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The focus of this paper is on software implementations of Dis-
tributed Shared Memory (DSM). In recent years, many protocols
for implementing DSM have been proposed. Performance of these
protocols depends on the memory access behavior of the appli-
cations. Some researchers have proposed DSMs that provide a
family of consistency protocols or application-specific protocols,
and the programmer is allowed to choose any one of them for each
shared memory object (or page) or each stage of an application.
While such implementations have a potential for achieving opti-
mal performance, they impose undue burden on the programmer.
Therefore, some adaptive schemes that automatically choose the
appropriate protocol have been proposed.

This paper presents a simple approach for implementing adap-
tive DSMs. The approach is illustrated with the example of an
adaptive DSM based on the invalidate and competitive update pro-
tocols. The objective of the adaptive scheme is to minimize a
pre-defined “cost” function. The cost functions considered here are
number of messages and amount of data transfer.

The proposedschemeallows each node to independentlychoose
(at run-time) a different protocol for each page. The paper presents
experimental evaluation of the adaptive DSM. Results show that the
performance is improved by dynamically selecting the appropriate
protocol.1 Introduction
Software distributed shared memory (DSM) systems have many
advantages over message passing systems [21, 29]. Since DSM
provides a user a simple shared memory abstraction, the user does
not have to be concerned with data movement between hosts. Many
applications programmed for a multiprocessor system with shared
memory can be executed on a software DSM system without sig-
nificant modifications.

Many approaches have been proposed to implement distributed
shared memory [6, 7, 14, 15, 19, 26, 29]. The DSM implementa-
tions are based onvariations of write-invalidate and/or write-update
protocols. Recent implementations of software DSM use relaxed�This work is supported in part by the National Science Foundation under grant
MIP-9502563.

memory consistency models such as release consistency [7]. As
no single protocol is optimal for all applications, researchers have
proposed DSM implementations that provide a choice of multiple
consistency protocols (e.g. [7]). The programmer may specify the
appropriate protocol to be used for each shared memory object (or
page). While this approach has the potential for achieving good
performance, it imposes undue burden on the programmer. An
adaptive implementation that automatically chooses the appropri-
ate protocol (at run-time) for each shared memory page will ease
the task of programming for DSM. Many adaptive schemes have
also been proposed (e.g.,[8, 25, 26, 28]), as summarized in the next
section.

This paper considers a simple but effective approach for imple-
menting adaptive DSM. This approach is similar to adaptive mecha-
nisms used to solve many other problems 1, and can be summarized
as follows (to be elaborated later):

1. Collect statistics over a “sampling period”. (Accesses to
each memory page are divided into sampling periods.)

2. Using the statistics, determine the protocol that minimizes
the “cost” for each page P .

3. Use the minimum cost protocol for each page P to maintain
consistency of page P over the next sampling period.

4. Repeat above steps.

Essentially, the proposed implementation would use statistics col-
lected during current execution to predict the optimal consistency
protocol for the near-future. This prediction should be accurate,
provided that the memory access patterns change relatively infre-
quently. To demonstrate our approach, we present an adaptive
scheme that chooses between the invalidate protocol and the com-
petitive update protocol [1, 9, 10, 13]. The competitive update
protocol is defined by a “threshold” parameter; we will rename the
threshold as the “limit”. Experimental results show that our adap-
tive scheme performs well because memory access patterns do not
change frequently in many applications.

This paper is organized as follows. Related work is discussed
in Section 2. The proposed adaptive protocol is presented in Sec-
tion 3. Section 4 presents the performance evaluation of the pro-
posed scheme. Section 5 concludes the paper.2 Related Work
Many schemes have been proposed to reduce overhead by adapt-
ing to memory access patterns. Veenstra and Fowler [30] evaluate

1For example, to predict the next CPU burst of a task, a Shortest-Job-First CPU
scheduling algorithm may use an exponential average of the measured lengths of
previousCPU bursts [23].



the performance of off-line algorithms for bus-based systems, that
choose invalidate or update protocol based on off-line analysis. On
the other hand, this paper considers adaptive (on-line) algorithms
that are applicable to distributed systems. [31] examines the per-
formance of on-line hybrid protocols for bus-based cache-coherent
multiprocessors. Our scheme deals with distributed implementa-
tions of shared memory. [22] also describes a hardware implemen-
tation of a hybrid scheme. Ramachandran et al. [25, 27] present new
mechanisms for explicit communication in shared memory multi-
processors which allows selectively updating a set of processors,
or requesting a stream of data ahead of its intended use (prefetch).
The basic difference between our approach and [25] is that our
scheme does not need to know whether a particular synchroniza-
tion controls access to a given shared memory page or not. [2]
dynamically chooses to update or invalidate copies of a shared data
object. If there are three writes by a single processor without inter-
vening references by any other processor, all other cached copies
are invalidated in [2]. Competitive update scheme [1, 9, 10, 13]
invalidates a page if the number of remote updates to the page (be-
tween local accesses) exceeds a “threshold” or a “limit” parameter.
Quarks [15] uses a variation of the competitive update scheme.
Protocols presented in [8, 9, 20, 28] dynamically identify migratory
shared data and switch to migratory protocol in order to reduce the
overhead. Tempest [3, 26] allows programmers and compilers
to use user-level mechanism to implement shared memory “poli-
cies” that are appropriate to a particular program or data structure.
Multiple consistency protocol was proposed in [7] where several
categories of shared data objects are identified: conventional, read-
only, migratory, write-shared, and synchronization. But, with their
approach, the programmer needs to know the memory access be-
haviors on each shared variable to specify a protocol used for the
variable. [5, 11, 18] also present other schemes to reduce coherency
overhead. IRG (Inter-Reference Gap) model for the time interval
between successive references to the same address was presented in
[24]. It estimates the future IRG values by using prediction based
algorithm and can be used for memory replacement algorithm, etc.3 Adaptive Protocol
Our objective is to implement an adaptive DSM that can adapt to the
time-varying memory access patterns of an application. Our initial
goal was to design a heuristic to dynamically choose between the
invalidate and the update protocols. However, for reasons that will
be apparent later, the proposed adaptive scheme actually chooses
between the invalidate and competitive update [9] protocols.

The competitive update protocol is defined using a “threshold”
parameter – in this paper, we will refer to the threshold as “update
limit” or just “limit”. When using the competitive update protocol
with limit L, a node A invalidates the local copy of a page P if and
when (L + 1)-th update to the page by other nodes occurs since
the previous access of page P by node A. The traditional update
protocol can be obtained by choosing L = 1. The protocol ob-
tained when L = 0 is similar to the traditional invalidate protocol.
Thus, the competitive update protocol is convenient for designing
an adaptive scheme – the problem of choosing appropriate protocol
(invalidate or update) is now reduced to the problem of choosing the
appropriate limit (0 or1) – the proposed adaptive scheme actually
chooses 0 or a non-zero finite limit, as explained later.

The proposedadaptive schemecollects run-time data on number
and size of messages; the data is used to periodically determine
the new value of limit for each copy of a page. The protocol is
completely distributed in that each node independently determines
the limit to be used for each page it has in its local memory. (Thus,
different nodes may choosedifferent limits for the same page.) Now,
we present a cost analysis to motivate our heuristics for choosing
the appropriate limit.

3.1 Cost Analysis
The objective of our adaptive protocol is to minimize the “cost”
metric of interest. Two cost metrics considered here are: (i) number
of messages, and (ii) amount of data transferred. In this section, we
evaluate the above cost metrics for consistency protocols of interest.
[12, 29, 30] also present cost analysis for coherency overhead. [29]
presents an analysis based on many parameters such as read-write
ratio, page fault ratio, and cost of sending/receiving a page. Eggers
[12] presents a write-run model to predict the cache coherency
overhead for the bus based multiprocessor system. [12, 29] both
do not consider the problem of implementing adaptive schemes.
[30] associates different costs with different events (such as cache
hit, invalidate, update, and cache load) and presents an off-line
algorithm to choose invalidate or update protocols at each write. We
present an “on-line” (or adaptive) approach based on the number (or
size) of updates by other nodes between consecutive local accesses,
as explained next.

Our analysis assumes that the DSM uses release consistencyand
dynamic distributed ownership analogous to Munin [7] and Quarks
[15].

Minimizing the Number of Messages
We now consider number of messages as the cost metric. Let us

focus on the accessesto a particular pageP as observedat a nodeA.
These accesses can be partitioned into “segments”. A new segment
begins with the first access by node A following an update to the
page by another node. Thus, a segment is a sequence of remote
updates between two consecutive local accesses.2 (Segments are
defined from the point of view of each node. Therefore, for the same
page, different nodes may observe different segments.) Figure
1 illustrates segments observed at node A with an example: (a)
segment 1 for page P starts at time 1 when node A reads page P ,
(b) copy of page P on node A is then updated by nodes B, C, and
D. After that, (c) nodeA starts segment 2 by a local access at time
6. Similarly, (d) node A starts segment 3 by local access at time
11 following remote updates by nodes B and C at time 9 and 10,
respectively.

Page P
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C write B write

Segment 1 Segment 2
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A write
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time

Seg-
ment 3
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remote access
by other nodes

Figure 1: Segments

Now we evaluate the number of messages sent during each
segment for invalidate protocol (or competitive update protocol with
limit L = 0) and update protocol (or competitive update protocol
with limit L = 1). For simplicity, in the present discussion, we
do not consider the messages required to perform an acquire. (The
number of messages for an acquire is same for both protocols.� update protocol (limit L =1): WhenL =1, a copy of the
page P is never invalidated. To evaluate the number of messages
sent in each segment, we need to measure the number of updates
made by other nodes during the segment. Let U be the number
of such updates to the local copy of page P during a segment.
An acknowledgement is sent for each update message received.

2Segment is a sequence of remote updates between two consecutive local ac-

cesses. Write-run [12] and no-synch run [4] models are introduced by others. A
write-run is a sequence of local writes between two consecutive remote accesses
[12]. A no-synch run is a sequence of accesses to a single object by any thread
between two synchronization points in a particular thread [4].



Therefore, the numberof messagesneeded in one segment, denoted
byMupdate, is 2U . As shown in Figure 2, for example, 6 messages
are needed in segment 1 becausepageP is updated 3 times by other
nodes. (The numbers in parentheses in the figure denote number of
messages associated with an event.) Similarly, 4 and 2 messages
are needed in segment 2 and segment 3, respectively.� invalidate protocol (limit L = 0): From the definition of a
segment, it is clear that, when L = 0, each segment begins with
a page fault. On a page fault, F + 2 messages are required to
obtain the page, where F is the number of times the request for the
page is forwarded (due to dynamic distributed ownership) before
reaching the owner – one additional message is required to send the
page, and one message to acknowledge receipt of the page. WithL = 0, when the first update message for the page (during the
segment) is received from another node, the local copy of the page
is invalidated. This invalidation requires two messages – one for
the update message and one for a negative acknowledgement to the
sender of the update. Ideally, once a page is invalidated, no more
update messages will be sent to the node during the segment. (In
reality, however, a node that has invalidated local copy of a page
P may sometime receive an update for page P.) Therefore, whenL = 0, (ideally) the number of messages needed in one segment
(denoted byMinvalidate), is F + 4. As shown in Figure 3, F + 4
messages are needed in a segment. Note that the actual value of F
may be different in each segment.
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Figure 2: Illustrations for memory accessand cost (update protocol)
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Critical value of the number of updates,Ucritical, whereL = 0
and L = 1 require the same number of messages, is computed
as follows: Mupdate = Minvalidate ) 2Ucritical = F + 4 )Ucritical = F+4

2 .
Therefore, if U > F+4

2 , invalidate protocol has a lower cost. IfU < F+4
2 , update protocol performs better. Based on this observa-

tion, the following adaptive scheme is derived (this scheme will be
modified soon).� As the value of U may be different in each segment, each

node collects data for a few consecutive segments (termed
“sampling period”) and estimates average value of U and F .� At the end of the sampling period, if U > F+4

2 then the
invalidate protocol (L = 0) is chosen for the next sampling
period, otherwise, the update protocol (L =1) is chosen.

The above protocol is modified in two ways as described next. We
will describe an implementation of the final adaptive scheme later.

1. It is hard to estimate F accurately (without additional mes-
sage overhead) when the limit is non-zero. Therefore, we
assume a constant value for F . In the following, we assumeF = 4. Clearly,F must depend on the application and on the
number of nodes (processors) used. Thus, assuming F = 4
is not likely to be always accurate. This assumption could
cause the adaptive scheme to achieve worse performance than
it potentially can. Yet, as shown here, the approximate heuris-
tic performs reasonably well for the applications and num-
ber of nodes considered here. With the above assumption,Ucritical = 4.

2. The above adaptive scheme choosesL =1 when estimatedU is no larger thanUcritical . The motivation for this choice is
the following: if U was small in the recent past, it is expected
to be small in the near future. However, when this assumption
turns out to be incorrect, the adaptive scheme ends up having
made a wrong choice. Therefore, instead of choosingL =1
when U � Ucritical, we choose L = Ucritical � 1 = 3.
When L = 3, a local copy of a page is invalidated if the page
is updated 4 times by other nodes within one segment. (The
adaptive scheme will perform comparably if L were chosen
to beUcritical instead of Ucritical � 1.)

With the above modifications, the adaptive scheme that attempts to
minimize the number of messages can be summarized as follows:� Each node collects data over a “sampling period” for each

local page, and estimates the average value of U .� At the end of the sampling period, if U > Ucritical then the
invalidate protocol (L = 0) is chosen for the next sampling
period for that page, otherwise, the competitive update pro-
tocol (with L = 3) is chosen. Ucritical is assumed to be
4.

As a reference, the number of messages required in a segment
when using a competitive update protocol (with limit L, 0 < L <1) is computed below:� competitive update protocol (0 < L < 1): A copy of

the page is updated until it receives L update messages
from other nodes (between two consecutive local accesses).
Upon receiving (L + 1)-th update message, local copy of
the page is invalidated. If the number of update messages
(U ) received during the segment is at most L, then the
page is not invalidated. In the case of competitive up-
date protocol, it is convenient to include the messages re-
quired to bring a page from a remote node when counting
the number of messages for the segment in which the page
was invalidated (rather than when counting the number of
messages for the next segment). Thus, if U � L, thenMcompetitive is 2U , similar to Mupdate. Else, however,Mcompetitive = 2 (L+ 1) + (F + 2) = 2L+Minvalidate.
(2(L + 1) messages for L + 1 updates and their acknowl-
edgements, and F + 2 for bringing a page on the page fault
when the next local access is attempted.)



Amount of Data Transferred
In the above analysis, we consider the number of messages as

the cost. Now, we consider the amount of data transferred as the
cost metric. The average amount of data transferred per segment
is evaluated below.� Let Dinvalidate denote the average amount of data trans-

ferred per segment when using the invalidate protocol (L =
0). Then,Dinvalidate = pupdate+(F+2)pcontrol+ppage,
where pupdate is the average size of an update message that
causes the local copy of the page to be invalidated, pcontrol is
the size of a control message (page request, acknowledgment
of update, etc.), ppage is the size of a message that is required
to send a page from one node to another, andF is the average
number of times a page request is forwarded.� Let Dupdate denote the average amount of data transferred
in one segment for the update protocol (L = 1). Then,
it follows that, Dupdate = (pupdate + pcontrol)U whereU now denotes the average number of remote updates in a
segment.

Critical value of U (Ucritical), where the two protocols re-
quire the same amount of data transfer, is computed as follows:Dupdate = Dinvalidate) (pupdate + pcontrol)Ucritical = pupdate+ (F + 2) pcontrol + ppage) Ucritical = pupdate+(F+2) pcontrol+ppagepupdate+pcontrol) Ucritical = pupdate+6 pcontrol+ppagepupdate+pcontrol assuming F = 4.
Note that Ucritical is different when minimizing amount of data as
compared to when minimizing number of messages.

Having determined Ucritical, L = 0 is chosen if U measured
at run-time is greater than Ucritical. To evaluate Ucritical , pupdate
is also estimated at run-time. For a reason similar to that described
previously when minimizing the number of messages, we do not
chooseL =1whenU � Ucritical. Instead, whenU � Ucritical,
we choose the competitive update protocol with limit = Ucritical.
Choosing limit = Ucritical � 1 would also result in similar cost.
Because we chose limit = Ucritical � 1 for minimizing the number
of messages, as an illustration, we decided to use limit = Ucritical
for minimizing amount of data.

General Cost Functions
In general, the “cost” may be an arbitrary function. For instance,

the cost may be some function of the message size. A procedure
similar to that describedabove can be used to choose the appropriate
value of L for such a cost function.

Let the “cost” of sending or receiving a message of sizem be a
function of m, say c(m). For example, c(m) may beK1 +K2m,
whereK1;K2 are constants. Total cost,C , is computed as follows:� Cupdate = (c(pupdate msg) + c(pcontrol))U� Cinvalidate = c(pupdate msg)+ (2+F ) c(pcontrol)+ c(ppage)
where c(pupdate msg) denotes the average cost of an update mes-
sage. Appropriate limit can be chosen, by comparing the above
costs estimated at run-time.

The present implementation chooses the appropriate limit to
minimize the numberof messagesor the amount of data transferred.
Any one of the two can be minimized at any time, not both. When
both need to be small, a cost function of the formK1+K2m should
be used, where m is message size.3.2 Implementation
As shown in the above analysis,the average number of updates since
the last local access (U ) and the average size of update message

(pupdate) are important factors to decide which protocol is better.
Our adaptive protocol estimates these values over consecutive Ns
segments (let us call it a “sampling period”) and selects appropriate
protocol for the next sampling period. Figure 4 illustrates segments
and sampling periods. The U and pupdate values estimated during
sampling period i are used to determine the value of limit L to be
used during sampling period i + 1.

Sampling Period 1

1 2 3 ..... Ns 1 2 3 ..... Ns 1 2 3 ..... Ns
Ns Segments Ns Segments Ns Segments

Sampling Period 2 Sampling Period 3

Figure 4: Segments and Sampling Periods

Each node independently estimates U and pupdate for each
page. To facilitate estimation of U and pupdate at run-time, each
node maintains the following information for each page.� version: Counts how many times this page has been updated

since the beginning of execution of the application. version
is initialized to zero at the beginning of execution.� dynamic version: The version (defined above) of the page at
the last local access. dynamic version is initialized to zero
at the beginning of execution, and set to version after a page
fault or on performing an update. dynamic version does not
have to be updated on every local access – more details are
presented below.� xdata: Total amountof data transferred for updating copies of
this page since the beginning of execution of the application.
xdata is initialized to zero at the beginning of execution.
(xdata is mnemonic for “exchanged data”.)� dynamic xdata: The xdata (defined above) of the page at the
last local access. dynamic xdata is initialized to zero at the
beginning of execution and set to xdata after a page fault or
on performing an update (as described below).� update: The number of updates by other nodes during the
current sampling period. update is initialized to zero at the
beginning of execution and is cleared to zero at the end of
every sampling period.� d update: The amount of data received to update local copy
of the page in the current sampling period. d update is ini-
tialized to zero at the beginning of execution and is cleared
to zero at the end of every sampling period.� counter: Total number of segments during the current sam-
pling period. counter is initialized to zero at the beginning of
execution and is cleared to zero at the end of every sampling
period.

The procedure for estimating U and pupdate is as follows. In
the following, we focus on a single page P at a node A – the same
procedure is used for each page at each node.

1. On receiving an update message for page P, node A incre-
ments the version of page P by 1, and increments xdata by
the size of the update message. Similarly, when node A mod-
ifies page P and sends update messages to other nodes that
have a copy of page P, version is incremented by 1, and xdata
is incremented by the size of the update message. In addition,
when nodeA sends update messages, dynamic version is set
equal to version and dynamic xdata is set equal to xdata.



2. On a page fault, when a copy of page P is received by nodeA,
the sender of the page also sends its xdata and version along
with the page. On receiving the page, xdata and version in
the local page table entry (for page P) at node A are set equal
to those received with the page. Also, dynamic version in the
local page table entry is compared to version received with
the page. Let d = version � dynamic version . Then
the update variable for page P (at node A) is incremented byd, d update is incremented by (xdata � dynamic xdata ),
and the counter incremented by one. At this point, a new
segment begins. Therefore, the dynamic version is set equal
to version and dynamic xdata is set to xdata.

3. When counter becomesNs, a sampling period is completed.
Now, U and pupdate are estimated as U = updateNs , andpupdate = d updateupdate , and update, d update, and counter are
cleared to zero.

The estimated values ofU and pupdate for page P at node A are
used to decide which protocol is better. If U > Ucritical, invalidate
protocol (L = 0) is selected; else, competitive update protocol
with appropriate limit is selected (as described in section 3.1). The
chosen L is used for page P at node A during the next sampling
period.4 Performance Evaluation
Experiments are performed to evaluate the performance of the adap-
tive DSM by running applications on an implementation of the
adaptive protocol. We implemented the adaptive protocol by modi-
fying another DSM, named Quarks (Beta release 0.8) [6, 15]. This
section presents the experimental results.

We evaluated the adaptive scheme using a synthetic application
(named qtest) as well as five other applications (Floyd-Warshall,
SOR, ProdCons, Reader/Writer, and QSORT). qtest is a simple
shared memory application based on a program available with the
Quarks release [15]: all nodes access the shared data concurrently.
A process acquiresmutual exclusion beforeeach access andreleases
it after that. We measured the cost (i.e., number of messages and
size of data transferred) by executing different instances of the
synthetic application, as described below. SOR is available with
the Quarks release [15]. ProdCons and Reader/Writer are based on
qtest. Sampling period (Ns) is chosen to be 2 for all applications.

Results for qtest Application
The body of the first instance of the qtest program (named

qtest1) is as follows:

qtest1: repeat NLOOP times {
acquire(lock_id);

for (n = 1 to NSIZE)
/* increment shared memory

location */
shmem[n]++;

release(lock_id);
}

Each node performs the above task. All the shared data accessed
in this application is confined to a single page. Each node executes
the repeat loop 300 times, i.e., NLOOP = 300. 300 iterations
were sufficient for the results to converge. The size of shared data
(NSIZE) is 2048 bytes – all in one page – page size being 4096
bytes. (The next experiment considers small NSIZE.) The adaptive
protocol initializes L to 3 for each page at each node. At the end of
each sampling period (Ns = 2), each node estimatesU and pupdate
for the page and selects the appropriate L – this L is used during
the next sampling period.

For this application, Figures 5 and 6 show the measured cost
by increasing the number of nodes (N ). The costs are plotted per
“transaction” basis. A transaction denotes a sequenceof operations
– namely, acquire, sharedmemory access, and release – in one loop
of the qtest1 main routine. The curve for the adaptive scheme in
Figure 5 is plotted using the heuristic for minimizing the number
of messages; the curve in Figure 6 is plotted using the heuristic for
minimizing the amount of data transferred.

In Figure 5, the curve named “protocol” denotes the number of
messages required by the specified protocol, and “#update” denotes
the average number of updates per segment (U ) calculated over the
entire application. As number of nodes N increases, the average
number of updates per segment (U ) increases proportionally. In
spite of the approximate estimate of Ucritical used in our analysis,
the adaptive protocol performs well except for N = 5. For smallN , the adaptive scheme performs similar to update schemes (which
are optimal for small N ), and for large N the adaptive scheme
performs similar to the invalidate scheme (which is optimal for
large N ). (In case of N = 5, our adaptive protocol often choosesL = 3 because estimated U in most sampling periods is not greater
than Ucritical = 4. Therefore, for N = 5, the adaptive scheme
performs similar to the competitive update scheme.) In summary,
the number of messages required by the adaptive protocol is near
the minimum of invalidate (L = 0) and competitive update (L = 3)
protocols (except whenN = 5).

Figure 6 shows the comparison of the amount of data transferred
per transaction. Since qtest1 application modifies large amount of
data (NSIZE = 2048 bytes), an update protocol requires larger
amount of data transfer as the number of nodes (N ) increases.
However, an invalidate protocol requires nearly constant amount of
data transfer (per transaction) for all N . Competitive protocol re-
quires large amount of data transfer whenN > 4 because it cannot
adapt to minimize the amount of data transferred. Adaptive proto-
col chooses the appropriate protocol for all values of N , thereby
minimizing the amount of data transferred.
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The second experiment was performed with the main loop
(qtest2) shown below:

qtest2: repeat NLOOP times {
acquire(lock_id);
if (random() < read_ratio)
/* 0 <= random <= 1 */

for (n = 1 to NSIZE)
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tion

/* read shared memory */
r_value = shmem[n];

else
for (n = 1 to NSIZE)

/* write shared memory */
shmem[n] = w_value;

release(lock_id);
}

All the shared data accessed in qtest2 is confined to a single
page. For this experiment, we assumea small amount of shared data
access per iteration of the repeat loop (NSIZE = 4). Addition-
ally, each iteration of the repeat loop either reads or writes the
shared data depending on whether a random number (random())
is smaller than the read ratio or not. This allows us to control the
frequency of write accesses to the shared data. 8 nodes access the
shared data 100 times each (NLOOP = 100). (We observed that
the results converge quite quickly.) Figure 7 presents the number of
messages per transaction (i.e., acquire, shared memory access, and
release). As shown, the adaptive scheme performs well for all read
ratios.

Figure 8 shows the comparison of the amount of data transferred
per transaction. Since qtest2 application modifies small amount
of data (NSIZE = 4 bytes), our adaptive protocol chooses a
competitive protocol with large update limit (L) (refer to Section
3.1). Therefore, the adaptive protocol requires small amount of data
transfer. Competitive update protocol with limit L = 3 (or smallL,
in general) results in relatively larger amount of data transfer when
the average size of an update message, pupdate, is small.

Results for Other Applications
We now evaluate our adaptive scheme by executing five addi-

tional applications (Floyd-Warshall, SOR, ProdCons, QSORT, and
Reader/Writer) on 8 nodes. Floyd-Warshall is all-pair-shortest-path
algorithm. (We use 128 vertices as input.) SOR is Successive Over-
Relaxation algorithm which executes simple iterative relaxation al-
gorithm. (We use 512� 512 grid.) ProdCons is implementation of
a simple Producer/Consumer model. Producers make data which
will be used by consumers. (We execute total 4,000 “transactions”
for ProdCons. A transaction denotes a sequence of operations –
namely, acquire shared memory access and release – similar to
as defined in qtest.) QSORT is Quick sorting algorithm. (We use
65,536 elements to be sorted.) Reader/Writer is implemented by
modifying the qtest to evaluate performance in time-varying mem-
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tion

ory access patterns. Execution time is divided into 4 stages and
memory access pattern is different for each stage. A node can be
either a reader or a writer for each page depending on the execution
stage. The size of data for write is different for each stage. (Total
4,800 transactions are executed.)

Floyd-Warshall and SOR usebarriersfor synchronization. These
two applications have small value of U . However, as shown in
Figures 9 and 10, update protocol unexpectedly shows bad perfor-
mance. Recall that we use a DSM implementation basedon Quarks
[15] for these experiments. In Quarks, the “Master” node initial-
izes all shared memory and the Master node is in the copyset of
all pages. Pure update protocol implementation based on Quarks
performs bad due to the overhead of updating Master node for all
shared memory writes. (However, this performance degradation
does not happen in the original Quarks release becauseQuarks uses
a mechanism similar to competitive update protocol.) Competi-
tive update protocol and adaptive protocol perform well for both
applications

ProdCons and QSORT use lock/unlock for a task queue. These
two applications have large value of U , and invalidate protocol
requires small number of messages (please refer Figures 11 and



12). However, for the amount of data, update protocol is better
because the amount of data in an update message is smaller than
the size of a page. Competitive protocol shows fair performance
for the number of messages. However, it shows poor performance
for the amount of data. Adaptive protocol shows good performance
for the amount of data as well as the number of messages.

We evaluated the performance of our adaptive protocol on a
synthetic Reader/Writer application (see Figure 13) where memory
access patterns (read to write ratio, access period, amount of data
written in each transaction, etc.) are time-varying. Results show
that the adaptive protocol performs well by adapting to time-varying
memory access patterns.

Experimental results show that our adaptive scheme performs
well. This results suggest that our adaptive scheme can predict
the optimal consistency protocol accurately when memory access
patterns do not change frequently.
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Figure 10: Cost Comparisons (SOR)5 Conclusion and Future Work
Our objective is to design an adaptive DSM that can adapt to time-
varying pattern of accesses to the shared memory. Our approach
continually gathers statistics, at run-time, and periodically deter-
mines the appropriate protocol for each copy of each page. The
choice of the protocol is determined based on the “cost” metric that
needs to be minimized. The cost metrics considered in this paper
are number and size of messages required for executing an applica-
tion using the DSM implementation. A generalization to minimize
arbitrary cost metrics is also discussed briefly.
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Our adaptive approach determines, at run-time, the cost of each
candidate consistencyprotocol, and uses the protocol that appears to
have the smaller cost. The proposed adaptive approach is illustrated
here by means of an adaptive DSM scheme that chooses either the
invalidate or the competitive update protocol for each copy of a
page – the choice changes with time, as the access patterns change.
The paper presents experimental evaluation of the adaptive DSM
using an implementation basedon Quarks DSM [15]. Experimental
results from the implementation suggest that the proposed adaptive
approach can indeed reduce the cost.

Further work is needed to fully examine the effectiveness of the
proposed approach:� One issue that needs to be addressed is the choice of Ns that
determines the length of the sampling period. Instead of keepingNs fixed, it may be possible to choose the appropriate value at
run-time.� The paper presented a cost-comparison based heuristic for
choosing between two protocols. In general, the DSM may provide
a larger set of protocols, and the appropriate protocol should be
adaptively chosen from this set. For instance, the choices may
include migratory protocol, and competitive update protocol withL = 0; 3; 7;1. A heuristic for choosing between one of these, at
run-time, needs to be developed to implement more efficient DSMs.� The cost metrics considered in the paper are number and
size of messages. Other cost metrics need to be considered. In
particular, impact of our heuristics on application execution time
needs to be evaluated.� The adaptive approach (based on cost-comparison) presented
here can be combined with ideas developed by other researchers
(e.g., [25]) to obtain further improvement in DSM performance. As
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yet, we have not explored this possibility.
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