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ABSTRACT

Performance and Recoverability of
Distributed Shared Memory Systems
Using Competitive Update. (August 1997)
Jai-Hoon Kim, B.S., Seoul National University;
M.S., Indiana University

Chair of Advisory Committee: Dr. Nitin H. Vaidya

Software distributed shared memory (DSM) systems have many advantages
over message passing systems. Since DSM provides a user a simple shared memory
abstraction, the user does not have to be concerned with data movement between
hosts.

This dissertation presents a simple approach for implementing adaptive DSM on
a network of workstations. The approach is illustrated with the example of an adap-
tive DSM based on the invalidate and competitive update protocols. The proposed
scheme allows each node to independently choose (at run-time) a different protocol
for each page. This adaptive scheme is then modified to also include a migratory
protocol. In software DSM systems, the migratory protocol is not necessarily optimal
for a migratory access pattern. We define some conditions under which the migratory
protocol is preferred over other candidate protocols. Experimental evaluation of the
adaptive DSM indicates that it is able to adapt to the memory access pattern of many
applications.

In the competitive update protocol, multiple copies of each page may be main-
tained at different nodes. However, it is also possible for a page to exist in only

one node, as some copies of the page may be invalidated. This dissertation proposes
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an implementation that makes the competitive update protocol recoverable from a
single node failure, by guaranteeing that at least two copies of each page exist. The
dissertation presents evaluation of the recoverable DSM using an implementation on
a network of workstations. The dissertation also compares overhead of the single
fault-tolerant DSM with a consistent checkpointing scheme and a two-level recovery
scheme.

Finally, this dissertation presents a new cost analysis model for competitive up-
date protocol. Input parameter for the cost analysis model proposed here is the
probability density function of the number of remote updates in a segment. Using
the proposed model, we compute the cost of the competitive update protocol for each
update limit. This cost function is used to determine the optimal update limit for
competitive update protocol. The proposed model is validated by comparing analyt-

ical results obtained using the model to experimental results.
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CHAPTER 1

INTRODUCTION
A. Distributed Shared Memory

Communication between nodes in a multiprocessor system can be performed either
using messages or shared memory. In contrast to message-passing, shared memory
provides processes in a system with a shared address space. For distributed systems,
no physically shared memory exists to support a shared memory abstraction. How-
ever, a software layer can be implemented to provide a shared memory abstraction.
Shared memory implemented on loosely coupled systems is called distributed shared
memory [60].

Distributed shared memory (DSM) systems have many advantages over message
passing systems [47, 60]. Since DSM provides a user a simple shared memory ab-
straction, the user does not have to be concerned with data movement between hosts.
Users can use the DSM as if the shared memory is available locally. Many applica-
tions programmed for a multiprocessor system with shared memory can be executed
on a DSM system without significant modifications. In this dissertation, we consider
DSM implementation achieved using a software layer (without adding special hard-
ware). Such an implementation is often called software DSM. Software DSMs have
been implemented on cluster of workstations.

Figure 1 shows a system configuration using DSM system. Each node has pro-
cessor, memory, and connection to a network. Memory is divided into pages, and a
page can have multiple copies in different nodes. DSM maintains memory consistency

across the nodes by using a message passing mechanism. Each application process

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Distributed Shared Memory

can transparently access the distributed shared memory in the same node as if it is
local memory.

In a protocol that performs write-update, when a node accesses a page for the
first time, a copy of the page is brought into the local memory of the node. This
copy of the page is updated whenever another node modifies the page. In contrast,
in protocols based on write-invalidate, whenever a remote node modifies a page, the
local copy is invalidated.

A disadvantage of the update protocol is that, over the course of the execution,
many nodes may obtain a copy of the page in their local memory. Whenever any
node modifies the page, an update message must be sent to all these nodes, incurring
significant overhead. Two approaches have been used to mitigate this overhead.
First, a relaxed consistency model such as release consistency [12] is used in recent
implementations. Second, some copies of a page are invalidated if they are not likely

to be used in the near future (some heuristic may be used to determine which copies



can be invalidated, e.g., competitive update protocol [23]). Now, we summarize each

of these approaches.

Release Consistency

The release consistency protocol is based on the observation that, in a typical
program, accesses to shared variables are separated by synchronization operations —
in release consistency [12], these operations are termed acquire and release. If an
access by a process to some shared data is likely to cause a race condition, then the
process first performs an acquire operation. When the process has completed its
accesses to the shared data, it performs a release operation. If one process has al-
ready performed an acquire, another process’ acquire will block until the first process
performs a release. This ensures that while one process is modifying some shared
data, another process will not attempt to access the data. Implementations of re-
lease consistency can take advantage of this observation to improve performance, as
follows. Consider a process on node A that has performed an acquire, subsequently
performed multiple writes to shared data, and is now performing a release operation.
Because of release consistency, it is adequate if node A sends a single update message
(to all nodes that have a copy of the modified pages) corresponding to all the writes
performed by the process since its most recent acquire [12]. In implementations that
use sequential consistency (instead of release consistency), it is necessary to send one
update message for every write performed by node A. Due to release consistency, it
is necessary to perform at most one update for every release performed by a process.
This implementation of release consistency reduces the number of messages, poten-
tially improving performance. Note that in the implementation under consideration

here, the release operation blocks until the updates are propagated to all relevant



nodes and acknowledgments are received from them.

Competitive Update Protocol

The basic idea of the competitive update protocol [28, 23] is to update those
copies of a page that are expected to be used in the near future, while selectively
invalidating other copies. The competitive update protocol is defined using a “thresh-
old” parameter — in this dissertation, we will refer to the threshold as “update limit”
or just “limit”. When using the competitive update protocol with limit L (L > 0), a
node A invalidates the local copy of a page P if and when the (L + 1)-th update to
the page by other nodes occurs since the previous access of page P by node A. The
basic idea of the competitive update protocol [28, 23] is to update those copies of a
page that are expected to be used in the near future, while selectively invalidating
other copies. The traditional update protocol can be obtained by choosing L = oc.

The protocol obtained when L = 0 is similar to the traditional nvalidate protocol.

B. Adaptive Distributed Shared Memory

Many approaches have been proposed to implement distributed shared memory [10,
12, 30, 33, 44, 55, 60]. Most DSM implementations are based on variations of write-
invalidate and/or write-update protocols. As no single protocol is optimal for all
applications, researchers have proposed DSM implementations that provide a choice
of multiple consistency protocols (e.g., [12]). The programmer may specify the ap-
propriate protocol to be used for each shared memory object (or page). While this
approach has the potential for achieving good performance, it imposes undue burden
on the programmer. An adaptive implementation that automatically chooses the ap-

propriate protocol (at run-time) for each shared memory page will ease the task of



programming for DSM. We consider a simple but effective approach for implementing
adaptive DSM. This approach is similar to adaptive mechanisms used to solve many

other problems!, and can be summarized as follows:

1. Collect statistics over a “sampling period”. (Accesses to each memory page are

divided into sampling periods.)

2. Using the statistics, determine the protocol that minimizes the “cost” for each

page P.

3. Use the minimum cost protocol for each page P to maintain consistency of page

P over the next sampling period.
4. Repeat above steps.

Essentially, the proposed implementation would use statistics collected during cur-
rent execution to predict the optimal consistency protocol for the near-future. This
prediction will be quite accurate, provided that memory access patterns change rel-
atively infrequently. To demonstrate our approach, we present an adaptive scheme
that chooses between the invalidate protocol and the competitive update protocol
[28, 17, 18, 23]. Experimental results show that our adaptive scheme performs well

because memory access patterns do not change frequently in many applications.

C. Adaptive Migratory Distributed Shared Memory

In migratory sharing, a page is accessed by a single node at any given instance. A
page is modified within a critical section to maintain mutual exclusion. Every access
'For example, to predict the next CPU burst of a task, a Shortest-Job-First CPU

scheduling algorithm may use an exponential average of the measured lengths of
previous CPU bursts [49].



for a page is ordered by a sequence of acquire, shared memory access, and release.
We present an adaptive migratory scheme for software Distributed Shared Memory
(DSM). The proposed DSM system allows each node to independently choose one
of the following three protocols: migratory, invalidate, and competitive update. In
software DSM systems the migratory protocol is not necessarily better than other
protocols for a migratory access pattern. (For an example, if two nodes access a
page of migratory sharing, then the competitive update protocol is better than the
migratory protocol.) Additionally, it is not always possible to detect a migratory
access pattern. We define some conditions under which the migratory protocol is
to be preferred over other candidate protocols. Experimental results show that this
new scheme is often able to improve performance by choosing the migratory protocol

when appropriate.

D. Single Fault-Tolerant Distributed Shared Memory Using Competitive Update

In the competitive update protocol, multiple copies of each page may be maintained
at different nodes. However, it is also possible for a page to exist in only one node,
as some copies of the page may be invalidated. We propose an implementation that
makes the competitive update protocol recoverable from a single node failure, by
guaranteeing that at least two copies of each page exist. We also present a mechanism
that maintains consistency between shared data and process local state after recovery,
by updating shared data and process local state atomically. The dissertation presents
evaluation of the recoverable DSM using an implementation. It is shown that the
overhead of making the DSM recoverable measured in terms of the number of messages

and the amount of data transferred is small in many applications.



E. Analysis of Failure Recovery Schemes

When a process rolls back and re-executes from the last checkpoint, the time required
to re-do the lost computation is ¢ time units (excluding time units required to roll-
back) when the node fails after ¢ time units from the last checkpoint. However, the
cost (loss) occurred by re-doing the lost computation may be larger than that to ex-
ecute the original computation in time critical applications (e.g., real-time systems).
This dissertation analyzes how re-do overhead affects cost for recoverable DSM us-
ing consistent checkpoint, and analyzes optimal checkpoint interval by varying the
re-do overhead factor (k). The proposed single fault-tolerant DSM can be combined
with a checkpointing scheme to recover from single and multiple-node failure. The

dissertation presents an analysis of this two-level scheme as well.

F. Cost Model for Distributed Shared Memory Using Competitive Update

We present a new “cost” analysis model for a distributed shared memory (DSM)
using the competitive update protocol. The cost metric of interest here is the over-
head of message passing necessary to implement DSM. This approach is based on
the segment model proposed previously [39] — a segment is defined as a sequence of
remote updates between two consecutive local accesses by a node. Input parameter
for the cost analysis model proposed here is the probability density function of the
number of remote updates in a segment. The proposed model is validated by com-
paring analytical results obtained using the model to experimental results. Using the
proposed model, we compute the cost of the competitive update protocol for each
update limit. This cost function is used to determine the optimal update limit for

competitive update protocol.



G. Dissertation Organization

In summary, this dissertation deals with issues related to performance and recover-
ability of a DSM using competitive update protocol. For performance improvement,
we present an on-line algorithm using competitive update protocol, that automati-
cally chooses the appropriate update limit (at run-time) for each shared memory page
(Chapter II). This algorithm is then modified to include a migratory protocol as a
protocol choice (Chapter III). We also present an off-line algorithm to determine the
optimal update limit for competitive update protocol (Chapter VI). For recoverabil-
ity, we propose a single fault-tolerant scheme by guaranteeing that at least two copies
of each page exist (Chapter IV), and analytically compare the performance of the

single fault-tolerant scheme to those of other recovery schemes (Chapter V).



CHAPTER II

ADAPTIVE DISTRIBUTED SHARED MEMORY
The performance of DSM depends on chosen consistency protocols and application
behavior. This chapter presents a simple approach for implementing adaptive DSMs
that can choose appropriate protocol at a run-time. The approach is illustrated with
the example of an adaptive DSM based on the invalidate and competitive update
protocols. The objective of the adaptive scheme is to minimize a pre-defined “cost”
function. The cost functions considered here are number of messages, amount of data
transfer, and execution time. The proposed scheme allows each node to independently

choose a different protocol for each page at run-time [37, 39].

A. Related Work

Many schemes have been proposed to reduce overhead by adapting to memory access

patterns for cache-coherent multiprocessors and DSM systems, as summarized below.

e Anderson and Karlin [3], and Raynaud et al. [54] present adaptive schemes.
The scheme in [3] varies the invalidate threshold for each block by using write-
run model [19]. Write-run is a sequence of local writes between two consecutive
remote accesses. They use write-run lengths collected during the run time in

order to determine the invalidation threshold for the block in the future.

The scheme in [54] predicts update-distance for a block. Update-distance is the
number of updates received between two consecutive local accesses. The “seg-
ment” model used in this dissertation is similar to update-distance. A directory
records the update patterns observed and then uses them to selectively send up-

dates and invalidations to processors. In our scheme, each node independently
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decides to update or invalidate a local copy of a page.

Munin [11, 12] incorporates an update timeout mechanism. The main idea of
this mechanism is to invalidate local copy of a page that has not been accessed
for a certain period of time (freeze time) after it was last updated. Although
the two approaches (competitive update and timeout) have similar goals, they do
not behave identically. Whereas the time limit (freeze time) is fixed in Munin,
our adaptive protocol can adapt to time-varying memory access patterns by

changing the update limit at run-time.

ThreadMarks [2] uses lazy release consistency [29] to reduce communication
overhead. In lazy release consistency, the update message from a node A is
delayed until some other node B performs acquire. Acquiring node B determines
the modifications it needs to receive to satisfy release consistency. This scheme
can reduce the amount of communication, because update message is sent to
the next acquiring node only (while update message is sent to all nodes that

have a copy of associated page in eager release consistency, such as in Munin).

Veenstra and Fowler [66] evaluate the performance of three types of off-line
algorithms: (i) an algorithm that chooses statically, at the beginning of the
program, either invalidate or update protocols on a per-page basis, (ii) an al-
gorithm that chooses statically either invalidate or update protocols for each
cache block, and (iii) an algorithm that can choose invalidate or update proto-
cols at each write. Algorithms (i) and (ii) are similar to multiple protocols in
[11, 12, 33], and (iii) is similar to our adaptive protocols which can choose the
appropriate protocol at run-time. However, [66] considers off-line algorithms,
for a bus-based system. On the other hand, this dissertation considers adaptive

(on-line) algorithms that are applicable to distributed systems. Also, in [66], the
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chosen protocol is used for all copies of a cache block, whereas in our scheme,

the update limit used for each copy of a page may be different.

Veenstra and Fowler [67] examine the performance of on-line hybrid protocols
that combine the best aspects of several protocols (invalidate protocol, update
protocol, migratory protocol, etc.), on bus-based cache-coherent multiproces-
sors. The results shows that the hybrid protocols outperform any single pure

protocol in most applications.

Lebeck and Wood [43] present dynamic self-invalidation (DSI) scheme to reduce
overhead in directory-based write-invalidate cache coherence protocol. The di-
rectory identifies blocks for self-invalidation. The directory conveys the self-
invalidation information to the cache when responding to a cache miss, and the
cache controller self-invalidates the blocks. In our scheme, each node decides

invalidation of local copy.

Optimizations for migratory sharing have also been proposed [16, 17, 46, 59].
These protocols dynamically identify migratory shared data and switch to mi-
gratory protocol in order to reduce the overhead. [16, 59] are based on invalidate

protocol, and [17, 46] are based on competitive update protocol.

Ramachandran et al. [53] and Shah et al. [57] present new mechanisms for
explicit communication in shared memory multiprocessors which allows selec-
tively updating a set of processors, or requesting a stream of data ahead of its
intended use (prefetch). Their scheme can also adapt to time-varying sharing
pattern by dynamically changing the set of nodes to be updated (or invalidated).
The basic difference between our approach and [53] is that our scheme does not

need to know whether a particular synchronization controls access to a given
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shared memory page or not. The scheme in [53] makes use of such information

to determine whether a copy of the page should be updated or invalidated.

Tempest [21, 55] allows programmers and compilers to use user-level mechanism
to implement shared memory “policies” that are appropriate to a particular
program or data structure. Tempest consists of four types of mechanisms (low-
overhead messaging, bulk data transfer, virtual memory management, and fine-

grained memory access control).

Multiple consistency protocol was proposed in [11, 12]. Several categories of
shared data objects are identified: conventional, read-only, migratory, write-
shared, and synchronization. They developed many memory coherence tech-
niques that perform efficiently for these categories of shared data objects. But
programmer should know the memory access behaviors on each shared variable

to specify a protocol used for the variable.

Hybrid protocol is more appropriate than a “pure” protocol for a DSM, if
the access pattern for the same page is different in each node. TOP-1 [48], a
tightly coupled snoop-cache-based multiprocessor, has a hybrid coherence pro-
tocol which allows an update protocol and an invalidate protocol, which can be
dynamically changed, to coexist simultaneously. However, TOP-1 needs addi-
tional hardware design, cache mode register (to specify a cache mode: update
mode and invalidate mode) and CH (Cache Hit) bus line (to indicate a snoop
hit). Our software DSM system (many other software DSMs also) is imple-
mented on a workstation cluster which does not requires change of hardware or

operating system.
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e Yang et al. [69] presents an adaptive cache coherence protocol based on a
hardware approach that handles multiple shared reads efficiently. Their protocol
allows multiple copies of a shared data block in a hierarchical network with
minimum cache coherence overhead by dynamically partitioning the network

into sharing and nonsharing regions based on program behavior.

Our adaptive DSM is based on cost comparison using segment model. Let us
focus on the shared memory accesses to a particular page P as observed at a node
A. These accesses can be partitioned into “segments”. A new segment begins with
the first access by node A following an update to the page by another node. Other
similar models have been proposed previously for analyzing shared memory. Eggers
[19] presents a write-run model to predict the cache coherency overhead for the bus
based multiprocessor system. The write-run is a sequence of local writes between two
consecutive remote accesses. Anderson and Karlin [3] vary the invalidate threshold
for each block by using write-run model. Bennett et al. [6] present a no-synch run
model. The no-synch run is a sequence of accesses to a single object by any thread
between two synchronization points in a particular thread. Stumm and Zhou [60]
present an analysis of DSM based on many parameters such as read-write ratio, page

fault ratio, and cost of sending/receiving a page.

B. Adaptive Protocol

Our objective is to implement an adaptive DSM that can adapt to the time-varying
memory access patterns of an application. Our initial goal was to design a heuristic
to dynamically choose between the invalidate and the update protocols. However, for
reasons that will be apparent later, the proposed adaptive scheme actually chooses

between the invalidate and competitive update [17] protocols.
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The competitive update protocol is defined using an “update limit” or just “limit”
L. The traditional update protocol can be obtained by choosing L = co. The protocol
obtained when L = 0 is similar to the traditional invalidate protocol. Thus, the
competitive update protocol is convenient for designing an adaptive scheme — the
problem of choosing appropriate protocol (invalidate or update) is now reduced to
the problem of choosing the appropriate limit (0 or co) — the proposed adaptive
scheme actually chooses 0 or a non-zero finite limit, as explained later.

The proposed adaptive scheme collects run-time data on number and size of mes-
sages; the data is used to periodically determine the new value of limit for each copy
of a page. The protocol is completely distributed in that each node independently
determines the limit to be used for each page it has in its local memory. (Thus,
different nodes may choose different limits for the same page.) Now, we present a

cost analysis to motivate our heuristics for choosing the appropriate limit.

1. Cost Analysis

The objective of our adaptive protocol is to minimize the “cost” metric of interest.
Three cost metrics considered here are: (i) number of messages, (ii) amount of data
transferred, and (iii) execution time. In this section, we evaluate the above cost
metrics for the consistency protocols of interest. = Our analysis assumes that the
DSM uses release consistency and dynamic distributed ownership (no fixed page owner
exist, which maintains information about the page) analogous to Munin [11, 12]. In
dynamic distributed ownership mechanism, page owner that has information for the

page changes dynamically.

Minimizing the Number of Messages

We now consider number of messages as the cost metric. Let us focus on the
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Fig. 2. Segments

accesses to a particular page P as observed at a node A. These accesses can be
partitioned into “segments”. A new segment begins with the first access by node
A following an update to the page by another node. Segments are defined from
the point of view of each node. Therefore, for the same page, different nodes may
observe different segments. Figure 2 illustrates segments observed at a node A with
an example: (a) segment 1 for page P at node A starts at time 1 when node A reads
page P, (b) copy of page P on node A is then updated by nodes B, C, and D. After
that, (c) node A starts segment 2 by a local access at time 6. Similarly, (d) node A
starts segment 3 by local access at time 11 following remote updates by nodes B and
C at time 9 and 10, respectively.

Now we evaluate the number of messages sent during each segment for invalidate
protocol (i.e., competitive update protocol with limit L = 0) and update protocol
(i.e., competitive update protocol with limit L = oo). For simplicity, in the present
discussion, we do not consider the messages required to perform an acquire. (The

number of messages for an acquire is same for both protocols.)

e update protocol (limit L = o0): When L = oo, a copy of the page P is never
invalidated. To evaluate the number of messages sent in each segment, we need

to measure the number of updates made by other nodes during the segment. Let
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U be the number of such updates to the local copy of page P during a segment.
An acknowledgement is sent for each update message received. Therefore, the
number of messages needed in one segment, denoted by M,,4ate, is 2U. As
shown in Figure 3, for example, 6 messages are needed in segment 1 because
page P is updated 3 times by other nodes. (The numbers in parentheses in the
figure denote number of messages associated with an event.) Similarly, 4 and 2

messages are needed in segment 2 and segment 3, respectively (refer Figure 3).

e invalidate protocol (limit L = 0): From the definition of a segment, it is
clear that, when L = 0, each segment begins with a page fault. On a page fault,
F + 2 messages are required to obtain the page, where F' is the number of times
the request for the page is forwarded (due to dynamic distributed ownership)

! — one additional message is required to send the page,

before reaching the owner
and one message to acknowledge receipt of the page. With L = 0, when the first
update message for the page (during the segment) is received from another node,
the local copy of the page is invalidated. This invalidation requires two messages
— one for the update message and one for a negative acknowledgement to the
sender of the update. Note that node A sending update message does not know
whether node B receiving update message will invalidate or update a copy of the
page in node B. Thus, node A always sends update message instead of control

message for invalidation. Ideally, once a page is invalidated, no more update

messages will be sent to the node during the segment. (In reality, however,

!This analysis and implementation of adaptive DSM are based on another DSM,
called Quarks, from University of Utah. In original Quarks, a request for the page is
forwarded before reaching a node that has a copy of the page. However, we modify
this scheme for the owner to maintain a copyset that is close to the “real” copyset.
This scheme can reduce the chance of sending update message to a node whose local
copy has been already invalidated (“false update”).
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a node that has invalidated local copy of a page P may sometime receive an
update for page P.) Therefore, when L = 0, (ideally) the number of messages
needed in one segment (denoted by Mnvaiidate ), is F'+ 4. As shown in Figure 4,
F 4 4 messages are needed in a segment. Note that the actual value of F' may

be different in each segment.
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Critical value of the number of updates, U,,;tica1, where L = 0 and L = oo require
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the same number of messages, is computed as follows:

Mupdate — Minvalidate

=2 Ucritical = F + 4
F+4

= Ucritical 2

F+4

Therefore, if U > %, invalidate protocol has a lower cost. If U < =

= update
protocol performs better. Based on this observation, the following adaptive scheme

is derived (this scheme will be modified soon for better performance).

o As the value of U may be different in each segment, each node collects data for

a few consecutive segments (termed “sampling period”) and estimates average

value of U and F'.

o At the end of the sampling period, if U > % then the invalidate protocol
(L = 0) is chosen for the next sampling period, otherwise, the update protocol

(L = o0) is chosen.
The above protocol is modified in two ways as described next.

1. It is hard to estimate F' accurately (without additional message overhead) when
the limit L is non-zero. Therefore, we assume a constant value for F'. In our
experiments with up to 10 nodes, we assume F' = 4. Clearly, F' must depend on
the application and on the number of nodes (processors) used. Thus, F' =4 is
not likely to be always accurate (e.g., when the number of nodes is less than 5).
This assumption could cause the adaptive scheme to achieve worse performance
than it potentially can. Yet, as shown here, the approximate heuristic performs

reasonably well for the applications and number of nodes considered here. With
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the above assumption, U icar = 4.

2. The above adaptive scheme chooses L = oo when estimated U is less than
U.ritical- The motivation for this choice is the following: if U was small in
the recent past, it is expected to be small in the near future. However, when
this guess turns out to be incorrect, the adaptive scheme ends up having made
a wrong choice. Therefore, instead of choosing L = oo when U < Ugtical,
we choose L = Ugiticat — 1 = 3. When L = 3, a local copy of a page is
invalidated if the page is updated 4 times by other nodes within one segment.
(The adaptive scheme will perform comparably if L were chosen to be Ugitical

instead of Ugpiticar — 1.)

With the above modifications, the adaptive scheme that attempts to minimize the

number of messages can be summarized as follows:

e Fach node collects data over a “sampling period” for each local page, and

estimates the average value of U.

o At the end of the sampling period, if U > U,iticqr then the invalidate protocol
(L = 0) is chosen for the next sampling period for that page, otherwise, the
competitive update protocol (with L = 3) is chosen. Ueyiticar is assumed to be 4

in our experiments with up to 10 nodes.

As a reference, the number of messages required in a segment when using a

competitive update protocol (with limit L, 0 < L < c0) is computed below:

e competitive update protocol (0 < L < 00): A copy of the page is updated until
it receives L update messages from other nodes (between two consecutive local
accesses). Upon receiving (L + 1)-th update message, local copy of the page is

invalidated. If the number of update messages (U) received during the segment
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is at most L, then the page is not invalidated. In the case of competitive update
protocol, it is convenient to include the messages required to bring a page from
a remote node when counting the number of messages for the segment in which
the page was invalidated (rather than when counting the number of messages for
the next segment). Thus, if U < L, then Meompetitive 18 2U, similar to Mypdate-
Else, however, Meompetitive = 2(L + 1) + (F + 2) = 2L + Minyatidate- (2(L + 1)
messages for L 4+ 1 updates and their acknowledgements, and F + 2 for bringing

a page on the page fault when the next local access is attempted.)

Minimizing the Amount of Data Transferred
In the above analysis, we consider the number of messages as the cost. Now, we
consider the amount of data transferred as the cost metric. The average amount of

data transferred per segment is evaluated below.

o Let D;,patidate denote the average amount of data transferred per segment when
using the invalidate protocol (L = 0). Then, Dinvatidate = Dupdate + (F +
2) Peontrol + Ppage; Where Pupaate is the average size of an update message that
causes the local copy of the page to be invalidated, p.ontror is the size of a control
message (page request, acknowledgment of update, etc.), ppege is the size of a
message that is required to send a page from one node to another, and F is the

average number of times a page request is forwarded.

o Let D,p44te denote the average amount of data transferred in one segment for the
update protocol (L = o). Then, it follows that, Dypdate = (Pupdate + Peontrot) U

where U now denotes the average number of remote updates in a segment.

Critical value of U (Ugritica), Where the two protocols require the same amount



21

of data transfer, is computed as follows (assuming F = 4):

-Dupdate — Dinvalidate

= (pupdate + pcontrol) Ucritical = Pupdate + (F + 2) Dcontrol + Ppage

Pupdate + (F + 2) Peontrol + Ppage
Pupdate + Pcontrol
Pupdate + 6 Peontrol + Ppage
Pupdate + Peontrol

= Ucritical

= Ucritical —

Note that U.,,iticqr is different when minimizing amount of data as compared to when
minimizing number of messages.

Having determined U, iticai, L = 0 is chosen if U measured at run-time is equal
to or greater than U, iticq. To evaluate Uepitical, Dupdate 15 also estimated at run-time.
For a reason similar to that described previously when minimizing the number of
messages, we do not choose L = oo when U < U ;ticar- Instead, when U < Ueisical,
we choose the competitive update protocol with limit = U,,ticq;. Choosing limit =
Uriticat — 1 would also result in similar cost. Because we chose limit = U jticar — 1
for minimizing the number of messages, as an illustration, we decided to use limit =

U.riticar for minimizing amount of data.

Minimizing the General Cost

The cost of a message of size m is denoted as ¢(m). For instance, ¢(m) may be
1 — this means that the cost metric simply counts the number of messages. Another
possibility is ¢(m) = m, which would mean that the total amount of data sent by
messages is used as the cost metric. In general, any suitable function of m may be
used as the cost. For instance, ¢(m) = K; + Kym, where K; and K, are some
constants. A procedure similar to that described above can be used to choose the

appropriate value of L for such a cost function.
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Let the “cost” of sending or receiving a message of size m be a function of m,
say ¢(m). For example, ¢(m) may be K; + K> m, where K, K, are constants. Total

cost, C, is computed below:

update — (c(pupdate) + c(pcontrol)) U

L4 invalidate — c(pupdate) + (2 + F) c(pcontrol) + c(p;mge),

where ¢(pupdate) denotes the average cost of an update message.
Critical value of U (Ueriticai), where the two protocols require the same “cost” is

computed as follows:

Oupdate — Oinvalidate

= (c(Pupdate) + c(Peontrot)) Ueriticat = m + (F + 2) c(Peontrot) + <(Ppage)

¢(Pupdate) + (F + 2) ¢(peontrot) + ¢(Ppage)
¢(Pupdate) + c(Peontrot)

¢(Pupdate) + 6 c(Peontrot) + ¢(Ppage)

= Ucritical = — assuming F = 4.
c(pupdatE) + c(pcontrol)

= Ucritical —

Appropriate limit can be chosen at run-time, as in minimizing the amount of
data transferred.

For adaptive DSM minimizing ezecution time, we compute critical value of U
(Ueriticar) and update limit (L) for competitive update protocol (if it is chosen) by
using the similar cost analysis for minimizing the general cost. By experiment on
8-node workstation cluster connected via ethernet, the time required to request a
page and receiving the page of size 4,096 bytes () is 30 msec, and the time required
to send update message of size m and receive response (¢,(m)) is approximately
tu(m) = C1 4 C, zﬁ’ where C; = 3.8, C; = 8, and ppege = 4,096 (size of message

for page sending) Total cost, T, is computed below:
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L4 Tupdate — tu(pupdate) U
L4 Tinvalidate — tu(pupdate) + tf

Critical value of U (Ucritical), where the two protocols require the same execution

time is computed as follows:

Tupdate — Tinvalidate
= tu(pupdate) Ucritical = tu(pupdate) + tf
tu(Pupdate) +1
= Ucritical — (p pdat ) !
tu(pupdate)
t
= Ucritical =1 + 7f
tu(pupdate)
t
= Ucritical =1 + / Poaotc
O]_ _I_ 02 update
Ppage
30
= Ucritical =1 + I el
3.8+8 006

2. Implementation

As shown in the above analysis, the average number of updates since the last local
access (U) and the average size of update message (Pupdaze) are important factors to
decide which protocol is better. Our adaptive protocol estimates these values over
consecutive N, segments (let us call it a “sampling period”) and selects appropriate
protocol for the next sampling period. Figure 5 illustrates segments and sampling
periods. The U and Dypgate values estimated during sampling period ¢ are used to
determine the value of limit L to be used during sampling period 7 + 1.

Each node independently estimates U and Pypgeee for each page. To facilitate
estimation of U and Pypqdqte at run-time, each node maintains the following information

for each page.
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version: Counts how many times this page has been updated since the beginning
of execution of the application. version is initialized to zero at the beginning of

execution.

dynamic_version: The version (defined above) of the page at the last local
access. dynamic_version is initialized to zero at the beginning of execution, and
set to version after a page fault or on performing an update. dynamic_version

does not have to be updated on every local access.

zdata: Total amount of data transferred for updating copies of this page since
the beginning of execution of the application. zdata is initialized to zero at the

beginning of execution. (zdata is mnemonic for “exchanged data”.)

dynamic_zdata: The zdata (defined above) of the page at the last local access.
dynamic_zdata is initialized to zero at the beginning of execution and set to

zdata after a page fault or on performing an update (as described below).

update: The number of updates by other nodes during the current sampling
period. update is initialized to zero at the beginning of execution and is cleared

to zero at the end of every sampling period.

d_update: The amount of data received to update local copy of the page in

the current sampling period. d_update is initialized to zero at the beginning of
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execution and is cleared to zero at the end of every sampling period.

o counter: Total number of segments during the current sampling period. counter
is initialized to zero at the beginning of execution and is cleared to zero at the

end of every sampling period.

The procedure for estimating U and pypdete is as follows. In the following, we
focus on a single page P at a node A — the same procedure is used for each page at

each node.

1. On receiving an update message for page P, node A increments the version of
page P by 1, and increments zdata by the size of the update message. Similarly,
when node A modifies page P and sends update messages to other nodes that
have a copy of page P, version is incremented by 1, and zdata is incremented

by the size of the update message. This can be summarized as:

version <+— version + 1

zdata <— xdata + size of the update message

In addition, when node A sends update messages, dynamic_version is set equal

to version and dynamic_zdata is set equal to zdata.

dynamic_version <— version

dynamic_zdata <— zdata

2. New segment start at the first local access following updates by other nodes.
There are two cases at that time: (1) if node A does not have a copy of page
P, page fault occurs, (2) if node A has a copy of page P, page fault occurs due
to protected access permission (because the page is protected to detect the first
local access following updates by other nodes). One of the following procedures

is performed in each case:
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o If node A does not have a copy of page P: on a page fault, when a copy of
page P is received by node A, the sender of the page also sends its zdata
and verston along with the page. On receiving the page, zdata and version
in the local page table entry (for page P) at node A are set equal to those

received with the page.

version <— wversion received with the page
tdata <+— zdata received with the page
Also, dynamic_version and dynamic_zdata in the local page table entry are

compared to version and zdata, respectively, received with the page.

o If node A has a copy of page P: In this case, access protection causes a
page fault. In the page fault handler, dynamic_version and dynamic_zdata
are compared to version and zdata, respectively, in the local page table

entry.

The comparison in the above step is followed by the following procedures in
both cases. Let d = version — dynamic_version. Then the update variable for
page P (at node A) is incremented by d, d_update is incremented by (zdata —

dynamic_zdata), and the counter incremented by one. That is, if d > 0, then:

update +— update + (version — dynamic_version)
d_update +— d_update + (zdata — dynamic_zdata)

counter <— counter + 1

At this point, a new segment begins. Therefore, the dynamic_version is set

equal to version and dynamic_zdata is set equal to zdata.

dynamic_version <— version

dynamic_zdata <— zdata
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3. When counter becomes N,, a sampling period is completed. Now, U and Dypdate

d_update

. dat
are estimated as U = ¥B2%¢€
A update

i and update, d_update, and

) and Dupdate =

counter are cleared to zero.

The estimated values of U and Pypgqeee for page P at node A are used to decide
which protocol is better. If U > ULsitical, invalidate protocol (L = 0) is selected;
else, competitive update protocol with appropriate limit is selected (as described in
subsection 1). The chosen L is used for page P at node A during the next sampling
period. Due to the distributed nature of the protocol, and possible differences in
access patterns of different nodes, different nodes may simultaneously use different

limits for the same page.

Correctness and Cost for Protocol Switch

Our scheme is designed for software DSM using release consistency (such as
[11, 12]), and each node independently chooses appropriate protocol by dynamically
deciding whether to invalidate or update local copy of a page. This does not cause
any consistency problem. The change in the choice of limit only determines when a
copy of a page is invalidated. Thus, the adaptive protocol is much like the competitive
update protocol, but the decision-rule for page invalidation may change over time.

No extra messages are required for the adaptive protocol (or protocol switch)
because each node independently estimates the average number of updates by other
nodes in one segment (U) and the average amount of data for update message (Pupdate )
to select an appropriate protocol, without sending additional messages. To keep track

of statistics, some message sizes may be larger by a few bytes.
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C. Performance Evaluation

Experiments are performed to evaluate the performance of the adaptive DSM by
running applications on an implementation of the adaptive protocol. We implemented
the adaptive protocol by modifying another DSM, named Quarks (Beta release 0.8)
[10, 33]. This section presents the experimental results.

We evaluated the adaptive scheme using synthetic applications (gtest, ProdCons,
and Reader/Writer) as well as other applications (Floyd-Warshall, SOR, Isort, Mat-
mult, and Jacobi). gtest is a simple shared memory application based on a program
available with the Quarks release [33]: all nodes access the shared data concurrently.
A process acquires mutual exclusion before each access and releases it after that. We
measured the cost (i.e., number of messages and size of data transferred) by executing
different instances of the synthetic application, as described below. Floyd-Warshall,
Isort, and Jacobi applications used in the experiments were written at Texas A&M
University. SOR and Matmult are available with the Quarks release [33]. ProdCons
and Reader/Writer are based on gtest. Sampling period (V) is chosen to be 2 for
all applications. We use Limit L = 3 for a competitive update protocol in all exper-

iments.

Results for qtest Application

The body of the first instance of the gtest program (named qtest1) is as follows:

qtestl: repeat NLOOP times {
acquire(lock_id);
for (n = 1 to NSIZE)
shmem[n]++; /* increment shared memory location */

release(lock_id);
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Each node performs the above task. All the shared data accessed in this applica-
tion is confined to a single page. Each node executes the repeat loop 300 times, i.e.,
NLOOP = 300. 300 iterations were sufficient for the results to converge. The size of
shared data (NSIZFE) is 2048 bytes — all in one page — page size being 4096 bytes.
(The next experiment considers small NSIZE.) The adaptive protocol initializes L to
3 for each page at each node. At the end of each sampling period (N, = 2), each
node estimates U and Pypdeze for the page and selects the appropriate L — this L is
used during the next sampling period.

For this application, Figures 6 and 7 show the measured cost by increasing the
number of nodes (V). The costs are plotted per “transaction” basis. A transaction
denotes a sequence of operations — namely, acquire, shared memory access, and release
— in one loop of the gtest! main routine. The curve for the adaptive scheme in Figure
6 is plotted using the heuristic for minimizing the number of messages. The curve in
Figure 7 is plotted using the heuristic for minimizing the amount of data transferred.
(Note that the adaptive DSM does not minimize number of messages and amount of
data transferred simultaneously — either one of them can be minimized at any time
by the choice of appropriate heuristic.) Costs required for acquire are included in the
experimental results. (We did not consider the costs required for acquire in our cost-
comparison analysis, as the cost required for acquire is independent of the protocol
used.)

In Figure 6, the curve named “protocol” denotes the number of messages required
by the specified protocol, and “#update” denotes the average number of updates per
segment (U) calculated over the entire application. As number of nodes N increases,

the average number of updates per segment (U) increases proportionally. In spite
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of the approximate estimate of U,.;;cqr used in our analysis, the adaptive protocol
performs well. For small N, the adaptive scheme performs similar to update schemes
(which are optimal for small V), and for large N the adaptive scheme performs similar
to the invalidate scheme (which is optimal for large N). We assume F' = 4 in our
cost-comparison analysis. This assumption is incorrect for small N (N < 5). But,
near the critical value U,,iticar, it is Toughly correct. Thus, our adaptive algorithm
can choose an appropriate protocol in spite of the fixed value of F' in our experiments
with up to 10 nodes. In summary, the number of messages required by the adaptive
protocol is near the minimum of invalidate (L = 0) and competitive update (L = 3)
protocols.

Figure 7 shows the comparison of the amount of data transferred per transaction.
Since gtest! application modifies large amount of data (NSIZE = 2,048 bytes), an
update protocol requires larger amount of data transfer as the number of nodes (V)
increases. However, an invalidate protocol requires nearly constant amount of data
transfer (per transaction) for all N. Competitive protocol requires large amount of
data transfer when N > 4 because it cannot adapt to minimize the amount of data
transferred. Adaptive protocol chooses the appropriate protocol for all values of N,
thereby minimizing the amount of data transferred.

The second experiment was performed with the main loop (qtest2) shown below:

qtest2: repeat NLOOP times {
acquire(lock_id);
if (random() < read_ratio)
/* 0 <= random <= 1 */
for (n = 1 to NSIZE)

/* read shared memory */
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r_value = shmem[n];
else
for (n = 1 to NSIZE)
/* write shared memory */
shmem[n] = w_value;

release(lock_id);

All the shared data accessed in qtest2 is confined to a single page. For this
experiment, we assume a small amount of shared data access per iteration of the
repeat loop (NSIZE = 4). Additionally, each iteration of the repeat loop either
reads or writes the shared data depending on whether a random number (random())
is smaller than the read ratio or not. This allows us to control the frequency of
write accesses to the shared data. 8 nodes access the shared data 100 times each
(NLOOP = 100). (We observed that the results converge quite quickly.) Figure 8
presents the number of messages per transaction (i.e., acquire, shared memory access,
and release). As shown, the adaptive scheme performs well for all read ratios.

Figure 9 shows the comparison of the amount of data transferred per transaction.
Since gtest2 application modifies small amount of data (NSIZE = 4 bytes), our
adaptive protocol chooses a competitive protocol with large update limit (L) (refer to
Section 1). Therefore, the adaptive protocol requires small amount of data transfer.
Competitive update protocol with limit L = 3 (or small L, in general) results in
relatively larger amount of data transfer when the average size of an update message,

Dupdates 18 small.
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Results for Other Applications

We now evaluate our adaptive scheme by executing seven additional applications
(Floyd-Warshall, SOR, ProdCons, Isort, Reader/Writer, Matmult, and Jacobi) on 8
nodes. Floyd-Warshall is all-pair-shortest-path algorithm. (We use 128 vertices as
input.) SOR is Successive Over-Relaxation algorithm which executes simple itera-
tive relaxation algorithm. (We use 512 x 512 grid.) ProdCons is implementation of
a simple Producer/Consumer model. Producers make data which will be used by
consumers. (We execute total 4,000 “transactions” for ProdCons. A transaction de-
notes a sequence of operations — namely, acquire, shared memory access, and release
— similar to as defined in gtest.) Isort is Integer Sorting algorithm. (We use 3,200
keys of 100 range.) Reader/Writer is implemented by modifying the gtest to evaluate
performance in time-varying memory access patterns. Execution time is divided into
4 stages and memory access pattern is different for each stage. A node can be either
a reader or a writer for each page depending on the execution stage. The size of data
for write is different for each stage. (Total 1,920 transactions are executed.) Matmult
is a matrix multiplication program which compute A". (We compute A'°, where A is
a 128 x 128 matrix.) Jacobi is a linear system solver by using iteration method. (We
solve a linear system of size 128.)

We execute at least 10 times for each application and for each protocol. Ta-
ble I shows experimental results: average number of messages (Messages), amount
of data transferred (Data (KBytes)), execution time ( Time (seconds)), and standard
deviations of these values (S.D.).

Floyd-Warshall, SOR, Matmult, and Jacobi use barriers for synchronization.
Floyd-Warshall and SOR have small value of U. However, as shown in Figures 10
and 11, update protocol unexpectedly shows bad performance (except for the amount

of data transferred for Floyd-Warshall). Recall that we use a DSM implementation



Table I. Performance Comparison (I) (other applications)

‘ Application || Messages (S.D.) | Data (KB) (S.D.) | Time (sec.)
Floyd-Warshall
Invalidate 9676 4674 (65) 25.4
Update 27873 2392 (2) 26.5
Competitive 8633 1562 (2) 26.5
Adaptive 8360 1910 (12.8) 14.6
SOR
Invalidate 16436 12204 (87) 46.0
Update || 101172 58518 (3) 237.7
Competitive 13753 4588 (3) 30.6
Adaptive 13877 4589 (3) 32.2
ProdCons
Invalidate 65428 17790  (222) 155.7
Update 76636 1387 (8) 112.9
Competitive 76527 18124  (154) 148.5
Adaptive 64730 1451 (5) 114.0
Isort
Invalidate 51979 14294  (176) 124.5
Update 61449 993 (6) 97.6
Competitive 60753 14282  (300) 124.3
Adaptive 51824 1048 9) 94.8
Reader/Writer
Invalidate 74443 41255  (470) 244.4
Update 91652 42694 (5) 225.5
Competitive 90458 57702 (60) 253.6
Adaptive 68587 22639  (294) 227.1
Matmult
Invalidate 2388 864 (5) 22.7
Update 3256 3458  (2) 26.4
Competitive 2156 1381 (1) 20.5
Adaptive 2204 1382 (2) 21.2
Jacobi
Invalidate 2462 646 (19) 29.9
Update 2237 321 (1) 1.0
Competitive 2427 380 (15) 4.6
Adaptive 2349 343 (6) 3.3
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based on Quarks [33] for these experiments. In Quarks, the “Master” node initial-
izes all shared memory and the Master node is in the copyset of all pages. Pure
update protocol implementation based on Quarks performs bad due to the overhead
of updating Master node for all shared memory writes. (However, this performance
degradation does not happen in the original Quarks release because Quarks uses a
mechanism similar to competitive update protocol.) Competitive update protocol and
adaptive protocol perform well for four applications (except for competitive update
protocol in Jacobi) as shown in Figures 10 through 13.

ProdCons uses lock/unlock for a task queue, Isort uses lock/unlock for ranking,
and Read/Writer uses lock /unlock for exclusive object access. These four applications
have large value of U, and invalidate protocol requires small number of messages
(please refer Figures 14, 15, 16). However, for the amount of data in ProdCons and
Isort, update protocol is better because the amount of data in an update message
is much smaller than the size of a page. Competitive protocol does not show good
performance for the amount of data as well as the number of messages. Adaptive
protocol shows good performance for the amount of data as well as the number of
messages as shown in Figures 14 through 16.

We evaluated the performance of our adaptive protocol on a synthetic
Reader/Writer application (see Figure 16) where memory access patterns (read to
write ratio, access period, amount of data written in each transaction, etc.) are
time-varying. Each node access pages 1 through 4 in different patterns. As an ex-
ample, nodes 1 and 2 repeatedly execute the following main loop in Reader/Writer

application.



# Reader/Writer (at nodes 1 and 2):

size of data = 4 bytes

Stage 1: Do (i = 2,3,4) {
read page i
write page 1
write page 5 and 6

b

Stage 2: Do (i = 3,4,1) {
read page i
write page 2

write page 5 and 6

size of data = 2,048 bytes
Stage 3: Do (i = 4,1,2) {
read page i
write page 3
write page 5 and 6
b
Stage 4: Do (i = 1,2,3) {
read page i
write page 4

write page 5 and 6

44
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Results show that the adaptive protocol performs well by adapting to time-
varying memory access patterns. Observe that adaptive protocol performs better
than any of the other protocols for Reader/Writer application. The reason is that no
single protocol is optimal for all stages as the access patterns change for each stage
in Reader/Writer application.

From above measurements, observe that, in most cases, the adaptive algorithm
achieves performance comparable with the optimal protocol (among invalidate, up-
date, and competitive update protocols). This suggests that the adaptive scheme is

able to predict the optimal protocol accurately.

D. Summary

This chapter presents an adaptive scheme for DSM that can adapt to time-varying
pattern of accesses to the shared memory. The adaptive DSM automatically choose
the appropriate consistency protocol (without any input from the programmer). Our
approach continually gathers statistics, at run-time, and periodically determines the
appropriate protocol for each copy of each page. The choice of the protocol is de-
termined based on the “cost” metric that needs to be minimized. The cost metrics
considered in this dissertation are number and size of messages, and time required
for executing an application using the DSM implementation. A generalization to
minimize arbitrary cost metrics is also possible.

Experimental evaluation of the adaptive DSM using an implementation based on
Quarks DSM [33] is presented. Experimental results from the implementation suggest

that the proposed adaptive approach can indeed reduce the cost.
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CHAPTER III

ADAPTIVE MIGRATORY DISTRIBUTED SHARED MEMORY
With migratory sharing, a node that has a page fault, soon writes to the page and
sends an update to other copies of the page. When using invalidate protocol, the
remote copies of the page will be invalidated on this update. A message for sending a
copy of a page to a remote node, on which a page fault occurs, is directly followed by
an update request from the remote node. This chapter presents an adaptive migratory
scheme that tries to detect the migratory sharing and to eliminate the overhead of
receiving an update message and sending a negative acknowledgement [38, 40]. This
scheme os obtained by adding migratory protocol as another choice in the scheme in
Chapter II. The reason for evaluating the two schemes separately is that, sometimes
addition of a protocol choice may reduce performance. By evaluating the adaptive
scheme with and without migratory protocol separately, it is possible to determine

how effective the additional protocol choice is.

A. Related Work

Other researchers have also proposed adaptive schemes for migratory sharing. Our
adaptive migratory scheme is implemented in a software DSM and is different from

others as follows:

o Design domain: The schemes in [16, 46, 59, 43] are based on bus-based or
directory-based cache coherent multiprocessors. In a bus-based multiprocessor,
requests (for read miss, write miss and invalidate) can be detected by all nodes
via the bus. In a directory-based cache coherent multiprocessor, a home node

maintains directory entries. In these architectures, global state (number of
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cached copies, last invalidator of a block) can be known by some or all nodes.
However, these schemes can not be used directly in software DSM such as Munin
[12] or Quarks [33] where no node may have global knowledge. Our scheme can
be incorporated into a software DSM in which memory coherency is maintained
in a distributed manner. Each node tries to determine the best protocol using

locally available information.

Schemes in [15, 42] are proposed for dynamic page placement in NUMA archi-
tecture. Their dynamic page placement policy can not be applied to DSM due
to architectural differences. On page fault, in NUMA architecture, a local node
can access remote memory without page allocation in local memory. However,

in most DSMs (e.g., Munin [12]), remote memory access is not allowed.

Protocol Switch: [16, 59, 46] select a migratory protocol whenever memory

access pattern is migratory sharing.

Our adaptive scheme requires each node to periodically estimate the “cost” of
using each candidate protocol for each page in its local memory; the protocol
with lowest estimated cost is used. Therefore, the proposed scheme uses the
migratory protocol only when it is deemed optimal. If another protocol is
deemed optimal, even if the access pattern is migratory, the other protocol is

chosen.

In a DSM, it is possible that migratory protocol may not be optimal for migra-
tory access pattern. Choosing migratory pattern may save the cost of perform-
ing some updates. However, migratory protocol may add the cost of process-
ing a page fault on a page that has been migrated to another node (this cost
may be avoided by using competitive update protocol). In a software DSM, a

page-request may have to be forwarded several times before it is served (a page-
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request is issued on a page fault). The proposed scheme chooses the migratory
protocol only when its cost is expected to be lower than the other candidate

protocols.

e Protocol Choices: [16, 59, 43] allow invalidate and migratory protocols, and
[46] allows competitive update and migratory protocols. Our scheme allows

invalidate, competitive update and migratory protocols.

e Hybrid Protocol: In [16, 46, 59], all copies of a block enter migratory mode or
exit from migratory mode. In our scheme, each node independently chooses the
appropriate protocol. Therefore, some nodes can use a migratory protocol while
the other nodes use another protocol (invalidate or competitive update protocol)
for the same page. What this means is that some nodes may invalidate their
local copy of a page when servicing a page-request for that page (migratory
protocol), while some other nodes may not invalidate the page when servicing

a page-request (competitive update or invalidate protocols).

Table II summarizes the above discussion.

B. Adaptive Migratory Scheme

The adaptive scheme presented in Chapter II is now modified to include the migratory

protocol as one of the protocol choices. Doing this requires two new features:

o A heuristic to determine when the migratory protocol is likely to be optimal.

e A mechanism that will allow a node to detect the migratory access pattern.

The proposed scheme chooses the migratory protocol if: (i) the access pattern seems
to be migratory, and (ii) assuming that the access pattern is migratory, the cost of

migratory protocol is estimated to be the least.



Table II. Adaptive Protocols

Scheme Design domain Protocols (Schemes) Features
[16] Dir or Bus Inv + Mig
[59] Dir Inv + Mig
[46] Dir Comp + Mig
[43] Dir Inv + Self-Inv

[15, 42] MM-NUMA | Remote + Replicate + Mig CcC
[39] SDSM Inv 4 Comp CC

Proposed SDSM Inv + Comp + Mig CC+ TD

Bus = bus-based cache coherence multiprocessor

Dir = directory-based cache coherence multiprocessor

MM-NUMA = memory management

SDSM = software Distributed Shared Memory

Inv = invalidate protocol

Mig = migratory protocol (scheme)

Remote = remote memory access

Replicate = page replication

Comp = competitive update protocol

CC = cost comparison

TD = totally distributed

system for NUMA multiprocessor

49
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We now present cost analysis for the three protocols. The cost analysis of the
magratory protocol presented below is valid only if the access pattern is maigratory

sharing.

Cost Analysis (Number of Messages)

We first consider number of messages as the cost metric. As before, F' denotes
the average number of times a page-request is forwarded.

When using the migratory protocol, at the beginning of each segment, a page
fault occurs. If memory access pattern is migratory sharing, the number of messages

required for a migratory protocol in one segment (M nigratory) is computed as:
Mmigratory = F +2

F messages above are required for forwarding page-request. In addition, one message
is required to receive the page, and one message to acknowledge receipt of the page.
Invalidate, update, and competitive update protocols were analyzed in Chapter II.
Figure 17 shows an analytical comparison of required number of messages for one
segment as a function of U, assuming migratory memory access pattern (assuming
F = 4). For competitive update protocol in Figure 17, we have L = 3. Note that
only the cost for memory access (read, write and page fault) is considered (cost for
synchronization, acquire, is not considered). Under migratory sharing, the migratory
protocol requires two messages less (per segment) as compared to the invalidate pro-
tocol (by eliminating an update message and corresponding acknowledgment). This
figure suggests that for the migratory access pattern the migratory protocol is the
best choice if U > 4. However, even with migratory memory access pattern, up-

date and competitive update protocols are better choices if U < 2. When U = 3,

and the access pattern is migratory, then migratory, update, and competitive update
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protocols require comparable number of messages.

Cost Analysis (Amount of Data Transferred)

In the above analysis, we consider the number of messages as the cost. Now, we
consider the amount of data transferred as the cost metric. If memory access pattern
is migratory, the amount of data transferred in one segment (Duigratory), When using

the migratory protocol, is computed as follows:

-Dmigratory = (F + ]-)pcontrol + Prage

where peontror 1s the size of a control message (page request, acknowledgment, etc.),

and ppqg is the size of a message that is required to send a page from one node to
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another.

Cost Analysis (General Cost Functions)

In general, the cost may be an arbitrary function of the message size. Let the
cost of sending or receiving a message of size m be ¢(m). If memory access pat-
tern is migratory sharing, the cost required for a migratory protocol in one segment

(Cmigratory) is computed as:

Omigratory = (F —I_ ]‘) c(pcont’f'd) —I_ c(ppage)'

We also compute the execution time in Section II. By experiment on 8-node worksta-
tion cluster connected via ethernet, the time required to request and receive a page of
size 4,096 bytes (t;) is 30 msec on average. Thus, the time required for a migratory

protocol in one segment (Tpnigratory) is computed as:
Tigratory = ty = 30 msec.

The implementation of adaptive migratory protocol evaluated in this dissertation
chooses the appropriate limit to minimize the number of messages, the amount of data
transferred, or execution time. Any one of the three may be minimized at any time,
not all of these. Note that U.;scar for choosing appropriate limit is different for each

cost metric.

1. Implementation

Based on the above analysis, we add two features to the proposed adaptive scheme:

1. Select magratory memory access pattern when appropriate: Node A collects

statistics over a sampling period to determine if the access pattern is migra-
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tory, and whether the migratory protocol is optimal.

2. Self-Invalidation: Node A performs self-invalidation of a local copy of page P
when sending page P to any other node, if node A selects migratory memory

access pattern for page P (as described in item 1 above).

As discussed in Chapter 11, it is possible for each node to estimate U and Pypgaze inde-
pendently, without sending additional messages. Note that the value of U determined
by each node (for the same page) may be different, as segments observed by each node
are different. Therefore, each node needs to be able to estimate U independently.
The specific heuristic that we used for selecting migratory protocol requires that
the two conditions below must be true during a given sampling interval. If the
conditions hold, then the migratory protocol is used in the next sampling interval.
Consider page P and node A. Node A may use migratory protocol for page P during

the next sampling period, if:

1. During each segment in the current sampling period, node A responds to page-
request for page P. Also, after node A sends page P to another node, node A does
not access page P again before a remote update to page P occurs. (These two

conditions together are used to conclude that the access pattern is migratory.)

2. Number of remote updates to page P in each segment is at least Uepiticar. (This

condition is used to determine if migratory protocol is likely to incur least cost.)

The resulting adaptive migratory scheme (referred as adapt+ or adaptive+) can

be summarized as follows:

1. If estimated U < U iticar, choose competitive update protocol with limit L =

Ucritical — 1.
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2. Else, choose a migratory protocol if the two conditions stated above for selecting

migratory protocol are satisfied.
3. Else, choose invalidate protocol.

As noted earlier, because U.,;ticq is different for minimizing number of messages,
amount of data, and execution time, the three cost metrics cannot be minimized
simultaneously.

Figure 18 shows examples of how the above procedure is used to choose appro-
priate protocol, according to the memory access patterns for page P observed at node
A. Assume that the sampling period consists of 2 segments (i.e., N, = 2) and that
Ucritical 15 4.

In the first scenario (Figure 18 (a)), a competitive protocol is chosen at the end
of the sampling period, because the average the number of updates U per segment,
denoted Uy, is less than Ugisicar- Observe that, in Figure 18 (a), Uypg = % =1.5
which is less than Ug;ticar = 4.

In the third scenario (Figure 18 (c)), a migratory protocol is chosen because the
conditions stated earlier for choosing migratory protocol are satisfied. Note that,
in this case, the number of updates U in each segment in the sampling period is
> Ueritical-

In the second scenario (Figure 18 (b)), the invalidate protocol is chosen because:
(1) in segment 1, a local access (read) is performed by node A, after node A sends page
P in response to a page-request but before getting an update message from another

node, and (ii) node A does not send page P to any other node in segment 2 (either

condition would suggest that the access pattern may not be migratory).
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C. Performance Evaluation

Experiments are performed to evaluate the performance of proposed adaptive+ pro-
tocol, by running applications on an implementation of the protocol. We implemented
the adaptive protocol by modifying another DSM, named Quarks (Beta release 0.8)
[10, 33]. This section presents the experimental results. We evaluated the adaptive
scheme using the same applications used in the Chapter II. We use limit L = 3 for a

competitive update protocol in all experiments.

Results for qtest Application

For this application, Figures 19 and 20 show the measured cost as a function of
number of nodes (V) executing the application. The costs are plotted per “transac-
tion” basis. A transaction denotes a sequence of operations — namely, acquire, shared
memory access, and release — in one loop of the gtest! main routine. The curve
for the adaptive schemes in Figure 19 is plotted using the heuristic for minimizing
the number of messages; the curve in Figure 20 is plotted using the heuristic for
minimizing the amount of data transferred.

In Figure 19, the curve named “protocol” denotes the number of messages re-
quired by the specified protocol, and “#update” denotes the average number of up-
dates per segment (U,,y) calculated over the entire application. adaptive denotes the
scheme in Chapter II. adaptive+ denotes the proposed adaptive migratory protocol.
As number of nodes N increases, the average number of updates per segment (U)
increases proportionally. For N > 5, adaptive migratory protocol (adaptive+) per-
forms best, because qtest1 shows the migratory memory access pattern. Adaptive+
requires approximately 2 less messages per transaction than the adaptive protocol

(because adaptive+ chooses migratory protocol, while adaptive chooses the invali-
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date protocol). However, adaptive+ protocol requires the same number of messages
as the adaptive protocol when N < 4, because both protocols choose competitive
update protocol.

The cost graph for the invalidate protocol is not flat, while it was flat as per
the cost analysis shown in Figure 17. The reason is that the cost of synchronization
(acquire) increases as the number of nodes (V) increases (the cost for synchronization
is not included in Figure 17, while it is taken into account in our measurements).

Figure 20 shows the comparison of the amount of data transferred per transac-
tion. Since gtest! application modifies large amount of data (NSIZE = 2048 bytes),
an update protocol requires larger amount of data transfer as the number of nodes
(N) increases. However, an invalidate protocol requires nearly constant amount of
data transfer (per transaction) for all N. Adaptive migratory protocol chooses the
appropriate protocol, thereby minimizing the amount of data transferred.

The second experiment was performed using qtest2. Figure 21 presents the
number of messages per transaction (i.e., acquire, shared memory access, and release).
Adaptive magratory protocol requires less number of messages than the adaptive
protocol when read ratio is less than 20 % because qtest2 tends to show migratory
memory access pattern at low read ratios.

Figure 22 shows the comparison of the amount of data transferred per transac-
tion. Since gtest2 application modifies small amount of data (NSIZE = 4 bytes),
both adaptive protocol and adaptive+ (adaptive migratory) protocol choose a com-
petitive protocol with large update limit (L). Therefore, both adaptive protocols

require small amount of data transfer.

Results for Other Applications

We now evaluate our adaptive scheme by executing seven additional applications
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used in Chapter II (Floyd-Warshall, SOR, ProdCons, Isort, Reader/Writer, Matmult,
and Jacobi) on 8-node workstation cluster.

We execute at least 10 times for each application and for each protocol. Ta-
ble IIT shows experimental results: average number of messages (Messages), amount
of data transferred (Data (KBytes)), execution time ( Time (seconds)), and standard
deviations of these values (S.D.).

Figures 23, 24, and 25 show performance comparisons for each cost metric (the
number of messages, the amount of data transferred, or execution time). The figures
plot costs for five protocols: invalidate (INV), update (UPD), competitive update with
L =3 (COMP), the adaptive scheme from Chapter II (ADAPT) and the adaptive migra-
tory scheme (ADAPT+). The costs are normalized using the protocol with maximum
cost for each application as the base.

Floyd-Warshall, SOR, Matmult, and Jacobi use barriers for synchronization.
In these types of applications, the proposed adaptive migratory protocol (ADAPT+)
does not show performance improvement over ADAPT, because Floyd-Warshall, SOR,
Matmult, and Jacobi do not show the migratory memory access pattern. In Floyd-
Warshall, ADAPT+ performs worse than ADAPT due to false detection of migratory
sharing, i.e., our heuristic uses migratory protocol when the access pattern is not
actually migratory.

ProdCons uses lock/unlock for a task queue, Isort uses lock/unlock for rank-
ing, and Reader/Writer uses lock/unlock for exclusive object access. These applica-
tions show migratory memory access patterns. (In Reader/Writer, some pages show
migratory memory access patterns.) In three applications (ProdCons, Isort, and
Reader/Writer), adaptive migratory protocol (ADAPT+) requires the least number of
messages. However, in Reader/Writer application only, adaptive migratory protocol

(ADAPT+) requires the least amount of data because the size of update message is
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Application | Messages (S.D.) | Data (KB) (S.D.) | Time (sec.) (S.D.) |

Floyd-Warshall

Invalidate 9676 (1143) 4674 (65) 254 (4.29)

Update 27873 (340) 2302 (2) 26.5  (3.39)

Competitive 8633  (605) 1562 (2) 26.5  (3.39)

Adaptive 8360  (53) 1910 (12.8) 14.6  (1.66)

Adaptive Migratory 10146  (623) 3637 (27.6) 18.4  (1.18)
SOR

Invalidate 16436 (994) 12204 (87) 46.0  (8.92)

Update || 101172  (715) 58518 (3) 2377 (5.37)

Competitive 13753  (679) 4588 (3) 30.6  (2.45)

Adaptive 13877 (746) 4589  (3) 322 (2.12)

Adaptive Migratory 13729  (585) 4587 (2) 43.9 (7.67)
ProdCons

Invalidate 65428 (2221) 17790 (222) 155.7  (32.15)

Update 76636  (517) 1387 (8) 112.9  (9.96)

Competitive 76527 (739) 18124  (154) 1485 (14.94)

Adaptive 64730 (1224) 1451 (5) 114.0  (8.17)

Adaptive Migratory 55825 (1279) 1441 (20) 112.9  (9.55)
Isort

Invalidate 51979  (1551) 14294 (176) 124.5 (22.67)

Update 61449  (331) 993 (6) 97.6  (6.48)

Competitive 60753  (1240) 14282 (300) 124.3 (11.65)

Adaptive 51824  (224) 1048 (9) 94.8  (7.72)

Adaptive Migratory 45413  (879) 1047 (20) 90.1  (3.10)
Reader/Writer

Invalidate 74443 (804) 41255  (470) 244.4 (38.78)

Update 91652 (1110) 42694  (5) 2255  (6.58)

Competitive | 90458  (504) 57702 (60) 253.6  (15.73)

Adaptive 68587 (1168) 22639 (294) 227.1  (16.05)

Adaptive Migratory 60742  (649) 18703  (263) 191.5 (28.87)
Matmult

Invalidate 2388 (1345) 864 (5) 22.7  (6.39)

Update 3256 (483) 3458  (2) 26.4  (1.59)

Competitive 2156 (287) 1381 (1) 205  (1.25)

Adaptive 2204 (425) 1382 (2) 21.2  (1.62)

Adaptive Migratory 2399  (901) 1383 (3) 209 (1.37)
Jacobi

Invalidate 2462 (629) 646  (19) 20.9  (4.49)

Update 2237 (202) 327 (1) 1.0 (0.08)

Competitive 2427  (618) 380 (15) 46 (1.49)

Adaptive 2349  (489) 343 (6) 3.3 (0.74)

Adaptive Migratory 2175 (123) 344 (6) 53 (1.17)
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small in other applications (Isort and Reader/Writer). For a similar reason, adaptive
migratory protocol achieves performance improvement by 15 % in Reader/Writer ap-
plication, while only 1 % and 5 % in ProdCons and Isort application, respectively, in

terms of execution time.

D. Summary

This chapter presents a new adaptive DSM that allows each node to independently
choose any one of the following protocols for each page: migratory, invalidate, and
competitive update. This protocol improves on our previous scheme in Chapter II by
detecting migratory patterns. The adaptive protocol attempts to detect migratory
access pattern, and chooses the migratory protocol when it is deemed most cost-
effective.

We present experimental evaluation of the proposed adaptive migratory scheme
using an implementation based on Quarks DSM [33]. Experimental results from the
implementation suggest that the proposed adaptive approach can usually reduce the

cost. Specifically, the proposed scheme can typically reduce the number of messages
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as compared to the adaptive scheme presented in Chapter II, as well as invalidate and
competitive update protocols. However, in a few application, the adaptive migratory
scheme performs worse than the adaptive scheme due to false detection of migratory
sharing. In this case, the adaptive scheme in Chapter II is recommended instead of

the adaptive migratory scheme.



65

CHAPTER IV

SINGLE FAULT-TOLERANT DISTRIBUTED SHARED MEMORY USING
COMPETITIVE UPDATE
This chapter presents a single fault-tolerant distributed shared memory (DSM) that
uses the competitive update protocol. In competitive update protocol, multiple copies
of each page may be maintained at different nodes. However, it is also possible for a
page to exist in only one node, as some copies of the page may be invalidated. We
propose an implementation that makes the competitive update protocol recoverable
from a single node failure, by guaranteeing that at least two copies of each page exist.
This chapter also presents a mechanism that maintains consistency between shared
data and process local state after recovery, by updating shared data and process local

state atomically [35, 36, 34].

A. Related Work

Many recoverable DSM schemes have been presented in the literature. Some of them
use stable storage (disk) to save recovery data [24, 25, 56, 68], and others use main
memory for checkpointing, replicating shared memory or logging the shared memory
accesses [4,9, 22, 27, 31,45, 61, 63]. Proposed recoverable DSM belongs to the second
category (uses main memory). [61, 63] are based on update (full-replication) protocol,
while [4, 9, 22, 31, 45] are based on invalidate (read-replication) protocol.

Stumm and Zhou extend four DSM algorithms to tolerate single node failures
[61]. One of their algorithms is for an update protocol. However, implementations of
our algorithm is different because their algorithm is based on update protocol where
all copies of a page are updated, whereas our scheme is based on the competitive

update protocol (some copies are invalidated to reduce overhead). Additionally, our
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scheme supports release consistency.

Theel and Fleisch present a coherence protocol [63] that is highly available. Their
scheme has an upper bound (to reduce overhead) as well as a lower bound (for avail-
ability) on the number of copies of each shared memory page. Unlike [63], our scheme
is based on the competitive update protocol.

Janssens and Fuchs [25] present a recoverable DSM that exploits release consis-
tency to reduce the number of checkpoints, as compared to communication-induced
checkpointing schemes for sequential consistency. Their scheme requires a process to
take a checkpoint either when performing a write on a synchronization variable, or
when another process performs a read on the synchronization variable. The check-
points are stored on a storage not subject to failures. Our single fault tolerance
scheme handles the non-shared data similar to [25]; our scheme “checkpoints” non-
shared data in the volatile memory of another processor. However, the shared data
is not explicitly checkpointed — instead the shared data is duplicated as a part of the
update protocol (if multiple copies already exist, no additional overhead is incurred).
When compared to [25], the proposed scheme trades degree of fault tolerance to re-
duce the performance overhead. Janssens and Fuchs [26] also present an approach to
reduce interprocessor dependencies in recoverable DSM.

Brown and Wu present recoverable DSM, based on an invalidate protocol, that
can tolerate single point failure [9]. A dynamic snooper keeps a back-up copy of each
page and takes over if the page owner fails. The snooper keeps track of the page
contents, location of page replicas, and the identity of the page owner. The snooper
can respond on behalf of a failed owner. Our scheme also maintains at least two copies
of a page, however, the proposed scheme is based on an update protocol, unlike [9].

Neves et al. present a checkpoint protocol for a multi-threaded distributed shared

memory system based on the entry consistency memory model [45]. Their algo-
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rithm needs to maintain log of shared data accesses in the volatile memory. Fuchi
and Tokoro propose a mechanism for recoverable shared virtual memory [22]. Their
scheme maintains back-up process for every primary process. When the primary
process sends/receives a message to/from another process (or writes/reads a shared
memory), the primary process sends this information to back-up process so that the
back-up process can log the events of the primary process.

Richard and Singhal [56] present an invalidate-based scheme for recovery of failed
processors in DSM systems. Their scheme is based on asynchronous checkpointing of
application processes and logging of pages accessed via read operations on the shared
address space. They use volatile logs and stable logs. Every read content is stored in
volatile logs, and flushed to the stable log on a page transfer.

Backward error recovery on a Cache Only Memory Architecture is implemented
using invalidate protocol by Banatre et al. [4]. (A similar scheme is implemented on
an Intel Paragon by Kermarrec et al. [31].) This scheme periodically takes system-
wide consistent checkpoints. After a node fails, all nodes need to rollback to the last
checkpoint.

Plank and Li propose parity checkpointing [51] based on diskless checkpointing.
A consistent checkpoint is held in N processors, and bitwise exclusive-or of the check-
points is held in a processor called parity processor. If any one of N processors fails,
the failed processor can be recovered to the consistent checkpoint by computing its

checkpoint from all the other checkpoints and the parity checkpoint.

B. Recoverable Competitive Update Protocol

Recoverable scheme for a DSM, based on the competitive update protocol [23, 28],

is relatively simple. The basic idea behind the proposed scheme is to maintain,
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at all times, at least two copies of each page (at two different nodes) instead of
checkpointing. This will allow the DSM to recover from a single node failure without
significant overhead (provided the non-shared data is also recoverable, as discussed
later).

When the competitive update protocol is used, it is possible that a page may be
resident in only one node. Therefore, to tolerate a single node failure, it is necessary
to modify the competitive update protocol, to ensure that at least two nodes have a
copy of each page. Thus, there are two issues that must be dealt with to make the

DSM fault tolerant (for single node failures).

1. Modification of the competitive update protocol to guarantee two copies of each

shared memory page.

2. Some mechanism needs to be incorporated to make process local state recover-

able and consistency with shared data.

We first focus on the first of the above two issues.

1. Recoverable Shared Data

Maintaining at Least Two Copies of Each Page

To simplify the discussion, we assume that each page has the same fixed limit L.
To make the DSM recoverable, we must modify the competitive update protocol, such
that some copy of the page is not invalidated, even if its update counter exceeds the
limat L. This is achieved by designating, for each update, one of the nodes as the “back-
up”. The copy of a page at the back-up node cannot be invalidated, irrespective of
the value of its update-counter. Note that the back-up is specified for each update, and
may change from one update to the next update of the same page. The performance

of the recoverable DSM may depend on the choice of the back-up — in our approach,
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as described below, the node chosen as the back-up is the one that is expected to
access the page in the near future.
Let us consider the copy of a page P at a node A. Contents of a back-up field

can change based on the three rules listed below.

1. When a node A obtains a copy of a page P from some other node B, node B
also sends identifier of the last-updater of page P. Node A, on receiving the
page, sets its last-updater as well as back-up equal to the last-updater received

from node B.

2. Node A receives an update message for page P from some other node, say C':
In this case, the back-up field at node A is set equal to C'. The node C' is used

as back-up when node A updates other nodes.

The motivation behind this rule is to identify a node as the back-up only if it
has accessed the page recently (this, in turn, is motivated by the principle of

locality).

3. Node A performs a release and sends update messages, for page P, to other
nodes: The update messages are sent to the other nodes in the order of their
identifiers. When the other nodes receive these update messages, they respond
to the update message. Specifically, if update-counter is less than or equal to
limit L or the node is the back-up, the node incorporates update message and
sends an ack along with its update-counter; otherwise, it invalidates local copy
and replies negative-ack. Node A designates a node that replies ack with the
smallest update-counter as the back-up for future updates of page P (ties may

be broken arbitrarily).

In the above procedure, the back-up node, say C, is forced to retain the page
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even if its update-counter exceeds the limit. If some node, say B, also has a
copy of the page, then there is no need to force the node C to retain its copy.
To reduce the situations where a back-up node is forced to retain its copy of a
page, even if its update counter exceeds L, we modify the above procedure, as

follows.

Assume that the back-up node for page P at node A is C. If node A receives
an ack from some node, say B, before sending the update to the node C, then
node A temporarily designates B as the back-up for page P. Now, when the
update is sent to node C, it is not designated as the back-up. After updating all
nodes that have a copy of page P, node A designates a node, say D, that replies
ack with the smallest update-counter as the back-up. (Note that the original
back-up node C' may potentially reply negative-ack if its update-counter exceeds

the limit.)

Note that, for a given page, the back-up at different nodes may be different.

Proposed Recoverable Competitive Update Protocol [36]

The proposed scheme assumes that programs are data-race-free[l]. The modified
protocol is mostly identical to the original competitive update protocol with one
difference: A node that is designated as the back-up for an update does not invalidate
the local copy of the page even if the update-counter exceeds L. (Update message sent
to the back-up node is tagged by a special marker.) Any other node whose update-
counter exceeds L invalidates its local copy of the page. This procedure ensures that,
at any time, at least two copies of a page are in existence.

The back-up for an update is always a node that has accessed the page in the

recent past. Therefore, from the locality principle, this node is likely to access the
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Fig. 26. Update Counter for Recoverable DSM

page in the near future as well. The modified update protocol forces this node to
retain a copy of the page. This protocol may be viewed as incorporating a “pre-
fetch” mechanism. As the page copy is likely to be used in the near future, the
overhead of updating the copy is often compensated by a reduction in the number of
page faults.

Note that “cost” (e.g., number of messages) of the recoverable protocol can be
larger than that of the non-recoverable protocol, only when the non-recoverable pro-
tocol would result in a page having only one copy. Whenever, the non-recoverable
protocol results in multiple copies of a page, the recoverable protocol does not result
in any additional cost. Thus, the difference between the costs of the recoverable and
non-recoverable protocols is expected to be greatest when limit is 0, and reduces as

limit becomes larger.

Example

Figure 26 illustrates how the back-up is maintained. For this example, assume
that the limit L is 2. The system is assumed to contain three nodes, 0, 1 and 2. In
the figure, ¢L and iU denote acquire and release operations by node ¢. (Although we

obtained the notation iL and :U by abbreviating i-Lock and i-Unlock, it should be
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noted that acquire and release operations in release consistency are not necessarily
equivalent to lock and unlock.) Also, tR and iW denote read and write operations
performed on this page by node ¢. Initially, the page is loaded in the local memory
of two nodes (0 and 1 in our example), and one of them (node 0) is considered to be
the last-updater. Back-up at nodes 0 and 1 is initialized to 1 and 0, respectively. The
memory access row in Figure 26 presents a total ordering on the accesses to the page
under consideration. The next three rows present values of the update-counters at the
three nodes at various times, e.g., the update-counter:0 row corresponds to node 0.
(The values in column ¢ correspond to the update-counters after the memory access
in column ¢ is performed.) The next row of the table lists the last-updater variable
at each node (it is identical at all nodes). The last three rows list the value of the
back-up variable for the page at each node. Note that last-updater and back-up change
only when a release is performed, whereas, update-counter at a node A changes when
either (i) node A performs a local access to the node, or (ii) another node performs
an update to the page. A “blank” in the table implies that the corresponding node
does not have a copy of the page at that time, and an X in the figure denotes an
invalidation.

The initial state is illustrated in column 0 of the table. The first acquire is
performed by node 2, followed by a read and a release (columns 1-3). As shown
in column 2, a copy of the page is brought to node 2 when it reads the page, its
update-counter is set to 0, and the back-up is set to 0 (the last-updater for the page).

Next, node 0 performs a acquire-write-write-release sequence (columns 4-7).
When node 0 performs a release (column 7), it sends update messages to other nodes.
As the back-up at node 0, immediately before the release is performed, is node 1, the
update message sent to node 1 is tagged by a marker to inform node 1 that it is the

back-up. When the acknowledgements for the update messages are received, node 0
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determines its new back-up by finding the minimum of the update-counters received
with the acknowledgement. As both nodes 1 and 2 return update-counter 1, node 0
arbitrarily chooses node 2 to be the back-up for its next update. The new back-up
is shown in column 7 of the “back-up:0” row in the table. Nodes 1 and 2 set their
back-up variable to 0, because they received an update from node 0 (column 7).

Next, node 1 performs acquire-read-write-release sequence (columns 8-11). When
node 1 performs a release (column 11), the update message sent to node 0 is tagged
with a marker, as node 0 is the back-up for this access (as shown in column 10,
row “back-up:1”). When all the acknowledgements and update-counters are received,
node 1 determines the new back-up as the node whose update-counter is the smallest,
namely node 0. (The new back-up is shown in column 11, row “back-up:1”). Nodes
0 and 2 change their back-ups to 1, as they received an update from node 1 (column
11).

At this point (column 11), the update-counters for nodes 0, 1 and 2 are 1, 0 and
2, respectively. Next, node 0 performs an acquire-write-release sequence (columns
12-14). At the release by node 0 (column 14), the update message sent to node 1
is tagged by a marker, whereas that sent to node 2 is not tagged, as node 1 is the
back-up for this update (see column 13, row back-up:0). When the update message
is received by node 2, it performs the update and increments its update-counter to
3. Now, node 2 invalidates the local copy of the page because, (a) its update-counter
exceeds limit 2, and (b) the update message sent to node 2 was not tagged by a
marker (which means that node 2 is not the back-up for the update). When node 0
receives the acknowledgements, it determines that node 1 is its new back-up. Also,
node 1 sets its back-up to 0, when it receives the update-message.

Now, node 0 again performs acquire-write-release (columns 15-17) followed by

another acquire-write-release (columns 18-20). At the second release (column 20),
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update-counter for node 1 becomes equal to 3. At each of the release, node 0 sends
an update message to node 1 tagged with the marker. Therefore, node 1 cannot
invalidate its copy of the page. Note that the update-counter at node 1 exceeds 2
(column 20), but the page is not invalidated.

Node 2 now performs acquire-read-release (column 21-23), therefore, it receives
a copy of the page. Along with the page, it also receives identifier of the last-updater
for the page. On receiving the page, its update-counter is set to 0, and back-up set
equal to the last-updater. As node 2 did not write to the page, no update is necessary
at the release (column 23).

Subsequently, node 2 performs acquire-write-release (columns 24-26). At the
release, node 2 sends update messages to nodes 0 and 1, the message sent to node 0
being tagged with a marker. When node 1 receives the update, its update-counter
becomes 4. Node 1 invalidates the page, as the update message was not tagged with

a marker, and the update-counter is larger than the limat.

2. Recoverable Process Local State Consistent with Shared Data

Two implementations of distributed shared memory can be conceived. In one ap-
proach, the application is written such that, to survive a failure, a consistent state of
the distributed shared memory must be available (after recovery). In this case, local
state of the application processes is not necessary for recovery from failure. For such
systems, the scheme in Section 1 is adequate.

The other approach requires that, after a failure, the local state of processes
scheduled on the faulty node be recovered, in addition to the distributed shared
memory. In this case, additional steps must be taken to ensure that the local state
is recoverable. We achieve this by maintaining two copies of the local state of each

process, as described below. The process local state includes non-shared local data,
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contents of registers and stack, etc.

When a node writes shared data and updates other copies of the data, the process
local state at the node can be sent, along with the update message, to any one node.
Although no additional messages are required, the size of one of the messages will
be larger. (This procedure effectively “checkpoints” the local state at another node.)
The size of process local state to be transferred can be reduced by sending only the
modifications to the local state since the most recent update performed by the node.
This incremental approach [50] can reduce the overhead of saving the local state.

The above approaches are application-transparent, in that entire local state of a
process is saved on another node. In many applications, it is possible to identify a
small set of local variables that are sufficient to recover the local state of the process

(a typical example is a loop counter). Consider the application below.

// Typical application //

main() // executed by master node

{
initialize(); // application initialize
init_shm(); // shared memory initialize

fork_threads(compute);// fork remote processes to execute compute()

compute () ; // compute

compute() // executed by all processes

{
while (not finish) { // repeat until FINISH

update(local_vars); // update local variables (e.g., a counter)
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read_shm(); // read shared memory

calculation(); // calculation

write_shm(); // write shared memory

synch() ; // synchronization (e.g., barrier, lock-unlock)

// take checkpoint of local state at the first iteration
if (first iteration)

checkpoint_local_state()

In the above application, each process repeats a computation loop in compute ()
several times. A process may have some local state that does not change after it is
initialized. This local state can be checkpointed during the first iteration of the com-
putation loop. During each iteration, although many local variables may potentially
be modified, only a small set of modified local variables constitute the critical state
of the process. Ounly these critical variables need be saved to recover the process from
a failure. (Similar techniques have been proposed in [5, 50].) When a process sends
an update message to other nodes, a copy of the critical local variables should be
sent to any one node. On a failure, a copy of the local variables is obtained from
another node. These local variables, in addition to the state checkpointed during first
iteration, can be used to recover the process state. The distributed shared memory

state is recoverable by the algorithm in the previous subsection.

3. Recovery

The proposed DSM system is recoverable from single node failures (fail-stop), be-

cause all shared pages have at least two copies, and process local state of each faulty
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process can be reconstructed (if necessary). The recovery is straightforward. After a
single node failure, the shared memory remains available. If the faulty node is to be
recovered, then its process local state is obtained from saved process image and local

variable. Two issues need further elaboration.

Atomic Updates

Since failure can occurs at any time, contents of the copies of the same page may
be different (if the failure occurs while an update is in progress). In this case, some
copies are out-of-date. This problem can be resolved by searching the most up-to-
date copy — to facilitate this, a version number is attached to each page to count the
number of updates performed to the page from the beginning of execution. The copy
with the largest version number is the most up-to-date copy (this is similar to [61]). If
a node fails after it has written to a page, but before it has performed a release then
the modifications made by the node are lost when the node fails. This is acceptable,
as the system state will still be consistent after the failure. However, if a node fails
after the node sent update messages only for the part of pages to be updated on
a release, the node may not restart from the previous consistent state because old
version of the updated pages may not exist. This problem can be solved by new
mechanisms. One possibility is for the updating node to send all updates (for all
pages) atomically to another node, then to send update messages to the other nodes
(copiers) in sequence of nodes for each page. By this atomic update mechanism, all
pages can be updated atomically in spite of a single node failure. If the node receiving
atomic update have copies of associated pages, no additional overhead for sending

update message is necessary for atomic update mechanism.
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Maintaining at Least Two Copies after Recovery

It is necessary to ensure that, after recovery, each shared memory page has at
least two copies. Therefore, after failure, if only one node has a copy of a page, then
another copy is created on any other node. Now we assume that two copies of each
page exist. The recovery algorithm must also ensure that all the last-updater and
back-up fields are correct. We now illustrate how this can be achieved. Consider a
page P. Two cases are possible.

(a) If the last-updater for page P fails, then any other node having the page is
designated as the last-updater, and its update-counter is cleared to 0. All relevant
nodes are informed of the new last-updater. These nodes set their last-updater as well
as the back-up fields to point to the new last-updater. The new last-updater sets its
back-up field to point to any other node that has a copy of the page.

(b) If some node other then the last-updater is faulty, then it is possible that
the back-up field at the last-updater may be pointing to the faulty node. It is only

necessary to set the back-up to point to any other node that has a copy of the page.

C. Performance Evaluation

Experiments are performed to evaluate the overhead for maintaining recoverable pro-
cess local state as well as shared data, by comparing the “cost” for non-recoverable
protocol and recoverable protocol. The “cost” metrics used here are (i) number of
messages and (ii) amount of information transferred between the nodes. We imple-
mented the recoverable DSM by modifying Quarks (Beta release 0.8) [10, 33].

We evaluated the recoverable DSM scheme using the same applications used in

Chapters II and III.
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Results for qtest Application

This application is the same as qtest2 used in the Chapter II. We execute at least
5 times for each read ratio and for each update limit. Appendix A shows experimental
results: average number of messages (Messages), amount of data transferred (Data
(KBytes)), standard deviations of these values (S.D.), and overhead ratio percentage
of recoverable scheme.

Figures 27 through 38 plot costs (the number of messages and the amount data
transferred) for non-recoverable scheme and recoverable scheme for each read ratio
with different update limits. The qtest®z.msg curves show the number of messages
required for non-recoverable scheme with read ratio # percent. The rqtestz.msg
curves correspond to recoverable scheme. The qtestz.dat and rqtestz.dat curves
correspond to the amount of data transferred. Figures 39 and 40 plot overhead ratio
percentage for recoverable schemes. Overhead ratio percentage (r) is computed as:
r = g—; x 100, where C,, is the cost for non-recoverable scheme and C, is the cost for
recoverable scheme. The qtestz.msg and qtestz.dat curves show the overhead for
recoverable scheme with read ratio #, in terms of the number of messages and the
amount of data transferred, respectively. Overhead (the number of messages and the
amount of data) for recoverable scheme is reasonably small for many read ratios and
update limits. Overhead of the number of messages for recoverable scheme converges
to zero as update limit increases because multiple copies exist for each page, thus no
extra messages are required to maintain at least two copies for each page. For small
update limit (1 to 3), the overhead of the number of messages for recoverable scheme
tends to decrease as read ratio increases because back-up node sometimes avoids a
page fault. (Back-up node probably uses the page again without or with small number
of updates by other nodes.) In many cases, the amount of data transferred is reduced

for recoverable scheme. For example, maintaining back-up reduces the page faults at
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the back-up node which avoids sending page at the cost of sending update message(s)
of small size. The number of messages required for non-recoverable scheme of read
ratio 40%, 20%, and 0% (Figures 33, 35, and 37) at update limit 0 is larger than that
at update limit 1, because the number of messages for forwarding the page request is

larger.

Results for Other Applications

We now evaluate our recoverable scheme by executing seven additional applica-
tions (Floyd-Warshall, SOR, ProdCons, Isort, Reader/Writer, Matmult, and Jacobi)
on 8node workstation cluster. These applications are the same as those used in
Chapters II and III. We execute at least 5 times for each application and for each
update limit. Appendix B shows experimental results: average number of messages
(Messages), amount of data transferred (Data (KBytes)), standard deviations of these
values (S.D.), and overhead ratio percentage of recoverable scheme.

Figure 41 through 54 plot costs (the number of messages and the amount data
transferred) for non-recoverable scheme and recoverable scheme for each application
with different update limits. The appl.msg curves show the number of messages
required for non-recoverable scheme for application appl. The rappl.msg curves
correspond to recoverable scheme. The appl.dat and rappl.dat curves correspond
to the amount of data transferred. Figures 55 and 56 plot overhead ratio (%) for
recoverable schemes. The appl.msg and appl.dat curves show the overhead for
recoverable scheme in application appl in terms of the number of messages and the
amount of data transferred, respectively. For Jacobi, overhead of recoverable scheme is
small because all of updated shared data is used in other nodes. For ProdCons Isort,
and Reader/Writer, overhead of the recoverable scheme is relatively small because

the size of shared data updated in each node is relatively small in many cases. For



88

SOR and Matmult, only a small part (or no part) of updated shared data is used in
other nodes, which makes cost for non-recoverable scheme small, however, cost for
recoverable scheme large. In particular, the overhead for recoverable scheme in SOR
is very high: up to 1,300 % for the number of message and 2,000 % for the amount
data transferred (not shown in Figure 55 or 56). For Floyd- Warshall, updated shared
data is not used (immediately) in other nodes after the modification, which makes

overhead of recoverable scheme large.

D. Summary

This chapter presents a scheme to implement a software DSM that is recoverable in
the presence of a single node failure. Our scheme differs from the previous work in that
the proposed scheme is based on the competitive update protocol, which combines
the advantages of invalidate as well as traditional update protocols. Our approach
is based on the simple observation that, to make the DSM recoverable from a single
failure, it is adequate to ensure that each page has at least two copies at all times.
To achieve this we suggest a modification to the basic competitive update protocol.

We implemented recoverable DSM by modifying Quarks [10, 33] on a network
of workstations. Experimental results indicate that the overhead for the proposed
scheme is low for some applications in which a large portion of memory is updated

by one node while not used by other nodes.
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CHAPTER V

ANALYSIS OF FAILURE RECOVERY SCHEMES

Checkpoint and rollback recovery is a technique used to minimize the loss of compu-
tation when failures occur. A checkpoint is a state of application stored on a stable
storage. The application periodically saves checkpoints, and can recover from a fail-
ure by rolling back to the checkpoint [65]. When a process rolls back and re-executes
from the last checkpoint, the cost (loss) incurred by re-doing the lost computation
may be larger than that to execute the original computation. In addition to com-
pletion time delay, other performance metrics (e.g., user’s satisfaction in real-time or
on-line transaction applications) may also degrade by unexpected failure and recov-
ery. This chapter determines how re-do overhead factor for unexpected execution
overhead affects the performance of recoverable DSM.

This chapter analyzes the performance of three recoverable schemes (incorpo-
rating re-do overhead factor): (1) multiple fault-tolerant scheme using checkpointing

and rollback recovery, (2) single fault-tolerant scheme presented in chapter IV, and

(3) a two-level scheme [64].

A. Related Work

For a transaction oriented system, Chandy et al. [13] measure the time to re-do the
transactions arrived during ¢ time units by using compression factor. The compression

factor c is given by:

where p is arrival rate of transactions and b is re-doing rate. Therefore, time required

for re-doing the lost transactions during ¢ time units is ct. c is assumed be less than
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1 (order of 1/10) because u is much smaller than b. They assume under-loaded trans-
action system and do not consider the cost of delaying the newly arrived transactions
after failure.

Many researchers present cost analysis for the roll-back recovery scheme [13, 64,
65, 70], roll-forward scheme [52], and replicating data [63]. Some papers analyze cost
for recovery schemes using volatile memory [63, 62, 64], while many other papers
present recovery scheme using volatile memory [4, 9, 22, 31, 36, 61] without any
analysis. Chandy et al. [13], Young [70], and Vaidya [65] present methods to compute
optimal checkpoint interval to minimize expected (average) execution time.

Theel and Fleisch analyze the costs for read and write operations, and availabil-
ity for the boundary-restricted protocol [63]. They also present dynamic boundary-
restricted protocol that can change the range (boundaries) of the number of cached
copies to reduce operation cost while maintaining desired data availability.

Vaidya [64] presents a two-level recovery scheme that tolerates the more probable
failures with low performance overhead, while the less probable failures may possibly
incur a higher overhead. By minimizing overhead for the more frequently occurring
failure scenarios, the two-level approach can achieve lower performance overhead (on

average) as compared to single-level recovery schemes.

B. Recoverable DSM Schemes

We analyze three recoverable schemes incorporating re-do overhead factor. The cost
required to re-do the lost computation after a process rolls back to the last checkpoint
or restart may be different from that to execute the original computation. For an
example, consider an airline reservation system. If system fails temporarily, then

transactions executed during ¢ time units will re-execute. An airline company will
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lose a lot of money by suspending reservation during the ¢ time units. The monetary
loss by stopping reservation for ¢ time units may be much more serious than the
computational loss of ¢ time units. The three schemes analyzed here are summarized

below.

1. Multiple Fault-Tolerant Scheme

Many applications require long execution time to finish tasks. Such applications may
lose computation if a failure occurs during the execution. Checkpoint and rollback
recovery scheme can be used to reduce the loss of computation upon failure. When
the application executes on multiple processors, a consistent checkpointing scheme is
used to save a global consistent state of the multi-process application [14, 20, 41]
Arbitrary number of failure can be tolerated by rolling the application back to

the most recent consistent checkpoint.

2. Single Fault-Tolerant Scheme

Our recoverable DSM scheme presented in the Chapter IV is an example of a single
fault-tolerant scheme. This scheme maintains at least two copies for each page in a
DSM to recover from single-node failure. Additional cost is incurred to maintain at
least two copies for each page when a node executes release operation. If a single node
failure occurs, then the application can recover from the failure without re-executing
previously committed computation. However, all processes may have to restart from

the initial point of the task if multiple-failure occurs.

3. Two-level Recovery Scheme

We consider a two-level recovery scheme obtained by combining multiple fault-tolerant

checkpointing scheme and single fault-tolerant scheme from Chapter IV. With this two
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Fig. 57. Markov Chain for a Checkpoint Interval

level scheme, a single-node failure (more probable) can be recovered with the single
fault-tolerant scheme, while multiple-node failure (less probable) can be recovered

using a global consistent checkpoint.

C. Performance Analysis

This section presents performance analysis for the three recovery scheme described
in the previous section. For this analysis, we incorporate a re-do overhead factor (k)

that is defined as the relative cost of additional computation needed due to failure.

1. Multiple Fault-Tolerant Scheme

Expected (average) execution time (denoted as I') of a single checkpoint interval with
re-do overhead factor £ = 1 is evaluated in [65, 70]. We consider expected cost T’
with re-do overhead factor & > 1, and analyze optimal checkpoint interval by varying
re-do overhead factor k. Figure 57 shows the same 3-state discrete Markov chain as
that presented in [65].

State 0 is the initial state at the start of a checkpoint interval. A transition

from state 0 to state 1 occurs if the interval is completed without failure. If a failure
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occurs, then a transition is made from state 0 to state 2. After state 2 is entered, a
transition occurs to state 1 if no further failures before the next checkpoint is taken.
If another failure occurs after entering state 2 and before the next checkpoint, then
a transition back to state 2 occurs.

Each transition (X,Y), from state X to state Y in the Markov chain, has an
associated transition probability Pxy and a cost Kxy [65]. Cost Kxy of a transition
(X,Y) is the expected cost spent in state X before making the transition to state
Y. In this analysis, T is the amount of useful computation per checkpoint interval,
C is a checkpoint overhead, R is a overhead of a rollback to the checkpoint, and A is
the aggregate failure rate of all nodes in the system. (Useful computation excludes
the cost spent on checkpointing and rollback recovery.) Failures are assumed to be
governed by a Poisson process. Note that re-do overhead factor k is only included
for the computation overhead due to failure(s). Refer to Figure 58 for an illustration

— the figure shows the time required for different operations and also their costs.
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Fig. 58. Checkpoint and Rollback Recovery Scheme

The expected cost, I', required to execute one checkpoint interval is the expected

cost of a path from state 0 to state 1.

P22

1 — Py

I' = Py Ko1 + Poq <K02—|- K22-|-K21>

By substituting and simplification:
I'=(1—k)(T+C)+EXIEEQTH) 1)

Let G(t) denote the expected cost required to perform ¢ units of useful compu-

tation. Then, we define overhead ratio (r) as [65]:

r = lim M:lim @

t—y oo t t—y oo

— 1.
In this analysis, overhead ratio (r) is given by:

-1

r =

r
T

To choose an appropriate value of T' so as to minimize the overhead ratio r, the
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optimal value of T' (T,,;) must satisfy the following equation:

Or

o7 = O
O ((L=k)(T+C)+hAT IR 1) A
oT T B

By simplification and approximation (as shown in Appendix C):

20
Ak

Topt ~

We now present numerical examples:

1. Assume the following parameters: checkpoint overhead (C') is 2 time units,
recovery overhead (R) is 2 time units, failure rate (A) is 0.01 per time unit.
Figure 59 shows overhead ratio r by varying checkpoint period T. Overhead
ratio is minimum at 7 = 18.7, 13.6, 10.0 for £k = 1, 2, 4, respectively. The
checkpoint period (T') that minimizes the overhead ratio r is close to computed

approximation value (T,p): Topr = 20.0, 14.1, 10.0 for k£ = 1, 2, 4, respectively.

2. As another example, we assume that failure rate (1) is 0.001 per time unit, and
the other parameters are the same as the previous example. Figure 60 shows
overhead ratio r by varying checkpoint period T'. Overhead ratio is minimum
at T =61.9, 44.1, 31.4 for k = 1, 2, 4, respectively. The checkpoint period (7T')
that minimizes the overhead ratio r is also close to computed approximation

value (Topt): Topr = 63.2, 44.7, 31.6 for k = 1, 2, 4, respectively.

We can observe that the optimal checkpoint interval (T,,:) decreases as re-do
overhead factor (k) increases. This is intuitive, because larger k implies that cost

incurred by a failure is high, if checkpoint interval is large.
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2. Single Fault-Tolerant Scheme

Our single fault-tolerant scheme presented in the Chapter IV maintains at least two
copies for each page to recover from single-node failure. Additional cost is incurred to
maintain at least two copies for each page when a node executes release operation. To
simplify analysis, we assume that the failure-free overhead of the single fault-tolerant
scheme to maintain at least two copies for each page is a multiplicative factor a. If
the failure-free execution time of a task without using a recovery scheme is v, then
the failure-free execution time of the task using the single fault-tolerant scheme will
be a~y. We also assume that recovery overhead to recover from a single fault is a
constant R. We assume that if another failure occurs before system recovers from
a failure, a restart is required. (This assumption is somewhat pessimistic.) Single
fault-tolerant scheme is illustrated in Figure 61 — the figure shows the time and cost

required for different operations.
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Let f(a<) denote the expected time (not cost) required to perform + units of
useful computation. (We will determine the expected cost later.) Then, f(t+¢)— f(¢)
is the time required to perform ¢ time units of computation starting from time ¢. Let
E(z) denote the amount of time, during an interval of length z, before a failure occurs,
given that a failure occurs sometime during the interval. Then,

)\6_>\t we—)ﬁv

Ew:/mtidt:)\_l—i
(=) 0o 1l—e?= 1—e =
Now, consider an interval of length ¢, starting at time ¢. There are three cases:

*¢): ¢ time units are required to

1. No fault occur during ¢ (probability is e~

complete the interval.

2. A fault occurs during ¢, say at t+¢; (¢; < €), but the fault is recovered without
another fault during the recovery time R (probability is (1 — e™*¢) e *E): After
that, (1) if the task proceeds after the recovery without any fault until ¢t + ¢
(probability is e *(¢=¢1)), then R 4 ¢ time units are required to complete the
interval; (2) if another fault occurs after recovery (probability is 1 — e~*(¢=¢1)),
some additional time required to complete the interval — let this time be denoted

as h(e — 7). Clearly, h(e — ;) will approach 0 as ¢ approaches 0.

3. A fault occurs during ¢, at t+¢; (&1 < ¢), and another fault occurs at t +e;+ ¢
(€2 < R) before recovering from the first failure (probability is (1 — e™>¢) (1 —
e_>‘R)): In this case, E(e) + E(R) + 7+ f(t) + (f(t + €) — f(t)) time units are
required to complete the interval (E(e) + f(t) is required for re-doing the lost
computation, E(R) for recovering from the first failure, r for recovering from
the second failure (restart) — we assume that » = 0, and f(t 4 ¢) — f(¢) for

original computation).
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Thus, f(t 4+ ¢) — f(t) is obtained as:

flt+e)—f(t) = e
+ (1—e) e e (R +¢)
+(1— e M) (R+ e+ h(e — 1))
+ (1—e?)(1—e?B) [E(e) + E(R) + f(t) + f(t +¢) — f(t)]

On simplification and taking a limit as € approaches 0, we obtain:

lim [f(t te) - f(t)] = 14+Xe?BR4 A(l— e_>‘R) E(R)+ A(1 - e_>‘R) f(?)

e—0 £
0f(t)

where A =1+ e *EF R+ A(l— e‘AR) E(R)and B=X(1— e‘AR).

By calculus:

Now, we determine the average cost of executing ¢ units of useful computation.
Observe that, out of f(a ), average time spent on unexpected execution (due to fail-
ure) is f(ay)—a~y. Thus, the average cost due to re-do is k (f(ay)—a ). Therefore,
the average cost required to perform v units of useful computation, denoted as g(a+),
is:

glay) = ay+k(flay)—ay)
= glay) = ay(l—Fk)+kf(ay)

A A
= glay) = a*y(l—k)—l—k(EeBow—E)

The average overhead is evaluated as a fraction of v (task length).
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=r = a(l—k)—l—% <%63a7—%>—1

Figure 62 shows overhead ratio r by varying the failure-free overhead factor ()
for the single fault-tolerant scheme. We use short task length (y = 80) for this
analysis. We assume that recovery overhead (R) is 0.6 time units, failure rate () is
0.01 per time unit. The overhead of single fault-tolerant scheme is lower than that
of the checkpoint scheme (shown in the Figure 59) using optimal checkpoint interval,
when the failure-free overhead factor (a) for single fault-tolerant scheme is less than
1.25 (at k = 1), 1.36 (at k = 2), and 1.55 (at k = 4). Our previous research in Chapter
IV shows that the failure-free overhead («) for single fault-tolerant scheme is less than
1.25 in many applications. Another observation is that the single fault-tolerant DSM
scheme is not too sensitive to re-do overhead factor (k), if the task length (v) is short
and the failure rate (A) is not high, while checkpoint scheme is more sensitive to re-do
overhead factor (k). Thus, in particular, our single fault-tolerant scheme is better for
high re-do overhead factor (k), for short tasks.

However, our single fault-tolerant DSM scheme is not good when the task length
(v) is very long. As the task length () increases, the probability of rolling back
to start point of the task becomes large due to multiple-failure, while the average
overhead of checkpoint scheme is essentially independent of the task length (). Figure
63 shows the average overhead by varying task length. We use fixed failure-free
overhead (a = 1.1). As task length increases, the average overhead increases. Re-do
overhead factor (k) affects the average overhead more, as the task length increases.

Figure 64 shows the average overhead for single fault-tolerant DSM scheme and
checkpoint scheme by varying failure rate (A). We use k = 1, a = 1.1, and v = 80
for this analysis. For the single fault-tolerant scheme at low failure rate, the average

overhead is approximately equal to a — 1, because the single fault-tolerant scheme
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is enough to recover most faults. However, the average overhead increases rapidly
when the failure rate is high. Overhead of the checkpoint scheme is lower than the
single fault-tolerant scheme for small A. As the failure rate becomes moderately large,
single fault-tolerant scheme performs better. The overhead of the single fault-tolerant
scheme is still near & — 1 because many of failures can be recovered by the single
fault-tolerant scheme, while the overhead of the checkpoint scheme increases more
rapidly. At higher failure rate, again checkpoint scheme performs better, because
the single fault-tolerant scheme suffers from frequent restarting due to multiple near-
simultaneous failures.

In general, the single fault-tolerant scheme performs better for low failure-free
overhead (a), short task length (), and/or low failure rate (A). However, if task
length () is long and/or failure rate (\) is very high, then it is highly possible that

another failure will occur before recovering from the previous failure. When more
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Fig. 65. Failure-free Execution

than one failure occurs, task has to restart from the initial point, because single fault-
tolerant scheme can recover single failure only. To solve this problem, we consider a

two-level scheme in the next section.

3. Two-Level Scheme

The two-level scheme periodically takes checkpoints to allow recovery from arbitrary
number of failures. Between checkpoints, the single fault-tolerant scheme is used to
allow quick recovery from single failures. Figure 65 illustrates a failure-free execution
of two-level scheme. To evaluate expected execution time, we assume that the amount
of useful computation in a checkpoint interval is 7., and checkpoint overhead is C'.
Each checkpoint interval ends with a checkpoint except the last interval. There are
[# — 1] intervals of length T, + C' that requires the cost of g(T. + C') per interval,
and the last interval of length v — [ £ — 11T, (7., in Figure 65) that requires the cost
of g(y — [ — 1]T¢). Thus, the expected task completion cost (E(I)) is:

s [ +s (- [3-1]7).

g(t) is defined in the previous subsection.

As an example, Figure 66 shows the average overhead by using the following
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parameters: failure-free overhead for single fault-tolerant scheme (a) is 1.1, re-do
overhead factor (k) is 1.0, overhead of checkpoint (C') is 2.0, rollback overhead by
single fault-tolerant scheme (R) is 0.6, rollback overhead to checkpoint (R.) is 2.0,
failure rate (A) is 0.1, length of task () is 80. From Figure 66, observe that the average
overhead is minimized when the checkpoint interval (7.) is 20 x a = 20 x 1.1 = 22.
To compare the performance of two-level scheme with one-level checkpoint scheme,
we use very long length of task (y = 1,000,000) (other parameter are the same as
the previous example). As shown in Figure 67 (checkpoint denotes checkpointing
scheme, and two-level:alpha=a denotes two-level scheme with the failure-free over-
head of « for single fault-tolerant scheme), the minimum overhead of two-level scheme
with a = 2.0 is comparable with that of one-level checkpoint scheme. In this exam-
ple, the two-level scheme with a < 2.0 is better than one-level checkpoint scheme.

The Qcriticat Where two schemes require same overhead will decrease as A decreases,
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because the overhead of checkpoint scheme decreases. (Figures 59 and 60 imply this.)

Two-level recovery scheme includes single fault-tolerant (one-level) scheme as a
special case. When T, = v, the two-level scheme is identical to single fault-tolerant
scheme. Two-level scheme can be used when ~ is long, A is high, and/or R is long,
because in these cases it is highly possible that processes using the single fault-tolerant
scheme may restart due to multiple-failure (another failure occurring before recovering

from a previous failure).

Optimal Checkpoint Interval

Now, we compute the optimal checkpoint interval of two-level scheme approxi-
mately. In our case, the first-level recovery scheme is the single fault-tolerant scheme,
and the second-level scheme is the checkpointing scheme. The failure from the point

of view of the checkpointing scheme is the failure that can not be recovered by the
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first-level recovery scheme. If another failure occurs before a failure is recovered,
then this is considered as “failure” in the second-level. Thus failure rate (Az) of the

second-level is computed as follows:

(1—e=*8)(1—e?F)

Ay = lim.
= Ay = lim._

=X = A(1—eE).
This is an approximation because the second-level failures are not exponentially dis-
tributed. Thus, an approximation of the optimal checkpoint interval for the two-level
scheme is (obtained using equation for Ty, and assuming that second level failures

as exponentially distributed with mean interval -

2
ToptZ = \/)\2 \/ (1 — 6_>‘R

As an example, in Figure 67 the overhead of two-level scheme is minimum at

T. = 24.9 for all a. The computed optimal checkpoint interval (Tpp2) for two-level

scheme is:

2 2 X 2
Toptz:\/)\2 \/ R :\/le(1 o) = 262

Topta = 26.2 is close to the actual optimal checkpoint interval (24.9).

D. Summary

This chapter evaluates how re-do overhead factor (k) affects the cost of recoverable
DSM. We also analyze optimal checkpoint interval by varying the re-do overhead
factor (k). We analyze and compare the performance of three recoverable schemes
(multiple fault-tolerant scheme, single fault-tolerant scheme, and two-level scheme)

incorporating the re-do factor.
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In general, single fault-tolerant scheme presented in Chapter IV is better for low
failure-free overhead (a), short task length (v), and/or moderate failure rate (A).
However, if task length (y) is long and/or failure rate () is high, then it is highly
possible that another failure will occur before recovering from a previous failure.
When more than one failure occurs, task has to restart from the initial point, because
single fault-tolerant scheme can recover single failure only. To solve this problem, we
can use the two-level recovery scheme. The two-level scheme tends to perform better
than the checkpointing scheme unless the failure-free overhead (a) is large and/or the

failure rate () is very small.
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CHAPTER VI

A COST MODEL FOR DISTRIBUTED SHARED MEMORY USING
COMPETITIVE UPDATE
Selecting appropriate update limit L is important for the competitive update protocol.
However, no study has been done for analytically determining appropriate update
limit. This chapter presents a new cost analysis model for distributed shared memory
(DSM) using competitive update protocol. Using the proposed model, we compute
the cost of the competitive update protocol for each update limit. This cost function
is used to determine the optimal update limit for the competitive update protocol.
The proposed model is validated by comparing analytical results obtained using the

model to experimental results.

A. Related Work

Many cost analysis models are presented by other researchers. Most existing models
use read/write ratio and/or memory access fault ratio as input parameters [8, 7, 32,
60, 63, 58]. References [8, 7] present modeling to predict the number of cache misses.

Stumm and Zhou [60] compare the performance of four basic protocols. They
compute the average memory access cost based on parameters: the cost of sending
packet, the cost of sending page, the number of nodes, read/write ratio, and proba-
bility of fault. Srbljic et al. [58] present similar performance analysis based on data
access type: single/multiple-reader single/multiple-writer. Kessler and Livny [32]
compare the performance DSM algorithms by varying a synthetic memory access pat-
tern characterized by several parameters. Brorsson and Stenstrom [7] classify shared
memory access pattern as read-only/read-write exclusive/shared-by-few/shared-by-

many. They characterize producer-consumer and migratory access pattern using this
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classification, and compute cache miss ratio. They also apply similar method to sta-
tionary access pattern [8]. Other related works on cost models is discussed in Chapter
II.

Selecting appropriate update limit L is important for the competitive update
protocol. However, no study has been done for analytically determining appropriate
update limit. Previous approaches include selecting update limit by guesswork, or
experimental evaluation of the application for many different update limits. [23]
presents simulation results by varying the update limit for the competitive update

protocol. They conclude that the best update limit is difficult or impossible to predict.

B. Cost Analysis

The cost of a message of size m is denoted as c(m). At first, we consider message
cost in a segment in which the number of updates is U. A copy of the page is up-
dated until it receives L update messages from other nodes (between two consecutive
local accesses). Upon receiving (L + 1)-th update message, local copy of the page is
invalidated.

The average cost, denoted C(L,U), of a segment with U updates when using

competitive update protocol with limit L is:

U (c(pupdate) —I_ C(pcontrol)) When U S L

(L + ]‘) (c(pupdate) + c(pcontrol))
‘I’(F + ]-) c(pcontrol) + c(ppage) when U > L.

Note that ¢(peontror) and ¢(ppage) are constants, while ¢(pypdate) depends on size of the
update message, and F is the average number of hops a request message takes before

reaching a node that has the requested page. Therefore, the above expression uses



118

average value of ¢(pupdate )-

Now, let p(z) denote the probability density function (pdf) of the number of
updates z in a segment for a given application. Based on the above cost analysis for
a segment with U updates and limit L, average cost per segment for the application,

denoted Cuyg(L,p(z)), can be obtained as:

Cang(L,0(2)) = [c(Pupdate) + c(Peontral)| TEoy @ p(z)
+ [(L + 1) (C(pupdate) + c(pcontrol))
+ (F + 1) c(Peontrot) + c(Ppage)| T4 P()

Using the average cost per segment for a particular limit L, optimal update limit,
Loptimar, can be obtained as the value of L that minimizes the above expression for

Cavg(L,p()). More formally,

Loptimal - {l | minLZO Oavg(Lap(w)) = Oavg(l7p(w))}

Now, in Section C, we illustrate how the above model can be used to determine
optimal L for many different probability density functions p(z). Section D compares

analytical results with experimental measurements to validate the proposed model.

C. Application of the Cost Model

We consider several different probability density functions p(z) and plot the average
cost Cuvg(L,p(z)) for different values of L. These plots can then be used to: (a)
observe the impact of p(z) on the C,uq(L,p(z)) curve, and (b) to determine optimal
L for a given p(z). For the illustration, we assume that ¢(peontror) = 1, m =3,
¢(Ppage) = 10, and F = 3.

The figures in this section may be somewhat confusing to read. Therefore, we

now provide an explanation to read these figures.
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Consider Figure 68. This figure plots two curves: One curve corresponds to a
particular probability density function p(z) named pdfi. For the pdf1 curve, the
horizontal axis corresponds to the number of remote updates x, and vertical axis
corresponds to p(z) x 100. For instance, with pdf1, there is a 30% chance that the
number of updates in a segment is 1.

The second curve (named cost1) in Figure 68 plots average cost Couyg(L,p(z))
as a function of update limit L. For the cost1 curve, the horizontal axis corresponds
to update limit L, and vertical axis corresponds to the average cost per segment
Cavg(L,p()). For instance, in Figure 68, average cost per segment with limit L = 3
is 10.

Similarly, Figures 69 through 73 plot five more probability density functions
(named pdf2 through pdf6), and the corresponding curves for average cost (named
cost2 through cost6, respectively).

These figures provide an interesting way to view the correlation between the
update probability density function and the cost function. As noted before, these
curves can also be used to determine the optimal update limit. For instance, for
pdf6, L = 1 is optimal. In general, more than one value of L may yield optimal
performance — for instance, for pdf1, all values of L greater than 4 yield the same
cost.

The greatest advantage of using the proposed cost model is that it is only neces-
sary to simulate or execute the application once to estimate the probability density
function p(z) — once p(z) is known, the optimal L can be determined analytically.
Without this approach, determining optimal L will require multiple simulations (or
executions) for different values of L.

In Figures 68 through 73, we used the same values of parameters c(pupdate) and

¢(Ppage) for all cases. Next we investigate the impact of the value of these parameters
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on the average cost. For this analysis, we use probability density function pdf3 in
Figure 70.

Figure 74 shows how c(pupdate) affects the average cost per segment. Here we
assume that c(ppege) = 10 and F = 3. In Figure 74, the curve labeled updatel
corresponds to the case when m = 1. Similarly, other curves labeled update:
correspond to the case when m = 2. As the curves show, competitive update
protocol with small update limit L is better for large m, and vice-versa. This
is intuitive, because if cost of an update is large, then updates should be avoided (this
is achieved by invalidating a page soon by using small L).

Figure 75 shows how ¢(ppege) affects the average cost per segment. In this case,
we assume that F' = 3 and m = 1. Here, the curve labeled paget corresponds
to the case when ¢(ppage) = ¢ (thus, curve page3 assumes that ¢(ppege) = 3). When
¢(Ppage) 1s large, the cost of serving a page fault is high (because a page must be
transferred via a message costing ¢(ppage)). Therefore, with large c(ppage), a page
should not be invalidated too often (to avoid future page faults). Therefore, as one
would expect, Figure 75 shows that competitive update protocol with large update

limit is better for larger c¢(ppage)-

D. Validation of the Proposed Model

To verify the accuracy of our cost analysis model, we compare the average cost es-
timated by our model with that obtained by experimental measurements. For this
validation study, we assume that cost of a message of size m is m, that is, ¢(m) = m.

We implemented the competitive update protocol by modifying Quarks DSM
(Beta release 0.8) [10, 33]. For this study, we used several real applications (named

Floyd-Warshall, Isort, Jacobi, SOR)) as well as synthetic applications (named gtest50



Cost

Cost

55 T T T T T T

| DA
S0 /&.»Aupdatel’ ~— 7
45 | 2 ‘update2’ -+--
oL ‘updated’ -B-- |
o 'updates’ -
35 L 'updatelQ’ -A--- ]
,A'/
30 I~ '/,/ e /X.-——-—X‘ ‘‘‘‘‘ K-—. X\.\_\_
25 g’ X ]
X
20 & SegeHe S =

15 &= R |
10 W

'
'

L — |
)

5 I l l l ] I L

0 1 2 3 4 5 6 7 8

Update Limit

Fig. 74. Cost by Varying c(pupdate )
16 T T T T T T T
15 4e--A o _ ‘pagel’ o— 4

Tal ‘page2’ —+--

14 | N 'page3 S

i ~ ., pages -
13 A pageld’ -&--
12 Sa ]

B ¢ —"'x“‘X\“\ \‘\‘ -
11 X7 " XA
ok - E AL

5| /’f“(/(#——-—_ — = = "“\\:\

Or B B
g 47 7
7+ il
6 | ! l ! ! ! |

0 1 2 3 4 5 6 7 8

Update Limit

Flg 75. Cost by Varying c(ppage)



125

and gqtest10, i.e., qtest2 in Chapter II with read ratio 50% and 10%, respectively).
The experiments were used to determine: (a) the experimental cost for each update
limit L, and (b) the probability density function p(z) of the number of updates in
a segment. All applications are executed on a 8-node workstation cluster. Using
the p(z) measured by experiments, we then computed the average cost per segment
analytically. (We use F = 4 in this analysis.) The objective here is to compare this
analytical result with the cost measured experimentally.

In Figures 76 through 81, the curve labeled pdf plots p(z) x 100, where p(z) is
obtained via experimental measurements. For the pdf, the horizontal axis corresponds
to number of updates z, and vertical axis corresponds to p(z) x 100. p(z) is obtained
by keeping track of the number of updates per segment for all pages at all nodes. The
cost.analysis curves in Figures 76 through 81 plot the analytical values of average
cost per segment, as obtained by using our model. The cost.exp curve plots the
average cost per segment as measured during the experiments. The average is taken
over all segments for all pages at all nodes.

In our analysis, we did not consider the messages required for synchronization,
initialization (when the program starts executing), and false updates (sending up-
date message to a node whose local copy has been already invalidated). Therefore,
one would expect a mismatch between cost.exp and corresponding cost.analysis.
However, the difference between these two curves would be relatively independent of
the value of L. The cost.adj (adjusted) curves in Figures 76 through 81 are obtained
by subtracting the unaccounted costs from cost.exp.

Figures 76 through 81 show that cost estimated by analytical model,
cost.analysis, is typically close to the adjusted cost obtained by experimentation
results, cost.adj. In fact, cost.analysis and cost.exp are also typically close.

However, there are significant differences between cost.analysis and cost.exp, es-
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pecially in the Figures 80 and 81. As noted before, these differences are due to
unaccounted messages, for instance, for synchronization, initialization, and false up-
dates. In case of Jacobi and SOR, many messages are sent initially to initialize the
shared data. These messages form a large fraction of all messages sent. Therefore,
the error in our model is much more pronounced for these applications, as compared
to other applications.

To determine whether the probability density function of the number of updates
per segment is stable in different executions, we measure p(z) by executing gtest (10%
read ratio), Jacobi, Floyd-Warshall, and Isort 5 times with update limit L = 3 and
L = 8. Figures 82 through 89 show the experimental results. The probability density
function is stable for Floyd-Warshall and Isort, relatively stable for gtest (L = 3) and
Jacobi (L = 8), and less stable for gtest (L = 8) and Jacobi (L = 3), on each run.

We also determine whether the probability density function varies much with the
update limit, we measured p(z) by executing three applications (gtest with 50% read
ratio, Jacobi, and SOR) for different update limits. Figure 90 through 92 show that
p(z) of gtest is relatively stable, p(z) of SOR is very stable, and the p(z) of Jacobi
is relatively unstable (however, in general, the p(z) of Jacobiis decreasing as update
limit increases). All 8 nodes share some shared memory space in gtest and Jacobi
applications. The order of shared memory access may be different for each loop in
gtest application, and the order of nodes reaching the barrier may be different for
each loop of Jacobi application, which causes p(z) to be unstable. However, only 2
nodes share the shared memory space in SOR application which causes p(z) to be
stable.

One may expect that the probability density functions will be different when us-
ing different input data for some applications. To verify, we measured the probability

density functions of the number of updates in a segments with different input data
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for Floyd-Warshall application. We choose Floyd-Warshall because memory access
pattern is different on different inputs. (The degree of sharing increases if the input
matrix is more dense.) Figure 93 shows the probability density functions of different
input data for Floyd-Warshall application. There is only a little difference for each
input data.

The above measurements show that for some applications, the probability density
function p(z) is relatively independent of the update limit and input data. Of course,

it should be emphasized that, this is not true for all applications.

E. Summary

This chapter presents a new cost analysis model for competitive update protocol
for software distributed shared memory (DSM). This model can be used to compute
optimal update limit for the competitive update protocol. The optimal limit is chosen
such that the cost metric is minimized for the given application (as characterized by its
probability density function p(z) of number of updates z in a segment). We validated
the proposed model by comparing analytical results from the model to experimental
results obtained from an experimental DSM implementation. The analytical results
often closely match the experimental results. We conclude that the proposed model

can, therefore, be used to estimate the optimal update limit for an application.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

A. Contribution

This dissertation deals with distributed shared memory using the competitive update

protocol. The dissertation makes several contribution, as discussed below.

1. Adaptive Distributed Shared Memory

Our objective is to design an adaptive DSM that can adapt to time-varying pattern of
accesses to the shared memory. The adaptive DSM automatically choose the appro-
priate consistency protocol (without any input from the programmer). Our approach
continually gathers statistics, at run-time, and periodically determines the appropri-
ate protocol for each copy of each page. The choice of the protocol is determined
based on the “cost” metric that needs to be minimized. The cost metrics considered
in this dissertation are number and size of messages required for executing an appli-
cation using the DSM implementation. A generalization to minimize arbitrary cost
metrics, including execution time is also discussed briefly.

Our adaptive approach determines, at run-time, the cost of each candidate con-
sistency protocol, and uses the protocol that appears to have the smaller cost. The
proposed adaptive approach is illustrated here by means of an adaptive DSM scheme
that chooses either the invalidate or the competitive update protocol for each copy of
a page — the choice changes with time, as the access patterns change. The disserta-
tion presents experimental evaluation of the adaptive DSM using an implementation
based on Quarks DSM [33]. Experimental results from the implementation suggest

that the proposed adaptive approach can indeed reduce the cost.
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2. Migratory Adaptive Distributed Shared Memory

We modify the above adaptive DSM to allow migratory protocol as a consistency pro-
tocol. The modified adaptive protocol attempts to detect migratory access pattern,
and chooses the migratory protocol when it is deemed most cost-effective. Due to the
dynamic distributed ownership algorithm used in many DSMs, migratory protocol is
not always optimal even if the access pattern is migratory sharing.

The dissertation presents experimental evaluation of the proposed adaptive mi-
gratory scheme using an implementation based on Quarks DSM [33]. Experimental
results from the implementation suggest that the proposed adaptive approach can
usually reduce the cost. Specifically, the proposed scheme can typically reduce the
number of messages as compared to the adaptive scheme in [39], as well as invalidate

and competitive update protocols.

3. Single Fault-Tolerant Distributed Shared Memory Using Competitive Update

This dissertation presents a scheme to implement a software DSM that is recoverable
in the presence of a single node failure. Our scheme differs from the previous work in
that the proposed scheme is based on the competitive update protocol, which combines
the advantages of invalidate as well as traditional update protocols. In addition, our
approach is integrated with the release consistency model for maintaining memory
consistency. In the basic competitive update protocol, the number of copies of a page
varies dynamically — in the extreme, only one node may have a copy of the page or all
nodes may have a copy of the page. Our approach is based on the simple observation
that, to make the DSM recoverable from a single failure, it is adequate to ensure
that each page has at least two copies at all times. To achieve this we suggest a

modification to the basic competitive update protocol. Recovery is simple because an
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active back-up copy exists for each page. The proposed scheme is applicable to other
updated-based protocols that incorporate mechanisms to selectively invalidate some
pages. It is also applicable to generalizations of the competitive update protocols
where the limit may be different for each page, and vary with time [36, 39].

We implemented recoverable DSM by modifying Quarks [10, 33] on a network of
workstations. Experimental results indicate that, in many applications, the proposed

scheme does not significantly increase the number or size of messages required.

4. Analysis of Failure Recovery Schemes

We analyzes the performance of 3 recoverable DSM schemes (incorporating with re-
do overhead factor): (1) multiple fault-tolerant scheme by using the checkpoint and
rollback recovery scheme, (2) single fault-tolerant scheme presented in chapter IV,
and (3) two-level scheme [64] combining scheme (1) and (2).

In general, single fault-tolerant scheme presented in Chapter IV has advantage
in the low failure-free overhead (), short task length (v), and/or low failure rate ().
However, if task length (y) is long and/or failure rate () is high, then it is highly
possible that another failure will occur before recovering from the previous failure.
When more than one failure occurs, task has to restart from the initial point, because
single fault-tolerant scheme can recover single failure only. To solve this problem, we

can use the two-level recovery scheme.

5. A Cost Model for Distributed Shared Memory Using Competitive Update

This dissertation presents a new cost analysis model for competitive update protocol
for software DSM. This model can be used to compute optimal update limit for the
competitive update protocol. The optimal limit is chosen such that the “cost” metric

is minimized for the given application (as characterized by its probability density
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function p(z) of number of updates = in a segment). We validated the proposed model
by comparing analytical results from the model to experimental results obtained from

an experimental DSM implementation.

B. Future Work

Three issues for future work are summarized below.

1. Adaptive Distributed Shared Memory

One issue that needs to be addressed is the choice of N, that determines the length
of the sampling period. Instead of keeping N, fixed, it may be possible to choose
the appropriate value at run-time. We use fixed F in our analysis, choosing the
appropriate value of F at run-time is also useful.

The adaptive approach (based on cost-comparison) presented here may be com-
bined with ideas developed by other researchers (e.g., [53]) to obtain further improve-

ment in DSM performance. As yet, we have not explored this possibility.

2. Single Fault-Tolerant Distributed Shared Memory

We implemented recoverable DSM using competitive update by guaranteeing that
at least two copies of each page exist, and measured the failure-free overhead. It
is also applicable to generalizations of the competitive update protocols where the
limit may be different for each page, and vary with time as presented in Chapter II.

Implementation and evaluation for recovery procedure would be interesting.
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3. A Cost Model for Distributed Shared Memory

We presented a new cost analysis model for competitive update protocol for software
DSM. Future work includes application of this model to estimate costs of different

schemes for recoverable DSM systems.
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APPENDIX A

Tables IV through XV show experimental results of executing qtest application to
measure the overhead of recoverable scheme presented in Chapter IV.

Legends
e Limat: update limit
o Messages: the number of messages for non-recoverable scheme
o Recovery Messages: the number of messages for recoverable scheme

e Data: denotes the amount of data transferred (K Bytes) for non-recoverable

scheme
o Recovery Data: the amount of data transferred for recoverable scheme
o QOverhead: the overhead percentage for recoverable scheme

e S.D.: standard deviation
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Table IV. The Number of Messages (gtest: Read Ratio = 90 %)

Limit | Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 3521 (728) 3744 (710) 6.33
1 2532 (311) 2428  (100) -4.10
2 2280  (105) 2331 (181) 2.22
3 2300  (188) 2370 (144) 3.02
4 2308 (98) 2375 (318) 2.89
5 2293 (129) 2529  (503) 10.29
6 2320 (169) 2386 (92) 2.44
7 2373 (202) 2399 (178) 1.12
8 2438  (283) 2532 (569) 3.87

Table V. The Amount of Data (gtest: Read Ratio = 90 %)

Limit | Data (S.D.) | Recovery Data (S.D.) | Overhead
0| 900  (58) 831 (45) -7.67
1| 273 (15) 285 (21) 4.57
2 || 170 (7) 171 (4) 0.71
3|l 166 (1) 170 (1) 2.50
4| 166 (1) 170 (2) 2.24
51 167 (3) 171 (3) 2.33
6| 167 (1) 171 (1) 2.43
7| 166 (1) 170 (1) 2.37
8|l 166 (1) 171 (3) 2.60
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Table VI. The Number of Messages (gtest: Read Ratio = 80 %)

Limit | Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 7087 (54) 7157 (83) 1.00
1 6245  (636) 5916 (92) -5.26
2 5663 (652) 5331 (96) 5.87
3 5474 (835) 5201 (184) -3.35
4 5260  (135) 5343 (455) 1.58
5 5307  (116) 5230 (401) 145
6 5308 (250) 5361 (349) 0.99
7 5212 (88) 5431  (649) 4.21
8 5579  (788) 5381  (462) -3.54

Table VII. The Amount of Data (qtest: Read Ratio = 80 %)

Limit || Data (S.D.) | Recovery Data  (S.D.) | Overhead
0|l 2311  (18) 2056 (12) | -11.05
1| 942 (63) 882  (23) -6.37
2 || 365  (24) 345 (24) -5.39
3| 224 (17) 233 (23) 4.26
4 203 (7) 204 (5) 0.35
51| 197 (1) 201 (2) 1.81
6 || 197 (1) 201 (3) 2.17
7| 196 (1) 202 (2) 2.97
8|l 198 (4) 202 (2) 1.61




Table VIII. The Number of Messages (qtest: Read Ratio = 60 %)

Limit | Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0| 10183 (849) 10857  (705) 6.62
1 9912  (175) 10421  (180) 5.14
2 9930 (1982) 10123 (120) 1.94
3 0804  (113) 0646  (91) 11,61
4 9420  (156) 9310  (259) -1.17
5 9233 (48) 9203 (56) -0.32
6 9210  (130) 9200  (499) -0.12
7 9214 (28) 9106  (373) -1.17
8 9220 (80) 9342 (467) 1.22

Table IX. The Amount of Data (qtest: Read Ratio = 60 %)

Limit | Data (S.D.) | Recovery Data (S.D.) | Overhead
0| 3334  (43) 3060  (43) -8.21
1| 2783 (127) 2487  (68) |  -10.66
2 || 1731 (634) 1794 (91) 3.64
3| 1198  (106) 1059  (40) |  -11.54
4| 596  (70) 537 (78) -9.84
5| 328  (32) 316 (27 -3.84
6 || 256 (5) 265 (1) 3.32
71 24 (1) 257 (4) 1.11
8| 254 (1) 259 (2) 1.87
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Table X. The Number of Messages (qtest: Read Ratio = 40 %)

Limit | Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 11202  (708) 11706  (321) 4.50
1] 10908 (79 12389 (802) 12.64
o|| 11722 (92) 12098  (137) 3.20
3 12018  (486) 12037  (622) 0.16
4] 11608  (160) 11720 (129) 0.96
5| 11422 (186) 11508 (478) 0.75
6 11229  (139) 11141  (223) -0.78
7| 11438 (735) 11047 (97) -3.42
8 10975  (444) 11063  (133) 0.80

Table XI. The Amount of Data (qtest: Read Ratio = 40 %)

Limit || Data (S.D.) | Recovery Data  (S.D.) | Overhead
0| 3491  (49) 3223 (85) -7.69
1| 3269  (51) 2944 (56) -9.94
2 || 2825  (42) 2551 (53) -9.70
3|l 2170  (55) 1957 (95) -9.79
4 1438  (50) 1357 (59) -5.63
5| 829  (81) 767 (105) -7.43
6| 464  (49) 466 (14) 0.47
7 289 (3) 291 (2) 0.69
8| 285 (4) 291 (2) 1.89
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Table XII. The Number of Messages (qtest: Read Ratio = 20 %)

Limit || Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 12746 (677 13134 (494) 3.04
1 11881 (58) 14042 (528) 18.19
2|l 12657 (681) 14483 (769) 14.42
3 14254  (111) 14915 (81) 4.63
4| 15718 (1047) 15471 (805) 157
5 15239 (228) 15012 (270) 11.49
6| 14701  (829) 14037  (1040) 452
7 13539  (681) 13528  (351) -0.08
8 13643  (746) 13708  (721) 0.48

Table XIII. The Amount of Data (qtest: Read Ratio = 20 %)

Limit || Data (S.D.) | Recovery Data  (S.D.) | Overhead
0 || 3546 (3) 3243 (157) -8.55
1| 3397 (5) 3053 (74) |  -10.11
2 || 3161  (272) 2903  (126) -8.18
3|l 3062 (27) 2750  (19) |  -10.11
4| 2876  (87) 2606 (33) -9.41
5| 2588  (127) 2204  (120) | -11.35
6 || 1730  (520) 1212 (398) | -29.92
7| 326 (6) 331 (4) 1.53
8 || 327 (5) 332 (5) 1.59
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Table XIV. The Number of Messages (qtest: Read Ratio = 0 %)

Limit | Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 13618  (47) 14177 (759) 411
1| 12827 (29) 15131 (50) |  17.96
2 14146 (73) 16132 (139) 14.04
3| 16038  (40) 16029 (66) 5.56
4| 17412 (69) 17763 (517) 2.01
5 18382 (534) 17925  (23) -2.49
6| 17923 (2280) 17908  (270) -0.09
7| 16054 (41) 15860  (455) 121
8 16034 (26) 16315  (675) 1.75

Table XV. The Amount of Data (qtest: Read Ratio = 0 %)

Limit || Data  (S.D.) | Recovery Data (S.D.) | Overhead
0 || 3715 (0) 3292 (3) | -11.39
1| 3694 (0) 3302 (19) | -10.62
2 || 3700 (14) 3311 (19) | -10.50
3 || 3727 (0) 3326 (0) | -10.76
43736  (17) 3331 (2) | -10.83
5 || 3749 (2) 3332 0) | -11.13
6 || 3218 (1189) 3200  (183) -0.58
7| 369 (1) 371 (6) 0.49
8|l 369 (1) 375 (3) 1.46
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APPENDIX B

Tables XVI through XXIX show experimental results of executing other applications
to measure the overhead of recoverable scheme presented in Chapter IV.

Legends
e Limat: update limit
o Messages: the number of messages for non-recoverable scheme
o Recovery Messages: the number of messages for recoverable scheme

e Data: denotes the amount of data transferred (K Bytes) for non-recoverable

scheme
o Recovery Data: the amount of data transferred for recoverable scheme
o QOverhead: the overhead percentage for recoverable scheme

e S.D.: standard deviation
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Table XVI. The Number of Messages (Floyd-Warshall)

Limit || Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 8919  (167) 25207  (846) 182.63
1 8385 (2000) 13518  (253) 61.21
2 7906 (18) 18037 (1445) |  128.14
3 8440  (125) 18947 (1982) 124.49
4 8794  (139) 20231 (72) 130.05
5 9459  (325) 20001  (780) 111.46
6 9809 (55) 19527 (1607) 99.08
7 10236 (58) 19647 (1329) 91.94
8 10862  (294) 20853 (1300) 91.98

Table XVII. The Amount of Data (Floyd-Warshall)

Limit | Data (S.D.) | Recovery Data (S.D.) | Overhead
0| 4692 (69) 5643 (69) 20.26
1] 1565 (21) 1976 (4) 26.28
2 || 1500 (2) 1984 (54) 31.45
3 || 1559 (2) 2007 (58) 28.74
4 1| 1608 (2) 2066 (5) 28.52
5 1661 (3) 2075 (20) | 24.89
6| 1706  (3) 2065  (48) |  21.05
7| 1748 (1) 2074 (42) 18.69
sl 1793  (2) 2114 (27) 17.90




Table XVIII. The Number of Messages (SOR)

Limit | Messages (S.D.) | Recovery Messages  (S.D.) | Overhead
0 15765  (518) 132104 (12833) 737.96
1 11862  (129) 171451 (318) 1345.36
2 12568 (29) 171484 (464) 1264.49
3|l 13504 (116 171102 (56) | 1167.01
4 15194 (1844) 170465 (95) 1021.94
5 15268 (66) 170441 (16) 1016.35
6 16238  (161) 169892 (307) 946.26
7 17040 (11) 170295 (625) 899.37
8 18333  (818) 169076 (69) 822.26

Table XIX. The Amount of Data (SOR)

Limit || Data (S.D.)| Recovery Data  (S.D.) | Overhead
0 || 12243 (53) 86892 (11947) 609.71
1 4718 (27) 103246 (7) 2088.34
2|l 4533 (2 103245 (4) | 2177.73
3| 4587 (0) 103244 (4) | 2150.71
4 4656 (8) 103216 (14) 2116.64
51 4731 (1) 103207 (5) 2081.69
6 || 4819 (1) 103168 (9) 2040.85
T 4917 (1) 103172 (18) 1998.10
8| 5030  (3) 103106 (5) | 1949.98
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Table XX. The Number of Messages (ProdCons)

Limit || Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 65225 (1343) 67304 (2778) 3.19
1 60781 (19) 72259 (87) 18.88
o |l 67452 (40) 77361 (124) 14.69
3 76129  (949) 81267  (116) 6.75
4 84085  (513) 84196 (86) 0.13
5 87762  (819) 86326  (879) -1.64
6 88880  (208) 87178  (168) -1.91
7 74602 (3414) 75954  (1636) 1.81
8 75874 (1591) 75963 (1610) 0.12

Table XXI. The Amount of Data (ProdCons)

Limit || Data (S.D.) | Recovery Data (S.D.) | Overhead
0l 17888  (29) 16024 (402) |  -10.42
1] 17828 (0) 15871 (23) |  -10.98
2| 17914 (0) 15950 (1)| -10.91
317911 (198) 16006 (17) -10.63
418135 (23) 16054  (2) | -11.47
5 || 18192 (19) 15979  (166) -12.17
6 || 18136  (173) 15995  (147) -11.80
7| 1164 (63) 1194 (29) 2.54
8| 1188  (29) 1194 (27) 0.47
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Table XXII. The Number of Messages (Isort)

Limit || Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 52213 (992) 53073 (1394) 1.65
1 48115 (1063) 59476 (6151) 23.61
9| sa079  (93) 62170  (649) 14.96
3 61692 (1299) 65218 (79) 5.72
4 67632  (616) 67023 (1223) -0.90
5| 70006 (278 68809  (611) 158
6 70276 (2525) 69971 (51) -0.43
7 60983 (1654) 60001 (2201) -1.61
8| 61448  (149) 60974 (1267) 077

Table XXIII. The Amount of Data (Isort)

Limit || Data (S.D.) | Recovery Data (S.D.) | Overhead

0 || 14385 (25 12723 (607 -11.55

1| 14134 (252 12726 -9.96

(
2 | 14365 (25 12802 (18 -10.88
(

3 || 14402 (190 12844 -10.82

5 || 14564 (41 12795 (225 -12.15

6 || 13983 (1510 12903 (0 -7.72

7 || 13983 (1510 978 (31 -1.02

-0.36

) )
) )
) )
) )
4| 14555  (3) 12783 (189) |  -12.17
) )
) )
) )
) )

8| 996 (0 992 (19




Table XXIV. The Number of Messages (Reader/Writer)

Limit | Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 19079  (152) 21955  (143) 15.07
1 17629  (278) 19207  (104) 8.96
2 20377 (53) 21349 (49) 4.77
3 23319 (32) 24554 (45) 5.30
4 25927 (45) 26412 (19) 1.87
51| 27430 (721) 27643 (759) 0.74
6| 26309 (26) 25081  (16) 1125
71l 23712 (677) 23401 (18) 1131
8 22975  (993) 23784  (743) 3.52

Table XXV. The Amount of Data (Reader/Writer)
Limit || Data (S.D.) | Recovery Data (S.D.) | Overhead
0| 10493 (0) 14459 (1) 37.80
1| 10751  (165) 11595 (1) 7.84
2 1 12735 (0) 13381 (0) 5.07
3| 14606  (0) 15214 (0) 4.16
4| 15871 (0) 16024 (0) 0.97
5| 16480  (39) 16377 (3) -0.68
6 14939  (0) 14440 (0) 13.34
70 10833 (3) 10836 (0) 0.03
8 | 10588  (545) 10838 (3) 2.35
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Table XXVI. The Number of Messages (Matmult)

Limit | Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 2159  (427) 3286 (721) 52.23
1 1924 (97) 2807 (36) |  45.90
2 2329  (625) 2869 (44) 23.18
3 2080 (40) 2835 (49) 36.31
4 2193 (59) 2858 (68) 30.33
5 2270 (18) 2016 (17) |  28.47
6 2582 (542) 2041 (90) |  13.90
7 2500 (33) 2968 (56) 18.73
8 2514 (76) 3008 (31) 19.63

Table XXVII. The Amount of Data (Matmult)
Limit | Data (S.D.) | Recovery Data (S.D.) | Overhead
0l 863 (2 o718 (3)| 214.85
1] 1035 (0) 2774 (0) 168.06
2 || 1200  (3) 2824 (0) | 133.52
3| 1381 (0) 2873 (0) 108.04
4| 1554 (0) 2022 (0)|  88.01
51| 17127 (0) 2972 (0) 72.09
6| 1901 (2) 3021 (0)|  58.93
7l 20m4 (1) 3071 (0) | 48.10
8|l 2246 (1) 3120 (0)|  38.89
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Table XXVIII. The Number of Messages (Jacobi)

Limit | Messages (S.D.) | Recovery Messages (S.D.) | Overhead
0 2644 (1365) 2763  (849) 4.51
1 2267 (97) 2377 (340) 4.84
2 2251 (51) 2346  (346) 4.23
3 2295  (364) 2363  (342) 2.95
4 2280  (215) 2291  (421) 0.52
5 2334 (400) 2352 (448) 0.79
6 2208 (421) 2295  (353) -0.13
7 2400  (521) 2396 (463) -0.16
8 2261 (102) 2263 (107) 0.09

Table XXIX. The Amount of Data (Jacobi)

Limit | Data (S.D.) | Recovery Data (S.D.) | Overhead
0|l 648 (21) 583 (30) |  -10.06
1 468 (31) 434 (20) -7.20
2| 423 (19) 397 (11) -6.00
31| 386  (12) 37T (9) 22,50
4| 358  (12) 355 (12) -0.86
51| 343 (1) 343 (5) 0.13
6| 334  (4) 333 (4) -0.26
71l 328 (2 332 (2) 1.29
8|l 327 (0) 331 (1) 1.26
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APPENDIX C

In this Appendix, we compute approximately the optimal checkpoint interval (75,:)
for the checkpointing scheme.
The expected cost, I, required to execute one checkpoint interval is (as obtained in
Section V):

I'=(1—k)(T+C)+ kAT AT )

The overhead ratio of checkpointing scheme is:

-1

r =

r
T

To compute the optimal value of T' (T,p:) that minimizes the overhead ratio r:

Or
ar ~ "
O [(1— k)T + C)+ kAt AE(ATHC) 1) B
:>6T[ T —h=0
6 -1 AR T+C
ia—T[(l—k)(TJrO)Jrk)\ (M) — 1))

T
A =BT+ C)+ kAT —1)] = 0
—1)]

= [(1 —k) _I_keAReA(T+C)] T — [(1 _ k)(T—I— C) ‘|-k)\ 1 >\R XT+C)

Using the expansion of e*(T+¢) and e*F as far as the second degree term:

N (T+0)

SO~ 14 NT+0)+ 5

)\2 RZ

B 1+)\R+

%



By approximation, ignoring \* term, and simplification:

T

Ak

=T =~ % when Ak R < 1,and VkC « 1

Thus, unique optimal checkpoint interval is:

20
T & ] .

Ak
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