
ON-DEMAND DATA BROADCASTING

A Thesis

by

KANNAN KOTHANDARAMAN

Submitted to the O�ce of Graduate Studies of
Texas A&M University

in partial ful�llment of the requirements for the degree of

MASTER OF SCIENCE

August 1998

Major Subject: Computer Science

ON-DEMAND DATA BROADCASTING

A Thesis

by

KANNAN KOTHANDARAMAN

Submitted to Texas A&M University
in partial ful�llment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Nitin H. Vaidya
(Chair of Committee)

Riccardo Bettati
(Member)

A. L. Narasimha Reddy
(Member)

Wei Zhao
(Head of Department)

August 1998

Major Subject: Computer Science

iii

ABSTRACT

On-Demand Data Broadcasting. (August 1998)

Kannan Kothandaraman, B.S., Louisiana State University

Chair of Advisory Committee: Dr. Nitin H. Vaidya

This thesis considers environments wherein the bandwidth available to a server

is insu�cient to serve the clients one at a time. In such environments, broadcasting

data to all clients is e�cient. This thesis deals with issues related to on-demand

data broadcasting. We look at the problem of data broadcasting in an environment

where clients make explicit requests to the server. The server broadcasts requested

data items to all the clients, including those who have not requested the item. This

thesis evaluates two new broadcast scheduling algorithms for such an on-demand

model with the objective of minimizing the waiting time at clients. A new caching

scheme for clients is also proposed. This caching scheme uses information from the

server to make caching decisions. A hierarchical model for data broadcasting, using

proxy servers between the clients and the main server, is also evaluated. Finally, we

address the issue of scheduling broadcasts such that the variance of the waiting time

is reduced. The proposed algorithm tries to trade-o� the variance with the mean

access time.

iv

To my parents and my sister

v

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Vaidya for all his help, guidance and

understanding. He introduced me to this topic and has been a great mentor ever

since I met him before coming here. My research with him and his mobile computing

class have greatly enhanced my knowledge and helped land my dream job.

I would like to thank Dr. Bettati for being on my committee. I would like to

thank Dr. Reddy for his time and consideration.

I would like to thank Mr. Peterson and Barbara for all that they have done. I

am thankful to Dr. Vaidya, the Computer Science department and the library for

funding me.

I would like to thank all my friends here and at LSU for the great times.

I would like to thank my parents and my sister for all the support they have given

me. Their constant encouragement, and belief in my abilities has been invaluable. I

would not be where I am without them.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION : 1

II TERMS AND NOTATIONS : 5

III RELATED WORK : 7

A. Broadcast Scheduling . 7

B. Caching Schemes . 9

C. Indexing the Broadcast . 10

IV BROADCAST SCHEDULING : : : : : : : : : : : : : : : : : : : 12

A. SR Scheduling Algorithm 12

B. Total Wait Time Scheduling Algorithm 14

V CACHING SCHEME : 17

A. Pre�x Cache : A Server Initiated Caching Policy 18

B. Generalization of the Pre�x Caching Algorithm 22

VI HIERARCHICAL BROADCAST MODEL : : : : : : : : : : : : 25

VII REDUCING THE VARIANCE : : : : : : : : : : : : : : : : : : 29

A. Variance . 29

B. Reducing the Variance With the SR Scheduling Algorithm 30

VIII PERFORMANCE EVALUATION : : : : : : : : : : : : : : : : : 32

A. Performance Evaluation of Scheduling Algorithms 33

B. Performance Evaluation of Pre�x Caching Scheme 36

1. The Mature Cache Problem 48

C. Performance Evaluation of Hierarchical Model 49

D. Performance Evaluation of the �-SR Scheduling Algorithm 51

vii

CHAPTER Page

IX FUTURE WORK AND CONCLUSIONS : : : : : : : : : : : : : 53

A. Future Work . 53

B. Conclusions . 54

REFERENCES : 56

APPENDIX A : 60

VITA : 66

viii

LIST OF TABLES

TABLE Page

I Standard Deviation of �-SR and RxW Scheduling Algorithms : : : : 51

II Overall Mean Access Time of �-SR and RxW Scheduling Algorithms 52

III Data for Fig. 8 in Tabular Form : 60

IV Data for Fig. 9 in Tabular Form : 60

V Data for Fig. 10 in Tabular Form : 61

VI Data for Fig. 11 in Tabular Form : 61

VII Data for Fig. 12 in Tabular Form : 61

VIII Data for Fig. 13 in Tabular Form : 62

IX Data for Fig. 14 in Tabular Form : 62

X Data for Fig. 15 in Tabular Form : 62

XI Data for Fig. 20 in Tabular Form : 63

XII Data for Fig. 16 in Tabular Form : 63

XIII Data for Fig. 17 in Tabular Form : 64

XIV Data for Fig. 18 in Tabular Form : 64

XV Data for Fig. 19 in Tabular Form : 65

ix

LIST OF FIGURES

FIGURE Page

1 Client-Server Model : 2

2 Broadcast Model : 3

3 Sample Broadcast System : 14

4 100-Pre�x Array : 19

5 60-Pre�x Array : 19

6 Hierarchical Broadcast Model : 26

7 Data Delivery Options for a Hierarchical Model : : : : : : : : : : : : 27

8 Overall Mean Access Time Versus Access Skew for Items of Un-

equal Lengths Obtained by Simulation of Scheduling Algorithms

Given in Chapter III : 34

9 Overall Mean Access Time Versus Access Skew for Items of Equal

Lengths Obtained by Simulation of Scheduling Algorithms Given

in Chapter III : 35

10 Cache Hit Ratios Versus Access Skew Obtained by Simulation of

Caching Policy Given in Chapter IV : : : : : : : : : : : : : : : : : : 38

11 Overall Mean Access Time Versus Access Skew Obtained by Sim-

ulation of Caching Policy Given in Chapter IV : : : : : : : : : : : : 39

12 Cache Hit Ratios Versus Access Skew Obtained by Simulation of

Caching Policy Given in Chapter IV : : : : : : : : : : : : : : : : : : 40

13 Overall Mean Access Time Versus Access Skew Obtained by Sim-

ulation of Caching Policy Given in Chapter IV : : : : : : : : : : : : 41

14 Cache Hit Ratios Versus Access Skew Obtained by Simulation of

Caching Policy Given in Chapter IV : : : : : : : : : : : : : : : : : : 42

x

FIGURE Page

15 Overall Mean Access Time Versus Access Skew Obtained by Sim-

ulation of Caching Policy Given in Chapter IV : : : : : : : : : : : : 43

16 Cache Hit Ratios Versus Cache Size Obtained by Simulation of

Caching Policy Given in Chapter IV : : : : : : : : : : : : : : : : : : 44

17 Overall Mean Access Time Versus Cache Size Obtained by Simu-

lation of Caching Policy Given in Chapter IV : : : : : : : : : : : : : 45

18 Cache Hit Ratios Versus Pre�x Percentage Obtained by Simula-

tion of Caching Policy Given in Chapter IV : : : : : : : : : : : : : : 46

19 Overall Mean Access Time Versus Pre�x Percentage Obtained by

Simulation of Caching Policy Given in Chapter IV : : : : : : : : : : 47

20 Overall Mean Access Time Versus Access Skew Obtained by Sim-

ulation of Hierarchical Broadcast Model Given in Chapter V : : : : : 50

1

CHAPTER I

INTRODUCTION

The recent explosion of interest in the Internet has created a great demand on scarce

network resources. It has also given rise to a number of interesting and challenging

network problems. In the future, tens of millions of people will carry a portable

computer with a wireless connection to a worldwide information network [1]. Data

management in this paradigm poses many challenging problems. As the number of

users increases exponentially, new ways of delivering data to them have to be found.

Many networked applications currently use the client-server model. This model

is illustrated in Fig. 1. In the network, some computers are designated as service

providers, or servers. There are other computers that request services or data from

these computers. These make up the clients. In the client-server approach, a client

requests data from a server and the server responds individually to each client. With

a dramatic increase in the number of clients requesting data from the server, the

performance degrades.

We consider environments wherein the bandwidth available to the server is in-

su�cient to serve the clients one at a time. In such environments, broadcasting data

to all the clients is e�cient. This model is illustrated in Fig. 2. Data broadcasting

is ideally suited for several applications, such as tra�c information dissemination

[2], video on-demand [3], airline information, weather information, stock quotes, and

emergency services information [4]. Pointcast [5] and Airmedia [6] are two of the

many commercial companies that are using data broadcasting as their data deliv-

ery model. Recently, data broadcasting is being used as the data delivery tool for

The journal model is IEEE Transactions on Automatic Control.

2

Server

 3

 5

 4

 1

Client

Client

Client

Client

Request 1

Request 4

Request 5

Request 3

Fig. 1. Client-Server Model

message-oriented middleware [7].

In this thesis, we assume that all information is in the form of data items. The

�rst issue that this thesis deals with is scheduling data broadcasts. Scheduling algo-

rithms for data broadcasting determine which item the server broadcasts at a partic-

ular instance of time. There has been a lot of research [4, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20] in broadcast scheduling. Most of these schemes assume that the

client plays no part in the scheduling decisions made by the server. In some cases

[10, 17, 20], including this thesis, the schedule is based on explicit requests made by

the clients. This is the on-demand or pull-based data broadcast model. Access time

can be de�ned as the time between a client request and the time when it has �nished

receiving the requested item. We present algorithms that attempt to minimize the

3

Server

Client Client Client

Broadcast Channel

I3 I4 I1 I5 I2

Request Channel

Fig. 2. Broadcast Model

access time.

The second issue that this thesis deals with is caching at the client. Caching is

a technique used to store items in the client's local memory to improve the respon-

siveness of an application [8]. Caching schemes have to work with the scheduling

algorithms to further reduce the access time for the client. As the client cache be-

comes full, a policy is needed to decide which item(s) to delete, when subsequent

items cannot �t in the cache. Several caching policies [8, 11, 21, 22] for data broad-

casting have been proposed. This thesis proposes a caching policy for an on-demand

broadcast model. The caching decisions made by the clients are completely based

upon information received from the server.

Since the server is one of the main bottlenecks, a model where the load on the

server is distributed to other servers is bound to perform well. Here clients make

requests to a proxy server instead of the main server. Only requests that cannot

4

be satis�ed by the proxy server are sent to the main server. We evaluate such a

hierarchical broadcast model.

Jiang and Vaidya [16] have proposed scheduling algorithms that aim to minimize

the variance of the access times in a push-based broadcast environment. We look

at how we can try to balance the performance of a pull-based system, so that the

variance of the access times is reduced.

The rest of the thesis is organized as follows. Chapter II describes some of the

terms and notations used in this thesis. Chapter III presents some of the related

work in this area. Chapter IV describes two new scheduling algorithms for an on-

demand broadcast model. Chapter V presents a new caching policy. Chapter VI

describes a hierarchical broadcast model. Chapter VII discusses the use of the stan-

dard deviation as a performance metric for the scheduling algorithms, and presents a

modi�cation to one of the algorithms proposed in Chapter IV. Chapter VIII presents

performance evaluation of the scheduling algorithms, the caching polices and the

hierarchical model. Chapter IX concludes the thesis.

5

CHAPTER II

TERMS AND NOTATIONS

In this chapter, some of the terms and notations to be used in the rest of the thesis

are introduced.

� The information requested by the client is made up of data items. The length

of these data items may not be identical.

� The clients send requests for the data items to the server.

� Clients use a separate channel to send requests to the server. This channel is

di�erent from the broadcast channel. Hence, the bandwidth available to the

server is not a�ected by the client requests. This assumption is similar to that

made in [8, 20].

� Every item, that is broadcast by the server, is received by all the clients.

� Scheduling Algorithm [13]: It is an algorithm that is used by the server to

determine which item to broadcast.

� Caching Scheme: A caching scheme is used by the clients to determine how

best to make use of local cache. In general, the caching scheme tells the clients

whether to cache the received item and which current item in cache to replace

if space is needed.

� M denotes the total number of items in the server database.

� li denotes the length of item i, 1 � i � M. We assume that the length of item i

is the time taken to transmit item i, to all the clients.

6

� Spacing: Spacing is the amount of time between successive broadcasts of an

item. Intuitively, more popular items should have low spacing and less popular

ones, higher. The spacing between consecutive instances of an item may change

over time.

� Demand Probability: We model popularity of item i using demand probability

pi. An item that is popular has a higher demand probability than a less popular

one. Hence if item i, with demand probability pi, is more popular than item j,

with demand probability pj , then, pi > pj .

� Mean Access Time: Access time is the duration, between the time a client

makes a request, and the time it �nishes receiving the requested item. Mean

access time is simply the average over all the requests made by the clients. It

is used as a performance measure throughout this thesis. Other researchers

[8, 10, 11, 13, 14, 17, 20] have used this as their performance measure as well.

� Weight: Weight of an item is the \cost" associated with not transmitting the

item. Hence, the item with the highest weight is the one chosen by the schedul-

ing algorithm to be broadcast next, so that the \cost" associated with not

sending the item can be minimized. The choice of the right parameters to use,

to calculate the weight, is critical.

� Ri, 1 � i � M, is the number of client requests that is pending for item i.

� (Total Wait T ime)i, 1 � i � M, for item i, is the sum of the wait times for all

pending requests for item i.

� Proxy Server: A Proxy server is one that acts as the intermediary between the

client and the main server. Clients send requests to a designated proxy server,

instead of the main server.

7

CHAPTER III

RELATED WORK

This chapter summarizes past work on data broadcasting. Issues in data broadcasting

can be classi�ed as

1. Scheduling broadcasts

2. Caching policies for clients

3. Indexing the broadcast

A. Broadcast Scheduling

Most of the research on data broadcasting has been on scheduling the broadcast. Since

the amount of time a client waits to receive an item is of vital importance, scheduling

is critical to the performance of a broadcast system. As mentioned in Chapter I,

minimizing the mean access time has been the primary performance objective in

designing scheduling algorithms.

Some of the early research in broadcast scheduling was performed by Ammar

and Wong [11, 12, 20]. [20] studied the problem of on-demand broadcast scheduling

and proposed the First-Come First-Serve algorithm. Here, the server broadcasts the

item with the earliest request arrival time. However, instead of just responding to

the client that made the request, the item is sent out to all the clients waiting for

this item. This is done by adding subsequent requests for an item, in the same

position in the request queue as the �rst one. However, no consideration is given to

the popularity of the items. [23] proposed the Most Request First(MRF) algorithm,

which chooses the item with the highest number of pending requests as the next item

8

to be broadcast. Since no consideration is given to the waiting times, this policy

could lead to starvation for certain items.

Acharya et. al. [8, 9, 21] proposed interesting ways of solving the broadcast

scheduling problem. They use a combination of server scheduling and client caching,

as does this thesis. Their schemes simply divide up the bandwidth based on the item

demand probabilities, and determine the schedule a priori. This scheme however

cannot be implemented in an on-demand environment, since it assumes that the

server has a priori knowledge of client request probabilities. Also, their algorithm

can leave holes (periods of time for which the channel is unused), since it strives to

maintain constant spacing between broadcast instances of an item. They also studied

the issue of dividing up the bandwidth between client-server and broadcast based

data delivery.

Su and Tassiulas [17] have also studied the problem of broadcasting in an on-

demand environment. They propose using �
�
i Ri, 1 � i � M, as the item weight,

where �i is the request arrival rate for item i. They calculate �i as �pi, where � is

the overall request arrival rate. The best mean access time is obtained for = 0.5.

Vaidya and Hameed [18] proposed an O(M)-time algorithm that uses s2ipi/li, 1

� i � M, as the weight of each item, and transmits an item with the largest weight.

[15] also presents two O(logM) algorithms, based on packet fair queueing, for single

and multiple channel broadcast scheduling. For the O(logM) algorithm, two variables

- the earliest start time for the next broadcast and the broadcast after that (Ci) - are

maintained for every item. Whenever the server becomes idle, from amongst all items

whose next broadcast time is less than or equal to the current time, the item with the

lowest Ci is chosen as the next item to be broadcast. This algorithm is also extended

to a multi-channel broadcast model. [13] also considers scheduling broadcasts in the

presence of transmission errors.

9

Recently, [16] proposed using the variance of the access times as a performance

goal of the scheduling algorithm. They proposed scheduling algorithms that aim to

minimize the variance. Their �-algorithm is a variation of the O(M)-time algorithm,

from [18], in that it varies �, between 2 and 3, in s�i pi/li. They also proposed a

Variance Optimal Algorithm that uses

pisi

li
(
2

3
si �

1

2

MX
i=1

pisi); 1 � i �M (3.1)

as the weight to make the scheduling decision.

B. Caching Schemes

Some of the proposed schemes for caching are:

� LRU [24]: LRU is the simplest of the schemes used as the cache replacement

policy. In response to a cache miss, LRU chooses as the victim, the item which

has the lowest last use time. Therefore, every time an item is needed by the

client, if it is in cache, the request is served immediately, and the item's last use

time is set to current time. In case of a cache miss the item with the lowest last

use time is replaced. As evident, LRU is not a broadcast speci�c scheme and

hence does not make use of the knowledge the server has about client demands.

� P [8]: P is a demand-driven caching policy which keeps items with the highest

probability of access in the memory. So, in response to a cache-miss, P chooses

as the victim, the cache-resident item with the lowest probability of access. P

requires perfect knowledge of the probability of access of the items. Therefore,

it cannot be used in an on-demand environment.

� PIX [8]: PIX is a cost based heuristic for demand driven caching. In PIX, the

cost of replacement of an item already in memory with the newly fetched one is

10

considered to be the ratio of the access probability of item (P) and its broadcast

frequency. The replacement algorithm ejects any item in memory which has the

lowest pix value or has value lower than the current item.

� PT [8]: PT is a pre-fetching heuristic. It exploits the dissemination-based nature

of the broadcast, which are particularly conducive to the user's prefetching. PT

computes the value of an item by taking the product of the access probability

of the item (P) with the time (T) that will elapse before that item appears

again on the broadcast. This is called the item's pt value. PT �nds the item in

memory with the lowest pt value and replaces it with the item being broadcast,

provided the item (being broadcast) has a higher pt value. Since this scheme

requires a priori knowledge of the popularity of the items and the broadcast

schedule, it cannot be used in an on-demand environment.

� Ammar's scheme [11]: In this scheme each item in the broadcast has a control

information associated with it. The control information in item i is a list of

items that are most likely to be requested next by the user. After a request for

an item i is satis�ed, the client prefetches D most likely items associated with

item i, where D is the size of the local memory.

C. Indexing the Broadcast

In mobile computing systems, the amount of time the clients spend listening to the

broadcast channel can be crucial. This is because the clients in this case may be

low-powered devices, and the more time spent listening to the broadcast, the higher

the amount of energy spent.

Viswanathan et. al. [1, 4, 25] have proposed solutions that address this issue.

They call the time a client spends listening to the broadcast as the tuning time. They

11

propose indexing the broadcast so that the client knows exactly when to listen to the

broadcast to get the required item. Tuning time is not the same as access time (i.e.,

waiting time). A client can obtain the index information from the server, then decide

to do other things in the meanwhile, and �nally \tune" in only at the appropriate

time. Access time includes the tuning time. They have proposed di�erent indexing

schemes that will enable a client to minimize its tuning time, and hence its energy

use. The simplest scheme, called (1,m) indexing, simply broadcasts the entire index

m times during the broadcast cycle 1. They calculate the optimum value of m as
q
N=n, where N is the size of the broadcast cycle and n is the size of the index. They

also present other distributed indexing schemes that break up the index and minimize

replication of information.

[26] also proposes indexing schemes for data broadcasting. They take into con-

sideration the item demand probabilities. They propose constructing index trees such

that items with high demand probabilities can be found faster, than those with lower

probabilities, in the index.

Note that to index the broadcast, schedules have to be determined a priori.

1For cases where the schedule is determined a priori, we can de�ne the broadcast
cycle as a period of time that meets a certain criteria. A cycle could be one that
contains all the items in the database, or a certain subet of the items, or one that
lasts for a speci�ed amount of time, etc.

12

CHAPTER IV

BROADCAST SCHEDULING

In this chapter we present two on-line algorithms to schedule broadcasts in an on-

demand environment. On-line algorithms are those that do not determine the sched-

ule ahead of time. They can adapt to changing conditions and provide the best

performance based on the current state. In an on-demand environment, clients make

explicit requests for items to the server and the server makes scheduling decisions

based on the currently pending requests.

A. SR Scheduling Algorithm

This section describes an on-line algorithm which is used by the server to decide

which item to broadcast next, as soon as it becomes idle. The performance goal of

the algorithm is to minimize the mean access time for the clients. Every time the

server becomes idle, which happens immediately after it has �nished broadcasting

an item, the server uses this algorithm to decide the next item to broadcast 1. [18]

proposed an algorithm which uses a decision rule to determine the next broadcast

item. Every time the server needs to make a decision, the value

s2i pi

li
1 � i �M (4.1)

is calculated, where si is the time since the last broadcast of item i, pi the demand

probability, and li the length of item i. However, [18] assumes that the server has a

priori knowledge of the demand probabilities of all items, which is not valid for an

on-demand model. Hence, we modify the value in 4.1 to suit our on-demand model,

1Alternatively, the algorithm could be called sometime during the current item
transmission

13

so that no a priori knowledge of client behavior is required. Assuming that the rate

at which requests are made, �, is the same for the entire client population, 4.1 is

modi�ed as

si(sipi�)

li
1 � i �M (4.2)

We replace sipi� by the number of requests, Ri, for item i since its last broadcast.

Hence, 4.2 is modi�ed as

siRi

li
; 1 � i �M (4.3)

We use this as the weight of every item in the database at the time the server has to

make a scheduling decision. We calculate the weight for all items, and an item with

the largest weight is chosen as the next item to be broadcast.

We can now formally specify the algorithm to be used to make scheduling deci-

sions. Let Q denote the current time, and L(i) the last time item i was broadcast.

We de�ne the weight of item i, W(i) as

W (i) = (Q� L(i))Ri=li 1 � i � M

Note that W(i) is siRi/li.

SR Scheduling Algorithm

1. Calculate W(i), 1 � i � M.

Let Wmax be the maximum weight.

2. Choose item j such that W(j) = Wmax.

3. Set L(j) equal to Q, and broadcast item j.

The algorithm is used whenever the server becomes idle.

Example III.1: Consider a 5 item database which is being broadcast to a client

population. Let the lengths of the items be l1 = l2 = l3 = l4 = l5 = 5. Consider

14

C4

C1 C1C1

C2

C3

C4

C3

C2

C5

I1 I2 I3 I4 I5
15 2025

20

22

25

30

28

32

30

30 35

31

35

36

31

33

C5

C1
16

C3

Fig. 3. Sample Broadcast System

the system at time 40, as shown in Fig. 3. The top row shows the items and their

last broadcast times. Below each item is a list of pending requests for that item at

time 40. The client that made the request and the time of the request is shown. The

server has just broadcast item 5 and has to make a scheduling decision. Based on the

SR scheduling algorithm, W1 = 25, W2 = 6, W3 = 4, W4 = 10, and W5 = 0. Since

I1 has the largest weight, the server broadcasts I1.

B. Total Wait Time Scheduling Algorithm

In the previous section, a cost based scheduling algorithm was presented. Every time

the server has to make a scheduling decision, the value in 4.3 is calculated for all

items and the item with the maximum value is broadcast. On closer examination

of 4.3, we can discern the fact that the spacing between successive broadcasts of an

15

item is an estimate of the average time clients have waited for that item since its last

broadcast.

In an on-demand model, the server is not under the constraint of having to

estimate the average waiting time, since it can calculate the precise value of the

average waiting time, by simply looking at the request backlog for every item. Hence,

we can modify 4.3, as

tiRi

li
1 � i �M (4.4)

where ti is the average waiting time for pending requests for item i. Since the average

waiting time for item i is the ratio of the total waiting time for all pending requests

and the number of requests, we can rewrite the value in 4.4 as

(Total Wait T imei)Ri

Rili
1 � i �M (4.5)

or

Total Wait T imei

li
1 � i �M (4.6)

We can now formally specify the algorithm.

Total Wait Time Scheduling Algorithm

1. Calculate TWT(i) = (Total Wait T imei)/li, 1 � i � M.

Let TWTmax be the maximum weight.

2. Choose item j such that TWT(j) = TWTmax, and broadcast item j.

The algorithm can be used whenever the server becomes idle.

Example III.2: Consider again, the 5 item database, with l1 = l2 = l3 = l4 = l5

= 5. The state of the system, at time 40 is shown in Fig. 3. Using the Total Wait

Time scheduling algorithm, we obtain TWT1 = 87, TWT2 = 30, TWT3 = 10, TWT4

16

= 34, and TWT5 = 0. Since I1 has the maximum total waiting time, the server will

broadcast I1.

Performance measurements for the two algorithms are presented in Chapter VIII.

17

CHAPTER V

CACHING SCHEME

In Chapter IV, we presented two scheduling algorithms that aim to minimize the

mean access time for the clients. No part is played by the clients in trying to improve

the performance of the system. Caching items, sent by the server, is another way to

improve system performance. Here, clients store items sent to them by the server.

A caching policy is needed to decide the best way to make use of the cache

available at the client. This is because a client, in most cases, cannot store every item

that the server broadcasts. The caching policy is needed to decide:

� Whether the current broadcast item is worthy of being stored in cache at the

expense of other item(s).

� Which item(s) is to be removed from cache to make place for the current item.

The caching policy has to make sure that any caching decision that it makes will tend

to minimize the mean access time for the client. In this chapter, we propose a cost

based caching policy. We assign a weight to every item. Items with a lower weight

are the ones chosen to be replaced by items with a higher weight.

Caching policies have to make use of the di�erences in item popularity (called

the access skew). A system where all items are equally popular, makes it di�cult

to improve performance using caching, since all items have the same cost associated

with their deletion or addition. Therefore, our caching policy works very well in the

presence of high access skew.

Previous caching policies [8, 24] require the clients to store information about

the items, such as demand probability, in order to make caching decisions. However,

client request patterns can be completely unpredictable. They can vary with time

18

and hence the information stored at the client may actually prove detrimental to

the caching decision. Our approach is meaningful if the request patterns of di�erent

clients have similar demand distribution (or if they are correlated), even if they are

time-variant. We let the server make, or help make, caching decisions for the clients.

In a broadcast system, the server is aware of the current popularity of the items.

We can make use of this knowledge at the server to help the clients determine which

items to keep in cache.

The caching policy that we propose is used for both demand-driven and prefetch

caching. Demand-driven caching is where a client makes a caching decision only in

response to a cache miss (hence, an explicit request to the server). Prefetch caching is

where a client decides to cache an item, regardless of whether a cache miss occurred

(hence, without a request from the client). This way, the server can make use of

potential correlation between client requests to judge item popularity and improve

the cache e�ectiveness.

A. Pre�x Cache : A Server Initiated Caching Policy

In an on-demand broadcast system, since the server has precise knowledge of client

requests, the server can make an estimate of the popularity of the items and convey

it to all the clients. Since the server calculates the weight of every item, before every

broadcast, the server can precisely gauge the popularity of the items.

We call the information, that the server sends to the clients with every broadcast,

the pre�x array. The pre�x array contains the numbers (or any other identi�cation)

of the items in the database. Let Weighti and Weightj be the weights of items that

are in position i and j respectively, in the pre�x array. The pre�x array is simply

an array of items numbers, such that Weighti < Weightj, if i < j . Since the pre�x

19

0 10 30 37 87

 I5 I3 I2 I4 I1

Fig. 4. 100-Pre�x Array

 I5 I3 I2

0 10 30

Fig. 5. 60-Pre�x Array

array takes up bandwidth, the server might decide to transmit only a fraction of it.

The pre�x array is updated at every broadcast. If the server sends the entire pre�x

array, we call it 100-pre�x (or 100% of the pre�x array), if it does not send any part

of the pre�x array, we call it 0-pre�x (or 0% of the pre�x array). In general, x-pre�x

means that x% of the pre�x array (x% of the lowest weights) is sent by the server with

each broadcast. The weight of the current broadcast item is always sent in addition

to the pre�x array.

Consider once again, Fig. 3. Assuming that we are using the Total Wait Time

Algorithm, the server would transmit the pre�x arrays shown in Figures 4 and 5. Fig.

4 gives the pre�x array for 100-pre�x and Fig. 5 gives the pre�x array for 60-pre�x.

Note that the weights are not sent. They are included in the �gure only to illustrate

the idea.

E�ort is made to cache every item that is being broadcast, since it is presumed

that this item is the most popular item at the time. Since the pre�x array provides

20

an estimate of the popularity of the items in increasing order (at the time of the

broadcast), the clients delete the items, starting with the �rst one in the pre�x array,

until the item that is being broadcast can �t in the cache. Note that multiple items

in cache may need to be removed to make room for the new item, if the items are not

all of the same length.

It is possible that removing cached items, that are also in the pre�x array, is

not su�cient to make space for the current item. This could happen when the server

decides to send less than 100% of the pre�x array. To handle such cases, the client

stores the following information for every item i that is stored in cache:

� cache weight i, the weight of item i in cache.

� cache time i, the time when item i was last broadcast or the last time item i in

cache was used by the client, whichever is latest.

At every broadcast, all the clients update the cache weight and the cache time of the

item being broadcast with the current weight of the item sent by the server, and the

current time respectively. For every item, remaining in cache after the above deletion,

the ratio of the item's weight and the time since its last broadcast is calculated. The

item with the lowest ratio is chosen as the victim, if its weight is lower than that of

the current item, and deleted. This process is repeated until there is enough space

to store the current item, or the weight of the chosen item is higher than that of the

current item. In the latter case, the current item is not cached, and the deleted items

are restored to cache.

The rationale for this can be explained as follows. We want to delete the item in

cache, that has the lowest weight. However, since a client only knows the weight of

an item when it is broadcast, we want to make sure that the weight is not very old.

Hence, we use the ratio of the weight of the item and the time since it was cached. We

21

also make a weight comparison to make sure that the deleted item was less popular

than the current item (we do not want to store \streak" items).

We now formally specify the Pre�x Caching Policy. Let Pre be an x-pre�x array,

for some x, 0 � x � 100, with the item numbers sorted in increasing order of their

weights (obtained from the scheduling algorithm). The caching policy has to choose

items that have to be removed from cache to make room for the current item k. We

de�ne a few more terms before specifying the algorithm. Let

� N be the number of items in the pre�x array.

� incache(i) be a boolean such that, incache(i) is 1, if item i is in cache, and 0 if

it is not.

� curr weight be the weight of the item being broadcast.

� Q be the current time.

Pre�x Caching Algorithm

1. Set cache weight k = curr weight

2. Set cache timek = Q

3. for i = 1 to N f

if Pre i is in cache, then delete it, set incache(i) = 0

if there is enough space for item k, cache it and EXIT

g

4. Find item j, such that,

cache weight j=(Q� cache timej) � cache weight i=(Q � cache timei);

8i; j; incache(i) > 0 ; incache(j) > 0

22

5. if cache weight j � cache weight k f

delete item j, set incache(j) = 0

if there is enough space for item k, cache it and EXIT

else go to Step 4

g

else f

restore deleted items

itemk cannot be cached, EXIT

g

The algorithm is used by all the clients, when

1. the server broadcasts an item, and

2. the item being broadcast is not already in cache, and

3. the item cannot �t in cache without any deletions of existing items.

Chapter VIII presents performance results for the Pre�x Caching algorithm.

B. Generalization of the Pre�x Caching Algorithm

In this section we present a generalization of the Pre�x caching algorithm.

Let costf() be a cost function for every data item in cache. Choices for this

function are listed later in this section.

Generalized Pre�x Caching Algorithm

1. Set cache weight k = curr weight

2. Set cache timek = Q

23

3. for i = 1 to N f

if Pre i is in cache, then delete it, set incache(i) = 0

if there is enough space for item k, cache it and EXIT

g

4. Find item j, such that,

cache weight j=costf (j) � cache weight i=costf (i);

8i; j; incache(i) > 0 ; incache(j) > 0

5. if cache weight j=cache time j � cache weight i=last broadcast time if

delete item j, set incache(j) = 0

if there is enough space for item k, cache it and EXIT

else go to Step 4.

g

else f

restore deleted items

itemk cannot be cached, EXIT

g

The comparison in Step 5 is for cases when the demand distribution of the clients

is highly time-variant. It is optional, if that is not the case.

There are several choices possible for costf() in Step 4 of the generalized algo-

rithm. For instance:

1. The time since the item was last used by the client, similar to LRU [24].

2. The time since the last use of the item by the client or the last broadcast time,

whichever is latest (as in our algorithm).

24

3. The product of the length of the item and the time since the last use of the item

by the client or the last broadcast time, whichever is latest. This is based on a

caching scheme that was proposed in [27]. The scheme in [27] was proposed for

an Internet server, not a broadcast system.

We did not evaluate the algorithm for all the choices of costf(). Only choice 2

was evaluated.

25

CHAPTER VI

HIERARCHICAL BROADCAST MODEL

In this chapter, we evaluate a hierarchical broadcast model. Here, clients send their

requests to a proxy server, instead of the main server. A proxy server could be located

close to the main server, or we can can have proxy servers that are geographically

closer to some portion of the client population. We assume that some re-routing

mechanism [28, 29] exists, that diverts requests from the clients to the appropriate

proxy server. An example of such an hierarchical system is shown in Fig. 6.

In the model that we evaluate, the behavior of the main server is unchanged.

Here, only the proxy servers form its client population. It responds to requests only

from the proxy servers.

There is no di�erence in the way the clients behave. Clients simply make their

requests to the server. As mentioned earlier, we assume that a re-routing mechanism

exists to make sure that this request is delivered to the appropriate proxy server.

All the changes that we have to deal with are in the proxy server, which acts as

both a client and a server. When the proxy server receives a request for an item, it

�rst checks its local cache. If the item requested is in its cache, the item is broad-

cast to that proxy's client population. If not, the proxy server sends a request for

this item to the main server. Hence, caching at the proxy server is crucial, and is

the main source of performance improvement. We now specify the algorithm, that

is used by the proxy server, whenever it has to broadcast an item. Let sorted items

be an array containing the items numbers, such that item weight[sorted items[i]] <

item weight[sorted items[j]], if i < j, and P be the number of items for which there

are pending requests, at the time the algorithm is run.

26

Server

Client Group 1 Client Group 2 Client Group 3

......

ProxyProxy
Server Server

Proxy
Server

Client

ClientClient

Client ClientClient Client Client

ClientClient

Client

ClientClient

Fig. 6. Hierarchical Broadcast Model

Scheduling Algorithm at a Proxy Server

1. Calculate the weights for all items that have pending requests, for instance using

4.3 or 4.6, and determine the array sorted items.

2. for i = 1 to P

if sorted items[i] is in cache

Transmit item sorted items[i] to the proxy server's clients

and EXIT.

27

Broadcast

Broadcast

Broadcast

Client-Server Broadcast

Client-Server

Client-Server

Client-Server

Server Server Server Server

Proxy
Server

Proxy
Server

Proxy
Server

Client Client Client Client Client Client Client Client

Proxy
Server

Fig. 7. Data Delivery Options for a Hierarchical Model

else

Send a request for item sorted items[i] to the main server.

In our simulation, the main servers and the proxy servers use the Total Wait

Time algorithm (4.6) to determine the weights. Any other algorithm, such as SR,

may also be used.

The caching algorithm used at the proxy server is the Pre�x caching algorithm.

However, we have to make somemodi�cations to the caching policy at the proxy server

for this model. Since the aim of the proxy server is to serve its client population most

e�ectively, the caching decisions made by the proxy server have to be based on the

requests from its clients. Therefore, the pre�x array that is used by the proxy server

is not sent by the main server. Rather, the proxy server uses the weights that it

28

calculates (to make its own scheduling decisions), as the basis for caching decisions.

Therefore, every time the proxy server makes a scheduling decision, it updates its

pre�x array with the weights that were calculated. Therefore, to make space for a

new item, item(s) in cache, starting with the one with the lowest weight in the pre�x

array is deleted. This di�erence is critical to the performance of the system. The

clients can base their caching decisions on the pre�x array received from their proxy

server. In our simulation of the hierarchical system, however, the client cache size is

zero.

The model that we evaluate in this thesis, uses data broadcasting between the

proxy server and the client, as well as between the main server and the proxy servers.

There are other models that could be used depending upon the application needs.

These models are illustrated in Fig. 7. Note that the \broadcast" may be imple-

mented using IP multicasting [30] or any other multicasting tool.

29

CHAPTER VII

REDUCING THE VARIANCE

In this chapter, we discuss using the standard deviation of the access times - in

addition to the mean access time - as a performance goal of the scheduling algorithm.

Standard deviation is the square root of the variance. We try to balance the mean

access time with the standard deviation, so as to provide individual users better

performance, even though their requests may not be for the popular items.

A. Variance

In Chapter IV, scheduling algorithms, whose main performance objective was to min-

imize the mean access time for all the clients, were presented. The access time that

is minimized, is averaged over all the users. However, an individual user's experience

may be vastly di�erent from the overall average. Therefore we have to take into ac-

count the variance, and hence the standard deviation, of the access time. Minimizing

the access time can result in a high standard deviation.

In this chapter, we use a modi�ed version of the SR scheduling algorithm to

study the trade-o� between the standard deviation and the mean access time.

We �rst introduce a few terms. Let

� � be the overall mean access time.

� �2 be the variance.

� � be the standard deviation.

� Y be the total number of requests.

� RWTj be the wait time for request j, 1 � j � Y.

30

By estimating the standard deviation, we can be assured that the access times

will very likely be in the range (� � �; �+ �). The standard deviation is given by

� =

vuut
PY

j=1(RWTj � �)2

Y � 1
(7.1)

We can calculate it using the formula [31]

� =

vuutY
PY

j=1RWT 2
j � (

PY
j=1RWTj)2

Y (Y � 1)
(7.2)

B. Reducing the Variance With the SR Scheduling Algorithm

In this section, we discuss how the SR scheduling algorithm can be used to �nd a

trade-o� between the mean access time and its standard deviation.

The SR algorithm uses the product of the number of requests pending for an

item (Ri) and the time elapsed since its last broadcast (si), divided by the length of

the item (li), as the weight to decide the item to broadcast next. The item with the

highest weight is chosen. On closer examination of the parameters, we can see that

unpopular items, which obviously will have a low value for Ri, can be forced out of

contention by popular items. This is acceptable (in fact, it may be necessary), if our

only objective is to minimize the mean access times. However, this can cause the

waiting time for the unpopular items to be very high. As a result, we have to give

more importance to si, if we are to alleviate some of the high waiting times for the

unpopular items.

[16] proposed scheduling algorithms that aim to minimize the variance by giving

more importance to the time since the last broadcast for every item. Based on the

work done in [16], we conducted various experiments that used a di�erent weight

31

measure for the SR scheduling algorithm. We used

s�i R
(1��)

i

li
8i; 1 � i �M (7.3)

as the weight to make the scheduling decision. The modi�ed algorithm is referred to

as �-SR. By varying � appropriately, we can give more importance to the waiting

time, than the number of requests. We assumed equal lengths for all the items in our

measurements, and hence we get the original SR algorithm for � = 0:5. Simulation

results for di�erent values of � are presented in Chapter VIII.

This algorithm is a speci�c case of a more general algorithm, which uses s�i R
�
i =li

as the weight to make the scheduling decisions. When � = (1 � �), we get the �-SR

algorithm, and when � = � = 1, we get the original SR algorithm. An alternative is

using s�i Ri=li, similar to the push algorithm in [16].

32

CHAPTER VIII

PERFORMANCE EVALUATION

In this chapter we present the performance measurements. An event-driven simulator

was used to measure the performance. A database of 1000 items (M) was used. Other

parameters are described below.

Demand Probability: We use the Zipf distribution to model item popularity. Other

researchers [8, 11, 12, 13, 17, 18, 19, 20], have also made this assumption. The Zipf

distribution gives probability values for the items as follows:

pi =
(1=i)�PM
1=1(1=i)

�
1 � i �M (8.1)

where � is the access skew coe�cient. The higher the value of �, the greater the

disparity in popularity among the items.

Item Lengths: We use items of varying lengths for the simulations. The items

have lengths uniformly distributed between 1 and 10. However, since [10] assumed

equal lengths for their items, we also produce results with equal lengths (10) for all

the items, so as to provide a fair comparison with [10].

Request Generation: The inter-request time for the clients was obtained according

to a Poisson process. We set the mean inter-request time of the Poisson process to

be 2 in all cases, except the simulation for the hierarchical model. A mean of 15 was

used there, in order to slow the build up of requests. However, this change should

not a�ect the results.

33

A. Performance Evaluation of Scheduling Algorithms

In this section, we present the performance evaluation of the SR and Total Wait

Time (Total Wait) scheduling algorithms presented in Chapter IV. All simulations

were performed for 8 million client requests.

We compared the performance of both the algorithms, with the Most Request

First (MRF) [23] algorithm, the S2P [18] algorithm, and the RxW [10] algorithm.

Chapter III provides a brief description of these algorithms. Fig. 8 plots the perfor-

mance evaluation results for these algorithms. Since the RxW algorithm was proposed

for items of equal lengths only in [10], we plot simulation results for the algorithm,

where the items are of equal length in Fig. 9. To simulate unequal lengths in Fig. 8,

we modi�ed the RxW algorithm to include the lengths of the items by dividing the

product of Ri and the maximum waiting time of all pending requests for item i, by

the length of item i. Each of these �gures plot the Overall Mean Access Time versus

the access skew coe�cient �.

From the simulation, we observe that the SR and the Total Wait Time scheduling

algorithms perform better than S2P, MRF and RxW. The Total Wait Time algorithm

performed better than the SR algorithm. Although, the performance results were

much better than the MRF algorithm, we observed only modest gains over the S2P

algorithm and RxW algorithm. Note that the S2P algorithm cannot be used for

an on-demand system, since it requires the server to know the demand distribution.

The results for S2P were obtained assuming that the server knows the Zipf demand

distribution.

There is very little di�erence between the RxW, the SR and the Total Wait

Time algorithms. All three aim to make an estimate of the total wait time of the

requests for each item. Since Total Wait Time algorithm uses the exact measure, we

34

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1200

1400

1600

1800

2000

2200

2400

2600

2800

THETA

O
ve

ra
ll

M
ea

n
A

cc
es

s
T

im
e

S2P
MRF
RxW
SR
TOTAL_WAIT

Fig. 8. Overall Mean Access Time Versus Access Skew for Items of Unequal Lengths

Obtained by Simulation of Scheduling Algorithms Given in Chapter III

35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2000

2500

3000

3500

4000

4500

5000

THETA

O
ve

ra
ll

M
ea

n
A

cc
es

s
T

im
e

S2P
MRF
RxW
SR
TOTAL_WAIT

Fig. 9. Overall Mean Access Time Versus Access Skew for Items of Equal Lengths

Obtained by Simulation of Scheduling Algorithms Given in Chapter III

36

see marginal performance improvements.

B. Performance Evaluation of Pre�x Caching Scheme

This section presents the performance evaluation for the Pre�x caching policy that

was described in Chapter V. All simulations were performed for 8 million client

requests.

We compared the performance of the Pre�x caching policy to the Least Recently

Used (LRU) caching policy and the PT [8] caching policy. Chapter III provides a

description of these policies. All simulations for the caching policies used the Total

Wait Time algorithm, since it performed the best. The additional bandwidth con-

sumed by the pre�x array was ignored for the simulations, since it was assumed to

be negligible when compared to the items.

Since the PT caching policy requires the clients to know the demand distribution

and the time till next broadcast of every item, we obtained results for it assuming

that all the clients know the demand probabilities of the items. Also, PT assumes

that the broadcast schedule is determined a priori, and hence the time till the next

broadcast of every item is known at any time. For an on-demand system, we cannot

make this assumption. Hence, we make an estimate of the time till the next broadcast

for every item. This was done using the pre�x array. The pre�x array contains the

items in increasing order of weights. The item that was just broadcast is the last one

in the array. Hence, the 100-pre�x array can be used as an estimate of the broadcast

schedule, and hence the time till the next broadcast of every item. Therefore, the

time till the next broadcast of item i, which is in position k in the pre�x array, is

PM
j=k+1 lj. Note that this is just an approximate estimate. Requests that come in

during and after the current item transmission can alter the estimate. Only a schedule

37

determined a priori can give precise values for time till next broadcast of all the items.

Figures 10 and 11 plot the cache hit ratio and the overall mean access time

respectively, versus the access skew coe�cient. The client cache size is 10% of the

database size, and the server sends 100% of the pre�x. Figures 12 and 13 plot the

results, for the case where the cache size of the clients is 20% of the database size

and the server sends 100% of the Pre�x. Figures 14 and 15 plot the performance for

client cache size of 10% of the database size and 0-pre�x (our implementation of the

PT algorithm always uses 100-pre�x). Figures 16 and 17 plot the performance of the

Pre�x caching policy, with � = 0:50 and 100-pre�x, for various cache sizes.

Figures 18 and 19 plot the performance, with � = 0:50 and cache size = 10%

of the database size, for various pre�x percentages. Both the cache hit ratio and

the mean access time remain constant when the pre�x percentage is greater than or

equal to 4%. This is because the server does not receive requests for items already in

cache. As a result, cached items, which have low weight, are at the beginning of the

pre�x array. The clients are able to �nd enough items to delete (to make space for the

current broadcast item), within the �rst 4% of the pre�x array, at all times. Although

this may seem to be a desirable feature, this result is caused by the Mature Cache

Problem, which is explained later in this section. Obviously, this \cuto�" percentage

may vary for di�erent cache sizes and di�erent item demand distributions.

Any caching scheme that can accurately estimate the popularity of the items is

bound to perform well. Since it very di�cult to get a 100% hit ratio without cache

space for all the items, the caching policy has to strive to keep the most popular items

in the cache. Cache misses for infrequently requested items can be tolerated. Both

the PT and Pre�x caching algorithms do exactly this.

By multiplying the time to next broadcast with the demand probability of the

item, PT manages to do this very well. However, PT is not a practical algorithm for

38

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

THETA

C
ac

he
 H

it
R

at
io

Cache = 10%, Prefix = 100%

LRU
PT
100−PREFIX

Fig. 10. Cache Hit Ratios Versus Access Skew Obtained by Simulation of Caching

Policy Given in Chapter IV

39

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

THETA

O
ve

ra
ll

M
ea

n
A

cc
es

s
T

im
e

Cache = 10%, Prefix = 100%

LRU
PT
100−PREFIX

Fig. 11. Overall Mean Access Time Versus Access Skew Obtained by Simulation of

Caching Policy Given in Chapter IV

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
30

40

50

60

70

80

90

THETA

C
ac

he
 H

it
R

at
io

Cache = 20%, Prefix = 100%

LRU
PT
100−PREFIX

Fig. 12. Cache Hit Ratios Versus Access Skew Obtained by Simulation of Caching

Policy Given in Chapter IV

41

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
200

400

600

800

1000

1200

1400

THETA

O
ve

ra
ll

M
ea

n
A

cc
es

s
T

im
e

Cache = 20%, Prefix = 100%

LRU
PT
100−PREFIX

Fig. 13. Overall Mean Access Time Versus Access Skew Obtained by Simulation of

Caching Policy Given in Chapter IV

42

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

45

50

55

60

THETA

C
ac

he
 H

it
R

at
io

Cache = 10%, Prefix = 0%

LRU
0−PREFIX

Fig. 14. Cache Hit Ratios Versus Access Skew Obtained by Simulation of Caching

Policy Given in Chapter IV

43

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
600

800

1000

1200

1400

1600

1800

2000

THETA

O
ve

ra
ll

M
ea

n
A

cc
es

s
T

im
e

Cache = 10%, Prefix = 0%

LRU
0−PREFIX

Fig. 15. Overall Mean Access Time Versus Access Skew Obtained by Simulation of

Caching Policy Given in Chapter IV

44

10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

Cache Size as a Percentage of Database Size

C
ac

he
 H

it
R

at
io

Theta = 0.50

LRU
PT
100−Prefix

Fig. 16. Cache Hit Ratios Versus Cache Size Obtained by Simulation of Caching Policy

Given in Chapter IV

45

10 15 20 25 30 35 40 45 50
200

400

600

800

1000

1200

1400

1600

1800

Cache Size as a Percentage of Database Size

O
ve

ra
ll

M
ea

n
A

cc
es

s
T

im
e

Theta = 0.50

LRU
PT
100−Prefix

Fig. 17. Overall Mean Access Time Versus Cache Size Obtained by Simulation of

Caching Policy Given in Chapter IV

46

0 10 20 30 40 50 60 70 80 90 100
20

22

24

26

28

30

32

34

36

38

40

Prefix Percentage

C
ac

he
 H

it
R

at
io

Theta = 0.50, Cache = 10%

Fig. 18. Cache Hit Ratios Versus Pre�x Percentage Obtained by Simulation of Caching

Policy Given in Chapter IV

47

0 10 20 30 40 50 60 70 80 90 100
1350

1400

1450

1500

1550

1600

Prefix Percentage

O
ve

ra
ll

M
ea

n
A

cc
es

s
T

im
e

Theta = 0.50, Cache = 10%

Fig. 19. Overall Mean Access Time Versus Pre�x Percentage Obtained by Simulation

of Caching Policy Given in Chapter IV

48

an on-demand model. In our model, we have to estimate, not assume, the popularity

of the items. This is what the Pre�x caching policy does. From the results, we can

see that the Pre�x caching policy is much better than LRU. However, it performs

marginally lower than PT in some cases (of course, PT cache as such cannot be

implemented for an on-demand system). This is due to the Mature Cache Problem,

which is explained next.

1. The Mature Cache Problem

Although pre�x based caching performs well, its performance is not equal to the PT

caching scheme. This is due to what we call the mature cache problem.

The server makes an estimate of the popularity of the items based on the requests

it receives from the clients. In the initial stages (before the cache becomes full), the

server accurately predicts the popularity, since all the requests are for popular items.

However, as the cache matures, the clients send requests only for those items that are

not in cache. Obviously, these are for the unpopular items, since the popular items

are already in cache. Therefore, the server is fooled into thinking that the unpopular

items are the popular ones. Therefore, for a short period of time the server instructs

the clients to cache the unpopular items. Fortunately, this mistake is quickly recti�ed,

as new requests for the popular items come in. However, this problem repeats itself.

Hence, we can see that the server goes through cycles of correct and incorrect caching

hints, and this manifests in the less-than-optimal performance.

For the actual performance numbers, which provide a better view of the perfor-

mance gains, please see Appendix A.

49

C. Performance Evaluation of Hierarchical Model

We compared the performance of the hierarchical model, described in Chapter VI,

with that of a model with no proxy servers. All simulations were performed for 4

million client requests.

Both the proxy server and the main server use the Total Wait Time scheduling

algorithm. In these simulations, the clients had a cache size of zero. The cache size

at the proxies was equal to the size of the database at the server. Hence, any item

transmitted by the server can �t in the cache, without any deletions.

Fig. 20 plots the overall mean access time versus the access skew coe�cient for

the hierarchical model with four proxy servers, and the model with just one main

server (Regular) and no proxy servers. Note that the model used for the simulation

uses broadcasting from the main server to the proxy servers, as well as from the proxy

servers to the clients.

There is a de�nite performance improvement with the hierarchical scheme. This

is in spite of the fact that we assumed it takes the same time for the items to reach

the client from the proxy server, as it does from the server to the clients in the regular

case. Also, we did not model any performance improvement at the server, even though

it has to handle a lower number of requests. The reason for the improvement is that

there is less contention for the broadcast channel. Since, each proxy server has a

lower number of clients to serve, the number of requests at any instant of time at the

proxy server is lower than the number of requests for the model with just one server

and no proxies. Hence, the number of di�erent items for which there are requests is

lower. Since the number of requests, and hence the variety of items requested is lower

for the proxy, it can serve more requests with fewer transmissions.

From these results, there is a de�nite merit in investigating this model further.

50

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1000

1500

2000

2500

THETA

O
ve

ra
ll

M
ea

n
A

cc
es

s
T

im
e

REGULAR
HIERARCHICAL

Fig. 20. Overall Mean Access Time Versus Access Skew Obtained by Simulation of

Hierarchical Broadcast Model Given in Chapter V

51

Appendix A gives the the precise values from the simulation results.

D. Performance Evaluation of the �-SR Scheduling Algorithm

This section gives the performance results for the �-SR algorithm that was described

in Chapter VII. All simulations were performed for 8 million client requests. All

items are assumed to be of length 10.

Table I gives the standard deviation, and Table II gives the mean access time,

for the �-SR algorithm (for di�erent values of �) and the RxW algorithm. For

� = 0:2, the �-SR algorithm performs poorly, with very high values for both the

mean and the standard deviation. This is because the number of requests Ri, is given

a disproportionate amount of emphasis. However, as we increase �, we can see that

the mean access time �rst decreases (till � = 0:5) and then increases. The standard

deviation decreases as we increase �, since we are giving more importance to si, and

hence the waiting time of the requests.

Table I. Standard Deviation of �-SR and RxW Scheduling Algorithms

� �-SR RxW

�

0.2 0.4 0.5 0.6 0.7 0.8 0.9

0.25 3139 3011 2962 2923 2898 2883 2882 2947

0.50 3737 3302 3134 2995 2894 2832 2827 3120

0.75 4585 3631 3300 3039 2841 2715 2705 3285

1.0 5534 3663 3167 2820 2582 2433 2471 3147

For cases when the item demand distribution has a low skew, the increase in

52

Table II. Overall Mean Access Time of �-SR and RxW Scheduling Algorithms

� �-SR RxW

�

0.2 0.4 0.5 0.6 0.7 0.8 0.9

0.25 4805 4775 4774 4777 4793 4818 4849 4784

0.50 4516 4389 4377 4403 4459 4563 4707 4387

0.75 3892 3578 3548 3602 3741 3985 4538 3559

1.0 2910 2437 2391 2469 2692 3087 3771 2398

mean access time, with increase in � (for � > 0:5) is not very high. However, this

increase is more pronounced as the skew increases. The reason for this is that, as the

skew increases, the number of requests for the most popular items increase, and is

much larger than that for the less popular items. For lower access skew, the increased

importance to si is averaged over all the items, and hence the mean access time

remains stable. However, as the access skew increases, the increased importance to

si is not averaged among all the items. The popular items feel the negative impact

of this, and hence the mean access time su�ers.

The RxW algorithm performs marginally better, with a lower standard deviation

than the �-SR algorithm for � = 0:5. This is because, the RxW algorithm uses the

product of maximum waiting time and the number of requests as its weight, and

hence the unpopular items get a marginally fairer treatment. But as the simulation

results show, the performance of the two algorithms is almost identical, with only

marginal di�erences.

53

CHAPTER IX

FUTURE WORK AND CONCLUSIONS

A. Future Work

Data broadcasting is a nascent �eld and more research has to be done to make it a

viable alternative to the client-server approach. There are several issues that have to

be tackled in this new paradigm. We list a few in this section.

1. Although we looked at the issue of reducing the variance of the access times,

more work has to be done in this area. As mentioned in Chapter III, [16]

proposed some solutions. But they do not take the on-demand model into

consideration. If any quality of service guarantees are to made, then the variance

is as important as the overall mean access time.

2. The caching scheme that we proposed aims to further reduce the overall mean

access time. However, another aim of the caching scheme could be to reduce

the variance as well. Hence, the caching scheme would have to �nd a balance

between the variance and the mean access time. It would have to store some of

the unpopular items as well, so that the clients do not have very large waiting

times for them.

3. More work needs to be done to evaluate the generalization of the pre�x caching

policy that was proposed in Chapter V.

4. We did not take the additional bandwidth that the pre�x array consumes while

measuring the performance of the Pre�x caching policy (thus, the pre�x array

size was assumed to be negligible when compared to the item size). Further

evaluation is needed if the item sizes are small and hence, the pre�x size cannot

54

be ignored.

5. We have only done preliminary work on the hierarchical broadcast model. We

did not take various parameters (for instance, lower transmission time from

the proxy to its clients than from the main server, proxy's cache size) into

consideration, while measuring the performance gain.

6. The hierarchical broadcast model maps very well to the wireless PCS model,

with base-stations and mobile hosts. This could be a very interesting and

practical application. With servers and networks strained with ever-growing

demand, more work, with better models, needs to done in this important area.

7. Data broadcasting is not going to replace the client-server approach. How-

ever, as explained in Chapter I, for selected environments, it is better suited.

Hence, more work is needed to develop applications that take advantage of data

broadcasting.

B. Conclusions

This thesis deals with data broadcasting. Data broadcasting is ideally suited for

environments wherein the bandwidth available to the server is insu�cient to serve the

clients one at a time. In such environments broadcasting is e�cient. In this thesis,

we considered an on-demand broadcast environment. Here, the clients send requests

to the server, and the server makes scheduling decisions based on these requests.

This thesis evaluates two scheduling algorithms for the on-demand broadcast

environment. The SR algorithm and the Total Wait Time algorithm make scheduling

decisions on-line, based on the current pending client requests. Both these algorithms

aim to minimize the overall mean access time for the clients. Performance results

55

showed that the Total Wait Time algorithm performed the best.

Another way to improve the mean access time is for clients to cache the items

that are received from the server. In an on-demand broadcast environment, the server

has precise knowledge of client request patterns. This thesis proposed a new caching

scheme, called the Pre�x caching policy, where the server helps the client make caching

decisions. Simulation results show that the Pre�x caching policy performs very well.

However, the Mature Cache Problem limits the performance gain somewhat.

We evaluated a Hierarchical broadcast model. Here, the clients send their re-

quests to a designated proxy server, instead of the main server. By reducing the

number of clients that each server has to serve, we achieved improvements in the

mean access time. However, there is a lot more work to be done in this area.

Finally, the SR scheduling algorithm was modi�ed, to reduce the variance, in

addition to the mean access time. �-SR, the modi�ed algorithm, was evaluated, and

the results show that for low skew among the item demands, the variance can be

signi�cantly reduced without drastically increasing the mean access time. For high

access skew, the reduction in the variance comes at the expense of a large increase in

the mean access time.

56

REFERENCES

[1] B. R. Badrinath and T. Imielinski, \Data management for mobile computing,"

Communications of the ACM, vol. 37, no. 10, pp. 19{28, March 1994.

[2] S. Shekar, A. Fetterer, and D.-R. Liu, \Genesis: an approach to data dissem-

ination in advanced traveller information systems," Bulletin of the Technical

Committee on Data Engineering, vol. 19, no. 3, pp. 40{47, September 1996.

[3] T. Imielinski and S. Viswanathan, \Pyramid broadcasting for video on de-

mand," in Proceedings of ACM/IEEE Multimedia Conference, February 1995.

http://www.cs.rutgers.edu/ imielins/index.html, accessed on September 25,

1997.

[4] S. Viswanathan, \Publishing in wireless and wireline environments," Ph.D. dis-

sertation, Rutgers University, New Brunswick, New Jersey, November 1994.

[5] Pointcast, Inc., http://www.pointcast.com, accessed on January 10, 1997.

[6] Airmedia, Inc., http://www.airmedia.com, accessed on January 10, 1998.

[7] IBM, \MQSeries: message oriented middleware," http://www.software.ibm.com

/ts/mqseries/library/whitepapers/mqover /, accessed on May 28, 1998.

[8] S. Acharya, \Broadcast disks - data management for asymmetric communications

environments," Ph.D. dissertation, Brown University, Providence, Rhode Island,

May 1998.

[9] S. Acharya, M. Franklin, and S. Zdonik, \Dissemination-based data delivery

using broadcast disks," IEEE Personal Communications, vol. 2, no. 6, pp. 50{

60, December 1995.

57

[10] D. Aksoy and M. Franklin, \Scheduling for large-scale on-demand data broad-

casting," in Proceedings of IEEE Conference on Computer Communications (IN-

FOCOM), April 1998, pp. 652{659.

[11] M. H. Ammar, \Response time in a teletext system: An individual user's perspec-

tive," IEEE Transactions on Communications, vol. COM-35, no. 11, pp. 1159{

1170, November 1987.

[12] M. H. Ammar and J. W. Wong, \On the optimality of cyclic transmission in

teletext systems," IEEE Transactions on Communications, vol. COM-35, no. 1,

pp. 68{73, January 1987.

[13] S. Hameed, \Scheduling information broadcast in asymmetric environment,"

Master's thesis, Texas A&M University, College Station, Texas, May 1997.

[14] S. Hameed and N. H. Vaidya , \E�cient algorithms for scheduling

data broadcast," ACM/Baltzer Wireless Networks Journal, to appear.

http://www.cs.tamu.edu/faculty/vaidya/mobile.html, accessed on June 16,

1998.

[15] S. Hameed and N. H. Vaidya , \Log-time Algorithms for Scheduling Sin-

gle and Multiple Channel Data Broadcast," ACM/IEEE International Con-

ference on Mobile Computing and Networking (MOBICOM), September 1997.

http://www.cs.tamu.edu/faculty/vaidya/mobile.html, accessed on December 1,

1997.

[16] S. Jiang and N. H. Vaidya, \Scheduling algorithms for a data broadcast system:

minimizing variance of the response time," Tech. Rep. 98-005, Computer Science

Department, Texas A&M University, College Station, February 1998.

58

[17] C. J. Su and L. Tassiulas, \Broadcast scheduling for information distribution,"

in Proceedings of IEEE Conference on Computer Communications (INFOCOM),

1997. http://www.ee.umd.edu/ leandros/infocom97.ps, accessed on June 20,

1998.

[18] N. H. Vaidya and S. Hameed , \Data broadcast in asymmetric wireless environ-

ments,"Workshop on Satellite Based Information Services (WOSBIS), pp. 38{52,

November 1996.

[19] N. H. Vaidya and S. Hameed, \Scheduling data broadcast in asymmetric com-

munication environments," ACM/Baltzer Wireless Networks Journal, to ap-

pear. http://www.cs.tamu.edu/faculty/vaidya/mobile.html, accessed on June

16, 1998.

[20] J. W. Wong, \Broadcast delivery," in Proceedings of IEEE, December 1998,

pp. 1566{1577.

[21] S. Acharya, M. Franklin, and S. Zdonik, \Prefetching from a broadcast

disk," 12th International Conference on Data Engineering, February 1996.

http://www.cs.umd.edu/users/franklin/papers/icde96.ps.gz, accessed on June

20, 1998.

[22] C. J. Su and L. Tassiulas, \Optimal memory management strategies for a mo-

bile user in a broadcast delivery system," IEEE Journal on Selected Areas in

Communications, 1999, to appear. http://www.ee.umd.edu/ leandros/tass1.htm,

accessed on June 1, 1998.

[23] H. D. Dykeman, M. H. Ammar, and J. W. Wong, \Scheduling algorithms for

videotex systems under broadcast delivery," in Proceedings of the International

Conference on Communications, 1986, pp. 1847{1851.

59

[24] A. Tanenbaum, Modern Operating Systems. Upper Saddle River, New Jersey:

Prentice Hall, 1992.

[25] B. R. Badrinath, T. Imielinski and S. Viswanathan, \Energy e�cient indexing

on air," in Proceedings of ACM Special Interest Group on Management of Data

(SIGMOD), May 1994, pp. 25{37.

[26] M.-S. Chen, P. S. Yu, and K.-L. Wu, \Indexed sequential data broadcasting in

wireless mobile computing," in Proceedings of 17th IEEE International Confer-

ence on Distributed Computing Systems, May 1997, pp. 124{131.

[27] A. L. N. Reddy, \Caching strategies for a multimedia server," in Proceed-

ings of IEEE Conference on Multimedia Computing and Systems, June 1997.

http://ee.tamu.edu/ reddy/papers/ieeemm97.ps, accessed on June 25, 1998.

[28] T. Brisco, \RFC 1794: DNS support for load balancing," April 1995. Status:

Informational. ftp://ftp.internic.net/rfc/rfc1794.txt, accessed on June 10, 1998.

[29] H. Chawla and R. Bettati, \Replicating IP services," Tech. Rep. 97-008, Depart-

ment of Computer Science, Texas A&M University, September 1997.

[30] S. Deering, \RFC 1112: Host extensions for IP multicasting," August 1989.

Status: Standard. ftp://ftp.internic.net/rfc/rfc1112.txt, accessed on June 24,

1998.

[31] J. E. Freund and F. J. Williams, Modern Business Statistics. Englewood Cli�s,

New Jersey: Prentice Hall, 1958.

60

APPENDIX A

TABULAR REPRESENTATION OF SIMULATION DATA

Table III. Data for Fig. 8 in Tabular Form

� S2P MRF RxW SR TOTAL WAIT

0.25 4798 4861 4784 4774 4767

0.50 4394 4822 4387 4376 4370

0.75 3565 4638 3559 3548 3542

1.0 2404 4194 2398 2387 2383

Table IV. Data for Fig. 9 in Tabular Form

� S2P MRF RxW SR TOTAL WAIT

0.25 2491 2730 2488 2472 2470

0.50 2295 2695 2286 2273 2267

0.75 1878 2609 1875 1860 1855

1.0 1286 2363 1283 1267 1262

61

Table V. Data for Fig. 10 in Tabular Form

� LRU PT 100-Pre�x

0.25 16% 26% 22%

0.50 21% 37% 35%

0.75 36% 55% 53%

1.0 57% 73% 73%

Table VI. Data for Fig. 11 in Tabular Form

� LRU PT 100-Pre�x

0.25 1843 1646 1718

0.50 1640 1366 1401

0.75 1234 954 977

1.0 730 526 533

Table VII. Data for Fig. 12 in Tabular Form

� LRU PT 100-Pre�x

0.25 30% 41% 37%

0.50 38% 52% 50%

0.75 53% 68% 66%

1.0 71% 82% 82%

62

Table VIII. Data for Fig. 13 in Tabular Form

� LRU PT 100-Pre�x

0.25 1351 1134 1203

0.50 1171 897 934

0.75 849 598 616

1.0 479 308 316

Table IX. Data for Fig. 14 in Tabular Form

� LRU 0-Pre�x

0.25 16% 17%

0.50 21% 23%

0.75 36% 39%

1.0 57% 59%

Table X. Data for Fig. 15 in Tabular Form

� LRU 0-Pre�x

0.25 1843 1809

0.50 1640 1614

0.75 1234 1200

1.0 730 698

63

Table XI. Data for Fig. 20 in Tabular Form

� Regular Proxy

0.25 2470 2260

0.50 2267 2076

0.75 1855 1648

1.0 1262 1038

Table XII. Data for Fig. 16 in Tabular Form

Cache Size LRU PT 100-Pre�x

10% 21% 37% 35%

20% 38% 52% 50%

30% 51% 63% 61%

40% 63% 70% 69%

50% 73% 78% 78%

64

Table XIII. Data for Fig. 17 in Tabular Form

Cache Size LRU PT 100-Pre�x

10% 1640 1366 1401

20% 1171 897 934

30% 825 589 614

40% 562 374 385

50% 361 216 217

Table XIV. Data for Fig. 18 in Tabular Form

Pre�x Percentage Cache Hit Ratio

1% 26%

2% 27%

3% 27%

4% 35%

5% 35%

6% 35%

7% 35%

10% 35%

25% 35%

100% 35%

65

Table XV. Data for Fig. 19 in Tabular Form

Pre�x Percentage Overall Mean Access Time

1% 1571

2% 1558

3% 1548

4% 1401

5% 1401

6% 1401

7% 1401

10% 1401

25% 1401

100% 1401

66

VITA

Kannan Kothandaraman was born on September 2, 1974 in Madras, India. He

received his Bachelor of Science degree in Computer Science from Louisiana State

University, Baton Rouge in May 1996. Subsequently, he joined the graduate program

in Computer Science at Texas A&M University. His research has been in mobile

computing and data broadcasting. His address is Department of Computer Science,

Texas A&M University, College Station, TX 77843.

The typist for this thesis was Kannan Kothandaraman.

