 (8) 112.9 (9.96)Competitive 76527 (739) 18124 (154) 148.5 (14.94)Adaptive 64730 (1224) 1451 (5) 114.0 (8.17)IsortInvalidate 51979 (1551) 14294 (176) 124.5 (22.67)Update 61449 (331) 993 (6) 97.6 (6.48)Competitive 60753 (1240) 14282 (300) 124.3 (11.65)Adaptive 51824 (224) 1048 (9) 94.8 (7.72)Reader/WriterInvalidate 74443 (804) 41255 (470) 244.4 (38.78)Update 91652 (1110) 42694 (5) 225.5 (6.58)Competitive 90458 (504) 57702 (60) 253.6 (15.73)Adaptive 68587 (1168) 22639 (294) 227.1 (16.05)MatmultInvalidate 2388 (1345) 864 (5) 22.7 (6.39)Update 3256 (483) 3458 (2) 26.4 (1.59)Competitive 2156 (287) 1381 (1) 20.5 (1.25)Adaptive 2204 (425) 1382 (2) 21.2 (1.62)JacobiInvalidate 2462 (629) 646 (19) 29.9 (4.49)Update 2237 (202) 327 (1) 1.0 (0.08)Competitive 2427 (618) 380 (15) 4.6 (1.49)Adaptive 2349 (489) 343 (6) 3.3 (0.74)

36

AdaptiveCompetitiveUpdateInvalidate

40,000

50,000

10,000

0

20,000

30,000

4,000 K

5,000 K

3,000 K

2,000 K

1,000 K

0 K

50

40

30

20

10

0

E
xe

cu
tio

n
T

im
e

(s
ec

.)
T

ot
al

 A
m

ou
nt

 o
f

D
at

a
(B

yt
es

)
T

ot
al

 N
um

be
r

of
 M

es
sa

ge
s

Fig. 10. Floyd-Warshall

37

AdaptiveCompetitiveUpdateInvalidate

0

0 K

0

80,000

60,000

40,000

20,000

100,000
T

ot
al

 N
um

be
r

of
 M

es
sa

ge
s

T
ot

al
 A

m
ou

nt
 o

f
D

at
a

(B
yt

es
)

E
xe

cu
tio

n
T

im
e

(s
ec

.)

100,000 K

80,000 K

60,000 K

40,000 K

20,000 K

250

200

150

100

50 Fig. 11. SOR

38

AdaptiveCompetitiveUpdateInvalidate

0

4,000 K

5,000 K

3,000 K

2,000 K

1,000 K

0 K

50

40

30

20

10

0

E
xe

cu
tio

n
T

im
e

(s
ec

.)
T

ot
al

 A
m

ou
nt

 o
f

D
at

a
(B

yt
es

)
T

ot
al

 N
um

be
r

of
 M

es
sa

ge
s 5,000

4,000

3,000

2,000

1,000

Fig. 12. Matmult

39

AdaptiveCompetitiveUpdateInvalidate

0

0 K

50

40

30

20

10

0

E
xe

cu
tio

n
T

im
e

(s
ec

.)
T

ot
al

 A
m

ou
nt

 o
f

D
at

a
(B

yt
es

)
T

ot
al

 N
um

be
r

of
 M

es
sa

ge
s 5,000

4,000

3,000

2,000

1,000

1,000 K

800 K

600 K

400 K

200 K

Fig. 13. Jacobi

40

AdaptiveCompetitiveUpdateInvalidate

0

0 K

0

80,000

60,000

40,000

20,000

100,000

50

20,000 K

15,000 K

10,000 K

5,000 K

T
ot

al
 N

um
be

r
of

 M
es

sa
ge

s
T

ot
al

 A
m

ou
nt

 o
f

D
at

a
(B

yt
es

)
E

xe
cu

tio
n

T
im

e
(s

ec
.)

200

150

100

Fig. 14. ProdCons

41

AdaptiveCompetitiveUpdateInvalidate

0

0 K

0

80,000

60,000

40,000

20,000

100,000

50

20,000 K

15,000 K

10,000 K

5,000 K

T
ot

al
 N

um
be

r
of

 M
es

sa
ge

s
T

ot
al

 A
m

ou
nt

 o
f

D
at

a
(B

yt
es

)
E

xe
cu

tio
n

T
im

e
(s

ec
.)

200

150

100

Fig. 15. Isort

42

AdaptiveCompetitiveUpdateInvalidate

0

0 K

0

80,000

60,000

40,000

20,000

100,000
T

ot
al

 N
um

be
r

of
 M

es
sa

ge
s

T
ot

al
 A

m
ou

nt
 o

f
D

at
a

(B
yt

es
)

E
xe

cu
tio

n
T

im
e

(s
ec

.)

100,000 K

80,000 K

60,000 K

40,000 K

20,000 K

500

400

300

200

100 Fig. 16. Reader/Writer

43based on Quarks [33] for these experiments. In Quarks, the \Master" node initial-izes all shared memory and the Master node is in the copyset of all pages. Pureupdate protocol implementation based on Quarks performs bad due to the overheadof updating Master node for all shared memory writes. (However, this performancedegradation does not happen in the original Quarks release because Quarks uses amechanism similar to competitive update protocol.) Competitive update protocol andadaptive protocol perform well for four applications (except for competitive updateprotocol in Jacobi) as shown in Figures 10 through 13.ProdCons uses lock/unlock for a task queue, Isort uses lock/unlock for ranking,and Read/Writer uses lock/unlock for exclusive object access. These four applicationshave large value of U , and invalidate protocol requires small number of messages(please refer Figures 14, 15, 16). However, for the amount of data in ProdCons andIsort, update protocol is better because the amount of data in an update messageis much smaller than the size of a page. Competitive protocol does not show goodperformance for the amount of data as well as the number of messages. Adaptiveprotocol shows good performance for the amount of data as well as the number ofmessages as shown in Figures 14 through 16.We evaluated the performance of our adaptive protocol on a syntheticReader/Writer application (see Figure 16) where memory access patterns (read towrite ratio, access period, amount of data written in each transaction, etc.) aretime-varying. Each node access pages 1 through 4 in di�erent patterns. As an ex-ample, nodes 1 and 2 repeatedly execute the following main loop in Reader/Writerapplication.

44# Reader/Writer (at nodes 1 and 2):size of data = 4 bytesStage 1: Do (i = 2,3,4) {read page iwrite page 1write page 5 and 6}Stage 2: Do (i = 3,4,1) {read page iwrite page 2write page 5 and 6}size of data = 2,048 bytesStage 3: Do (i = 4,1,2) {read page iwrite page 3write page 5 and 6}Stage 4: Do (i = 1,2,3) {read page iwrite page 4write page 5 and 6}

45Results show that the adaptive protocol performs well by adapting to time-varying memory access patterns. Observe that adaptive protocol performs betterthan any of the other protocols for Reader/Writer application. The reason is that nosingle protocol is optimal for all stages as the access patterns change for each stagein Reader/Writer application.From above measurements, observe that, in most cases, the adaptive algorithmachieves performance comparable with the optimal protocol (among invalidate, up-date, and competitive update protocols). This suggests that the adaptive scheme isable to predict the optimal protocol accurately.D. SummaryThis chapter presents an adaptive scheme for DSM that can adapt to time-varyingpattern of accesses to the shared memory. The adaptive DSM automatically choosethe appropriate consistency protocol (without any input from the programmer). Ourapproach continually gathers statistics, at run-time, and periodically determines theappropriate protocol for each copy of each page. The choice of the protocol is de-termined based on the \cost" metric that needs to be minimized. The cost metricsconsidered in this dissertation are number and size of messages, and time requiredfor executing an application using the DSM implementation. A generalization tominimize arbitrary cost metrics is also possible.Experimental evaluation of the adaptive DSM using an implementation based onQuarks DSM [33] is presented. Experimental results from the implementation suggestthat the proposed adaptive approach can indeed reduce the cost.

46CHAPTER IIIADAPTIVE MIGRATORY DISTRIBUTED SHARED MEMORYWith migratory sharing, a node that has a page fault, soon writes to the page andsends an update to other copies of the page. When using invalidate protocol, theremote copies of the page will be invalidated on this update. A message for sending acopy of a page to a remote node, on which a page fault occurs, is directly followed byan update request from the remote node. This chapter presents an adaptive migratoryscheme that tries to detect the migratory sharing and to eliminate the overhead ofreceiving an update message and sending a negative acknowledgement [38, 40]. Thisscheme os obtained by adding migratory protocol as another choice in the scheme inChapter II. The reason for evaluating the two schemes separately is that, sometimesaddition of a protocol choice may reduce performance. By evaluating the adaptivescheme with and without migratory protocol separately, it is possible to determinehow e�ective the additional protocol choice is.A. Related WorkOther researchers have also proposed adaptive schemes for migratory sharing. Ouradaptive migratory scheme is implemented in a software DSM and is di�erent fromothers as follows:� Design domain: The schemes in [16, 46, 59, 43] are based on bus-based ordirectory-based cache coherent multiprocessors. In a bus-based multiprocessor,requests (for read miss, write miss and invalidate) can be detected by all nodesvia the bus. In a directory-based cache coherent multiprocessor, a home nodemaintains directory entries. In these architectures, global state (number of

47cached copies, last invalidator of a block) can be known by some or all nodes.However, these schemes can not be used directly in software DSM such as Munin[12] or Quarks [33] where no node may have global knowledge. Our scheme canbe incorporated into a software DSM in which memory coherency is maintainedin a distributed manner. Each node tries to determine the best protocol usinglocally available information.Schemes in [15, 42] are proposed for dynamic page placement in NUMA archi-tecture. Their dynamic page placement policy can not be applied to DSM dueto architectural di�erences. On page fault, in NUMA architecture, a local nodecan access remote memory without page allocation in local memory. However,in most DSMs (e.g., Munin [12]), remote memory access is not allowed.� Protocol Switch: [16, 59, 46] select a migratory protocol whenever memoryaccess pattern is migratory sharing.Our adaptive scheme requires each node to periodically estimate the \cost" ofusing each candidate protocol for each page in its local memory; the protocolwith lowest estimated cost is used. Therefore, the proposed scheme uses themigratory protocol only when it is deemed optimal. If another protocol isdeemed optimal, even if the access pattern is migratory, the other protocol ischosen.In a DSM, it is possible that migratory protocol may not be optimal for migra-tory access pattern. Choosing migratory pattern may save the cost of perform-ing some updates. However, migratory protocol may add the cost of process-ing a page fault on a page that has been migrated to another node (this costmay be avoided by using competitive update protocol). In a software DSM, apage-request may have to be forwarded several times before it is served (a page-

48request is issued on a page fault). The proposed scheme chooses the migratoryprotocol only when its cost is expected to be lower than the other candidateprotocols.� Protocol Choices: [16, 59, 43] allow invalidate and migratory protocols, and[46] allows competitive update and migratory protocols. Our scheme allowsinvalidate, competitive update and migratory protocols.� Hybrid Protocol: In [16, 46, 59], all copies of a block enter migratory mode orexit from migratory mode. In our scheme, each node independently chooses theappropriate protocol. Therefore, some nodes can use a migratory protocol whilethe other nodes use another protocol (invalidate or competitive update protocol)for the same page. What this means is that some nodes may invalidate theirlocal copy of a page when servicing a page-request for that page (migratoryprotocol), while some other nodes may not invalidate the page when servicinga page-request (competitive update or invalidate protocols).Table II summarizes the above discussion.B. Adaptive Migratory SchemeThe adaptive scheme presented in Chapter II is now modi�ed to include the migratoryprotocol as one of the protocol choices. Doing this requires two new features:� A heuristic to determine when the migratory protocol is likely to be optimal.� A mechanism that will allow a node to detect the migratory access pattern.The proposed scheme chooses the migratory protocol if: (i) the access pattern seemsto be migratory, and (ii) assuming that the access pattern is migratory, the cost ofmigratory protocol is estimated to be the least.

49Table II. Adaptive ProtocolsScheme Design domain Protocols (Schemes) Features[16] Dir or Bus Inv + Mig[59] Dir Inv + Mig[46] Dir Comp + Mig[43] Dir Inv + Self-Inv[15, 42] MM-NUMA Remote + Replicate + Mig CC[39] SDSM Inv + Comp CCProposed SDSM Inv + Comp + Mig CC + TD� Bus = bus-based cache coherence multiprocessor� Dir = directory-based cache coherence multiprocessor� MM-NUMA = memory management system for NUMA multiprocessor� SDSM = software Distributed Shared Memory� Inv = invalidate protocol� Mig = migratory protocol (scheme)� Remote = remote memory access� Replicate = page replication� Comp = competitive update protocol� CC = cost comparison� TD = totally distributed

50We now present cost analysis for the three protocols. The cost analysis of themigratory protocol presented below is valid only if the access pattern is migratorysharing.Cost Analysis (Number of Messages)We �rst consider number of messages as the cost metric. As before, F denotesthe average number of times a page-request is forwarded.When using the migratory protocol, at the beginning of each segment, a pagefault occurs. If memory access pattern is migratory sharing, the number of messagesrequired for a migratory protocol in one segment (Mmigratory) is computed as:Mmigratory = F + 2F messages above are required for forwarding page-request. In addition, one messageis required to receive the page, and one message to acknowledge receipt of the page.Invalidate, update, and competitive update protocols were analyzed in Chapter II.Figure 17 shows an analytical comparison of required number of messages for onesegment as a function of U , assuming migratory memory access pattern (assumingF = 4). For competitive update protocol in Figure 17, we have L = 3. Note thatonly the cost for memory access (read, write and page fault) is considered (cost forsynchronization, acquire, is not considered). Under migratory sharing, the migratoryprotocol requires two messages less (per segment) as compared to the invalidate pro-tocol (by eliminating an update message and corresponding acknowledgment). This�gure suggests that for the migratory access pattern the migratory protocol is thebest choice if U � 4. However, even with migratory memory access pattern, up-date and competitive update protocols are better choices if U � 2. When U = 3,and the access pattern is migratory, then migratory, update, and competitive update

51
2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 M

es
sa

ge
s

Number of Updates (U) in a Segment

’invalidate’
’update’

’competitive’
’migratory’

Fig. 17. Number of Messages per Segment (for Migratory Memory Access Pattern)protocols require comparable number of messages.Cost Analysis (Amount of Data Transferred)In the above analysis, we consider the number of messages as the cost. Now, weconsider the amount of data transferred as the cost metric. If memory access patternis migratory, the amount of data transferred in one segment (Dmigratory), when usingthe migratory protocol, is computed as follows:Dmigratory = (F + 1) pcontrol + ppage;where pcontrol is the size of a control message (page request, acknowledgment, etc.),and ppage is the size of a message that is required to send a page from one node to

52another.Cost Analysis (General Cost Functions)In general, the cost may be an arbitrary function of the message size. Let thecost of sending or receiving a message of size m be c(m). If memory access pat-tern is migratory sharing, the cost required for a migratory protocol in one segment(Cmigratory) is computed as:Cmigratory = (F + 1) c(pcontrol) + c(ppage):We also compute the execution time in Section II. By experiment on 8-node worksta-tion cluster connected via ethernet, the time required to request and receive a page ofsize 4; 096 bytes (tf) is 30 msec on average. Thus, the time required for a migratoryprotocol in one segment (Tmigratory) is computed as:Tmigratory = tf = 30 msec:The implementation of adaptive migratory protocol evaluated in this dissertationchooses the appropriate limit to minimize the number of messages, the amount of datatransferred, or execution time. Any one of the three may be minimized at any time,not all of these. Note that Ucritical for choosing appropriate limit is di�erent for eachcost metric. 1. ImplementationBased on the above analysis, we add two features to the proposed adaptive scheme:1. Select migratory memory access pattern when appropriate: Node A collectsstatistics over a sampling period to determine if the access pattern is migra-

53tory, and whether the migratory protocol is optimal.2. Self-Invalidation: Node A performs self-invalidation of a local copy of page Pwhen sending page P to any other node, if node A selects migratory memoryaccess pattern for page P (as described in item 1 above).As discussed in Chapter II, it is possible for each node to estimate U and pupdate inde-pendently, without sending additional messages. Note that the value of U determinedby each node (for the same page) may be di�erent, as segments observed by each nodeare di�erent. Therefore, each node needs to be able to estimate U independently.The speci�c heuristic that we used for selecting migratory protocol requires thatthe two conditions below must be true during a given sampling interval. If theconditions hold, then the migratory protocol is used in the next sampling interval.Consider page P and node A. Node A may use migratory protocol for page P duringthe next sampling period, if:1. During each segment in the current sampling period, node A responds to page-request for page P. Also, after node A sends page P to another node, node A doesnot access page P again before a remote update to page P occurs. (These twoconditions together are used to conclude that the access pattern is migratory.)2. Number of remote updates to page P in each segment is at least Ucritical. (Thiscondition is used to determine if migratory protocol is likely to incur least cost.)The resulting adaptive migratory scheme (referred as adapt+ or adaptive+) canbe summarized as follows:1. If estimated U < Ucritical, choose competitive update protocol with limit L =Ucritical � 1.

542. Else, choose a migratory protocol if the two conditions stated above for selectingmigratory protocol are satis�ed.3. Else, choose invalidate protocol.As noted earlier, because Ucritical is di�erent for minimizing number of messages,amount of data, and execution time, the three cost metrics cannot be minimizedsimultaneously.Figure 18 shows examples of how the above procedure is used to choose appro-priate protocol, according to the memory access patterns for page P observed at nodeA. Assume that the sampling period consists of 2 segments (i.e., Ns = 2) and thatUcritical is 4.In the �rst scenario (Figure 18 (a)), a competitive protocol is chosen at the endof the sampling period, because the average the number of updates U per segment,denoted Uavg, is less than Ucritical. Observe that, in Figure 18 (a), Uavg = 2+12 = 1:5which is less than Ucritical = 4.In the third scenario (Figure 18 (c)), a migratory protocol is chosen because theconditions stated earlier for choosing migratory protocol are satis�ed. Note that,in this case, the number of updates U in each segment in the sampling period is� Ucritical.In the second scenario (Figure 18 (b)), the invalidate protocol is chosen because:(i) in segment 1, a local access (read) is performed by node A, after node A sends pageP in response to a page-request but before getting an update message from anothernode, and (ii) node A does not send page P to any other node in segment 2 (eithercondition would suggest that the access pattern may not be migratory).

55
A read A write

B write

. .

remote access
by other nodes

Page P

local access
send P

B write
C write

.
A write A read

. .

. .

remote access

Page P

by other nodes

local access

B write
C write

B write
D write

B write
C write

D write
B write

send P

.
A readA write A read

. .

A read
. .Page P

remote access
by other nodes

local access

.
A read

B write
D write

C write
B write

send P

B write
C write

D write
B write

.
A write

A write

. .

A read

A readA read

A read
A write

Segment 2

Segment 2

Segment 2Segment 1

Segment 1

Segment 1

(a)

(b)

(c)

select competitive protocol

send P
select migratory protocol

select invalidate protocol

Fig. 18. Protocol Selection (NS = 2, Ucritical = 4)

56C. Performance EvaluationExperiments are performed to evaluate the performance of proposed adaptive+ pro-tocol, by running applications on an implementation of the protocol. We implementedthe adaptive protocol by modifying another DSM, named Quarks (Beta release 0.8)[10, 33]. This section presents the experimental results. We evaluated the adaptivescheme using the same applications used in the Chapter II. We use limit L = 3 for acompetitive update protocol in all experiments.Results for qtest ApplicationFor this application, Figures 19 and 20 show the measured cost as a function ofnumber of nodes (N) executing the application. The costs are plotted per \transac-tion" basis. A transaction denotes a sequence of operations { namely, acquire, sharedmemory access, and release { in one loop of the qtest1 main routine. The curvefor the adaptive schemes in Figure 19 is plotted using the heuristic for minimizingthe number of messages; the curve in Figure 20 is plotted using the heuristic forminimizing the amount of data transferred.In Figure 19, the curve named \protocol" denotes the number of messages re-quired by the speci�ed protocol, and \#update" denotes the average number of up-dates per segment (Uavg) calculated over the entire application. adaptive denotes thescheme in Chapter II. adaptive+ denotes the proposed adaptive migratory protocol.As number of nodes N increases, the average number of updates per segment (U)increases proportionally. For N � 5, adaptive migratory protocol (adaptive+) per-forms best, because qtest1 shows the migratory memory access pattern. Adaptive+requires approximately 2 less messages per transaction than the adaptive protocol(because adaptive+ chooses migratory protocol, while adaptive chooses the invali-

57
0

5

10

15

20

25

2 3 4 5 6 7 8 9 10

N
um

be
r

of
 M

es
sa

ge
s

pe
r

T
ra

ns
ac

tio
n

Number of Node (N)

’invalidate’
’update’

’competitive’
’adaptive’

’adaptive+’
’#updates’

Fig. 19. qtest1: Average Number of Updates (U) and Messages per Transaction
2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 3 4 5 6 7 8 9 10A
m

ou
nt

 o
f

D
at

a
T

ra
ns

fe
rr

ed
 p

er
 T

ra
ns

ac
tio

n

Number of Node (N)

’invalidate’
’update’

’competitive’
’adaptive’

’adaptive+’

Fig. 20. qtest1: Amount of Data (Bytes) Transferred per Transaction

58date protocol). However, adaptive+ protocol requires the same number of messagesas the adaptive protocol when N � 4, because both protocols choose competitiveupdate protocol.The cost graph for the invalidate protocol is not
at, while it was
at as perthe cost analysis shown in Figure 17. The reason is that the cost of synchronization(acquire) increases as the number of nodes (N) increases (the cost for synchronizationis not included in Figure 17, while it is taken into account in our measurements).Figure 20 shows the comparison of the amount of data transferred per transac-tion. Since qtest1 application modi�es large amount of data (NSIZE = 2048 bytes),an update protocol requires larger amount of data transfer as the number of nodes(N) increases. However, an invalidate protocol requires nearly constant amount ofdata transfer (per transaction) for all N . Adaptive migratory protocol chooses theappropriate protocol, thereby minimizing the amount of data transferred.The second experiment was performed using qtest2. Figure 21 presents thenumber of messages per transaction (i.e., acquire, shared memory access, and release).Adaptive migratory protocol requires less number of messages than the adaptiveprotocol when read ratio is less than 20 % because qtest2 tends to show migratorymemory access pattern at low read ratios.Figure 22 shows the comparison of the amount of data transferred per transac-tion. Since qtest2 application modi�es small amount of data (NSIZE = 4 bytes),both adaptive protocol and adaptive+ (adaptive migratory) protocol choose a com-petitive protocol with large update limit (L). Therefore, both adaptive protocolsrequire small amount of data transfer.Results for Other ApplicationsWe now evaluate our adaptive scheme by executing seven additional applications

59
0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 M

es
sa

ge
s

pe
r

T
ra

ns
ac

tio
n

Read Ratio

’invalidate’
’update’

’competitive’
’adaptive’

’adaptive+’
’#updates’

Fig. 21. qtest2: Average Number of Updates (U) and Messages per Transaction
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90A
m

ou
nt

 o
f

D
at

a
T

ra
ns

fe
rr

ed
 p

er
 T

ra
ns

ac
tio

n

Read Ratio

’invalidate’
’update’

’competitive’
’adaptive’

’adaptive+’

Fig. 22. qtest2: Amount of Data (Bytes) Transferred per Transaction

60used in Chapter II (Floyd-Warshall, SOR, ProdCons, Isort, Reader/Writer, Matmult,and Jacobi) on 8-node workstation cluster.We execute at least 10 times for each application and for each protocol. Ta-ble III shows experimental results: average number of messages (Messages), amountof data transferred (Data (KBytes)), execution time (Time (seconds)), and standarddeviations of these values (S.D.).Figures 23, 24, and 25 show performance comparisons for each cost metric (thenumber of messages, the amount of data transferred, or execution time). The �guresplot costs for �ve protocols: invalidate (INV), update (UPD), competitive update withL = 3 (COMP), the adaptive scheme from Chapter II (ADAPT) and the adaptive migra-tory scheme (ADAPT+). The costs are normalized using the protocol with maximumcost for each application as the base.Floyd-Warshall, SOR, Matmult, and Jacobi use barriers for synchronization.In these types of applications, the proposed adaptive migratory protocol (ADAPT+)does not show performance improvement over ADAPT, because Floyd-Warshall, SOR,Matmult, and Jacobi do not show the migratory memory access pattern. In Floyd-Warshall, ADAPT+ performs worse than ADAPT due to false detection of migratorysharing, i.e., our heuristic uses migratory protocol when the access pattern is notactually migratory.ProdCons uses lock/unlock for a task queue, Isort uses lock/unlock for rank-ing, and Reader/Writer uses lock/unlock for exclusive object access. These applica-tions show migratory memory access patterns. (In Reader/Writer, some pages showmigratory memory access patterns.) In three applications (ProdCons, Isort, andReader/Writer), adaptive migratory protocol (ADAPT+) requires the least number ofmessages. However, in Reader/Writer application only, adaptive migratory protocol(ADAPT+) requires the least amount of data because the size of update message is

61Table III. Performance Comparison (II) (other applications)Application Messages (S.D.) Data (KB) (S.D.) Time (sec.) (S.D.)Floyd-WarshallInvalidate 9676 (1143) 4674 (65) 25.4 (4.29)Update 27873 (340) 2392 (2) 26.5 (3.39)Competitive 8633 (605) 1562 (2) 26.5 (3.39)Adaptive 8360 (53) 1910 (12.8) 14.6 (1.66)Adaptive Migratory 10146 (623) 3637 (27.6) 18.4 (1.18)SORInvalidate 16436 (994) 12204 (87) 46.0 (8.92)Update 101172 (715) 58518 (3) 237.7 (5.37)Competitive 13753 (679) 4588 (3) 30.6 (2.45)Adaptive 13877 (746) 4589 (3) 32.2 (2.12)Adaptive Migratory 13729 (585) 4587 (2) 43.9 (7.67)ProdConsInvalidate 65428 (2221) 17790 (222) 155.7 (32.15)Update 76636 (517) 1387 (8) 112.9 (9.96)Competitive 76527 (739) 18124 (154) 148.5 (14.94)Adaptive 64730 (1224) 1451 (5) 114.0 (8.17)Adaptive Migratory 55825 (1279) 1441 (20) 112.9 (9.55)IsortInvalidate 51979 (1551) 14294 (176) 124.5 (22.67)Update 61449 (331) 993 (6) 97.6 (6.48)Competitive 60753 (1240) 14282 (300) 124.3 (11.65)Adaptive 51824 (224) 1048 (9) 94.8 (7.72)Adaptive Migratory 45413 (879) 1047 (20) 90.1 (3.10)Reader/WriterInvalidate 74443 (804) 41255 (470) 244.4 (38.78)Update 91652 (1110) 42694 (5) 225.5 (6.58)Competitive 90458 (504) 57702 (60) 253.6 (15.73)Adaptive 68587 (1168) 22639 (294) 227.1 (16.05)Adaptive Migratory 60742 (649) 18703 (263) 191.5 (28.87)MatmultInvalidate 2388 (1345) 864 (5) 22.7 (6.39)Update 3256 (483) 3458 (2) 26.4 (1.59)Competitive 2156 (287) 1381 (1) 20.5 (1.25)Adaptive 2204 (425) 1382 (2) 21.2 (1.62)Adaptive Migratory 2399 (901) 1383 (3) 20.9 (1.37)JacobiInvalidate 2462 (629) 646 (19) 29.9 (4.49)Update 2237 (202) 327 (1) 1.0 (0.08)Competitive 2427 (618) 380 (15) 4.6 (1.49)Adaptive 2349 (489) 343 (6) 3.3 (0.74)Adaptive Migratory 2175 (123) 344 (6) 5.3 (1.17)

62
80

100

6040200

Floyd-W
arshall

SO
R

ProdC
ons

Normalized Number of Messages

UPD
INV

COMP
ADAPT
ADAPT+

INV
UPD
COMP
ADAPT

INV
UPD
COMP
ADAPT

INV
UPD
COMP
ADAPT

INV
UPD
COMP
ADAPT

INV
UPD
COMP
ADAPT
ADAPT+

ADAPT+

ADAPT+

ADAPT+

ADAPT+

INV
UPD
COMP
ADAPT
ADAPT+

ISO
R

T
R

ead/W
riter

M
atm

ult
Jacobi

Fig.23.CostComparisons(NumberofMessages)
80

100

6040200

Floyd-W
arshall

SO
R

ProdC
ons

Normalized Amount of Data

INV
UPD
COMP
ADAPT

INV
UPD
COMP
ADAPT

INV
UPD
COMP
ADAPT

INV
UPD
COMP
ADAPT

INV
UPD
COMP
ADAPT

UPD
COMP
ADAPT
ADAPT+

ADAPT+

ADAPT+

ADAPT+

ADAPT+

ADAPT+

INV

INV
UPD
COMP
ADAPT
ADAPT+

R
ead/W

riter
M

atm
ult

Jacobi
ISO

R
T

Fig.24.CostComparisons(AmountofDataTransferred)

63
80

100

60

40

20

0

Floyd-Warshall SOR ProdCons

N
or

m
al

iz
ed

 N
um

be
r

of
 M

es
sa

ge
s

U
PD

IN
V

C
O

M
P

A
D

A
PT

A
D

A
PT

+

IN
V

U
PD

C
O

M
P

A
D

A
PT

IN
V

U
PD

C
O

M
P

A
D

A
PT

IN
V

U
PD

C
O

M
P

A
D

A
PT

IN
V

U
PD

C
O

M
P

A
D

A
PT

IN
V

U
PD

C
O

M
P

A
D

A
PT

A
D

A
PT

+

A
D

A
PT

+

A
D

A
PT

+

A
D

A
PT

+

A
D

A
PT

+

IN
V

U
PD

C
O

M
P

A
D

A
PT

A
D

A
PT

+

ISORT Read/Writer Matmult JacobiFig. 25. Cost Comparisons (Execution Time)small in other applications (Isort and Reader/Writer). For a similar reason, adaptivemigratory protocol achieves performance improvement by 15 % in Reader/Writer ap-plication, while only 1 % and 5 % in ProdCons and Isort application, respectively, interms of execution time.D. SummaryThis chapter presents a new adaptive DSM that allows each node to independentlychoose any one of the following protocols for each page: migratory, invalidate, andcompetitive update. This protocol improves on our previous scheme in Chapter II bydetecting migratory patterns. The adaptive protocol attempts to detect migratoryaccess pattern, and chooses the migratory protocol when it is deemed most cost-e�ective.We present experimental evaluation of the proposed adaptive migratory schemeusing an implementation based on Quarks DSM [33]. Experimental results from theimplementation suggest that the proposed adaptive approach can usually reduce thecost. Speci�cally, the proposed scheme can typically reduce the number of messages

64as compared to the adaptive scheme presented in Chapter II, as well as invalidate andcompetitive update protocols. However, in a few application, the adaptive migratoryscheme performs worse than the adaptive scheme due to false detection of migratorysharing. In this case, the adaptive scheme in Chapter II is recommended instead ofthe adaptive migratory scheme.

65CHAPTER IVSINGLE FAULT-TOLERANT DISTRIBUTED SHARED MEMORY USINGCOMPETITIVE UPDATEThis chapter presents a single fault-tolerant distributed shared memory (DSM) thatuses the competitive update protocol. In competitive update protocol, multiple copiesof each page may be maintained at di�erent nodes. However, it is also possible for apage to exist in only one node, as some copies of the page may be invalidated. Wepropose an implementation that makes the competitive update protocol recoverablefrom a single node failure, by guaranteeing that at least two copies of each page exist.This chapter also presents a mechanism that maintains consistency between shareddata and process local state after recovery, by updating shared data and process localstate atomically [35, 36, 34].A. Related WorkMany recoverable DSM schemes have been presented in the literature. Some of themuse stable storage (disk) to save recovery data [24, 25, 56, 68], and others use mainmemory for checkpointing, replicating shared memory or logging the shared memoryaccesses [4, 9, 22, 27, 31, 45, 61, 63]. Proposed recoverable DSM belongs to the secondcategory (uses main memory). [61, 63] are based on update (full-replication) protocol,while [4, 9, 22, 31, 45] are based on invalidate (read-replication) protocol.Stumm and Zhou extend four DSM algorithms to tolerate single node failures[61]. One of their algorithms is for an update protocol. However, implementations ofour algorithm is di�erent because their algorithm is based on update protocol whereall copies of a page are updated, whereas our scheme is based on the competitiveupdate protocol (some copies are invalidated to reduce overhead). Additionally, our

66scheme supports release consistency.Theel and Fleisch present a coherence protocol [63] that is highly available. Theirscheme has an upper bound (to reduce overhead) as well as a lower bound (for avail-ability) on the number of copies of each shared memory page. Unlike [63], our schemeis based on the competitive update protocol.Janssens and Fuchs [25] present a recoverable DSM that exploits release consis-tency to reduce the number of checkpoints, as compared to communication-inducedcheckpointing schemes for sequential consistency. Their scheme requires a process totake a checkpoint either when performing a write on a synchronization variable, orwhen another process performs a read on the synchronization variable. The check-points are stored on a storage not subject to failures. Our single fault tolerancescheme handles the non-shared data similar to [25]; our scheme \checkpoints" non-shared data in the volatile memory of another processor. However, the shared datais not explicitly checkpointed { instead the shared data is duplicated as a part of theupdate protocol (if multiple copies already exist, no additional overhead is incurred).When compared to [25], the proposed scheme trades degree of fault tolerance to re-duce the performance overhead. Janssens and Fuchs [26] also present an approach toreduce interprocessor dependencies in recoverable DSM.Brown and Wu present recoverable DSM, based on an invalidate protocol, thatcan tolerate single point failure [9]. A dynamic snooper keeps a back-up copy of eachpage and takes over if the page owner fails. The snooper keeps track of the pagecontents, location of page replicas, and the identity of the page owner. The snoopercan respond on behalf of a failed owner. Our scheme also maintains at least two copiesof a page, however, the proposed scheme is based on an update protocol, unlike [9].Neves et al. present a checkpoint protocol for a multi-threaded distributed sharedmemory system based on the entry consistency memory model [45]. Their algo-

67rithm needs to maintain log of shared data accesses in the volatile memory. Fuchiand Tokoro propose a mechanism for recoverable shared virtual memory [22]. Theirscheme maintains back-up process for every primary process. When the primaryprocess sends/receives a message to/from another process (or writes/reads a sharedmemory), the primary process sends this information to back-up process so that theback-up process can log the events of the primary process.Richard and Singhal [56] present an invalidate-based scheme for recovery of failedprocessors in DSM systems. Their scheme is based on asynchronous checkpointing ofapplication processes and logging of pages accessed via read operations on the sharedaddress space. They use volatile logs and stable logs. Every read content is stored involatile logs, and
ushed to the stable log on a page transfer.Backward error recovery on a Cache Only Memory Architecture is implementedusing invalidate protocol by Banatre et al. [4]. (A similar scheme is implemented onan Intel Paragon by Kermarrec et al. [31].) This scheme periodically takes system-wide consistent checkpoints. After a node fails, all nodes need to rollback to the lastcheckpoint.Plank and Li propose parity checkpointing [51] based on diskless checkpointing.A consistent checkpoint is held in N processors, and bitwise exclusive-or of the check-points is held in a processor called parity processor. If any one of N processors fails,the failed processor can be recovered to the consistent checkpoint by computing itscheckpoint from all the other checkpoints and the parity checkpoint.B. Recoverable Competitive Update ProtocolRecoverable scheme for a DSM, based on the competitive update protocol [23, 28],is relatively simple. The basic idea behind the proposed scheme is to maintain,

68at all times, at least two copies of each page (at two di�erent nodes) instead ofcheckpointing. This will allow the DSM to recover from a single node failure withoutsigni�cant overhead (provided the non-shared data is also recoverable, as discussedlater).When the competitive update protocol is used, it is possible that a page may beresident in only one node. Therefore, to tolerate a single node failure, it is necessaryto modify the competitive update protocol, to ensure that at least two nodes have acopy of each page. Thus, there are two issues that must be dealt with to make theDSM fault tolerant (for single node failures).1. Modi�cation of the competitive update protocol to guarantee two copies of eachshared memory page.2. Some mechanism needs to be incorporated to make process local state recover-able and consistency with shared data.We �rst focus on the �rst of the above two issues.1. Recoverable Shared DataMaintaining at Least Two Copies of Each PageTo simplify the discussion, we assume that each page has the same �xed limit L.To make the DSM recoverable, we must modify the competitive update protocol, suchthat some copy of the page is not invalidated, even if its update counter exceeds thelimit L. This is achieved by designating, for each update, one of the nodes as the \back-up". The copy of a page at the back-up node cannot be invalidated, irrespective ofthe value of its update-counter. Note that the back-up is speci�ed for each update, andmay change from one update to the next update of the same page. The performanceof the recoverable DSM may depend on the choice of the back-up { in our approach,

69as described below, the node chosen as the back-up is the one that is expected toaccess the page in the near future.Let us consider the copy of a page P at a node A. Contents of a back-up �eldcan change based on the three rules listed below.1. When a node A obtains a copy of a page P from some other node B, node Balso sends identi�er of the last-updater of page P . Node A, on receiving thepage, sets its last-updater as well as back-up equal to the last-updater receivedfrom node B.2. Node A receives an update message for page P from some other node, say C:In this case, the back-up �eld at node A is set equal to C. The node C is usedas back-up when node A updates other nodes.The motivation behind this rule is to identify a node as the back-up only if ithas accessed the page recently (this, in turn, is motivated by the principle oflocality).3. Node A performs a release and sends update messages, for page P , to othernodes: The update messages are sent to the other nodes in the order of theiridenti�ers. When the other nodes receive these update messages, they respondto the update message. Speci�cally, if update-counter is less than or equal tolimit L or the node is the back-up, the node incorporates update message andsends an ack along with its update-counter; otherwise, it invalidates local copyand replies negative-ack. Node A designates a node that replies ack with thesmallest update-counter as the back-up for future updates of page P (ties maybe broken arbitrarily).In the above procedure, the back-up node, say C, is forced to retain the page

70even if its update-counter exceeds the limit. If some node, say B, also has acopy of the page, then there is no need to force the node C to retain its copy.To reduce the situations where a back-up node is forced to retain its copy of apage, even if its update counter exceeds L, we modify the above procedure, asfollows.Assume that the back-up node for page P at node A is C. If node A receivesan ack from some node, say B, before sending the update to the node C, thennode A temporarily designates B as the back-up for page P . Now, when theupdate is sent to node C, it is not designated as the back-up. After updating allnodes that have a copy of page P , node A designates a node, say D, that repliesack with the smallest update-counter as the back-up. (Note that the originalback-up node C may potentially reply negative-ack if its update-counter exceedsthe limit.)Note that, for a given page, the back-up at di�erent nodes may be di�erent.Proposed Recoverable Competitive Update Protocol [36]The proposed scheme assumes that programs are data-race-free[1]. The modi�edprotocol is mostly identical to the original competitive update protocol with onedi�erence: A node that is designated as the back-up for an update does not invalidatethe local copy of the page even if the update-counter exceeds L. (Update message sentto the back-up node is tagged by a special marker.) Any other node whose update-counter exceeds L invalidates its local copy of the page. This procedure ensures that,at any time, at least two copies of a page are in existence.The back-up for an update is always a node that has accessed the page in therecent past. Therefore, from the locality principle, this node is likely to access the

71
1

0

0

1

0

0

0

Memory Access

Last-updater

Back-up: 0

Back-up: 1

Back-up: 2

Update-counter: 0

Update-counter: 1

Update-counter: 2

2R

0

0

0

0

1

0

0

2U2W2L2U2R2L0W0L0U0W0L0W 0U0L1U1W1R1L0U0W0L 0U

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1

1 1

1 1 1 1 1 1 1 1

2 2 2

2 2 2

2

3 3

3

4

1

0

0 0

0

22 2

0

0

00

1

0

1

0

0

10

1 1

0

1

0

0

0

1

0

00

1

0

1

1 1

0

1

3 3

0 2

0

0

0 0

00

1

0

3

0

1

0 0 1 1 0 1

0

12

1

0

3

1

0W

10 0 0 0

0

0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2L 2U

0

0

0

0

1

0

0

0

0

1

0

0

1 1Fig. 26. Update Counter for Recoverable DSMpage in the near future as well. The modi�ed update protocol forces this node toretain a copy of the page. This protocol may be viewed as incorporating a \pre-fetch" mechanism. As the page copy is likely to be used in the near future, theoverhead of updating the copy is often compensated by a reduction in the number ofpage faults.Note that \cost" (e.g., number of messages) of the recoverable protocol can belarger than that of the non-recoverable protocol, only when the non-recoverable pro-tocol would result in a page having only one copy. Whenever, the non-recoverableprotocol results in multiple copies of a page, the recoverable protocol does not resultin any additional cost. Thus, the di�erence between the costs of the recoverable andnon-recoverable protocols is expected to be greatest when limit is 0, and reduces aslimit becomes larger.ExampleFigure 26 illustrates how the back-up is maintained. For this example, assumethat the limit L is 2. The system is assumed to contain three nodes, 0, 1 and 2. Inthe �gure, iL and iU denote acquire and release operations by node i. (Although weobtained the notation iL and iU by abbreviating i-Lock and i-Unlock, it should be

72noted that acquire and release operations in release consistency are not necessarilyequivalent to lock and unlock.) Also, iR and iW denote read and write operationsperformed on this page by node i. Initially, the page is loaded in the local memoryof two nodes (0 and 1 in our example), and one of them (node 0) is considered to bethe last-updater. Back-up at nodes 0 and 1 is initialized to 1 and 0, respectively. Thememory access row in Figure 26 presents a total ordering on the accesses to the pageunder consideration. The next three rows present values of the update-counters at thethree nodes at various times, e.g., the update-counter:0 row corresponds to node 0.(The values in column i correspond to the update-counters after the memory accessin column i is performed.) The next row of the table lists the last-updater variableat each node (it is identical at all nodes). The last three rows list the value of theback-up variable for the page at each node. Note that last-updater and back-up changeonly when a release is performed, whereas, update-counter at a node A changes wheneither (i) node A performs a local access to the node, or (ii) another node performsan update to the page. A \blank" in the table implies that the corresponding nodedoes not have a copy of the page at that time, and an X in the �gure denotes aninvalidation.The initial state is illustrated in column 0 of the table. The �rst acquire isperformed by node 2, followed by a read and a release (columns 1-3). As shownin column 2, a copy of the page is brought to node 2 when it reads the page, itsupdate-counter is set to 0, and the back-up is set to 0 (the last-updater for the page).Next, node 0 performs a acquire-write-write-release sequence (columns 4-7).When node 0 performs a release (column 7), it sends update messages to other nodes.As the back-up at node 0, immediately before the release is performed, is node 1, theupdate message sent to node 1 is tagged by a marker to inform node 1 that it is theback-up. When the acknowledgements for the update messages are received, node 0

73determines its new back-up by �nding the minimum of the update-counters receivedwith the acknowledgement. As both nodes 1 and 2 return update-counter 1, node 0arbitrarily chooses node 2 to be the back-up for its next update. The new back-upis shown in column 7 of the \back-up:0" row in the table. Nodes 1 and 2 set theirback-up variable to 0, because they received an update from node 0 (column 7).Next, node 1 performs acquire-read-write-release sequence (columns 8-11). Whennode 1 performs a release (column 11), the update message sent to node 0 is taggedwith a marker, as node 0 is the back-up for this access (as shown in column 10,row \back-up:1"). When all the acknowledgements and update-counters are received,node 1 determines the new back-up as the node whose update-counter is the smallest,namely node 0. (The new back-up is shown in column 11, row \back-up:1"). Nodes0 and 2 change their back-ups to 1, as they received an update from node 1 (column11). At this point (column 11), the update-counters for nodes 0, 1 and 2 are 1, 0 and2, respectively. Next, node 0 performs an acquire-write-release sequence (columns12-14). At the release by node 0 (column 14), the update message sent to node 1is tagged by a marker, whereas that sent to node 2 is not tagged, as node 1 is theback-up for this update (see column 13, row back-up:0). When the update messageis received by node 2, it performs the update and increments its update-counter to3. Now, node 2 invalidates the local copy of the page because, (a) its update-counterexceeds limit 2, and (b) the update message sent to node 2 was not tagged by amarker (which means that node 2 is not the back-up for the update). When node 0receives the acknowledgements, it determines that node 1 is its new back-up. Also,node 1 sets its back-up to 0, when it receives the update-message.Now, node 0 again performs acquire-write-release (columns 15-17) followed byanother acquire-write-release (columns 18-20). At the second release (column 20),

74update-counter for node 1 becomes equal to 3. At each of the release, node 0 sendsan update message to node 1 tagged with the marker. Therefore, node 1 cannotinvalidate its copy of the page. Note that the update-counter at node 1 exceeds 2(column 20), but the page is not invalidated.Node 2 now performs acquire-read-release (column 21-23), therefore, it receivesa copy of the page. Along with the page, it also receives identi�er of the last-updaterfor the page. On receiving the page, its update-counter is set to 0, and back-up setequal to the last-updater. As node 2 did not write to the page, no update is necessaryat the release (column 23).Subsequently, node 2 performs acquire-write-release (columns 24-26). At therelease, node 2 sends update messages to nodes 0 and 1, the message sent to node 0being tagged with a marker. When node 1 receives the update, its update-counterbecomes 4. Node 1 invalidates the page, as the update message was not tagged witha marker, and the update-counter is larger than the limit.2. Recoverable Process Local State Consistent with Shared DataTwo implementations of distributed shared memory can be conceived. In one ap-proach, the application is written such that, to survive a failure, a consistent state ofthe distributed shared memory must be available (after recovery). In this case, localstate of the application processes is not necessary for recovery from failure. For suchsystems, the scheme in Section 1 is adequate.The other approach requires that, after a failure, the local state of processesscheduled on the faulty node be recovered, in addition to the distributed sharedmemory. In this case, additional steps must be taken to ensure that the local stateis recoverable. We achieve this by maintaining two copies of the local state of eachprocess, as described below. The process local state includes non-shared local data,

75contents of registers and stack, etc.When a node writes shared data and updates other copies of the data, the processlocal state at the node can be sent, along with the update message, to any one node.Although no additional messages are required, the size of one of the messages willbe larger. (This procedure e�ectively \checkpoints" the local state at another node.)The size of process local state to be transferred can be reduced by sending only themodi�cations to the local state since the most recent update performed by the node.This incremental approach [50] can reduce the overhead of saving the local state.The above approaches are application-transparent, in that entire local state of aprocess is saved on another node. In many applications, it is possible to identify asmall set of local variables that are su�cient to recover the local state of the process(a typical example is a loop counter). Consider the application below.// Typical application //main() // executed by master node{ initialize(); // application initializeinit_shm(); // shared memory initializefork_threads(compute);// fork remote processes to execute compute()compute(); // compute}compute() // executed by all processes{ while (not finish) { // repeat until FINISHupdate(local_vars); // update local variables (e.g., a counter)

76read_shm(); // read shared memorycalculation(); // calculationwrite_shm(); // write shared memorysynch(); // synchronization (e.g., barrier, lock-unlock)// take checkpoint of local state at the first iterationif (first iteration)checkpoint_local_state()}} In the above application, each process repeats a computation loop in compute()several times. A process may have some local state that does not change after it isinitialized. This local state can be checkpointed during the �rst iteration of the com-putation loop. During each iteration, although many local variables may potentiallybe modi�ed, only a small set of modi�ed local variables constitute the critical stateof the process. Only these critical variables need be saved to recover the process froma failure. (Similar techniques have been proposed in [5, 50].) When a process sendsan update message to other nodes, a copy of the critical local variables should besent to any one node. On a failure, a copy of the local variables is obtained fromanother node. These local variables, in addition to the state checkpointed during �rstiteration, can be used to recover the process state. The distributed shared memorystate is recoverable by the algorithm in the previous subsection.3. RecoveryThe proposed DSM system is recoverable from single node failures (fail-stop), be-cause all shared pages have at least two copies, and process local state of each faulty

77process can be reconstructed (if necessary). The recovery is straightforward. After asingle node failure, the shared memory remains available. If the faulty node is to berecovered, then its process local state is obtained from saved process image and localvariable. Two issues need further elaboration.Atomic UpdatesSince failure can occurs at any time, contents of the copies of the same page maybe di�erent (if the failure occurs while an update is in progress). In this case, somecopies are out-of-date. This problem can be resolved by searching the most up-to-date copy { to facilitate this, a version number is attached to each page to count thenumber of updates performed to the page from the beginning of execution. The copywith the largest version number is the most up-to-date copy (this is similar to [61]). Ifa node fails after it has written to a page, but before it has performed a release thenthe modi�cations made by the node are lost when the node fails. This is acceptable,as the system state will still be consistent after the failure. However, if a node failsafter the node sent update messages only for the part of pages to be updated ona release, the node may not restart from the previous consistent state because oldversion of the updated pages may not exist. This problem can be solved by newmechanisms. One possibility is for the updating node to send all updates (for allpages) atomically to another node, then to send update messages to the other nodes(copiers) in sequence of nodes for each page. By this atomic update mechanism, allpages can be updated atomically in spite of a single node failure. If the node receivingatomic update have copies of associated pages, no additional overhead for sendingupdate message is necessary for atomic update mechanism.

78Maintaining at Least Two Copies after RecoveryIt is necessary to ensure that, after recovery, each shared memory page has atleast two copies. Therefore, after failure, if only one node has a copy of a page, thenanother copy is created on any other node. Now we assume that two copies of eachpage exist. The recovery algorithm must also ensure that all the last-updater andback-up �elds are correct. We now illustrate how this can be achieved. Consider apage P . Two cases are possible.(a) If the last-updater for page P fails, then any other node having the page isdesignated as the last-updater, and its update-counter is cleared to 0. All relevantnodes are informed of the new last-updater. These nodes set their last-updater as wellas the back-up �elds to point to the new last-updater. The new last-updater sets itsback-up �eld to point to any other node that has a copy of the page.(b) If some node other then the last-updater is faulty, then it is possible thatthe back-up �eld at the last-updater may be pointing to the faulty node. It is onlynecessary to set the back-up to point to any other node that has a copy of the page.C. Performance EvaluationExperiments are performed to evaluate the overhead for maintaining recoverable pro-cess local state as well as shared data, by comparing the \cost" for non-recoverableprotocol and recoverable protocol. The \cost" metrics used here are (i) number ofmessages and (ii) amount of information transferred between the nodes. We imple-mented the recoverable DSM by modifying Quarks (Beta release 0.8) [10, 33].We evaluated the recoverable DSM scheme using the same applications used inChapters II and III.

79Results for qtest ApplicationThis application is the same as qtest2 used in the Chapter II. We execute at least5 times for each read ratio and for each update limit. Appendix A shows experimentalresults: average number of messages (Messages), amount of data transferred (Data(KBytes)), standard deviations of these values (S.D.), and overhead ratio percentageof recoverable scheme.Figures 27 through 38 plot costs (the number of messages and the amount datatransferred) for non-recoverable scheme and recoverable scheme for each read ratiowith di�erent update limits. The qtestx.msg curves show the number of messagesrequired for non-recoverable scheme with read ratio x percent. The rqtestx.msgcurves correspond to recoverable scheme. The qtestx.dat and rqtestx.dat curvescorrespond to the amount of data transferred. Figures 39 and 40 plot overhead ratiopercentage for recoverable schemes. Overhead ratio percentage (r) is computed as:r = CrCn � 100, where Cn is the cost for non-recoverable scheme and Cr is the cost forrecoverable scheme. The qtestx.msg and qtestx.dat curves show the overhead forrecoverable scheme with read ratio x, in terms of the number of messages and theamount of data transferred, respectively. Overhead (the number of messages and theamount of data) for recoverable scheme is reasonably small for many read ratios andupdate limits. Overhead of the number of messages for recoverable scheme convergesto zero as update limit increases because multiple copies exist for each page, thus noextra messages are required to maintain at least two copies for each page. For smallupdate limit (1 to 3), the overhead of the number of messages for recoverable schemetends to decrease as read ratio increases because back-up node sometimes avoids apage fault. (Back-up node probably uses the page again without or with small numberof updates by other nodes.) In many cases, the amount of data transferred is reducedfor recoverable scheme. For example, maintaining back-up reduces the page faults at

80
2200

2400

2600

2800

3000

3200

3400

3600

3800

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’qtest90.msg’
’rqtest90.msg’

Fig. 27. qtest (Read Ratio = 90 %): The Number of Messages
100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’qtest90.dat’
’rqtest90.dat’

Fig. 28. qtest (Read Ratio = 90 %): The Amount of Data Transferred

81
5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’qtest80.msg’
’rqtest80.msg’

Fig. 29. qtest (Read Ratio = 80 %): The Number of Messages
0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’qtest80.dat’
’rqtest80.dat’

Fig. 30. qtest (Read Ratio = 80 %): The Amount of Data Transferred

82
9000

9200

9400

9600

9800

10000

10200

10400

10600

10800

11000

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’qtest60.msg’
’rqtest60.msg’

Fig. 31. qtest (Read Ratio = 60 %): The Number of Messages
0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’qtest60.dat’
’rqtest60.dat’

Fig. 32. qtest (Read Ratio = 60 %): The Amount of Data Transferred

83
10800

11000

11200

11400

11600

11800

12000

12200

12400

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’qtest40.msg’
’rqtest40.msg’

Fig. 33. qtest (Read Ratio = 40 %): The Number of Messages
0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’qtest40.dat’
’rqtest40.dat’

Fig. 34. qtest (Read Ratio = 40 %): The Amount of Data Transferred

84
11500

12000

12500

13000

13500

14000

14500

15000

15500

16000

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’qtest20.msg’
’rqtest20.msg’Fig. 35. qtest (Read Ratio = 20 %): The Number of Messages

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’qtest20.dat’
’rqtest20.dat’

Fig. 36. qtest (Read Ratio = 20 %): The Amount of Data Transferred

85
12000

13000

14000

15000

16000

17000

18000

19000

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’qtest00.msg’
’rqtest00.msg’Fig. 37. qtest (Read Ratio = 0 %): The Number of Messages

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’qtest00.dat’
’rqtest00.dat’Fig. 38. qtest (Read Ratio = 0 %): The Amount of Data Transferred

86
-10

-5

0

5

10

15

20

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

(O
ve

rh
ea

d
(%

))

Update Limit

’qtest00.msg’
’qtest20.msg’
’qtest40.msg’
’qtest60.msg’
’qtest80.msg’
’qtest90.msg’

Fig. 39. Overhead for qtest: The Number of Messages
-30

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(O

ve
rh

ea
d

(%
))

Update Limit

’qtest00.dat’
’qtest20.dat’
’qtest40.dat’
’qtest60.dat’
’qtest80.dat’
’qtest90.dat’Fig. 40. Overhead for qtest: The Amount of Data Transferred

87the back-up node which avoids sending page at the cost of sending update message(s)of small size. The number of messages required for non-recoverable scheme of readratio 40%, 20%, and 0% (Figures 33, 35, and 37) at update limit 0 is larger than thatat update limit 1, because the number of messages for forwarding the page request islarger.Results for Other ApplicationsWe now evaluate our recoverable scheme by executing seven additional applica-tions (Floyd-Warshall, SOR, ProdCons, Isort, Reader/Writer, Matmult, and Jacobi)on 8-node workstation cluster. These applications are the same as those used inChapters II and III. We execute at least 5 times for each application and for eachupdate limit. Appendix B shows experimental results: average number of messages(Messages), amount of data transferred (Data (KBytes)), standard deviations of thesevalues (S.D.), and overhead ratio percentage of recoverable scheme.Figure 41 through 54 plot costs (the number of messages and the amount datatransferred) for non-recoverable scheme and recoverable scheme for each applicationwith di�erent update limits. The appl.msg curves show the number of messagesrequired for non-recoverable scheme for application appl. The rappl.msg curvescorrespond to recoverable scheme. The appl.dat and rappl.dat curves correspondto the amount of data transferred. Figures 55 and 56 plot overhead ratio (%) forrecoverable schemes. The appl.msg and appl.dat curves show the overhead forrecoverable scheme in application appl in terms of the number of messages and theamount of data transferred, respectively. For Jacobi, overhead of recoverable scheme issmall because all of updated shared data is used in other nodes. For ProdCons Isort,and Reader/Writer, overhead of the recoverable scheme is relatively small becausethe size of shared data updated in each node is relatively small in many cases. For

88SOR and Matmult, only a small part (or no part) of updated shared data is used inother nodes, which makes cost for non-recoverable scheme small, however, cost forrecoverable scheme large. In particular, the overhead for recoverable scheme in SORis very high: up to 1; 300 % for the number of message and 2; 000 % for the amountdata transferred (not shown in Figure 55 or 56). For Floyd-Warshall, updated shareddata is not used (immediately) in other nodes after the modi�cation, which makesoverhead of recoverable scheme large.D. SummaryThis chapter presents a scheme to implement a software DSM that is recoverable inthe presence of a single node failure. Our scheme di�ers from the previous work in thatthe proposed scheme is based on the competitive update protocol, which combinesthe advantages of invalidate as well as traditional update protocols. Our approachis based on the simple observation that, to make the DSM recoverable from a singlefailure, it is adequate to ensure that each page has at least two copies at all times.To achieve this we suggest a modi�cation to the basic competitive update protocol.We implemented recoverable DSM by modifying Quarks [10, 33] on a networkof workstations. Experimental results indicate that the overhead for the proposedscheme is low for some applications in which a large portion of memory is updatedby one node while not used by other nodes.

89
6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’fwa.msg’
’rfwa.msg’

Fig. 41. Floyd-Warshall: The Number of Messages
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’fwa.dat’
’rfwa.dat’

Fig. 42. Floyd-Warshall: The Amount of Data Transferred

90
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’sor.msg’
’rsor.msg’

Fig. 43. SOR: The Number of Messages
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’sor.dat’
’rsor.dat’

Fig. 44. SOR: The Amount of Data Transferred

91
60000

65000

70000

75000

80000

85000

90000

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’prod.msg’
’rprod.msg’Fig. 45. ProdCons: The Number of Messages

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’prod.dat’
’rprod.dat’

Fig. 46. ProdCons: The Amount of Data Transferred

92
45000

50000

55000

60000

65000

70000

75000

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’isort.msg’
’risort.msg’Fig. 47. Isort: The Number of Messages

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’isort.dat’
’risort.dat’

Fig. 48. Isort: The Amount of Data Transferred

93
16000

18000

20000

22000

24000

26000

28000

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’readwrite.msg’
’rreadwrite.msg’

Fig. 49. Reader/Writer: The Number of Messages
10000

11000

12000

13000

14000

15000

16000

17000

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’readwrite.dat’
’rreadwrite.dat’Fig. 50. Reader/Writer: The Amount of Data Transferred

94
1800

2000

2200

2400

2600

2800

3000

3200

3400

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’matmult.msg’
’rmatmult.msg’

Fig. 51. Matmult: The Number of Messages
500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’matmult.dat’
’rmatmult.dat’

Fig. 52. Matmult: The Amount of Data Transferred

95
2200

2300

2400

2500

2600

2700

2800

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

Update Limit

’jacobi.msg’
’rjacobi.msg’

Fig. 53. Jacobi: The Number of Messages
300

350

400

450

500

550

600

650

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(K

 b
yt

es
)

Update Limit

’jacobi.dat’
’rjacobi.dat’

Fig. 54. Jacobi: The Amount of Data Transferred

96
-20

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8

T
he

 N
um

be
r

of
 M

es
sa

ge
s

(O
ve

rh
ea

d
(%

))

Update Limit

’fwa.msg’
’prod.msg’
’isort.msg’

’readwrite.msg’
’matmult.msg’

’jacobi.msg’

Fig. 55. Overhead for Other Applications: The Number of Messages
-50

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

T
he

 A
m

ou
nt

 o
f

D
at

a
(O

ve
rh

ea
d

(%
))

Update Limit

’fwa.dat’
’prod.dat’
’isort.dat’

’readwrite.dat’
’matmult.dat’

’jacobi.dat’

Fig. 56. Overhead for Other Applications: The Amount of Data Transferred

97CHAPTER VANALYSIS OF FAILURE RECOVERY SCHEMESCheckpoint and rollback recovery is a technique used to minimize the loss of compu-tation when failures occur. A checkpoint is a state of application stored on a stablestorage. The application periodically saves checkpoints, and can recover from a fail-ure by rolling back to the checkpoint [65]. When a process rolls back and re-executesfrom the last checkpoint, the cost (loss) incurred by re-doing the lost computationmay be larger than that to execute the original computation. In addition to com-pletion time delay, other performance metrics (e.g., user's satisfaction in real-time oron-line transaction applications) may also degrade by unexpected failure and recov-ery. This chapter determines how re-do overhead factor for unexpected executionoverhead a�ects the performance of recoverable DSM.This chapter analyzes the performance of three recoverable schemes (incorpo-rating re-do overhead factor): (1) multiple fault-tolerant scheme using checkpointingand rollback recovery, (2) single fault-tolerant scheme presented in chapter IV, and(3) a two-level scheme [64].A. Related WorkFor a transaction oriented system, Chandy et al. [13] measure the time to re-do thetransactions arrived during t time units by using compression factor. The compressionfactor c is given by: c = �b ;where � is arrival rate of transactions and b is re-doing rate. Therefore, time requiredfor re-doing the lost transactions during t time units is c t. c is assumed be less than

981 (order of 1/10) because � is much smaller than b. They assume under-loaded trans-action system and do not consider the cost of delaying the newly arrived transactionsafter failure.Many researchers present cost analysis for the roll-back recovery scheme [13, 64,65, 70], roll-forward scheme [52], and replicating data [63]. Some papers analyze costfor recovery schemes using volatile memory [63, 62, 64], while many other paperspresent recovery scheme using volatile memory [4, 9, 22, 31, 36, 61] without anyanalysis. Chandy et al. [13], Young [70], and Vaidya [65] present methods to computeoptimal checkpoint interval to minimize expected (average) execution time.Theel and Fleisch analyze the costs for read and write operations, and availabil-ity for the boundary-restricted protocol [63]. They also present dynamic boundary-restricted protocol that can change the range (boundaries) of the number of cachedcopies to reduce operation cost while maintaining desired data availability.Vaidya [64] presents a two-level recovery scheme that tolerates the more probablefailures with low performance overhead, while the less probable failures may possiblyincur a higher overhead. By minimizing overhead for the more frequently occurringfailure scenarios, the two-level approach can achieve lower performance overhead (onaverage) as compared to single-level recovery schemes.B. Recoverable DSM SchemesWe analyze three recoverable schemes incorporating re-do overhead factor. The costrequired to re-do the lost computation after a process rolls back to the last checkpointor restart may be di�erent from that to execute the original computation. For anexample, consider an airline reservation system. If system fails temporarily, thentransactions executed during t time units will re-execute. An airline company will

99lose a lot of money by suspending reservation during the t time units. The monetaryloss by stopping reservation for t time units may be much more serious than thecomputational loss of t time units. The three schemes analyzed here are summarizedbelow. 1. Multiple Fault-Tolerant SchemeMany applications require long execution time to �nish tasks. Such applications maylose computation if a failure occurs during the execution. Checkpoint and rollbackrecovery scheme can be used to reduce the loss of computation upon failure. Whenthe application executes on multiple processors, a consistent checkpointing scheme isused to save a global consistent state of the multi-process application [14, 20, 41]Arbitrary number of failure can be tolerated by rolling the application back tothe most recent consistent checkpoint.2. Single Fault-Tolerant SchemeOur recoverable DSM scheme presented in the Chapter IV is an example of a singlefault-tolerant scheme. This scheme maintains at least two copies for each page in aDSM to recover from single-node failure. Additional cost is incurred to maintain atleast two copies for each page when a node executes release operation. If a single nodefailure occurs, then the application can recover from the failure without re-executingpreviously committed computation. However, all processes may have to restart fromthe initial point of the task if multiple-failure occurs.3. Two-level Recovery SchemeWe consider a two-level recovery scheme obtained by combining multiple fault-tolerantcheckpointing scheme and single fault-tolerant scheme from Chapter IV. With this two

100
2

0 1start

Fig. 57. Markov Chain for a Checkpoint Intervallevel scheme, a single-node failure (more probable) can be recovered with the singlefault-tolerant scheme, while multiple-node failure (less probable) can be recoveredusing a global consistent checkpoint.C. Performance AnalysisThis section presents performance analysis for the three recovery scheme describedin the previous section. For this analysis, we incorporate a re-do overhead factor (k)that is de�ned as the relative cost of additional computation needed due to failure.1. Multiple Fault-Tolerant SchemeExpected (average) execution time (denoted as �) of a single checkpoint interval withre-do overhead factor k = 1 is evaluated in [65, 70]. We consider expected cost �with re-do overhead factor k > 1, and analyze optimal checkpoint interval by varyingre-do overhead factor k. Figure 57 shows the same 3-state discrete Markov chain asthat presented in [65].State 0 is the initial state at the start of a checkpoint interval. A transitionfrom state 0 to state 1 occurs if the interval is completed without failure. If a failure

101occurs, then a transition is made from state 0 to state 2. After state 2 is entered, atransition occurs to state 1 if no further failures before the next checkpoint is taken.If another failure occurs after entering state 2 and before the next checkpoint, thena transition back to state 2 occurs.Each transition (X;Y), from state X to state Y in the Markov chain, has anassociated transition probability PXY and a cost KXY [65]. Cost KXY of a transition(X;Y) is the expected cost spent in state X before making the transition to stateY . In this analysis, T is the amount of useful computation per checkpoint interval,C is a checkpoint overhead, R is a overhead of a rollback to the checkpoint, and � isthe aggregate failure rate of all nodes in the system. (Useful computation excludesthe cost spent on checkpointing and rollback recovery.) Failures are assumed to begoverned by a Poisson process. Note that re-do overhead factor k is only includedfor the computation overhead due to failure(s). Refer to Figure 58 for an illustration{ the �gure shows the time required for di�erent operations and also their costs.P01 = e��(T+C)K01 = T + CP02 = 1� P01 = 1 � e��(T+C)K02 = Z T+C0 (kt) � e��t1� e��(T+C)dt = k ��1 � (T + C)e��(T+C)1� e��(T+C) !P21 = e��(R+T+C)K21 = k R + T + CP22 = 1� P21 = 1 � e��(R+T+C)K22 = Z R+T+C0 (kt) � e��t1� e��(R+T+C)dt = k ��1 � (R+ T + C)e��(R+T+C)1� e��(R+T+C) !

102
Task begins

T T kt T Tcost

time T T t T TCRC C

rollback

checkpoint rollback failure

Task ends

kRC C C

Fig. 58. Checkpoint and Rollback Recovery SchemeThe expected cost, �, required to execute one checkpoint interval is the expectedcost of a path from state 0 to state 1.� = P01K01 + P02 �K02 + P221� P22 K22 +K21�By substituting and simpli�cation:� = (1� k)(T + C) + k ��1 e�R(e�(T+C) � 1)Let G(t) denote the expected cost required to perform t units of useful compu-tation. Then, we de�ne overhead ratio (r) as [65]:r = limt!1 G(t)� tt = limt!1 G(t)t � 1:In this analysis, overhead ratio (r) is given by:r = �T � 1To choose an appropriate value of T so as to minimize the overhead ratio r, the

103optimal value of T (Topt) must satisfy the following equation: @r@T = 0) @@T (1 � k)(T + C) + k ��1 e�R(e�(T+C) � 1)T � 1! = 0By simpli�cation and approximation (as shown in Appendix C):Topt � s2C�kWe now present numerical examples:1. Assume the following parameters: checkpoint overhead (C) is 2 time units,recovery overhead (R) is 2 time units, failure rate (�) is 0:01 per time unit.Figure 59 shows overhead ratio r by varying checkpoint period T . Overheadratio is minimum at T = 18:7, 13:6, 10:0 for k = 1, 2, 4, respectively. Thecheckpoint period (T) that minimizes the overhead ratio r is close to computedapproximation value (Topt): Topt = 20:0, 14:1, 10:0 for k = 1, 2, 4, respectively.2. As another example, we assume that failure rate (�) is 0:001 per time unit, andthe other parameters are the same as the previous example. Figure 60 showsoverhead ratio r by varying checkpoint period T . Overhead ratio is minimumat T = 61:9, 44:1, 31:4 for k = 1, 2, 4, respectively. The checkpoint period (T)that minimizes the overhead ratio r is also close to computed approximationvalue (Topt): Topt = 63:2, 44:7, 31:6 for k = 1, 2, 4, respectively.We can observe that the optimal checkpoint interval (Topt) decreases as re-dooverhead factor (k) increases. This is intuitive, because larger k implies that costincurred by a failure is high, if checkpoint interval is large.

104
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

A
ve

ra
ge

 O
ve

rh
ea

d

Checkpoint Interval (T)

’k=1’
’k=2’
’k=4’

Fig. 59. Re-Do Overhead (� = 0:01)
0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 O
ve

rh
ea

d

Checkpoint Interval (T)

’k=1’
’k=2’
’k=4’

Fig. 60. Re-Do Overhead (� = 0:001)

105
recover

Task begins

recover

time

cost kR

Task ends

failure another failure before
previous failure recovered

recover
from failure

recover from another
failure (restart)

α α α

restart

kx y zkrkE(R)

x r y R zE(R)

Fig. 61. Single Fault-Tolerant Scheme2. Single Fault-Tolerant SchemeOur single fault-tolerant scheme presented in the Chapter IV maintains at least twocopies for each page to recover from single-node failure. Additional cost is incurred tomaintain at least two copies for each page when a node executes release operation. Tosimplify analysis, we assume that the failure-free overhead of the single fault-tolerantscheme to maintain at least two copies for each page is a multiplicative factor �. Ifthe failure-free execution time of a task without using a recovery scheme is
, thenthe failure-free execution time of the task using the single fault-tolerant scheme willbe �
. We also assume that recovery overhead to recover from a single fault is aconstant R. We assume that if another failure occurs before system recovers froma failure, a restart is required. (This assumption is somewhat pessimistic.) Singlefault-tolerant scheme is illustrated in Figure 61 { the �gure shows the time and costrequired for di�erent operations.

106Let f(�
) denote the expected time (not cost) required to perform
 units ofuseful computation. (We will determine the expected cost later.) Then, f(t+")�f(t)is the time required to perform " time units of computation starting from time t. LetE(x) denote the amount of time, during an interval of length x, before a failure occurs,given that a failure occurs sometime during the interval. Then,E(x) = Z x0 t � e�� t1 � e��x dt = ��1 � x e��x1 � e��xNow, consider an interval of length ", starting at time t. There are three cases:1. No fault occur during " (probability is e��"): " time units are required tocomplete the interval.2. A fault occurs during ", say at t+"1 ("1 < "), but the fault is recovered withoutanother fault during the recovery time R (probability is (1� e��") e��R): Afterthat, (1) if the task proceeds after the recovery without any fault until t + "(probability is e�� ("�"1)), then R + " time units are required to complete theinterval; (2) if another fault occurs after recovery (probability is 1 � e��("�"1)),some additional time required to complete the interval { let this time be denotedas h("� "1). Clearly, h("� "1) will approach 0 as " approaches 0.3. A fault occurs during ", at t+"1 ("1 < "), and another fault occurs at t+"1+"2("2 � R) before recovering from the �rst failure (probability is (1 � e��") (1 �e��R)): In this case, E(") + E(R) + r + f(t) + (f(t+ ")� f(t)) time units arerequired to complete the interval (E(") + f(t) is required for re-doing the lostcomputation, E(R) for recovering from the �rst failure, r for recovering fromthe second failure (restart) { we assume that r = 0, and f(t + ") � f(t) fororiginal computation).

107Thus, f(t+ ")� f(t) is obtained as:f(t+ ")� f(t) = e��""+ (1� e��") e��R he��("�"1) (R+ ")+(1� e��("�"1)) (R + "+ h("� "1))i+ (1� e��") (1 � e��R) [E(") + E(R) + f(t) + f(t+ ")� f(t)]On simpli�cation and taking a limit as " approaches 0, we obtain:lim"!0 "f(t+ ")� f(t)" # = 1 + � e��RR + � (1 � e��R)E(R) + � (1 � e��R) f(t)) @f(t)@t = A+B f(t);where A = 1 + � e��RR + � (1 � e��R)E(R) and B = � (1 � e��R).By calculus: f(t) = AB eB t � AB :Now, we determine the average cost of executing t units of useful computation.Observe that, out of f(�
), average time spent on unexpected execution (due to fail-ure) is f(�
)��
. Thus, the average cost due to re-do is k (f(�
)��
). Therefore,the average cost required to perform
 units of useful computation, denoted as g(�
),is: g(�
) = �
 + k (f(�
)� �
)) g(�
) = �
 (1� k) + k f(�
)) g(�
) = �
 (1� k) + k �AB eB�
 � AB�The average overhead is evaluated as a fraction of
 (task length).r = g(�
)
 � 1

108) r = � (1� k) + k
 �AB eB�
 � AB�� 1Figure 62 shows overhead ratio r by varying the failure-free overhead factor (�)for the single fault-tolerant scheme. We use short task length (
 = 80) for thisanalysis. We assume that recovery overhead (R) is 0.6 time units, failure rate (�) is0.01 per time unit. The overhead of single fault-tolerant scheme is lower than thatof the checkpoint scheme (shown in the Figure 59) using optimal checkpoint interval,when the failure-free overhead factor (�) for single fault-tolerant scheme is less than1:25 (at k = 1), 1:36 (at k = 2), and 1:55 (at k = 4). Our previous research in ChapterIV shows that the failure-free overhead (�) for single fault-tolerant scheme is less than1:25 in many applications. Another observation is that the single fault-tolerant DSMscheme is not too sensitive to re-do overhead factor (k), if the task length (
) is shortand the failure rate (�) is not high, while checkpoint scheme is more sensitive to re-dooverhead factor (k). Thus, in particular, our single fault-tolerant scheme is better forhigh re-do overhead factor (k), for short tasks.However, our single fault-tolerant DSM scheme is not good when the task length(
) is very long. As the task length (
) increases, the probability of rolling backto start point of the task becomes large due to multiple-failure, while the averageoverhead of checkpoint scheme is essentially independent of the task length (
). Figure63 shows the average overhead by varying task length. We use �xed failure-freeoverhead (� = 1:1). As task length increases, the average overhead increases. Re-dooverhead factor (k) a�ects the average overhead more, as the task length increases.Figure 64 shows the average overhead for single fault-tolerant DSM scheme andcheckpoint scheme by varying failure rate (�). We use k = 1, � = 1:1, and
 = 80for this analysis. For the single fault-tolerant scheme at low failure rate, the averageoverhead is approximately equal to � � 1, because the single fault-tolerant scheme

109
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 1.1 1.2 1.3 1.4 1.5 1.6

A
ve

ra
ge

 O
ve

rh
ea

d

Failure-free Overhead (alpha)

’k=1’
’k=2’
’k=4’

Fig. 62. Overhead by Varying Failure-Free Overhead
0.1

1

10

10 100 1000 10000

A
ve

ra
ge

 O
ve

rh
ea

d

Task Length (gamma)

’k=1’
’k=2’
’k=4’

Fig. 63. Overhead by Varying Task Length

110
0.001

0.01

0.1

1

10

100

1000

1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 O
ve

rh
ea

d

Failure Rate (lambda)

’single fault-tolerant’
’checkpoint’

Fig. 64. Single Fault-Tolerant vs. Checkpoint Schemeis enough to recover most faults. However, the average overhead increases rapidlywhen the failure rate is high. Overhead of the checkpoint scheme is lower than thesingle fault-tolerant scheme for small �. As the failure rate becomes moderately large,single fault-tolerant scheme performs better. The overhead of the single fault-tolerantscheme is still near � � 1 because many of failures can be recovered by the singlefault-tolerant scheme, while the overhead of the checkpoint scheme increases morerapidly. At higher failure rate, again checkpoint scheme performs better, becausethe single fault-tolerant scheme su�ers from frequent restarting due to multiple near-simultaneous failures.In general, the single fault-tolerant scheme performs better for low failure-freeoverhead (�), short task length (
), and/or low failure rate (�). However, if tasklength (
) is long and/or failure rate (�) is very high, then it is highly possible thatanother failure will occur before recovering from the previous failure. When more

111
CTc Tc Tc TcC C C C

Tc+C

Tcn

Task endTask begins
timecheckpoint

interval 1 interval 2 interval 3 interval (n-1) interval n

cost

Fig. 65. Failure-free Executionthan one failure occurs, task has to restart from the initial point, because single fault-tolerant scheme can recover single failure only. To solve this problem, we consider atwo-level scheme in the next section.3. Two-Level SchemeThe two-level scheme periodically takes checkpoints to allow recovery from arbitrarynumber of failures. Between checkpoints, the single fault-tolerant scheme is used toallow quick recovery from single failures. Figure 65 illustrates a failure-free executionof two-level scheme. To evaluate expected execution time, we assume that the amountof useful computation in a checkpoint interval is Tc, and checkpoint overhead is C.Each checkpoint interval ends with a checkpoint except the last interval. There ared
Tc � 1e intervals of length Tc + C that requires the cost of g(Tc + C) per interval,and the last interval of length
�d
Tc � 1eTc (Tcn in Figure 65) that requires the costof g(
 � d
Tc � 1eTc). Thus, the expected task completion cost (E(�)) is:g(Tc + C) �
Tc � 1� + g �
 � �
Tc � 1� Tc� ;g(t) is de�ned in the previous subsection.As an example, Figure 66 shows the average overhead by using the following

112
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 O
ve

rh
ea

d

Checkpoint Interval Tc (X alpha)

’two-level:k=1’

Fig. 66. Minimum Achieved When Tc = 20� 1:1parameters: failure-free overhead for single fault-tolerant scheme (�) is 1:1, re-dooverhead factor (k) is 1:0, overhead of checkpoint (C) is 2:0, rollback overhead bysingle fault-tolerant scheme (R) is 0:6, rollback overhead to checkpoint (Rc) is 2:0,failure rate (�) is 0:1, length of task (
) is 80. From Figure 66, observe that the averageoverhead is minimized when the checkpoint interval (Tc) is 20 � � = 20 � 1:1 = 22.To compare the performance of two-level scheme with one-level checkpoint scheme,we use very long length of task (
 = 1; 000; 000) (other parameter are the same asthe previous example). As shown in Figure 67 (checkpoint denotes checkpointingscheme, and two-level:alpha=� denotes two-level scheme with the failure-free over-head of � for single fault-tolerant scheme), the minimum overhead of two-level schemewith � = 2:0 is comparable with that of one-level checkpoint scheme. In this exam-ple, the two-level scheme with � < 2:0 is better than one-level checkpoint scheme.The �critical where two schemes require same overhead will decrease as � decreases,

113
0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

A
ve

ra
ge

 O
ve

rh
ea

d

Checkpoint Interval Tc (X alpha)

’checkpoint’
’two-level:alpha=1.1’
’two-level:alpha=1.5’
’two-level:alpha=2.0’

Fig. 67. Minimum Achieved When Tc = 24:9because the overhead of checkpoint scheme decreases. (Figures 59 and 60 imply this.)Two-level recovery scheme includes single fault-tolerant (one-level) scheme as aspecial case. When Tc =
, the two-level scheme is identical to single fault-tolerantscheme. Two-level scheme can be used when
 is long, � is high, and/or R is long,because in these cases it is highly possible that processes using the single fault-tolerantscheme may restart due to multiple-failure (another failure occurring before recoveringfrom a previous failure).Optimal Checkpoint IntervalNow, we compute the optimal checkpoint interval of two-level scheme approxi-mately. In our case, the �rst-level recovery scheme is the single fault-tolerant scheme,and the second-level scheme is the checkpointing scheme. The failure from the pointof view of the checkpointing scheme is the failure that can not be recovered by the

114�rst-level recovery scheme. If another failure occurs before a failure is recovered,then this is considered as \failure" in the second-level. Thus failure rate (�2) of thesecond-level is computed as follows:�2 = lim"!0 (1�e�� ") (1�e��R)") �2 = lim"!0 � " (1�e��R)") �2 = � (1 � e��R):This is an approximation because the second-level failures are not exponentially dis-tributed. Thus, an approximation of the optimal checkpoint interval for the two-levelscheme is (obtained using equation for Topt, and assuming that second level failuresas exponentially distributed with mean interval 1�2 :Topt2 = s 2C�2 k = s 2C� (1 � e��R) kAs an example, in Figure 67 the overhead of two-level scheme is minimum atTc = 24:9 for all �. The computed optimal checkpoint interval (Topt2) for two-levelscheme is:Topt2 = s 2C�2 k = s 2C� (1 � e��R) k = s 2 � 20:1� (1 � e�0:1�0:6) = 26:2Topt2 = 26:2 is close to the actual optimal checkpoint interval (24:9).D. SummaryThis chapter evaluates how re-do overhead factor (k) a�ects the cost of recoverableDSM. We also analyze optimal checkpoint interval by varying the re-do overheadfactor (k). We analyze and compare the performance of three recoverable schemes(multiple fault-tolerant scheme, single fault-tolerant scheme, and two-level scheme)incorporating the re-do factor.

115In general, single fault-tolerant scheme presented in Chapter IV is better for lowfailure-free overhead (�), short task length (
), and/or moderate failure rate (�).However, if task length (
) is long and/or failure rate (�) is high, then it is highlypossible that another failure will occur before recovering from a previous failure.When more than one failure occurs, task has to restart from the initial point, becausesingle fault-tolerant scheme can recover single failure only. To solve this problem, wecan use the two-level recovery scheme. The two-level scheme tends to perform betterthan the checkpointing scheme unless the failure-free overhead (�) is large and/or thefailure rate (�) is very small.

116CHAPTER VIA COST MODEL FOR DISTRIBUTED SHARED MEMORY USINGCOMPETITIVE UPDATESelecting appropriate update limit L is important for the competitive update protocol.However, no study has been done for analytically determining appropriate updatelimit. This chapter presents a new cost analysis model for distributed shared memory(DSM) using competitive update protocol. Using the proposed model, we computethe cost of the competitive update protocol for each update limit. This cost functionis used to determine the optimal update limit for the competitive update protocol.The proposed model is validated by comparing analytical results obtained using themodel to experimental results.A. Related WorkMany cost analysis models are presented by other researchers. Most existing modelsuse read/write ratio and/or memory access fault ratio as input parameters [8, 7, 32,60, 63, 58]. References [8, 7] present modeling to predict the number of cache misses.Stumm and Zhou [60] compare the performance of four basic protocols. Theycompute the average memory access cost based on parameters: the cost of sendingpacket, the cost of sending page, the number of nodes, read/write ratio, and proba-bility of fault. Srbljic et al. [58] present similar performance analysis based on dataaccess type: single/multiple-reader single/multiple-writer. Kessler and Livny [32]compare the performance DSM algorithms by varying a synthetic memory access pat-tern characterized by several parameters. Brorsson and Stenstrom [7] classify sharedmemory access pattern as read-only/read-write exclusive/shared-by-few/shared-by-many. They characterize producer-consumer and migratory access pattern using this

117classi�cation, and compute cache miss ratio. They also apply similar method to sta-tionary access pattern [8]. Other related works on cost models is discussed in ChapterII. Selecting appropriate update limit L is important for the competitive updateprotocol. However, no study has been done for analytically determining appropriateupdate limit. Previous approaches include selecting update limit by guesswork, orexperimental evaluation of the application for many di�erent update limits. [23]presents simulation results by varying the update limit for the competitive updateprotocol. They conclude that the best update limit is di�cult or impossible to predict.B. Cost AnalysisThe cost of a message of size m is denoted as c(m). At �rst, we consider messagecost in a segment in which the number of updates is U . A copy of the page is up-dated until it receives L update messages from other nodes (between two consecutivelocal accesses). Upon receiving (L + 1)-th update message, local copy of the page isinvalidated.The average cost, denoted C(L;U), of a segment with U updates when usingcompetitive update protocol with limit L is:C(L;U) = 8>>>>>>>>>><>>>>>>>>>>: U (c(pupdate) + c(pcontrol)) when U � L(L+ 1) (c(pupdate) + c(pcontrol))+(F + 1) c(pcontrol) + c(ppage) when U > L:Note that c(pcontrol) and c(ppage) are constants, while c(pupdate) depends on size of theupdate message, and F is the average number of hops a request message takes beforereaching a node that has the requested page. Therefore, the above expression uses

118average value of c(pupdate).Now, let p(x) denote the probability density function (pdf) of the number ofupdates x in a segment for a given application. Based on the above cost analysis fora segment with U updates and limit L, average cost per segment for the application,denoted Cavg(L; p(x)), can be obtained as:Cavg(L; p(x)) = hc(pupdate) + c(pcontrol)i PLx=1 x p(x)+ h(L+ 1) (c(pupdate) + c(pcontrol))+ (F + 1) c(pcontrol) + c(ppage)i P1x=L+1 p(x)Using the average cost per segment for a particular limit L, optimal update limit,Loptimal, can be obtained as the value of L that minimizes the above expression forCavg(L; p(x)). More formally,Loptimal = fl j minL�0Cavg(L; p(x)) = Cavg(l; p(x))gNow, in Section C, we illustrate how the above model can be used to determineoptimal L for many di�erent probability density functions p(x). Section D comparesanalytical results with experimental measurements to validate the proposed model.C. Application of the Cost ModelWe consider several di�erent probability density functions p(x) and plot the averagecost Cavg(L; p(x)) for di�erent values of L. These plots can then be used to: (a)observe the impact of p(x) on the Cavg(L; p(x)) curve, and (b) to determine optimalL for a given p(x). For the illustration, we assume that c(pcontrol) = 1, c(pupdate) = 3,c(ppage) = 10, and F = 3.The �gures in this section may be somewhat confusing to read. Therefore, wenow provide an explanation to read these �gures.

119Consider Figure 68. This �gure plots two curves: One curve corresponds to aparticular probability density function p(x) named pdf1. For the pdf1 curve, thehorizontal axis corresponds to the number of remote updates x, and vertical axiscorresponds to p(x) � 100. For instance, with pdf1, there is a 30% chance that thenumber of updates in a segment is 1.The second curve (named cost1) in Figure 68 plots average cost Cavg(L; p(x))as a function of update limit L. For the cost1 curve, the horizontal axis correspondsto update limit L, and vertical axis corresponds to the average cost per segmentCavg(L; p(x)). For instance, in Figure 68, average cost per segment with limit L = 3is 10.Similarly, Figures 69 through 73 plot �ve more probability density functions(named pdf2 through pdf6), and the corresponding curves for average cost (namedcost2 through cost6, respectively).These �gures provide an interesting way to view the correlation between theupdate probability density function and the cost function. As noted before, thesecurves can also be used to determine the optimal update limit. For instance, forpdf6, L = 1 is optimal. In general, more than one value of L may yield optimalperformance { for instance, for pdf1, all values of L greater than 4 yield the samecost.The greatest advantage of using the proposed cost model is that it is only neces-sary to simulate or execute the application once to estimate the probability densityfunction p(x) { once p(x) is known, the optimal L can be determined analytically.Without this approach, determining optimal L will require multiple simulations (orexecutions) for di�erent values of L.In Figures 68 through 73, we used the same values of parameters c(pupdate) andc(ppage) for all cases. Next we investigate the impact of the value of these parameters

120
0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t

Number of Updates or Update Limit

’pdf1’
’cost1’

Fig. 68. Cost (pdf1)
0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t

Number of Updates or Update Limit

’pdf2’
’cost2’

Fig. 69. Cost (pdf2)

121
12

13

14

15

16

17

18

19

20

21

22

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t

Number of Updates or Update Limit

’pdf3’
’cost3’

Fig. 70. Cost (pdf3)
0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t

Number of Updates or Update Limit

’pdf4’
’cost4’

Fig. 71. Cost (pdf4)

122
0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t

Number of Updates or Update Limit

’pdf5’
’cost5’

Fig. 72. Cost (pdf5)
0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t

Number of Updates or Update Limit

’pdf6’
’cost6’

Fig. 73. Cost (pdf6)

123on the average cost. For this analysis, we use probability density function pdf3 inFigure 70.Figure 74 shows how c(pupdate) a�ects the average cost per segment. Here weassume that c(ppage) = 10 and F = 3. In Figure 74, the curve labeled update1corresponds to the case when c(pupdate) = 1. Similarly, other curves labeled updateicorrespond to the case when c(pupdate) = i. As the curves show, competitive updateprotocol with small update limit L is better for large c(pupdate), and vice-versa. Thisis intuitive, because if cost of an update is large, then updates should be avoided (thisis achieved by invalidating a page soon by using small L).Figure 75 shows how c(ppage) a�ects the average cost per segment. In this case,we assume that F = 3 and c(pupdate) = 1. Here, the curve labeled pagei correspondsto the case when c(ppage) = i (thus, curve page3 assumes that c(ppage) = 3). Whenc(ppage) is large, the cost of serving a page fault is high (because a page must betransferred via a message costing c(ppage)). Therefore, with large c(ppage), a pageshould not be invalidated too often (to avoid future page faults). Therefore, as onewould expect, Figure 75 shows that competitive update protocol with large updatelimit is better for larger c(ppage).D. Validation of the Proposed ModelTo verify the accuracy of our cost analysis model, we compare the average cost es-timated by our model with that obtained by experimental measurements. For thisvalidation study, we assume that cost of a message of size m is m, that is, c(m) = m.We implemented the competitive update protocol by modifying Quarks DSM(Beta release 0.8) [10, 33]. For this study, we used several real applications (namedFloyd-Warshall, Isort, Jacobi, SOR)) as well as synthetic applications (named qtest50

124
5

10

15

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6 7 8

C
os

t

Update Limit

’update1’
’update2’
’update3’
’update5’

’update10’

Fig. 74. Cost by Varying c(pupdate)
6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8

C
os

t

Update Limit

’page1’
’page2’
’page3’
’page5’

’page10’

Fig. 75. Cost by Varying c(ppage)

125and qtest10, i.e., qtest2 in Chapter II with read ratio 50% and 10%, respectively).The experiments were used to determine: (a) the experimental cost for each updatelimit L, and (b) the probability density function p(x) of the number of updates ina segment. All applications are executed on a 8-node workstation cluster. Usingthe p(x) measured by experiments, we then computed the average cost per segmentanalytically. (We use F = 4 in this analysis.) The objective here is to compare thisanalytical result with the cost measured experimentally.In Figures 76 through 81, the curve labeled pdf plots p(x) � 100, where p(x) isobtained via experimental measurements. For the pdf, the horizontal axis correspondsto number of updates x, and vertical axis corresponds to p(x)� 100. p(x) is obtainedby keeping track of the number of updates per segment for all pages at all nodes. Thecost.analysis curves in Figures 76 through 81 plot the analytical values of averagecost per segment, as obtained by using our model. The cost.exp curve plots theaverage cost per segment as measured during the experiments. The average is takenover all segments for all pages at all nodes.In our analysis, we did not consider the messages required for synchronization,initialization (when the program starts executing), and false updates (sending up-date message to a node whose local copy has been already invalidated). Therefore,one would expect a mismatch between cost.exp and corresponding cost.analysis.However, the di�erence between these two curves would be relatively independent ofthe value of L. The cost.adj (adjusted) curves in Figures 76 through 81 are obtainedby subtracting the unaccounted costs from cost.exp.Figures 76 through 81 show that cost estimated by analytical model,cost.analysis, is typically close to the adjusted cost obtained by experimentationresults, cost.adj. In fact, cost.analysis and cost.exp are also typically close.However, there are signi�cant di�erences between cost.analysis and cost.exp, es-

126
0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t (

X
 1

0^
5

by
te

s)

Number of Updates or Update Limit

’pdf’
’cost.analysis’

’cost.exp’
’cost.adj’

Fig. 76. qtest (read ratio = 50%)
0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t (

X
 1

0^
5

by
te

s)

Number of Updates or Update Limit

’pdf’
’cost.analysis’

’cost.exp’
’cost.adj’Fig. 77. qtest (read ratio = 10%)

127
0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t (

X
 1

0^
5

by
te

s)

Number of Updates or Update Limit

’pdf’
’cost.analysis’

’cost.exp’
’cost.adj’

Fig. 78. Floyd-Warshall (size = 128)
0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t (

X
 1

0^
2

by
te

s)

Number of Updates or Update Limit

’pdf’
’cost.analysis’

’cost.exp’
’cost.adj’

Fig. 79. Isort (size = 3200)

128
0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t (

X
 1

0^
4

by
te

s)

Number of Updates or Update Limit

’pdf’
’cost.analysis’

’cost.exp’
’cost.adj’

Fig. 80. Jacobi (size = 128)
0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8

pd
f

(%
)

or
 C

os
t (

X
 1

0^
5

by
te

s)

Number of Updates or Update Limit

’pdf’
’cost.analysis’

’cost.exp’
’cost.adj’

Fig. 81. SOR (size = 512)

129pecially in the Figures 80 and 81. As noted before, these di�erences are due tounaccounted messages, for instance, for synchronization, initialization, and false up-dates. In case of Jacobi and SOR, many messages are sent initially to initialize theshared data. These messages form a large fraction of all messages sent. Therefore,the error in our model is much more pronounced for these applications, as comparedto other applications.To determine whether the probability density function of the number of updatesper segment is stable in di�erent executions, we measure p(x) by executing qtest (10%read ratio), Jacobi, Floyd-Warshall, and Isort 5 times with update limit L = 3 andL = 8. Figures 82 through 89 show the experimental results. The probability densityfunction is stable for Floyd-Warshall and Isort, relatively stable for qtest (L = 3) andJacobi (L = 8), and less stable for qtest (L = 8) and Jacobi (L = 3), on each run.We also determine whether the probability density function varies much with theupdate limit, we measured p(x) by executing three applications (qtest with 50% readratio, Jacobi, and SOR) for di�erent update limits. Figure 90 through 92 show thatp(x) of qtest is relatively stable, p(x) of SOR is very stable, and the p(x) of Jacobiis relatively unstable (however, in general, the p(x) of Jacobi is decreasing as updatelimit increases). All 8 nodes share some shared memory space in qtest and Jacobiapplications. The order of shared memory access may be di�erent for each loop inqtest application, and the order of nodes reaching the barrier may be di�erent foreach loop of Jacobi application, which causes p(x) to be unstable. However, only 2nodes share the shared memory space in SOR application which causes p(x) to bestable.One may expect that the probability density functions will be di�erent when us-ing di�erent input data for some applications. To verify, we measured the probabilitydensity functions of the number of updates in a segments with di�erent input data

130
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

pd
f

(%
)

Number of Updates

’pdf:1’
’pdf:2’
’pdf:3’
’pdf:4’
’pdf:5’

Fig. 82. pdf (qtest: L = 3, read ratio = 10 %)
0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

pd
f

(%
)

Number of Updates

’pdf:1’
’pdf:2’
’pdf:3’
’pdf:4’
’pdf:5’

Fig. 83. pdf (qtest: L = 8, read ratio = 10 %)

131
0

10

20

30

40

50

60

1 2 3 4 5 6 7

pd
f

(%
)

Number of Updates

’pdf:1’
’pdf:2’
’pdf:3’
’pdf:4’
’pdf:5’

Fig. 84. pdf (Jacobi: L = 3, size = 128)
0

10

20

30

40

50

60

1 2 3 4 5 6 7

pd
f

(%
)

Number of Updates

’pdf:1’
’pdf:2’
’pdf:3’
’pdf:4’
’pdf:5’

Fig. 85. pdf (Jacobi: L = 8, size = 128)

132
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

pd
f

(%
)

Number of Updates

’pdf:1’
’pdf:2’
’pdf:3’
’pdf:4’
’pdf:5’

Fig. 86. pdf (Floyd-Warshall: L = 3, size = 128)
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

pd
f

(%
)

Number of Updates

’pdf:1’
’pdf:2’
’pdf:3’
’pdf:4’
’pdf:5’

Fig. 87. pdf (Floyd-Warshall: L = 8, size = 128)

133
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

pd
f

(%
)

Number of Updates

’pdf:1’
’pdf:2’
’pdf:3’
’pdf:4’
’pdf:5’

Fig. 88. pdf (Isort: L = 3, size = 3200)
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

pd
f

(%
)

Number of Updates

’pdf:1’
’pdf:2’
’pdf:3’
’pdf:4’
’pdf:5’

Fig. 89. pdf (Isort: L = 8, size = 3200)

134
0

5

10

15

20

25

30

1 2 3 4 5 6 7

pd
f

(%
)

Number of Updates

’pdf:L=0’
’pdf:L=2’
’pdf:L=4’
’pdf:L=6’
’pdf:L=8’

Fig. 90. pdf (qtest: read ratio = 50 %)
0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

pd
f

(%
)

Number of Updates

’pdf:L=0’
’pdf:L=2’
’pdf:L=4’
’pdf:L=6’
’pdf:L=8’

Fig. 91. pdf (Jacobi: size = 128)

135
0

20

40

60

80

100

1 2 3 4 5 6 7 8

pd
f

(%
)

Number of Updates

’pdf:L=0’
’pdf:L=2’
’pdf:L=4’
’pdf:L=6’
’pdf:L=8’

Fig. 92. pdf (SOR: size = 512)
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

pd
f

(%
)

Number of Updates

’pdf:dense’
’pdf:moderate’

’pdf:sparse’

Fig. 93. pdf (Floyd-Warshall: size = 128)

136for Floyd-Warshall application. We choose Floyd-Warshall because memory accesspattern is di�erent on di�erent inputs. (The degree of sharing increases if the inputmatrix is more dense.) Figure 93 shows the probability density functions of di�erentinput data for Floyd-Warshall application. There is only a little di�erence for eachinput data.The above measurements show that for some applications, the probability densityfunction p(x) is relatively independent of the update limit and input data. Of course,it should be emphasized that, this is not true for all applications.E. SummaryThis chapter presents a new cost analysis model for competitive update protocolfor software distributed shared memory (DSM). This model can be used to computeoptimal update limit for the competitive update protocol. The optimal limit is chosensuch that the cost metric is minimized for the given application (as characterized by itsprobability density function p(x) of number of updates x in a segment). We validatedthe proposed model by comparing analytical results from the model to experimentalresults obtained from an experimental DSM implementation. The analytical resultsoften closely match the experimental results. We conclude that the proposed modelcan, therefore, be used to estimate the optimal update limit for an application.

137CHAPTER VIICONCLUSION AND FUTURE WORKA. ContributionThis dissertation deals with distributed shared memory using the competitive updateprotocol. The dissertation makes several contribution, as discussed below.1. Adaptive Distributed Shared MemoryOur objective is to design an adaptive DSM that can adapt to time-varying pattern ofaccesses to the shared memory. The adaptive DSM automatically choose the appro-priate consistency protocol (without any input from the programmer). Our approachcontinually gathers statistics, at run-time, and periodically determines the appropri-ate protocol for each copy of each page. The choice of the protocol is determinedbased on the \cost" metric that needs to be minimized. The cost metrics consideredin this dissertation are number and size of messages required for executing an appli-cation using the DSM implementation. A generalization to minimize arbitrary costmetrics, including execution time is also discussed brie
y.Our adaptive approach determines, at run-time, the cost of each candidate con-sistency protocol, and uses the protocol that appears to have the smaller cost. Theproposed adaptive approach is illustrated here by means of an adaptive DSM schemethat chooses either the invalidate or the competitive update protocol for each copy ofa page { the choice changes with time, as the access patterns change. The disserta-tion presents experimental evaluation of the adaptive DSM using an implementationbased on Quarks DSM [33]. Experimental results from the implementation suggestthat the proposed adaptive approach can indeed reduce the cost.

1382. Migratory Adaptive Distributed Shared MemoryWe modify the above adaptive DSM to allow migratory protocol as a consistency pro-tocol. The modi�ed adaptive protocol attempts to detect migratory access pattern,and chooses the migratory protocol when it is deemed most cost-e�ective. Due to thedynamic distributed ownership algorithm used in many DSMs, migratory protocol isnot always optimal even if the access pattern is migratory sharing.The dissertation presents experimental evaluation of the proposed adaptive mi-gratory scheme using an implementation based on Quarks DSM [33]. Experimentalresults from the implementation suggest that the proposed adaptive approach canusually reduce the cost. Speci�cally, the proposed scheme can typically reduce thenumber of messages as compared to the adaptive scheme in [39], as well as invalidateand competitive update protocols.3. Single Fault-Tolerant Distributed Shared Memory Using Competitive UpdateThis dissertation presents a scheme to implement a software DSM that is recoverablein the presence of a single node failure. Our scheme di�ers from the previous work inthat the proposed scheme is based on the competitive update protocol, which combinesthe advantages of invalidate as well as traditional update protocols. In addition, ourapproach is integrated with the release consistency model for maintaining memoryconsistency. In the basic competitive update protocol, the number of copies of a pagevaries dynamically { in the extreme, only one node may have a copy of the page or allnodes may have a copy of the page. Our approach is based on the simple observationthat, to make the DSM recoverable from a single failure, it is adequate to ensurethat each page has at least two copies at all times. To achieve this we suggest amodi�cation to the basic competitive update protocol. Recovery is simple because an

139active back-up copy exists for each page. The proposed scheme is applicable to otherupdated-based protocols that incorporate mechanisms to selectively invalidate somepages. It is also applicable to generalizations of the competitive update protocolswhere the limit may be di�erent for each page, and vary with time [36, 39].We implemented recoverable DSM by modifying Quarks [10, 33] on a network ofworkstations. Experimental results indicate that, in many applications, the proposedscheme does not signi�cantly increase the number or size of messages required.4. Analysis of Failure Recovery SchemesWe analyzes the performance of 3 recoverable DSM schemes (incorporating with re-do overhead factor): (1) multiple fault-tolerant scheme by using the checkpoint androllback recovery scheme, (2) single fault-tolerant scheme presented in chapter IV,and (3) two-level scheme [64] combining scheme (1) and (2).In general, single fault-tolerant scheme presented in Chapter IV has advantagein the low failure-free overhead (�), short task length (
), and/or low failure rate (�).However, if task length (
) is long and/or failure rate (�) is high, then it is highlypossible that another failure will occur before recovering from the previous failure.When more than one failure occurs, task has to restart from the initial point, becausesingle fault-tolerant scheme can recover single failure only. To solve this problem, wecan use the two-level recovery scheme.5. A Cost Model for Distributed Shared Memory Using Competitive UpdateThis dissertation presents a new cost analysis model for competitive update protocolfor software DSM. This model can be used to compute optimal update limit for thecompetitive update protocol. The optimal limit is chosen such that the \cost" metricis minimized for the given application (as characterized by its probability density

140function p(x) of number of updates x in a segment). We validated the proposed modelby comparing analytical results from the model to experimental results obtained froman experimental DSM implementation.B. Future WorkThree issues for future work are summarized below.1. Adaptive Distributed Shared MemoryOne issue that needs to be addressed is the choice of Ns that determines the lengthof the sampling period. Instead of keeping Ns �xed, it may be possible to choosethe appropriate value at run-time. We use �xed F in our analysis, choosing theappropriate value of F at run-time is also useful.The adaptive approach (based on cost-comparison) presented here may be com-bined with ideas developed by other researchers (e.g., [53]) to obtain further improve-ment in DSM performance. As yet, we have not explored this possibility.2. Single Fault-Tolerant Distributed Shared MemoryWe implemented recoverable DSM using competitive update by guaranteeing thatat least two copies of each page exist, and measured the failure-free overhead. Itis also applicable to generalizations of the competitive update protocols where thelimit may be di�erent for each page, and vary with time as presented in Chapter II.Implementation and evaluation for recovery procedure would be interesting.

1413. A Cost Model for Distributed Shared MemoryWe presented a new cost analysis model for competitive update protocol for softwareDSM. Future work includes application of this model to estimate costs of di�erentschemes for recoverable DSM systems.

142REFERENCES[1] S. V. Adve, Designing Memory Consistency Models for Shared-Memory Multi-processors, Ph.D. dissertation, University of Wisconsin-Madison, Dec. 1993.[2] C. Amza et al., \Treadmarks: Shared memory computing on networks of work-stations," IEEE Computer, pp. 18{28, Feb. 1996.[3] C. Anderson and A. Karlin, \Two adaptive hybrid cache coherency protocols,"in Proc. of the International Symposium on High-Performance Computer Archi-tecture, pp. 303{313, Feb. 1996.[4] M. Banatre, A. Ge�aut, and C. Morin, \Tolerating node failures in cache onlymemory architectures," Tech. Rep. 853, INRIA, 1994.[5] M. Banatre, P. Heng, G. Muller, N. Peyrouze, and B. Rochat, \An experiencein the design of a reliable object based system," in Proc. of the InternationalConference on Parallel and Distributed Information Systems, pp. 187{190, Jan.1993.[6] J. Bennett, J. Carter, and W. Zwaenepoel, \Adaptive software cache manage-ment for distributed shared memory architectures," in Proc. of the 17th AnnualInternational Symposium on Computer Architecture, pp. 125{134, May 1990.[7] M. Brorsson and P. Stenstrom, \Modeling accesses to migratory and producer-consumer characterized data in a shared memory multiprocessor," in Proc. ofIEEE Symposium on Parallel and Distributed Processing, pp. 612{619, Oct. 1994.

143[8] M. Brorsson and P. Stenstrom, \Modeling accesses to stationary data in a sharedmemory multiprocessor," in Proc. of International Conference on Parallel andDistributed Computing Systems, pp. 802{807, Oct. 1994.[9] L. Brown and J. Wu, \Dynamic snooping in a fault-tolerant distributed sharedmemory," in Proc. of the 14th International Conference on Distributed Comput-ing Systems, pp. 218{226, June 1994.[10] J. Carter, D. Khandekar, and L. Kamb, \Distributed shared memory: Wherewe are and where we should be headed," in Proc. of the Fifth Workshop on HotTopics in Operating Systems, pp. 119{122, May 1995.[11] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, \Implementation and Per-formance of Munin," in Proc. of the 13th ACM Symp. on Operating SystemsPrinciples (SOS P'91), pp. 152{164, Oct. 1991.[12] J. B. Carter, E�cient Distributed Shared Memory Based on Multi-Protocol Re-lease Consistency, Ph.D. dissertation, Rice University, Sept. 1993.[13] K. Chandy, J. Browne, C. Dissly, and W. Uhrig, \Analytic models for rollbackand recovery strategies in data base systems," IEEE Transactions on SoftwareEngineering, vol. SE-1, pp. 100{110, Mar. 1975.[14] K. Chandy and L. Lamport, \Distributed snapshots: Determining global statesin distributed systems," IEEE Transactions on Computer systems, vol. 3, pp. 63{75, Feb. 1985.[15] A. Cox and R. Fowler, \The implementation of a coherent memory abstractionon a numa multiprocessor: Experience with platinum," in Proc. of the 12th ACMSymposium on Operating Systems Principles, pp. 32{44, Dec. 1989.

144[16] A. Cox and R. Fowler, \Adaptive cache coherency for detecting migratory shareddata," in Proc. of the 20th Annual International Symposium on Computer Ar-chitecture, pp. 98{108, May 1993.[17] F. Dahlgren, M. Dubois, and P. Stenstrom, \Combined performance gains ofsimple cache protocol extensions," in Proc. of the 21st Annual InternationalSymposium on Computer Architecture, pp. 187{197, Apr. 1994.[18] F. Dahlgren and P. Stenstrom, \Using write caches to improve performance ofcache coherence protocols in shared-memory multiprocessors," Journal of Par-allel and Distributed Computing, vol. 26, pp. 193{210, Apr. 1995.[19] S. J. Eggers, \Simplicity versus accuracy in a model of cache coherency over-head," IEEE Transactions on Computers, vol. 40, pp. 893{906, Aug. 1991.[20] E. Elnozahy, D. Johnson, and W. Zwaenepoel, \Measured performance of consis-tent checkpointing," in Proc. of the Eleventh Symposium on Reliable DistributedSystems, pp. 39{47, Oct. 1992.[21] B. Falsa�, A. Lebeck, S. Reinhardt, I. Schoinas, M. Hill, J. Larus, A. Rogers,and D. Wood, \Application-speci�c protocols for user-level shared memory," inProc. of Supercomputing '94, pp. 380{389, Nov. 1994.[22] T. Fuchi and M. Tokoro, \A mechanism for recoverable shared virtual memory,"manuscript, Dept. of Computer Science, University of Tokyo, 1994.[23] H. Grahn, P. Stenstrom, and M. Dubois, \Implementation and evaluation ofupdate-based cache protocols under relaxed memory consistency models," FutureGeneration Computer Systems, vol. 11, pp. 247{271, June 1995.

145[24] G. Janakiraman and Y. Tamir, \Coordinated checkpointing-rollback error recov-ery for distributed shared memory multicomputer," in Proc. of the 13th Sympo-sium on Reliable Distributed Systems, pp. 42{51, Oct. 1994.[25] B. Janssens and W. K. Fuchs, \Relaxing consistency in recoverable distributedshared memory," in Proc. of the 23rd International Symposium on Fault-TolerantComputing, pp. 155{163, June 1993.[26] B. Janssens and W. K. Fuchs, \Reducing interprocessor dependence in recov-erable distributed shared memory," in Proc. of the 13th Symposium on ReliableDistributed Systems, pp. 34{41, Oct. 1994.[27] S. Kanthadai and J. L. Welch, \Implementation of recoverable distributed sharedmemory by logging writes," in Proc. of the 16th International Conference onDistributed Computing Systems, May 1996.[28] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator, \Competitive snoopycaching," in Proc. of the 27'th Annual Symposium on Foundations of ComputerScience, pp. 244{254, Oct. 1986.[29] P. Keleher, A. L. Cox, and W. Zwaenepoel, \Lazy release consistency for softwaredistributed shared memory," in Proc. of the 19th Annual International Sympo-sium on Computer Architecture, pp. 13{21, May 1992.[30] P. Keleher, Lazy Release Consistency for Distributed Shared Memory, Ph.D. dis-sertation, Rice University, Jan. 1995.[31] A.-M. Kermarrec, G. Cabillic, A. Ge�aut, C. Morin, and I. Puaut, \A re-coverable distributed shared memory integrating coherence and recoverability,"

146in Proc. of the 25th International Symposium on Fault-Tolerant Computing,pp. 289{298, June 1995.[32] R. Kessler and M. Livny, \An analysis of distributed shared memory algorithms,"in Proc. of the 9th International Conference on Distributed Computing Systems,pp. 498{505, June 1989.[33] D. Khandekar, \Quarks: Portable dsm on unix," manuscript, Dept. of ComputerScience, University of Utah, 1995.[34] J.-H. Kim and N. H. Vaidya, \Single fault-tolerant distributed shared memoryusing competitive update," Microprocessors and Microsystems (accepted).[35] J.-H. Kim and N. H. Vaidya, \Distributed shared memory: Recoverable and non-recoverable limited update protocols," Tech. Rep. 95-025, Dept. of ComputerScience, Texas A&M University, College Station, 1995.[36] J.-H. Kim and N. H. Vaidya, \Recoverable distributed shared memory using thecompetitive update protocol," in Proc. of the 1995 Paci�c Rim InternationalSymposium on Fault-Tolerant Systems, pp. 152{157, Dec. 1995.[37] J.-H. Kim and N. H. Vaidya, \Towards an adaptive distributed shared memory,"Tech. Rep. 95-037, Dept. of Computer Science, Texas A&M University, CollegeStation, 1995.[38] J.-H. Kim and N. H. Vaidya, \Adaptive migratory scheme for distributed sharedmemory," Tech. Rep. 96-023, Dept. of Computer Science, Texas A&MUniversity,College Station, 1996.[39] J.-H. Kim and N. H. Vaidya, \A cost-comparison approach for adaptive dis-tributed shared memory," in Proc. of 1996 International Conference on Super-

147computing, pp. 44{51, May 1996.[40] J.-H. Kim and N. H. Vaidya, \Adaptive migratory scheme for distributed sharedmemory," in Proc. of 1997 International Conference on Supercomputing, pp. 325{332, July 1997.[41] R. Koo and S. Toueg, \Checkpointing and rollback-recovery for distributed sys-tems," IEEE Transactions on Software Engineering, vol. 13, pp. 23{31, Jan.1987.[42] R. LaRowe, C. Ellis, and L. Kaplan, \The robustness of numa memory manage-ment," in Proc. of the 13th ACM Symposium on Operating Systems Principles,pp. 137{151, 1991.[43] A. Lebeck and D. Wood, \Dynamic self-invalidation: Reducing coherence over-head in shared-memory multiprocessors," in Proc. of the 22nd Annual Interna-tional Symposium on Computer Architecture, pp. 48-59, 1995.[44] K. Li and P. Hudak, \Memory coherence in shared virtual memory systems,"ACM Transactions on Computer Systems, vol. 7, pp. 321{359, Nov. 1989.[45] N. Neves, M. Castro, and P. Guedes, \A checkpoint protocol for an entry con-sistent shared memory system," in Proc. of the 13th Annual ACM Symposiumon Principles of Distributed Computing, pp. 121{129, Aug. 1994.[46] H. Nilsson and P. Stenstrom, \An adaptive update-based cache coherence proto-col for reduction of miss rate and tra�c," in Proc. of the Parallel Architecturesand Languages Europe Conference, pp. 363{374, July 1994.[47] B. Nitzberg and V. Lo, \Distributed shared memory: A survey of issues andalgorithms," IEEE Computer, vol. 24, pp. 52{60, Aug. 1991.

148[48] N. Oba, A. Moriwaki, and S. Shimizu, \Top-1: A snoop-cache-based multi-processor," in Proc. 1990 International Phoenix Conference on Computers andCommunication, pp. 101{108, Oct. 1990.[49] J. Peterson and A. Silberschatz, Operating System Concepts, pp. 105{108, Read-ing, Massachusetts, Addison-Wesley Publishing Company, Inc., 1983.[50] J. Plank, M. Beck, G. Kingsley, and K. Li, \Libckpt: Transparent checkpointingunder unix," in Proc. of the Winter 1995 USENIX Conference, pp. 213{224, Jan.1995.[51] J. Plank and K. Li, \Faster checkpointing with n + 1 parity," in Proc. of the24th International Symposium on Fault-Tolerant Computing, pp. 288{297, June1994.[52] D. K. Pradhan and N. H. Vaidya, \Roll-forward checkpointing scheme: A novelfault-tolerant architecture," IEEE Transactions on Computers, pp. 1163{1174,Oct. 1994.[53] U. Ramachandran, G. Shah, A. Sivasubramaniam, A. Singla, and I. Yanasak,\Architectural mechanisms for explicit communication in shared memory multi-processors," in Proc. of Supercomputing `95, Dec. 1995.[54] A. Raynaud, Z. Zhang, and J. Torrellas, \Distance-adaptive update protocolsfor scalable shared-memory multiprocessors," in Proc. of the International Sym-posium on High-Performance Computer Architecture, pp. 323{334, Feb. 1996.[55] S. Reinhardt, J. Larus, and D. Wood, \Tempest and typhoon: User-level sharedmemory," in Proc. of the 21st Annual International Symposium on ComputerArchitecture, pp. 325{336, Apr. 1994.

149[56] G. Richard and M. Singhal, \Using logging and asynchronous checkpointing toimplement recoverable distributed shared memory," in Proc. of the 12th Sympo-sium on Reliable Distributed Systems, pp. 58{67, Oct. 1993.[57] G. Shah, A. Singla, and U. Ramachandran, \The quest for a zero overhead sharedmemory parallel machine," in Proc. of International Conference on Parallel Pro-cessing, vol. I, pp. 194{201, Aug. 1995.[58] S. Srbljic, Z. Vranesic, and L. Budin, \Performance prediction for di�erent con-sistency schemes in distributed shared memory systems," in Proc. of the Inter-national Symposium on High Performance Distributed Computing, pp. 295{302,Apr. 1994.[59] P. Stenstrom, M. Brorsson, and L. Sandberg, \An adaptive cache coherence pro-tocol optimized for migratory sharing," in Proc. of the 20th Annual InternationalSymposium on Computer Architecture, pp. 109{118, May 1993.[60] M. Stumm and S. Zhou, \Algorithms implementing distributed shared memory,"IEEE Computer, vol. 23, pp. 54{64, May 1990.[61] M. Stumm and S. Zhou, \Fault tolerant distributed shared memory algorithms,"in Proc. of the International Conference on Parallel and Distributed Processing,pp. 719{724, Dec. 1990.[62] O. Theel and B. Fleisch, \Analysis of a fault-tolerant coherence protocol fordistributed memory systems under heavy write load," in Proc. of the 1995 Pa-ci�c Rim International Symposium on Fault-Tolerant Systems, pp. 146{151, Dec.1995.

150[63] O. Theel and B. Fleisch, \Design and analysis of highly available and scalable co-herence protocols for distributed shared memory systems using stochastic mod-eling," in Proc. of the International Conference on Parallel Processing, vol. I,pp. 126{130, Aug. 1995.[64] N. H. Vaidya, \A case for two-level distributed recovery schemes," in Proc. of the1995 ACM SIGMETRICS Conference on Measurement and Modeling of Com-puter Systems, pp. 64{73, May 1995.[65] N. H. Vaidya, \On checkpoint latency," in Proc. of the 1995 Paci�c Rim Inter-national Symposium on Fault-Tolerant Systems, pp. 60{65, Dec. 1995.[66] J. Veenstra and R. Fowler, \A performance evaluation of optimal hybrid cachecoherency protocols," in Proc. of the Fifth International Conference on Architec-tural Support for Programming Languages and Operating Systems, pp. 149{160,Oct. 1992.[67] J. Veenstra and R. Fowler, \The prospects for on-line hybrid coherency protocolson bus-based multiprocessors," Tech. Rep. 490, The University of Rochester,Mar. 1994.[68] K.-L. Wu and W. K. Fuchs, \Recoverable distributed shared virtual memory:Memory coherence and storage structures," in Proc. of the 19th InternationalSymposium on Fault-Tolerant Computing, pp. 520{527, June 1989.[69] Q. Yang, G. Thangadurai, and L. Bhuyan, \Design of an adaptive cache coher-ence protocol for large scale multiprocessors," IEEE Transaction on Parallel andDistributed Systems, vol. 3, pp. 281{293, May 1992.

151[70] J. Young, \A �rst order approximation to the optimum checkpoint interval,"Communications of the ACM, vol. 17, pp. 530{531, Sept. 1974.

152APPENDIX ATables IV through XV show experimental results of executing qtest application tomeasure the overhead of recoverable scheme presented in Chapter IV.Legends� Limit: update limit� Messages: the number of messages for non-recoverable scheme� Recovery Messages: the number of messages for recoverable scheme� Data: denotes the amount of data transferred (KBytes) for non-recoverablescheme� Recovery Data: the amount of data transferred for recoverable scheme� Overhead: the overhead percentage for recoverable scheme� S.D.: standard deviation

153Table IV. The Number of Messages (qtest: Read Ratio = 90 %)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 3521 (728) 3744 (710) 6.331 2532 (311) 2428 (100) -4.102 2280 (105) 2331 (181) 2.223 2300 (188) 2370 (144) 3.024 2308 (98) 2375 (318) 2.895 2293 (129) 2529 (503) 10.296 2329 (169) 2386 (92) 2.447 2373 (202) 2399 (178) 1.128 2438 (283) 2532 (569) 3.87Table V. The Amount of Data (qtest: Read Ratio = 90 %)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 900 (58) 831 (45) -7.671 273 (15) 285 (21) 4.572 170 (7) 171 (4) 0.713 166 (1) 170 (1) 2.504 166 (1) 170 (2) 2.245 167 (3) 171 (3) 2.336 167 (1) 171 (1) 2.437 166 (1) 170 (1) 2.378 166 (1) 171 (3) 2.60

154Table VI. The Number of Messages (qtest: Read Ratio = 80 %)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 7087 (54) 7157 (83) 1.001 6245 (636) 5916 (92) -5.262 5663 (652) 5331 (96) -5.873 5474 (835) 5291 (184) -3.354 5260 (135) 5343 (455) 1.585 5307 (116) 5230 (401) -1.456 5308 (250) 5361 (349) 0.997 5212 (88) 5431 (649) 4.218 5579 (788) 5381 (462) -3.54Table VII. The Amount of Data (qtest: Read Ratio = 80 %)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 2311 (18) 2056 (12) -11.051 942 (63) 882 (23) -6.372 365 (24) 345 (24) -5.393 224 (17) 233 (23) 4.264 203 (7) 204 (5) 0.355 197 (1) 201 (2) 1.816 197 (1) 201 (3) 2.177 196 (1) 202 (2) 2.978 198 (4) 202 (2) 1.61

155Table VIII. The Number of Messages (qtest: Read Ratio = 60 %)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 10183 (849) 10857 (705) 6.621 9912 (175) 10421 (180) 5.142 9930 (1982) 10123 (120) 1.943 9804 (113) 9646 (91) -1.614 9420 (156) 9310 (259) -1.175 9233 (48) 9203 (56) -0.326 9210 (130) 9200 (499) -0.127 9214 (28) 9106 (373) -1.178 9229 (80) 9342 (467) 1.22Table IX. The Amount of Data (qtest: Read Ratio = 60 %)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 3334 (43) 3060 (43) -8.211 2783 (127) 2487 (68) -10.662 1731 (634) 1794 (91) 3.643 1198 (106) 1059 (40) -11.544 596 (70) 537 (78) -9.845 328 (32) 316 (27) -3.846 256 (5) 265 (11) 3.327 254 (1) 257 (4) 1.118 254 (1) 259 (2) 1.87

156Table X. The Number of Messages (qtest: Read Ratio = 40 %)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 11202 (708) 11706 (321) 4.501 10998 (79) 12389 (802) 12.642 11722 (92) 12098 (137) 3.203 12018 (486) 12037 (622) 0.164 11608 (160) 11720 (129) 0.965 11422 (186) 11508 (478) 0.756 11229 (139) 11141 (223) -0.787 11438 (735) 11047 (97) -3.428 10975 (444) 11063 (133) 0.80Table XI. The Amount of Data (qtest: Read Ratio = 40 %)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 3491 (49) 3223 (85) -7.691 3269 (51) 2944 (56) -9.942 2825 (42) 2551 (53) -9.703 2170 (55) 1957 (95) -9.794 1438 (50) 1357 (59) -5.635 829 (81) 767 (105) -7.436 464 (49) 466 (14) 0.477 289 (3) 291 (2) 0.698 285 (4) 291 (2) 1.89

157Table XII. The Number of Messages (qtest: Read Ratio = 20 %)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 12746 (677) 13134 (494) 3.041 11881 (58) 14042 (528) 18.192 12657 (681) 14483 (769) 14.423 14254 (111) 14915 (81) 4.634 15718 (1047) 15471 (805) -1.575 15239 (228) 15012 (270) -1.496 14701 (829) 14037 (1040) -4.527 13539 (681) 13528 (351) -0.088 13643 (746) 13708 (721) 0.48Table XIII. The Amount of Data (qtest: Read Ratio = 20 %)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 3546 (3) 3243 (157) -8.551 3397 (5) 3053 (74) -10.112 3161 (272) 2903 (126) -8.183 3062 (27) 2750 (19) -10.114 2876 (87) 2606 (33) -9.415 2588 (127) 2294 (120) -11.356 1730 (520) 1212 (398) -29.927 326 (6) 331 (4) 1.538 327 (5) 332 (5) 1.59

158Table XIV. The Number of Messages (qtest: Read Ratio = 0 %)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 13618 (47) 14177 (759) 4.111 12827 (29) 15131 (50) 17.962 14146 (73) 16132 (139) 14.043 16038 (40) 16929 (66) 5.564 17412 (69) 17763 (517) 2.015 18382 (534) 17925 (23) -2.496 17923 (2280) 17908 (270) -0.097 16054 (41) 15860 (455) -1.218 16034 (26) 16315 (675) 1.75Table XV. The Amount of Data (qtest: Read Ratio = 0 %)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 3715 (0) 3292 (3) -11.391 3694 (0) 3302 (19) -10.622 3700 (14) 3311 (19) -10.503 3727 (0) 3326 (0) -10.764 3736 (17) 3331 (2) -10.835 3749 (2) 3332 (0) -11.136 3218 (1189) 3200 (183) -0.587 369 (1) 371 (6) 0.498 369 (1) 375 (3) 1.46

159APPENDIX BTables XVI through XXIX show experimental results of executing other applicationsto measure the overhead of recoverable scheme presented in Chapter IV.Legends� Limit: update limit� Messages: the number of messages for non-recoverable scheme� Recovery Messages: the number of messages for recoverable scheme� Data: denotes the amount of data transferred (KBytes) for non-recoverablescheme� Recovery Data: the amount of data transferred for recoverable scheme� Overhead: the overhead percentage for recoverable scheme� S.D.: standard deviation

160Table XVI. The Number of Messages (Floyd-Warshall)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 8919 (167) 25207 (846) 182.631 8385 (2000) 13518 (253) 61.212 7906 (18) 18037 (1445) 128.143 8440 (125) 18947 (1982) 124.494 8794 (139) 20231 (72) 130.055 9459 (325) 20001 (780) 111.466 9809 (55) 19527 (1607) 99.087 10236 (58) 19647 (1329) 91.948 10862 (294) 20853 (1300) 91.98Table XVII. The Amount of Data (Floyd-Warshall)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 4692 (69) 5643 (69) 20.261 1565 (21) 1976 (4) 26.282 1509 (2) 1984 (54) 31.453 1559 (2) 2007 (58) 28.744 1608 (2) 2066 (5) 28.525 1661 (3) 2075 (20) 24.896 1706 (3) 2065 (48) 21.057 1748 (1) 2074 (42) 18.698 1793 (2) 2114 (27) 17.90

161Table XVIII. The Number of Messages (SOR)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 15765 (518) 132104 (12833) 737.961 11862 (129) 171451 (318) 1345.362 12568 (29) 171484 (464) 1264.493 13504 (116) 171102 (56) 1167.014 15194 (1844) 170465 (95) 1021.945 15268 (66) 170441 (16) 1016.356 16238 (161) 169892 (307) 946.267 17040 (11) 170295 (625) 899.378 18333 (818) 169076 (69) 822.26Table XIX. The Amount of Data (SOR)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 12243 (53) 86892 (11947) 609.711 4718 (27) 103246 (7) 2088.342 4533 (2) 103245 (4) 2177.733 4587 (0) 103244 (4) 2150.714 4656 (8) 103216 (14) 2116.645 4731 (1) 103207 (5) 2081.696 4819 (1) 103168 (9) 2040.857 4917 (1) 103172 (18) 1998.108 5030 (3) 103106 (5) 1949.98

162Table XX. The Number of Messages (ProdCons)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 65225 (1343) 67304 (2778) 3.191 60781 (19) 72259 (87) 18.882 67452 (40) 77361 (124) 14.693 76129 (949) 81267 (116) 6.754 84085 (513) 84196 (86) 0.135 87762 (819) 86326 (879) -1.646 88880 (208) 87178 (168) -1.917 74602 (3414) 75954 (1636) 1.818 75874 (1591) 75963 (1610) 0.12Table XXI. The Amount of Data (ProdCons)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 17888 (29) 16024 (402) -10.421 17828 (0) 15871 (23) -10.982 17914 (0) 15959 (1) -10.913 17911 (198) 16006 (17) -10.634 18135 (23) 16054 (2) -11.475 18192 (19) 15979 (166) -12.176 18136 (173) 15995 (147) -11.807 1164 (63) 1194 (29) 2.548 1188 (28) 1194 (27) 0.47

163Table XXII. The Number of Messages (Isort)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 52213 (992) 53073 (1394) 1.651 48115 (1063) 59476 (6151) 23.612 54079 (93) 62170 (649) 14.963 61692 (1299) 65218 (79) 5.724 67632 (616) 67023 (1223) -0.905 70006 (278) 68899 (611) -1.586 70276 (2525) 69971 (51) -0.437 60983 (1654) 60001 (2201) -1.618 61448 (149) 60974 (1267) -0.77Table XXIII. The Amount of Data (Isort)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 14385 (25) 12723 (607) -11.551 14134 (252) 12726 (93) -9.962 14365 (25) 12802 (18) -10.883 14402 (190) 12844 (13) -10.824 14555 (3) 12783 (189) -12.175 14564 (41) 12795 (225) -12.156 13983 (1510) 12903 (0) -7.727 13983 (1510) 978 (31) -1.028 996 (0) 992 (19) -0.36

164Table XXIV. The Number of Messages (Reader/Writer)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 19079 (152) 21955 (143) 15.071 17629 (278) 19207 (104) 8.962 20377 (53) 21349 (49) 4.773 23319 (32) 24554 (45) 5.304 25927 (45) 26412 (19) 1.875 27439 (721) 27643 (759) 0.746 26309 (26) 25981 (16) -1.257 23712 (677) 23401 (18) -1.318 22975 (993) 23784 (743) 3.52Table XXV. The Amount of Data (Reader/Writer)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 10493 (0) 14459 (1) 37.801 10751 (165) 11595 (1) 7.842 12735 (0) 13381 (0) 5.073 14606 (0) 15214 (0) 4.164 15871 (0) 16024 (0) 0.975 16489 (39) 16377 (3) -0.686 14939 (0) 14440 (0) -3.347 10833 (3) 10836 (0) 0.038 10588 (545) 10838 (3) 2.35

165Table XXVI. The Number of Messages (Matmult)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 2159 (427) 3286 (721) 52.231 1924 (97) 2807 (36) 45.902 2329 (625) 2869 (44) 23.183 2080 (40) 2835 (49) 36.314 2193 (59) 2858 (68) 30.335 2270 (18) 2916 (17) 28.476 2582 (542) 2941 (90) 13.907 2500 (33) 2968 (56) 18.738 2514 (76) 3008 (31) 19.63Table XXVII. The Amount of Data (Matmult)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 863 (2) 2718 (3) 214.851 1035 (0) 2774 (0) 168.062 1209 (3) 2824 (0) 133.523 1381 (0) 2873 (0) 108.044 1554 (0) 2922 (0) 88.015 1727 (0) 2972 (0) 72.096 1901 (2) 3021 (0) 58.937 2074 (1) 3071 (0) 48.108 2246 (1) 3120 (0) 38.89

166Table XXVIII. The Number of Messages (Jacobi)Limit Messages (S.D.) Recovery Messages (S.D.) Overhead0 2644 (1365) 2763 (849) 4.511 2267 (97) 2377 (340) 4.842 2251 (51) 2346 (346) 4.233 2295 (364) 2363 (342) 2.954 2280 (215) 2291 (421) 0.525 2334 (400) 2352 (448) 0.796 2298 (421) 2295 (353) -0.137 2400 (521) 2396 (463) -0.168 2261 (102) 2263 (107) 0.09Table XXIX. The Amount of Data (Jacobi)Limit Data (S.D.) Recovery Data (S.D.) Overhead0 648 (21) 583 (30) -10.061 468 (31) 434 (20) -7.202 423 (19) 397 (11) -6.093 386 (12) 377 (9) -2.504 358 (12) 355 (12) -0.865 343 (7) 343 (5) 0.136 334 (4) 333 (4) -0.267 328 (2) 332 (2) 1.298 327 (0) 331 (1) 1.26

167APPENDIX CIn this Appendix, we compute approximately the optimal checkpoint interval (Topt)for the checkpointing scheme.The expected cost, �, required to execute one checkpoint interval is (as obtained inSection V): � = (1� k)(T + C) + k ��1 e�R(e�(T+C) � 1)The overhead ratio of checkpointing scheme is:r = �T � 1To compute the optimal value of T (Topt) that minimizes the overhead ratio r:@r@T = 0) @@T "(1 � k)(T + C) + k ��1 e�R(e�(T+C) � 1)T � 1# = 0) @@T h(1 � k)(T + C) + k ��1 e�R(e�(T+C) � 1)i T� h(1 � k)(T + C) + k ��1 e�R(e�(T+C) � 1)i = 0) h(1 � k) + k e�R e� (T+C)i T � h(1 � k)(T + C) + k ��1 e�R(e�(T+C) � 1)i = 0Using the expansion of e�(T+C) and e�R as far as the second degree term:e�(T+C) � 1 + � (T + C) + �2 (T + C)22e�R � 1 + �R + �2R22

168By approximation, ignoring �3 term, and simpli�cation:) T � vuut2C�k 1 + � k R + � k C2 !) T � s2C�k when � k R� 1, and � k C � 1Thus, unique optimal checkpoint interval is:Topt � s2C�k :

169VITAJai-Hoon Kim received a B.S. in Control & Instrumentation Engineering fromSeoul National University, Seoul, Korea in 1984, and a M.S. in Computer Sciencefrom Indiana University, Bloomington, Indiana, in 1993. He joined the R&D centerof Daewoo Telecom, Ltd., Seoul, Korea in 1984 where he developed system softwareand application software for 7.5 years. Currently, he is a research assistant in theComputer Science Department at Texas A&M University, College Station, Texas.His research interests include distributed systems, fault-tolerant systems, operatingsystems, and computer architectures.Permanent address: Department of Computer Science, Texas A&M University, H.R.Bright Building, College Station, Texas 77843-3112.

The typist for this dissertation was Jai-Hoon Kim.

