
Scheduling Data Broadcast to \Impatient" UsersShu Jiang � Nitin H. VaidyaDepartment of Computer ScienceTexas A&M UniversityCollege Station, TX 77843-3112, USAEmail: fjiangs,vaidyag@cs.tamu.eduPhone: 409-862-2598 Fax: 409-847-8578AbstractBroadcasting is an e�ective way of delivering data to a large population. In the broadcast envi-ronment under consideration, a server broadcasts data items to all clients simultaneously, accordingto a certain transmission schedule. Users with pending data requests need to listen to the broad-cast channel until their requests are satis�ed by the transmitted data. Past research on broadcastscheduling assumes that once a user starts to wait for some data item, the user waits until the desireddata item is transmitted by the server. This is often not true in practice. For various reasons, usersmay loose patience after waiting \too long" and leave with their requests unserved.In this paper, we study the broadcast scheduling problem taking user impatience into account.Based on our analytical results, we propose a scheduling algorithm that can produce a broadcastschedule with high service ratio (i.e., percentage of requests served) as well as low mean waiting timefor the requests. Performance evaluation results based on simulations are provided.1 IntroductionIn a wireless environment, providing a large population of clients with access to data is a signi�cantchallenge [3]. In recent years, data broadcasting has been studied extensively (e.g., [5, 6, 9, 10, 17, 11,12, 7]) as a mechanism for information delivery. In this approach, a server broadcasts the data over abroadcast channel which is listened to by all the users. All pending requests for a given data item areserved when that item is transmitted on the broadcast channel. To avoid very long waiting time forthe users, the broadcast schedule must be chosen by taking into account the demands for various dataitems.Prior work on broadcast scheduling has considered di�erent ways of reducing the waiting time andenergy consumption, for instance, by scheduling the broadcast properly [5, 4, 16, 15, 3, 14], by utilizingclient-side caching and prefetching [17, 2, 3, 1] or by energy-e�cient indexing [11].Prior research assumes that once a data request is generated by a user, the request will be held untilit is satis�ed. This assumption is not always true in practice. For various reasons, users may leave iftheir requests are still unsatis�ed after waiting for some time. We refer to such users as \impatient"users.�contact author 1



This paper provides a formalization of the problem of broadcast scheduling with impatient users, andproposes an algorithm to schedule broadcasts to such users. The objective of the design of a broadcastschedule is two-fold in this case: maximize the service ratio (i.e., percentage of the requests served),and minimize the mean waiting time.The rest of this paper is organized as follows. Section 2 derives mathematical expressions for serviceratio and mean waiting time. Based on these expressions, we derive an optimality condition for abroadcast schedule. This result is then used to propose a scheduling algorithm aimed at producinga near-optimal schedule with high service ratio as well as low mean waiting time. Section 3 presentsperformance measurements for the new algorithm. Section 4 presents our conclusions.2 Mathematical Foundation and Proposed AlgorithmIn this paper, we consider the pure push model wherein the broadcast schedule by the server is a functionof request probability distribution for the data items in the server's database { the request probabilitydistribution provides the server with a measure of the popularity of various data items. The actualrequests pending at a given time are not known to the server.Our results can be easily extended to the pure pull model wherein the broadcast schedule is a functionof the requests known to be pending at a given time (thus, in the pure pull model, the server is awareof all the pending requests). For lack of space, we do not consider the pure pull model in this paper.We now introduce some notations. The server maintains a database consisting of M data itemsnumbered from 1 through M . Request probability pi of data item i is a measure of the popularity ofitem i. Thus, pi is the probability that item i is requested in any given request from a user. Length ofitem i, denoted as li, is the time required to broadcast item i.Request Arrival ModelSimilar to some past work on broadcast scheduling, users are assumed to submit independent requestsaccording to a Poisson process with rate � [6, 15]. Thus, requests for item i are generated according toa Poisson process with rate �i = pi�. Note that, when di�erent requests are correlated, or when a usermay make multiple requests at the same time, the analysis presented below will not apply.User Impatience ModelAs we mentioned before, a waiting user may leave before the requested data item is transmitted (thus,the user's request may be unsatis�ed). In the following, we say that a request \arrives" when the request2



is generated by a user. Also, we say that a request \leaves" when a user withdraws (i.e., drops) therequest before the request is served.To facilitate the analysis, we need to characterize the duration of time a request waits before leaving.Let a random variable w represent the length of time that a request will wait before leaving. In thispaper, we assume that w has an exponential distribution with mean 1=� . Thus, � can be regarded asthe rate at which requests leave.Service RatioService ratio is the fraction of requests that are serviced before they leave. An objective of the proposedapproach is to maximize the service ratio. We now derive an expression for the expected service ratio,denoted as R. We consider a broadcast schedule with the \equal spacing" property, i.e., in the broadcastschedule, consecutive transmissions of a given item are always separated by a �xed interval (or spacing).1For the analysis below, we characterize a broadcast schedule satisfying the equal spacing propertywith a schedule vector < s1,s2,: : : ,sM >, where si is the spacing between consecutive transmissions ofitem i.A request, for item i, arriving at time t, will be satis�ed by the next transmission of item i, providedthat the request does not leave before that transmission begins. Thus, the expected number of requestssatis�ed by a transmission of item i, denoted as Nsi , can be obtained as follows:Nsi = Z si0 �ie��(si�t)dt = �i� (1� e��si) = pi �� (1� e��si)Note that the above expression calculates the number of those requests which arrive in the si intervalpreceding a given transmission of item i, but do not leave until the given transmission begins. Due tothe exponential model, the probability that a request will wait for interval (si� t) or longer is e��(si�t).If the length of entire broadcast schedule is C, then the number of broadcasts of item i is ni = C=si,and the expected number of requests served by the schedule would be PMi=1 niNsi . Also, the expectednumber of requests arriving in time period C is �C for a Poisson process with rate �. Then, we obtainthe expected service ratio R as R = PMi=1 niNsi�C = MXi=1 pi�si (1� e��si) (1)1It can be shown that, the theoretically optimal schedule satis�es the equal spacing property.3



Mean Waiting TimeIf a request is served (by a transmission from the server) after waiting for t time units, or if it leaveswithout being served after waiting for t time units, then its waiting time is said to be t. An analysissimilar to that for the expected service ratio R yields the following expression for the mean waiting timeof all requests (satis�ed and unsatis�ed both). The mean waiting time is denoted as W .W = MXi=1 pi�2si (�si � 1 + e��si) (2)= 1� (1�R) (3)Equations 1 and 3 imply that when the expected service ratio is maximized by a particular schedulevector, the expected mean waiting time will be minimized simultaneously.Characteristics of the Optimal ScheduleFrom Equations 1 and 2, we know that service ratio R and mean waiting time W are multivariablefunctions of s1, s2, : : : , sM . Theoretically, we can use mathematicalmethods to locate the optimal pointwhere R is maximized and W is minimized. The values of si's at the optimal point would correspondto the schedule that achieves the maximum service ratio and minimum mean waiting time. In theappendix, we present a derivation of a condition for optimality of a broadcast schedule. Result of thisanalysis is summarized in the following theorem.Theorem 1 Maximum service ratio and minimum mean waiting time are achieved if the broadcastschedule possesses the following property, for some constant K.pili (�sie��si + e��si � 1) = K; i = 1; 2; : : : ;MUnfortunately, it is hard to obtain a closed-form solution for si's that satisfy the above equality for alli (under the constraint that the M items use the available broadcast bandwidth). However, Theorem 1manifests an important relationship between item spacings in an optimal schedule, which provides a basisfor the design of the proposed algorithm (we believe that our algorithm can perform near-optimally).Broadcast scheduling schemeThe proposed broadcast scheduling algorithm is an adaptation of an algorithmwe previously introducedfor the traditional broadcast environments (where requests do not leave until they are served) [16]. The4



algorithm proposed here is essentially identical to that in [16], except for one crucial di�erence, aselaborated below.In the proposed algorithm, whenever the server needs to determine the item to be transmitted next,it executes the 5 steps listed below. The algorithm calculates a \weight" for each item according to agiven weight function Fi (de�ned below) and returns the item with the maximum weight value. Forfuture reference, let Q denote the time at which next item is to be transmitted, and let Ri denote thetime at which item i was most recently transmitted.Step 1. For each item i, 1 � i �M , determine the value of weight Fi.Step 2. Determine maximum Fi over all items. Let Fmax denote the maximum value.Step 3. Choose item j such that Fj = Fmax. If this equality holds for more than one item, chooseany one of them arbitrarily.Step 4. Broadcast item j.Step 5. Set the latest broadcast time of item j (Rj) equal to the current time.The choice of Fi function in the above algorithm signi�cantly a�ects its properties. In our past work,we have proposed an algorithm named S2P that minimizes the mean waiting time for the traditionalbroadcast model (where requests do not leave) [16], and also an algorithm that minimizes the varianceof waiting time [13] with the traditional model.In this paper, we use the Fi de�nition below with the objective of designing a broadcast schedule thatmaximizes the service ratio and minimizes the waiting time of impatient users. Note that the right-handside of the expression below is obtained by substituting si by (Q�Ri) in the expression in Theorem 1.Fi = pili (�(Q� Ri)e��(Q�Ri) + e��(Q�Ri) � 1)Recall that Q is the time at which next item is to be transmitted, and Ri is the time when item i wasmost recently transmitted.The proposed algorithm that uses the above de�nition of Fi will be referred to as the SRM (ServiceRatio Maximized) algorithm. Note that the S2P algorithm [16] that minimizes the mean waiting timein the traditional model uses Fi = pili (Q� Ri)2 as the weight function.3 Simulation ResultsPerformance comparisons are made between the proposed SRM algorithm and the S2P algorithmintroduced in [16]. As noted before, the S2P algorithm is designed to minimize the mean waiting timein an environment where requests do not leave until they are serviced. Of course, in the model underconsideration in this paper, requests can leave before being serviced. The motivation behind comparing5
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SRM(a) Service ratio (b) Mean waiting timeFigure 1: Performance vs. Average User Patience LimitSRM with S2P is to determine how important it is (from a performance point-of-view) to consider theimpact of user impatience.We consider a database consisting of 100 items, with li = 1 for all i (for lack of space, we omit resultsfor other length distributions). The request probability pi follows the Zipf distribution [18, 5, 15] withskew coe�cient �. Thus, pi = �1i ��PMj=1(1j )�For � = 1, Figure 1(a) plots the service ratio for the SRM and S2P algorithms (as measured bysimulation) versus 1=� . Recall that 1=� is the average time a request will wait before leaving. It canbe seen that, when users are tolerant of large waiting time (i.e., 1=� is large), the two algorithms yieldsimilar service ratios. The SRM algorithm achieves signi�cantly higher service ratio than S2P forsmaller 1=� . As seen later, the service ratio is also a function of the skew coe�cient �.For � = 1, Figure 1(b) plots the mean waiting time measured for the two algorithms, versus 1=� .Again, the improvement achieved by SRM is higher for smaller values of 1=� . Clearly, when 1=�becomes 1 (i.e., requests do not leave unless serviced), the two algorithms should perform similarly,since the users are not impatient anymore. Actually, it can be shown that when 1=� = 1, the twoalgorithms produce identical broadcast schedules.Next we examine the performance of the two algorithms as a function of skew in the data requestpattern. The skew is characterized by parameter � of the Zipf distribution { smaller � results in smallerskew (� = 0 yields a uniform distribution), while larger � results in larger skew.6
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(a) Service ratio (b) Mean waiting timeFigure 2: Performance vs. Data Request SkewFor 1=� = 20 time units, Figures 2(a) and 2(b) plot service ratio and mean waiting time, respectively,versus skew coe�cient � for the SRM and S2P algorithms. Observe that when � (skew) is large, thetwo algorithms yield similar service ratio and mean waiting time. When user requests are targeted to afew data items, frequent transmission of the few \hot" items will serve most requests before they leave(and before they wait too long). This is the reason why both SRM and S2P algorithms yield highservice ratio and low mean waiting time with high �.When the skew coe�cient � is moderate (not too large nor too small), SRM algorithm yields betterperformance than S2P algorithm { thus, with moderate �, the impact of user impatience is signi�cant.When � approaches 0, the two algorithms again perform comparably. When � = 0, both algorithmsare reduced to the so-called \
at" algorithm which broadcasts all data items in a round-robin style, andthus, uniformly allocates the bandwidth of broadcast channel among the data items.4 Conclusions and Future WorkIn this paper, we consider impatient users who may withdraw their requests before they are served. Insuch an environment, the objective of a broadcast scheduling algorithm should be two-fold: maximizethe fraction of requests that are served, and also minimize the waiting time for the requests. Basedon our analytical results, we proposed a new scheduling algorithm SRM that can generate schedulesachieving this objective, signi�cantly better than an existing algorithm (S2P ) that does not take userimpatience into account. Based on our experience with similar algorithms [16, 13], we believe that theproposed SRM algorithm performs near-optimally, however, we cannot prove this as yet.Signi�cant work is needed on the problem of impatient users. Some issues to be considered are as7
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of Lagrange's multipliers [8]. We consider the function R0 below, where � is an unknown constant.R0 = R� �( l1s1 + l2s2 + : : :+ lMsM � 1) = " MXi=1 pi�si (1� e��si)# � �( l1s1 + l2s2 + : : :+ lMsM � 1)Next, we set all derivatives of R0 to 0. That is,@R0@s1 = p1�s21 (�s1e��s1 + e��s1 � 1)� �l1s21 = 0 (5)@R0@s2 = p2�s22 (�s2e��s2 + e��s2 � 1)� �l2s22 = 0 (6): : :@R0@sM = pM�s2M (�sMe��sM + e��sM � 1)� �lMs2M = 0 (7)@R0@� = l1s1 + l2s2 + : : :+ lMsM � 1 = 0 (8)Solving these equations to �nd the extremum point is di�cult, but we can exploit their symmetry toobtain an useful result. From Equation (5), we get� � = p1l1 (�s1e��s1 + e��s1 � 1)Similarly, we have � � = p2l2 (�s2e��s2 + e��s2 � 1): : :� � = pMlM (�sMe��sM + e��sM � 1)Denoting �� as a constant K, it follows thatpili (�sie��si + e��si � 1) = K; i = 1; 2; : : : ;M (9)The equation above gives a necessary condition that must be satis�ed by the schedule vector at theextremum point where R is maximized. We can show that this is also a su�cient condition for theoptimal point. Further details are omitted here for lack of space.10


