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Abstract

The focus of this paper is on software implementations of Dis-
tributed Shared Memory (DSM). In recent years, many protocols
for implementing DSM have been proposed. Performance of these
protocols depends on the memory access behavior of the appli-
cations. Some researchers have proposed DSMs that provide a
family of consistency protocols or application-specific protocols,
and the programmer is allowed to choose any one of them for each
shared memory object (or page) or each stage of an application.
While such implementations have a potential for achieving opti-
mal performance, they impose undue burden on the programmer.
Therefore, some adaptive schemes that automatically choose the
appropriate protocol have been proposed.

This paper presents a simple approach for implementing adap-
tive DSMs. The approach is illustrated with the example of an
adaptive DSM based on the invalidate and competitive update pro-
tocols. The objective of the adaptive scheme is to minimize a
pre-defined“ cost” function. The cost functions considered here are
number of messages and amount of data transfer.

The proposed schemeallows each nodeto independently choose
(at run-time) adifferent protocol for each page. The paper presents
experimental evaluation of the adaptive DSM. Results show that the
performance is improved by dynamically selecting the appropriate
protocol.

1 Introduction

Software distributed shared memory (DSM) systems have many
advantages over message passing systems [21, 29]. Since DSM
provides a user a simple shared memory abstraction, the user does
not have to be concerned with data movement between hosts. Many
applications programmed for a multiprocessor system with shared
memory can be executed on a software DSM system without sig-
nificant modifications.

Many approaches have been proposed to implement distributed
shared memory [6, 7, 14, 15, 19, 26, 29]. The DSM implementa-
tionsarebased onvariationsof write-invalidate and/or write-update
protocols. Recent implementations of software DSM use relaxed
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memory consistency models such as release consistency [7]. As
no single protocol is optimal for all applications, researchers have
proposed DSM implementations that provide a choice of multiple
consistency protocols (e.g. [7]). The programmer may specify the
appropriate protocol to be used for each shared memory object (or
page). While this approach has the potential for achieving good
performance, it imposes undue burden on the programmer. An
adaptive implementation that automatically chooses the appropri-
ate protocol (at run-time) for each shared memory page will ease
the task of programming for DSM. Many adaptive schemes have
also been proposed (e.g.,[8, 25, 26, 28]), as summarized in the next
section.

This paper considersa simple but effective approach for imple-
menting adaptive DSM. Thisapproachis similar to adaptive mecha-
nisms used to solve many other problems?, and can be summarized
asfollows (to be elaborated later):

1. Collect statistics over a “ sampling period”. (Accesses to
each memory page are divided into sampling periods.)

2. Using the statistics, determine the protocol that minimizes
the“cost” for each page P.

3. Usetheminimum cost protocol for each page P to maintain
consistency of page P over the next sampling period.

4. Repeat above steps.

Essentially, the proposed implementation would use statistics col-
lected during current execution to predict the optimal consistency
protocol for the near-future. This prediction should be accurate,
provided that the memory access patterns change relatively infre-
quently. To demonstrate our approach, we present an adaptive
schemethat chooses between the invalidate protocol and the com-
petitive update protocol [1, 9, 10, 13]. The competitive update
protocol is defined by a“threshold” parameter; we will rename the
threshold asthe “limit”. Experimental results show that our adap-
tive scheme performs well because memory access patterns do not
changefrequently in many applications.

This paper is organized as follows. Related work is discussed
in Section 2. The proposed adaptive protocol is presented in Sec-
tion 3. Section 4 presents the performance evaluation of the pro-
posed scheme. Section 5 concludesthe paper.

2 Related Work

Many schemes have been proposed to reduce overhead by adapt-
ing to memory access patterns. Veenstra and Fowler [30] evaluate

For example, to predict the next CPU burst of a task, a Shortest-Job-First CPU
scheduling algorithm may use an exponential average of the measured lengths of
previousCPU bursts[23].



the performance of off-line algorithms for bus-based systems, that
chooseinvalidate or update protocol based on off-line analysis. On
the other hand, this paper considers adaptive (on-line) algorithms
that are applicable to distributed systems. [31] examines the per-
formance of on-line hybrid protocolsfor bus-based cache-coherent
multiprocessors. Our scheme deals with distributed implementa-
tions of shared memory. [22] also describesa hardware implemen-
tation of ahybrid scheme. Ramachandran et al. [25, 27] present new
mechanisms for explicit communication in shared memory muilti-
processors which allows selectively updating a set of processors,
or requesting a stream of data ahead of its intended use (prefetch).
The basic difference between our approach and [25] is that our
scheme does not need to know whether a particular synchroniza-
tion controls access to a given shared memory page or not. [2]
dynamically choosesto update or invalidate copies of a shared data
object. If there are three writes by a single processor without inter-
vening references by any other processor, all other cached copies
are invalidated in [2]. Competitive update scheme [1, 9, 10, 13]
invalidates a page if the number of remote updates to the page (be-
tween local accesses) exceedsa*threshold” or a*“limit” parameter.
Quarks [15] uses a variation of the competitive update scheme.
Protocols presentedin [8, 9, 20, 28] dynamically identify migratory
shared data and switch to migratory protocol in order to reduce the
overhead. Tempest [3, 26] allows programmers and compilers
to use user-level mechanism to implement shared memory “poli-
cies’ that are appropriate to a particular program or data structure.
Multiple consistency protocol was proposed in [7] where severa
categories of shared dataobjectsare identified: conventional, read-
only, migratory, write-shared, and synchronization. But, with their
approach, the programmer needs to know the memory access be-
haviors on each shared variable to specify a protocol used for the
variable. [5, 11, 18] also present other schemesto reduce coherency
overhead. IRG (Inter-Reference Gap) model for the time interval
between successivereferencesto the same addresswas presentedin
[24]. It estimates the future IRG values by using prediction based
algorithm and can be used for memory replacement algorithm, etc.

3 Adaptive Protocol

Our objectiveisto implement an adaptive DSM that can adapt tothe
time-varying memory access patterns of an application. Our initial
goal was to design a heuristic to dynamically choose between the
invalidate andthe update protocols. However, for reasonsthat will
be apparent later, the proposed adaptive scheme actually chooses
between the invalidate and competitive update [9] protocols.

The competitive update protocol is defined using a*“threshold”
parameter —in this paper, we will refer to the threshold as “ update
limit” or just “limit”. When using the competitive update protocol
with limit L, anode A invalidatesthe local copy of apagePif and
when (L + 1)-th update to the page by other nodes occurs since
the previous access of page P by node A. The traditional update
protocol can be obtained by choosing L = oo. The protocol ob-
tained when L = 0 issimilar to the traditional invalidate protocol.
Thus, the competitive update protocol is convenient for designing
an adaptive scheme—the problem of choosing appropriate protocol
(invalidate or update) is now reducedto the problem of choosingthe
appropriatelimit (O or co) —the proposed adaptive scheme actually
chooses 0 or anon-zero finite limit, as explained later.

The proposed adaptive schemecollects run-time dataon number
and size of messages; the data is used to periodically determine
the new value of limit for each copy of a page. The protocol is
completely distributed in that each node independently determines
the limit to be used for each pageit hasin its local memory. (Thus,
different nodes may choosedifferent limitsfor the samepage.) Now,
we present a cost analysis to motivate our heuristics for choosing
the appropriate limit.

3.1 Cost Analysis

The objective of our adaptive protocol is to minimize the “cost”
metric of interest. Two cost metrics considered hereare: (i) number
of messages, and (ii) amount of datatransferred. In this section, we
evaluatethe above cost metricsfor consistency protocolsof interest.
[12, 29, 30] also present cost analysisfor coherency overhead. [29]
presents an analysis based on many parameters such as read-write
ratio, pagefault ratio, and cost of sending/receiving apage. Eggers
[12] presents a write-run model to predict the cache coherency
overhead for the bus based multiprocessor system. [12, 29] both
do not consider the problem of implementing adaptive schemes.
[30] associates different costs with different events (such as cache
hit, invalidate, update, and cache load) and presents an off-line
algorithm to chooseinvalidate or update protocolsat eachwrite. We
present an“on-line” (or adaptive) approach based on the number (or
size) of updatesby other nodes between consecutivelocal accesses,
as explained next.

Our analysisassumesthat the DSM usesrel ease consistency and
dynamic distributed ownership analogousto Munin [7] and Quarks
[15].

Minimizing the Number of Messages

We now consider number of messages asthe cost metric. Let us
focusonthe accessesto aparticular page P asobservedat anode A.
These accessescan be partitioned into “ segments’. A new segment
begins with the first access by node A following an update to the
page by another node. Thus, a segment is a sequence of remote
updates between two consecutive local accesses.? (Segments are
defined from the point of view of eachnode. Therefore, for the same
page, different nodes may observe different segments.) Figure
1 illustrates segments observed at node A with an example: (@)
segment 1 for page P starts at time 1 when node A reads page P,
(b) copy of page P on node A is then updated by nodesB, C, and
D. After that, (c) node A starts segment 2 by alocal accessat time
6. Similarly, (d) node A starts segment 3 by local access at time
11 following remote updates by nodes B and C' at time 9 and 10,
respectively.
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Figure 1: Segments

Now we evaluate the number of messages sent during each
segment for invalidate protocol (or competitive update protocol with
limit L = 0) and update protocol (or competitive update protocol
with limit L = oo). For simplicity, in the present discussion, we
do not consider the messagesrequired to perform an acquire. (The
number of messagesfor an acquire is samefor both protocols.

e updateprotocol (limit L = oco): When L = oo, acopy of the
page P is never invalidated. To evaluate the number of messages
sent in each segment, we need to measure the number of updates
made by other nodes during the segment. Let U be the number
of such updates to the local copy of page P during a segment.
An acknowledgement is sent for each update message received.

2Segment is a sequence of remote updates between two consecutive local ac-
cesses. Write-run [12] and no-synch run [4] models are introduced by others. A
write-run is a sequence of local writes between two consecutive remote accesses
[12]. A no-synchrun is a sequence of accesses to a single object by any thread
between two synchronization pointsin a particular thread[4].




Therefore, the number of messagesneededin one segment, denoted
by Mupdate, iIS2U. AsshowninFigure 2, for example, 6 messages
are needed in segment 1 becausepage P isupdated 3 times by other
nodes. (The numbersin parenthesesin the figure denote number of
messages associated with an event.) Similarly, 4 and 2 messages
are needed in segment 2 and segment 3, respectively.

e invalidate protocol (limit L = 0): From the definition of a
segment, it is clear that, when L = 0, each segment begins with
a page fault. On a page fault, F 4+ 2 messages are required to
obtain the page, where F is the number of times the request for the
page is forwarded (due to dynamic distributed ownership) before
reaching the owner — one additional messageis required to send the
page, and one message to acknowledge receipt of the page. With
L = 0, when the first update message for the page (during the
segment) is received from another node, the local copy of the page
is invalidated. This invalidation requires two messages — one for
the update message and one for a negative acknowledgement to the
sender of the update. Ideally, once a page is invalidated, no more
update messages will be sent to the node during the segment. (In
reality, however, a node that has invalidated local copy of a page
P may sometime receive an update for page P) Therefore, when
L = 0, (ideally) the number of messages needed in one segment
(denoted by M;nyatidate), IS F + 4. Asshownin Figure3, F + 4
messages are needed in a segment. Note that the actual value of F°
may bedifferent in each segment.
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Figure 3: Illustrations for memory accessand cost (invalidate pro-
tocol)

Critical value of the number of updates, Ueriticai, Where L = 0
and L = oo require the same number of messages, is computed
as follows: Mupdate = Minvalidate = 2Ucritical =F + 4 =
Ucritical = %

Therefore, if U > % invalidate protocol has a lower cost. If

U < % update protocol performs better. Based on this observa-
tion, the following adaptive schemeis derived (this scheme will be
modified soon).

e Asthe value of U may be different in each segment, each

node collects data for a few consecutive segments (termed
“sampling period”) and estimates average value of U and F'.

e At the end of the sampling period, if U > £+* then the
invalidate protocol (L = 0) is chosen for the next sampling
period, otherwise, the update protocol (L = oo) is chosen.

The above protocol is modified in two ways as described next. We
will describean implementation of the final adaptive scheme later.

1. It is hard to estimate F' accurately (without additional mes-
sage overhead) when the limit is non-zero. Therefore, we
assume a constant value for F'. In the following, we assume
F = 4. Clearly, F must depend on the application and on the
number of nodes (processors) used. Thus, assuming F = 4
is not likely to be always accurate. This assumption could
causethe adaptive schemeto achieveworse performancethan
it potentially can. Yet, asshown here, the approximateheuris-
tic performs reasonably well for the applications and num-
ber of nodes considered here. With the above assumption,
Ucritical =4

2. The above adaptive scheme chooses L = oo when estimated
UisnolargerthanU,pitscar. Themotivation for thischoiceis
thefollowing: if U wassmall intherecent past, it is expected
to besmall inthenear future. However, when thisassumption
turns out to beincorrect, the adaptive scheme ends up having
made awrong choice. Therefore, instead of choosing L = oo
when U < Ucriticar, We choose L = Ucriticat — 1 = 3.
When L = 3, alocal copy of apageisinvalidated if the page
is updated 4 times by other nodes within one segment. (The
adaptive scheme will perform comparably if L were chosen
to be Ucritical instead of Ucritical - 1)

With the above modifications, the adaptive scheme that attemptsto
minimize the number of messages can be summarized as follows:

e Each node collects data over a “sampling period” for each
local page, and estimates the average value of U .

e At the end of the sampling period, if U > Ucpiticar then the
invalidate protocol (L = 0) is chosen for the next sampling
period for that page, otherwise, the competitive update pro-
tocol (with L = 3) is chosen. Ueriticar iS assumed to be
4.

As areference, the number of messages required in a segment
when using a competitive update protocol (with limit L, 0 < L <
00) is computed below:

e competitive update protocol (0 < L < oo): A copy of
the page is updated until it receives L update messages
from other nodes (between two consecutive local accesses).
Upon receiving (L + 1)-th update message, local copy of
the page is invalidated. If the number of update messages
(U) received during the segment is at most L, then the
page is not invalidated. In the case of competitive up-
date protocol, it is convenient to include the messages re-
quired to bring a page from a remote node when counting
the number of messages for the segment in which the page
was invalidated (rather than when counting the number of
messages for the next segment). Thus, if U < L, then
M ompetitive 1S 2U, Similar t0 Mupdate. ElSe, however,
Mcompetitive = 2(L + 1) + (F + 2) = 2L+ M;nvatidate.
(2(L + 1) messages for L + 1 updates and their acknowl-
edgements, and F* + 2 for bringing a page on the page fault
when the next local accessis attempted.)



Amount of Data Transferred

In the above analysis, we consider the number of messages as
the cost. Now, we consider the amount of data transferred as the
cost metric. The average amount of data transferred per segment
is evaluated below.

e Let Diyyaiidate denote the average amount of data trans-
ferred per segment when using the invalidate protocol (L =
O) Then, Dinvalidate = W‘i’ (F+ 2) Pcontrol +ppage,
where pupaate 1S the average size of an update message that
causesthelocal copy of the pageto beinvalidated, pcontrot 1S
the size of acontrol message (page request, acknowledgment
of update, etc.), ppage iSthe size of amessagethat isreguired
to send a page from one node to another, and F isthe average
number of times a page request is forwarded.

o Let Dypaate denotethe average amount of data transferred
in one segment for the update protocol (L = oo). Then,
it follows that, Dupdate = (Pupdate + Peontrot) U Where
U now denotes the average number of remote updatesin a
segment.

Critical value of U (Ucriticar), Where the two protocols re-
quire the same amount of data transfer, is computed as follows:
Dupdate = Dinvalidate
= (W + pcontrol) Ucritical = W

+ (F + 2) Peontrol + Ppage

Pupdate T (F4+2) PeontroitPpage

= Uecpiti =
eritical Pupdate TPcontrol
__ PupdatetbPcontroitPpage - - _
= Ucritical = assuming F = 4.
PupdatetPcontrol

Notethat Uepiticq IS different when minimizing amount of data as
compared to when minimizing number of messages.

Having determined U, psticai, L = 0is chosen if U measured
at run-time is greater than Uerisicar. TOvVaAlUAIE U ritical, Pupdate
is also estimated at run-time. For areason similar to that described
previously when minimizing the number of messages, we do not
choose L = cowhenU < U, riticar. Instead, whenU < Ucpstica,
we choose the competitive update protocol with limit = Uepiticai-
Choosing limit = Ugpsticar — 1 would also result in similar cost.
Becausewe choselimit = Ucpitscar — 1 for minimizing the number
of messages, as an illustration, we decided to use limit = Ucpiticar
for minimizing amount of data.

General Cost Functions

In general, the" cost” may bean arbitrary function. For instance,
the cost may be some function of the message size. A procedure
similar to that describedabove can beused to choosethe appropriate
value of L for such a cost function.

Let the “cost” of sending or receiving a message of sizem bea
function of m, say ¢(m). For example, ¢(m) may be K1 + K>m,
where K1, K, are constants. Total cost, C, iscomputed as follows:
L Cupdate = (c(pupdate_msg) + c(pcontrol)) U
¢ Cinvalidate = c(pupdate_msg) + (2+ F) c(pcontrol) + c(ppage)
where ¢(pupdate_msg) denotes the average cost of an update mes-
sage. Appropriate limit can be chosen, by comparing the above
costs estimated at run-time.

The present implementation chooses the appropriate limit to
minimize the number of messagesor the amount of datatransferred.
Any one of the two can be minimized at any time, not both. When
both needto besmall, acost function of theform K1 + K> m should
be used, where m is message size.

3.2 Implementation

Asshowninthe aboveanalysis,the average number of updatessince
the last local access (U) and the average size of update message

(Pupaate) @re important factors to decide which protocol is better.
Our adaptive protocol estimates these values over consecutive N,
segments (let uscall it a“sampling period”) and selects appropriate
protocol for the next sampling period. Figure 4 illustrates segments
and sampling periods. The U and pupaate Values estimated during
sampling period ¢ are used to determine the value of limit L to be
used during sampling period 2 + 1.
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Figure 4: Segments and Sampling Periods

Each node independently estimates U and pupaate foOr each
page. To facilitate estimation of U and Pupaate at run-time, each
node maintains the following information for each page.

e version: Countshow many times this page has been updated
since the beginning of execution of the application. version
isinitialized to zero at the beginning of execution.

e dynamic_version: The version (defined above) of the page at
the last local access. dynamic_version is initialized to zero
at the beginning of execution, and set to version after a page
fault or on performing an update. dynamic_version does not
have to be updated on every local access— more details are
presented below.

¢ xdata: Total amount of datatransferred for updating copiesof
this page since the beginning of execution of the application.
xdata is initialized to zero at the beginning of execution.
(xdata is mnemonic for “exchanged data” .)

e dynamic xdata: The xdata (defined above) of the page at the
last local access. dynamic_xdata is initialized to zero at the
beginning of execution and set to xdata after a page fault or
on performing an update (as described below).

e update: The number of updates by other nodes during the
current sampling period. update is initialized to zero at the
beginning of execution and is cleared to zero at the end of
every sampling period.

e d_update: The amount of data received to update local copy
of the page in the current sampling period. d_updateisini-
tialized to zero at the beginning of execution and is cleared
to zero at the end of every sampling period.

e counter: Total number of segments during the current sam-
pling period. counter isinitialized to zero at the beginning of
execution and is cleared to zero at the end of every sampling
period.

The procedure for estimating U and pupdate is as follows. In
the following, we focus on a single page P at a node A — the same
procedureis used for each page at each node.

1. On receiving an update message for page P, node A incre-
ments the version of page P by 1, and increments xdata by
the size of the update message. Similarly, when node A mod-
ifies page P and sends update messagesto other nodes that
have acopy of page P, versionisincremented by 1, and xdata
isincremented by the size of the update message. In addition,
when node A sendsupdate messages, dynamic_versionis set
equal to version and dynamic_xdata is set equal to xdata.



2. Onapagefault, when acopy of pagePisreceived by node A,
the sender of the page also sendsits xdata and version along
with the page. On receiving the page, xdata and version in
thelocal pagetableentry (for page P) at node A are set equal
to those received with the page. Also, dynamic_versionin the
local page table entry is compared to version received with
the page. Let d = version — dynamic_version. Then
the update variablefor page P (at node A) isincremented by
d, d_updateisincremented by (zdata — dynamic_zdata),
and the counter incremented by one. At this point, a new
segment begins. Therefore, the dynamic_version is set equal
to version and dynamic_xdata is set to xdata.

3. When counter becomes N, a sampling period is completed.

Now, U and Pupdate are estimated as U = Bi%<  gnd
Pupdate = “23ate and update, d_update, and counter are

cleared to zero.

The estimated values of U and pupaate fOr pageP at node A are
used to decidewhich protocol isbetter. If U > U.psticar, invalidate
protocol (L = 0) is selected; else, competitive update protocol
with appropriate limit is selected (as described in section 3.1). The
chosen L is used for page P at node A during the next sampling
period.

4 Performance Evaluation

Experimentsare performed to eval uatethe performance of the adap-
tive DSM by running applications on an implementation of the
adaptive protocol. Weimplemented the adaptive protocol by modi-
fying another DSM, named Quarks (Betarelease 0.8) 6, 15]. This
section presents the experimental results.

We evaluated the adaptive scheme using a synthetic application
(named gtest) as well as five other applications (Floyd-Warshall,
SOR, ProdCons, Reader/Writer, and QSORT). gtest is a simple
shared memory application based on a program available with the
Quarksrelease [15]: all nodes accessthe shared data concurrently.
A processacquiresmutual exclusion beforeeach accessandrel eases
it after that. We measured the cost (i.e., number of messagesand
size of data transferred) by executing different instances of the
synthetic application, as described below. SOR is available with
the Quarksrelease [15]. ProdConsand Reader/Writer are based on
gtest. Sampling period (IV,) is chosento be 2 for all applications.

Resultsfor qt est Application
The body of the first instance of the gtest program (named
gt est 1) isasfollows:

gtestl: repeat NLOOP times {
acquire(lock_id);
for (n =1 to NSl ZE)
/* increnent shared nenory
| ocation */
shmeni n] ++;
rel ease(l ock_id);

}

Eachnodeperformsthe abovetask. All the shared dataaccessed
in this application is confined to a single page. Each node executes
ther epeat loop 300times, i.e., NLOOP = 300. 300 iterations
were sufficient for the results to converge. The size of shared data
(NSIZE) is 2048 bytes—all in one page — page size being 4096
bytes. (The next experiment considerssmall NSIZE.) The adaptive
protocol initializes L to 3 for each page at each node. At the end of
each sampling period (N, = 2), eachnodeestimatesU and pupdate
for the page and selects the appropriate L — this L is used during
the next sampling period.

For this application, Figures 5 and 6 show the measured cost
by increasing the number of nodes (V). The costs are plotted per
“transaction” basis. A transaction denotesasequenceof operations
—namely, acquire, shared memory access, andrelease —in oneloop
of the gtestl main routine. The curve for the adaptive schemein
Figure 5 is plotted using the heuristic for minimizing the number
of messages; the curvein Figure 6 is plotted using the heuristic for
minimizing the amount of data transferred.

In Figure 5, the curve named “ protocol” denotes the number of
messagesrequired by the specified protocol, and “ #update” denotes
the average number of updates per segment (I7) calculated over the
entire application. As number of nodes N increases, the average
number of updates per segment (U) increases proportionally. In
spite of the approximate estimate of Uepitscar USed in our analysis,
the adaptive protocol performs well except for N = 5. For small
N, the adaptive scheme performs similar to update schemes (which
are optimal for small N), and for large N the adaptive scheme
performs similar to the invalidate scheme (which is optimal for
large N). (In caseof N = 5, our adaptive protocol often chooses
L = 3 becauseestimated U in most sampling periodsis not greater
than U,psticas = 4. Therefore, for N = 5, the adaptive scheme
performs similar to the competitive update scheme.) In summary,
the number of messages required by the adaptive protocol is near
the minimum of invalidate (L = 0) and competitive update (L = 3)
protocols (except when N = 5).

Figure 6 showsthe comparison of the amount of datatransferred
per transaction. Since gtest1 application modifies large amount of
data (N SIZE = 2048 bytes), an update protocol requires larger
amount of data transfer as the number of nodes (V) increases.
However, an invalidate protocol requires nearly constant amount of
data transfer (per transaction) for all N. Competitive protocol re-
quireslarge amount of datatransfer when N > 4 becauseit cannot
adapt to minimize the amount of data transferred. Adaptive proto-
col chooses the appropriate protocol for all values of N, thereby
minimizing the amount of data transferred.
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Figure 5: gtestl: Average Number of Updates (U) and Messages
per Transaction

The second experiment was performed with the main loop
(gt est 2) shown below:
gtest2: repeat NLOOP times {
acqui re(l ock_id);
if (randon() < read_ratio)
/* 0 <= random <= 1 */
for (n =1 to NSl ZE)
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Figure 6: gtestl: Amount of Data (Bytes) Transferred per Transac-
tion

/* read shared menory */

r_value = shnenin];
el se
for (n =1 to NSl ZE)
/* wite shared nenory */
shmenin] = w_val ue;

rel ease(l ock_id);

}

All the shared dataaccessedin gt est 2 is confined to asingle
page. For thisexperiment, we assumeasmall amount of shared data
access per iteration of the r epeat loop (NSIZE = 4). Addition-
ally, each iteration of the r epeat loop either reads or writes the
shared data depending on whether arandom number (r andont) )
is smaller than the read ratio or not. This alows usto control the
frequency of write accessesto the shared data. 8 nodes accessthe
shared data 100 times each (N LOOP = 100). (We observed that
the results converge quite quickly.) Figure 7 presentsthe number of
messages per transaction (i.e., acquire, shared memory access, and
release). As shown, the adaptive scheme performs well for all read
ratios.

Figure 8 showsthe comparison of theamount of datatransferred
per transaction. Since gtest2 application modifies small amount
of data (NSIZE = 4 bytes), our adaptive protocol chooses a
competitive protocol with large update limit (L) (refer to Section
3.1). Therefore, the adaptive protocol requiressmall amount of data
transfer. Competitive update protocol with limit L = 3 (or small L,
in general) resultsin relatively larger amount of datatransfer when
the average size of an update message, pupdate, iSSmall.

Resultsfor Other Applications

We now evaluate our adaptive scheme by executing five addi-
tional applications (Floyd-Warshall, SOR, ProdCons, QSORT, and
Reader/Writer) on 8 nodes. Floyd-Warshall is all-pair-shortest-path
algorithm. (Weuse 128 verticesasinput.) SOR is Successive Over-
Relaxation algorithm which executes simpleiterative relaxation al-
gorithm. (We use 512 x 512 grid.) ProdConsis implementation of
a simple Producer/Consumer model. Producers make data which
will be used by consumers. (We execute total 4,000 “transactions’
for ProdCons. A transaction denotes a sequence of operations —
namely, acquire shared memory access and release — similar to
as defined in gtest.) QSORT is Quick sorting algorithm. (We use
65,536 elements to be sorted.) Reader/Writer is implemented by
modifying the gtest to evaluate performance in time-varying mem-
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Figure 7: gtest2: Average Number of Updates (U) and Messages
per Transaction
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Figure 8: gtest2: Amount of Data (Bytes) Transferred per Transac-
tion

ory access patterns. Execution time is divided into 4 stages and
memory access pattern is different for each stage. A node can be
either areader or awriter for each page depending on the execution
stage. The size of data for write is different for each stage. (Total
4,800 transactions are executed.)

Floyd-Warshall and SOR usebarriersfor synchronization. These
two applications have small value of U. However, as shown in
Figures 9 and 10, update protocol unexpectedly shows bad perfor-
mance. Recall that we usea DSM implementation based on Quarks
[15] for these experiments. In Quarks, the “Master” node initial-
izes all shared memory and the Master node is in the copyset of
all pages. Pure update protocol implementation based on Quarks
performs bad due to the overhead of updating Master node for all
shared memory writes. (However, this performance degradation
doesnot happenin the original Quarksrelease becauseQuarks uses
a mechanism similar to competitive update protocol.) Competi-
tive update protocol and adaptive protocol perform well for both
applications

ProdConsand QSORT use lock/unlock for atask queue. These
two applications have large value of U, and invalidate protocol
reguires small number of messages (please refer Figures 11 and



12). However, for the amount of data, update protocol is better
because the amount of data in an update message is smaller than
the size of a page. Competitive protocol shows fair performance
for the number of messages. However, it shows poor performance
for the amount of data. Adaptive protocol showsgood performance
for the amount of data aswell asthe number of messages.

We evaluated the performance of our adaptive protocol on a
synthetic Reader/Writer application (see Figure 13) where memory
access patterns (read to write ratio, access period, amount of data
written in each transaction, etc.) are time-varying. Results show
that the adaptive protocol performswell by adaptingto time-varying
memory access patterns.

Experimental results show that our adaptive scheme performs
well. This results suggest that our adaptive scheme can predict
the optimal consistency protocol accurately when memory access
patterns do not change frequently.
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5 Conclusion and Future Work

Our objectiveisto design an adaptive DSM that can adapt to time-
varying pattern of accessesto the shared memory. Our approach
continually gathers statistics, at run-time, and periodically deter-
mines the appropriate protocol for each copy of each page. The
choice of the protocol is determined based on the “ cost” metric that
needs to be minimized. The cost metrics considered in this paper
arenumber andsize of messagesrequired for executing an applica-
tion using the DSM implementation. A generalization to minimize
arbitrary cost metricsis also discussed briefly.
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Our adaptive approach determines, at run-time, the cost of each
candidate consistency protocol, and usesthe protocol that appearsto
havethe smaller cost. The proposed adaptive approachisillustrated
here by means of an adaptive DSM schemethat chooses either the
invalidate or the competitive update protocol for each copy of a
page— the choice changeswith time, asthe access patterns change.
The paper presents experimental evaluation of the adaptive DSM
using animplementation based on QuarksDSM [15]. Experimental
results from the implementation suggest that the proposed adaptive
approach can indeed reduce the cost.

Further work is needed to fully examine the effectiveness of the
proposed approach:

¢ Oneissue that needsto be addressed is the choice of N, that
determines the length of the sampling period. Instead of keeping
N, fixed, it may be possible to choose the appropriate value at
run-time.

e The paper presented a cost-comparison based heuristic for
choosing between two protocols. In general, the DSM may provide
a larger set of protocols, and the appropriate protocol should be
adaptively chosen from this set. For instance, the choices may
include migratory protocol, and competitive update protocol with
L =0,3,7,00. A heuristic for choosing between one of these, at
run-time, needsto be developedto implement more efficient DSMs.

e The cost metrics considered in the paper are number and
size of messages. Other cost metrics need to be considered. In
particular, impact of our heuristics on application execution time
needsto beevaluated.

¢ The adaptive approach (based on cost-comparison) presented
here can be combined with ideas developed by other researchers
(e.g., [25]) to obtain further improvement in DSM performance. As
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yet, we have not explored this possibility.
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