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Abstract. This work addresses Byzantine vector consensus, wherein the
input at each process is a d-dimensional vector of reals, and each pro-
cess is required to decide on a decision vector that is in the convex hull
of the input vectors at the fault-free processes [9, 12]. The input vec-
tor at each process may also be viewed as a point in the d-dimensional
Euclidean space R

d, where d > 0 is a finite integer. Recent work [9,
12] has addressed Byzantine vector consensus, and presented algorithms
with optimal fault tolerance in complete graphs. This paper considers
Byzantine vector consensus in incomplete graphs using a restricted class
of iterative algorithms that maintain only a small amount of memory
across iterations. For such algorithms, we prove a necessary condition,
and a sufficient condition, for the graphs to be able to solve the vector
consensus problem iteratively. We present an iterative Byzantine vector
consensus algorithm, and prove it correct under the sufficient condition.
The necessary condition presented in this paper for vector consensus
does not match with the sufficient condition for d > 1; thus, a weaker
condition may potentially suffice for Byzantine vector consensus.

1 Introduction

This work addresses Byzantine vector consensus (BVC), wherein the input at
each process is a d-dimensional vector consisting of d real numbers, and each
process is required to decide on a decision vector that is in the convex hull of the
input vectors at the fault-free processes [9, 12]. The input vector at each process
may also be viewed as a point in the d-dimensional Euclidean space Rd, where
d > 0 is a finite integer. Due to this correspondence, we use the terms point
and vector interchangeably. Recent work [9, 12] has addressed Byzantine vector
consensus, and presented algorithms with optimal fault tolerance in complete
graphs. The correctness conditions for Byzantine vector consensus (elaborated
below) cannot be satisfied by independently performing consensus on each ele-
ment of the input vectors; therefore, new algorithms are necessary [9, 12].

In this paper, we consider Byzantine vector consensus in incomplete graphs
using a restricted class of iterative algorithms that maintain only a small amount
of memory across iterations. We prove a necessary condition, and a sufficient
condition, for the graphs to be able to solve the vector consensus problem using



such restricted algorithms. We present an iterative Byzantine vector consensus
algorithm, and prove it correct under the sufficient condition; our proof of cor-
rectness follows a structure previously used in our work to prove correctness of
other consensus algorithms [11, 14]. The use of matrix analysis tools in our proofs
is inspired by the prior work on non-fault tolerant consensus (e.g., [6]). For lack
of space, the proofs of most claims in the paper are omitted here. Further details
can be found in [15]. The necessary condition presented in this paper for vec-
tor consensus does not match with the sufficient condition for d > 1; thus, it is
possible that a weaker condition may also suffice for Byzantine vector consensus.

This paper extends our past work on scalar consensus (i.e., consensus with
scalar inputs) in incomplete graphs in presence of Byzantine faults [13], us-
ing similarly restricted iterative algorithms. The work in [13] yielded an exact
characterization of graphs in which the scalar Byzantine consensus problem is
solvable.

Related Work: Approximate consensus has been previously explored in syn-
chronous as well as asynchronous systems. Dolev et al. [3] were the first to
consider approximate consensus in presence of Byzantine faults in asynchronous
systems. Subsequently, for complete graphs, Abraham, Amit and Dolev [1] estab-
lished that approximate Byzantine consensus is possible in asynchronous systems
if n ≥ 3f+1. Other algorithms for approximate consensus in presence of Byzan-
tine faults have also been proposed (e.g., [4]). Scalar consensus in incomplete
graphs under a malicious fault model in which the faulty nodes are restricted
to sending identical messages to their neighbors has also been explored by other
researchers (e.g., [7, 8]).

The paper is organized as follows. Section 2 presents our system model. The
iterative algorithm structure considered in our work is presented in Section 3.
Section 4 presents a necessary condition, and Section 5 presents a sufficient con-
dition. Section 5 also presents an iterative algorithm and proves its correctness
under the sufficient condition. The paper concludes with a summary in Section
6.

2 System Model

The system is assumed to be synchronous.1 The communication network is mod-
eled as a simple directed graph G(V , E), where V = {1, . . . , n} is the set of n
processes, and E is the set of directed edges between the processes in V . Thus,
|V| = n. We assume that n ≥ 2, since the consensus problem for n = 1 is trivial.
Process i can reliably transmit messages to process j, j 6= i, if and only if the
directed edge (i, j) is in E . Each process can send messages to itself as well,
however, for convenience of presentation, we exclude self-loops from set E . That
is, (i, i) 6∈ E for i ∈ V . We will use the terms edge and link interchangeably.

For each process i, let N−
i be the set of processes from which i has incoming

edges. That is, N−
i = { j | (j, i) ∈ E }. Similarly, define N+

i as the set of processes

1 Analogous results can be similarly derived for asynchronous systems, using the asyn-
chronous algorithm structure presented in [13] for the case of d = 1.



to which process i has outgoing edges. That is, N+
i = { j | (i, j) ∈ E }. Since

we exclude self-loops from E , i 6∈ N−
i and i 6∈ N+

i . However, we note again that
each process can indeed send messages to itself.

We consider the Byzantine failure model, with up to f processes becoming
faulty. A faulty process may misbehave arbitrarily. The faulty processes may po-
tentially collaborate with each other. Moreover, the faulty processes are assumed
to have a complete knowledge of the execution of the algorithm, including the
states of all the processes, contents of messages the other processes send to each
other, the algorithm specification, and the network topology.

We use the notation |X | to denote the size of a set or a multiset, and the
notation ‖x‖ to denote the absolute value of a real number x.

3 Byzantine Vector Consensus and Iterative Algorithms

Byzantine vector consensus: We are interested in iterative algorithms that satisfy
the following conditions in presence of up to f Byzantine faulty processes:

– Termination: Each fault-free process must terminate after a finite number
of iterations.

– Validity: The state of each fault-free process at the end of each iteration
must be in the convex hull of the d-dimensional input vectors at the fault-
free processes.

– ǫ-Agreement: When the algorithm terminates, the l-th elements of the deci-
sion vectors at any two fault-free processes, where 1 ≤ l ≤ d, must be within
ǫ of each other, where ǫ > 0 is a pre-defined constant.

Any information carried over by a process from iteration t to iteration t + 1 is
considered the state of process t at the end of iteration t. The above validity
condition forces the algorithms to maintain “minimal” state, for instance, pre-
cluding the possibility of remembering messages received in several of the past
iterations, or remembering the history of detected misbehavior of the neighbors.
We focus on such restricted algorithms with the iterative structure below.

Iterative structure: Each process i maintains a state variable vi, which is a
d-dimensional vector. The initial state of process i is denoted as vi[0], and it
equals the input provided to process i. For t ≥ 1, vi[t] denotes the state of
process i at the end of the t-th iteration of the algorithm. At the start of the
t-th iteration (t ≥ 1), the state of process i is vi[t− 1]. The iterative algorithms
of interest will require each process i to perform the following three steps in the
t-th iteration. Each “value” referred in the algorithm below is a d-dimensional
vector (or, equivalently, a point in the d-dimensional Euclidean space).

1. Transmit step: Transmit current state, namely vi[t−1], on all outgoing edges
to processes in N+

i .



2. Receive step: Receive values on all incoming edges from processes in N−
i . De-

note by ri[t] the multiset2 of values received by process i from its neighbors.
The size of multiset ri[t] is |N

−
i |.

3. Update step: Process i updates its state using a transition function Ti as
follows. Ti is a part of the specification of the algorithm, and takes as input
the multiset ri[t] and state vi[t− 1].

vi[t] = Ti ( ri[t] , vi[t− 1] ) (1)

The decision (or output) of each process equals its state when the algorithm
terminates.

We assume that each element of the input vector at each fault-free process
is lower bounded by a constant µ and upper bounded by a constant U . The
iterative algorithm may terminate after a number of rounds that is a function of
µ and U . µ and U are assumed to be known a priori. This assumption holds in
many practical systems, because the input vector elements represent quantities
that are constrained. For instance, if the input vectors represent locations in
3-dimensional space occupied by mobile robots, then U and µ are determined
by the boundary of the region in which the robots are allowed to operate [12].

In Section 4, we develop a necessary condition that the graph G(V , E) must
satisfy in order for the Byzantine vector consensus algorithm to be solvable using
the above iterative structure. In Section 5, we develop a sufficient condition, such
that the Byzantine vector consensus algorithm is solvable using the above itera-
tive structure in any graph that satisfies this condition. We present an iterative
algorithm, and prove its correctness under the sufficient condition.

4 A Necessary Condition

Hereafter, when we say that an algorithm solves Byzantine vector consensus,
we mean that the algorithm satisfies the termination, validity and ǫ-agreement
conditions stated above. Thus, the state the algorithm can carry across iterations
is restricted by the above validity condition. Also, hereafter when we refer to
an iterative algorithm, we mean an algorithm with the structure specified in
the previous section. In this section, we state a necessary condition on graph
G(V , E) to be able to solve Byzantine vector consensus. First we present three
definitions.

Definition 1.

– Define e0 to be a d-dimensional vector with all its elements equal to 0. Thus,
e0 corresponds to the origin in the d-dimensional Euclidean space.

– Define ei, 1 ≤ i ≤ d, to be a d-dimensional vector with the i-th element equal
to 2ǫ, and the remaining elements equal to 0. Recall that ǫ is the parameter
of the ǫ-agreement condition.

2 The same value may occur multiple times in a multiset.



Definition 2. For non-empty disjoint sets of processes A and B, and a non-
negative integer c,

– A
c

−→ B if and only if there exists a process v ∈ B that has at least c + 1
incoming edges from processes in A, i.e., |N−

v ∩ A| ≥ c+ 1.

– A 6
c

−→ B iff A
c

−→ B is not true.

Definition 3. H(X) denotes the convex hull of a multiset of points X.

Now we state the necessary condition.

Condition NC: For any partition V0, V1, · · · , Vp, C, F of set V, where 1 ≤ p ≤ d,
Vk 6= ∅ for 0 ≤ k ≤ p, and |F | ≤ f , there exist i, j (0 ≤ i, j ≤ p, i 6= j), such
that

Vi ∪ C
f

−→ Vj

That is, there are f +1 incoming links from processes in Vi ∪C to some process
in Vj.

The proof of the necessary condition below extends the proofs of necessary
conditions in [9, 12, 13].

Lemma 1. If the Byzantine vector consensus problem can be solved using an
iterative algorithm in G(V , E), then G(V , E) satisfies Condition NC.

Proof. The proof is by contradiction. Suppose that Condition NC is not true.
Then there exists a certain partition V0, V1, · · · , Vp, C, F such that Vk 6= ∅ (1 ≤

k ≤ p), |F | ≤ f , and for 0 ≤ i, k ≤ p, Vk ∪ C 6
f

−→ Vi.
Let the initial state of each process in Vi be ei (0 ≤ i ≤ p). Suppose that all

the processes in set F are faulty. For each link (j, k) such that j ∈ F and k ∈ Vi
(0 ≤ i ≤ p), the faulty process j sends value ei to process j in each iteration.

We now prove by induction that if the iterative algorithm satisfies the validity
condition then the state of each fault-free process j ∈ Vi at the start of iteration
t equals ei, for all t > 0. The claim is true for t = 1 by assumption on the inputs
at the fault-free processes. Now suppose that the claim is true through iteration
t, and prove it for iteration t+1. Thus, the state of each fault-free process in Vi
at the start of iteration t equals ei, 0 ≤ i ≤ p.

Consider any fault-free process j ∈ Vi, where 0 ≤ i ≤ p. In iteration t, process
j will receive vg[t− 1] from each fault-free incoming neighbor g, and receive ei
from each faulty incoming neighbor. These received values form the multiset
rj [t]. Since the condition in the lemma is assumed to be false, for any k 6= i,
0 ≤ k ≤ p, we have

Vk ∪ C 6
f

−→ Vi.

Thus, at most f incoming neighbors of j belong to Vk ∪ C, and therefore, at
most f values in rj [t] equal ek.



Since process j does not know which of its incoming neighbors, if any, are
faulty, it must allow for the possibility that any of its f incoming neighbors are
faulty. Let Ak ⊆ Vk∪C, k 6= i, be the set containing all the incoming neighbors of

process j in Vk ∪C. Since Vk ∪C 6
f

−→ Vi, |Ak| ≤ f ; therefore, all the processes in
Ak are potentially faulty. Also, by assumption, the values received from all fault-
free processes equal their input, and the values received from faulty processes
in F equal ei. Thus, due to the validity condition, process j must choose as its
new state a value that is in the convex hull of the set

Sk = {em | m 6= k, 0 ≤ m ≤ p}.

where k 6= i. Since this observation is true for each k 6= i, it follows that the new
state vj [t] must be a point in the convex hull of

∩1≤k≤p, k 6=i H(Sk).

It is easy to verify that the above intersection only contains the point ei. There-
fore, vj [t] = ei. Thus, the state of process j at the start of iteration t+1 equals
ei. This concludes the induction.

The above result implies that the state of each fault-free process remains
unchanged through the iterations. Thus, the state of any two fault-free processes
differs in at least one vector element by 2ǫ, precluding ǫ-agreement. 2

The above lemma demonstrates the necessity of Condition NC. Necessary con-
dition NC implies a lower bound on the number of processes n = |V| in G(V , E),
as stated in the next lemma.

Lemma 2. Suppose that the Byzantine vector consensus problem can be solved
using an iterative algorithm in G(V , E). Then, n ≥ (d+ 2)f + 1.

Proof. Since the Byzantine vector consensus problem can be solved using an
iterative algorithm in G(V , E), by Lemma 1, graph G must satisfy Condition
NC. Suppose that 2 ≤ |V| = n ≤ (d + 2)f . Then there exists p, 1 ≤ p ≤ d, such
that we can partition V into sets V0, ..., Vp, F such that for each Vi, 0 < |Vi| ≤ f ,
and |F | ≤ f . Define C = ∅. Since |C ∪ Vi| ≤ f for each i, it is clear that this
partition of V cannot satisfy Condition NC. This is a contradiction. 2

When d = 1, the input at each process is a scalar. For the d = 1 case, our
prior work [13] yielded a tight necessary and sufficient condition for Byzantine
consensus to be achievable in G(V , E) using iterative algorithms. For d = 1, the
necessary condition stated in Lemma 1 is equivalent to the necessary condition in
[13]. We previously showed that, for d = 1, the same condition is also sufficient
[13]. However, in general, for d > 1, Condition NC is not proved sufficient.
Instead, we prove the sufficiency of another condition stated in the next section.



5 A Sufficient Condition

We now present Condition SC that is later proved to be sufficient for achiev-
ing Byzantine vector consensus in graph G(V , E) using an iterative algorithm.
Condition SC is a generalization of the sufficient condition presented in [13] for
d = 1.

Condition SC: For any partition F,L,C,R of set V, such that L and R are both

non-empty, and |F | ≤ f , at least one of these conditions is true: R ∪ C
df

−→ L,

or L ∪ C
df

−→ R.

Later in the paper we will present a Byzantine vector consensus algorithm
named Byz-Iter that is proved correct in all graphs that saitsfy Condition SC.
The proof makes use of Lemmas 3 and 4 presented below.

Lemma 3. For f > 0, if graph G(V , E) satisfies Condition SC, then in-degree
of each process in V must be at least (d + 1)f + 1. That is, for each i ∈ V,
|N−

i | ≥ (d+ 1)f + 1.

Proof. The proof is by contradiction. As per the assumption in the lemma, f > 0,
and graph G(V , E) satisfies condition SC.

Suppose that some process i has in-degree at most (d+1)f . Define L = {i},
and C = ∅. Partition the processes in V − {i} into sets R and F such that
|F | ≤ f , |F ∩ N−

i | ≤ f and |R ∩ N−
i | ≤ df . Such sets R and F exist because

in-degree of process i is at most (d+1)f . L,R,C, F thus defined form a partition
of V .

Now, f > 0 and d ≥ 1, and |L ∪ C| = 1. Thus, there can be at most 1 link

from L ∪ C to any process in R, and 1 ≤ df . Therefore, L ∪ C 6
df

−→ R. Also,
because C = ∅, |(R∪C) ∩N−

i | = |R ∩N−
i | ≤ df . Thus, there can be at most df

links from R ∪ C to process i, which is the only process in L = {i}. Therefore,

R∪C 6
df

−→ L. Thus, the above partition of V does not satisfy Condition SC. This
is a contradiction. 2

Definition 4. Reduced Graph: For a given graph G(V , E) and F ⊂ V such
that |F| ≤ f , a graph H(VF , EF) is said to be a reduced graph, if: (i) VF = V−F ,
and (ii) EF is obtained by first removing from E all the links incident on the
processes in F , and then removing up to df additional incoming links at each
process in VF .

Note that for a given G(V , E) and a given F , multiple reduced graphs may exist
(depending on the choice of the links removed at each process).

Lemma 4. Suppose that graph G(V , E) satisfies Condition SC, and F ⊂ V, such
that |F| ≤ f . Then, in any reduced graph H(VF , EF), there exists a process that
has a directed path to all the remaining processes in VF .

The proof of Lemma 4 is omitted for lack of space. This proof, and the other
omitted proofs in the paper, are presented in [15].



5.1 Algorithm Byz-Iter

We prove that, if graphG(V , E) satisfies Condition SC, then Algorithm Byz-Iter

presented below achieves Byzantine vector consensus. Algorithm Byz-Iter has
the three-step structure described in Section 3.

The proposed algorithm is based on the following result by Tverberg [10].

Theorem 1. (Tverberg’s Theorem [10]) For any integer f ≥ 0, and for every
multiset Y containing at least (d+ 1)f +1 points in Rd, there exists a partition

Y1, · · · , Yf+1 of Y into f + 1 non-empty multisets such that ∩f+1
l=1 H(Yl) 6= ∅.

The points in Y above need not be distinct [10]; thus, the same point may occur
multiple times in Y , and also in each of its subsets (Yl’s) above. The partition

in Theorem 1 is called a Tverberg partition, and the points in ∩f+1
l=1 H(Yl) in

Theorem 1 are called Tverberg points.

Algorithm Byz-Iter

Each iteration consists of three steps: Transmit, Receive, and Update:

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges.

2. Receive step: Receive values on all incoming edges. These values form
multiset ri[t] of size |N−

i |. (If a message is not received from some in-
coming neighbor, then that neighbor must be faulty. In this case, the
missing message value is assumed to be e0 by default. Recall that we
assume a synchronous system.)

3. Update step: Form a multiset Zi[t] using the steps below:

– Initialize Zi[t] as empty.
– Add to Zi[t], any one Tverberg point corresponding to each multiset
C ⊆ ri[t] such that |C| = (d+ 1)f + 1. Since |C| = (d+ 1)f + 1, by
Theorem 1, such a Tverberg point exists.

Zi[t] is a multiset; thus a single point may appear in Zi[t] more than

once. Note that |Zi[t]| =
( |ri[t]|
(d+1)f+1

)

≤
(

n
(d+1)f+1

)

. Compute new state

vi[t] as:

vi[t] =
vi[t− 1] +

∑

z∈Zi[t]
z

1 + |Zi[t]|
(2)

Termination: Each fault-free process terminates after completing tend iter-
ations, where tend is a constant defined later in Equation (10). The value of
tend depends on graph G(V , E), constants U and µ defined earlier in Section
3 and parameter ǫ of ǫ-agreement.

The proof of correctness of Algorithm Byz-Iter makes use of a matrix rep-
resentation of the algorithm’s behavior. Before presenting the matrix represen-
tation, we introduce some notations and definitions related to matrices.



5.2 Matrix Preliminaries

We use boldface letters to denote matrices, rows of matrices, and their elements.
For instance, A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij

denotes the element at the intersection of the i-th row and the j-th column of
matrix A.

Definition 5. A vector is said to be stochastic if all its elements are non-
negative, and the elements add up to 1. A matrix is said to be row stochastic if
each row of the matrix is a stochastic vector.

For matrix products, we adopt the “backward” product convention below, where
a ≤ b,

Πb
τ=aA[τ ] = A[b]A[b − 1] · · ·A[a] (3)

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are
defined as follows [17]:

δ(A) = max
j

max
i1,i2

‖Ai1 j −Ai2 j‖

λ(A) = 1−min
i1,i2

∑

j

min(Ai1 j ,Ai2 j)

Lemma 5. For any p square row stochastic matrices A(1),A(2), . . . ,A(p),

δ(Πp
τ=1A(τ)) ≤ Π

p
τ=1 λ(A(τ)).

The above lemma is proved in [5]. The lemma below follows directly from the
definition of λ(· ).

Lemma 6. If all the elements in any one column of matrix A are lower bounded
by a constant γ, then λ(A) ≤ 1 − γ. That is, if ∃g, such that Aig ≥ γ, ∀i, then
λ(A) ≤ 1− γ.

5.3 Correctness of Algorithm Byz-Iter

Let F denote the actual set of faulty processes in a given execution of Algorithm
Byz-Iter. Let |F| = ψ. Thus, 0 ≤ ψ ≤ f . Without loss of generality, suppose
that processes 1 through (n−ψ) are fault-free, and if ψ > 0, processes (n−ψ+1)
through n are faulty.

In the analysis below, it is convenient to view the state of each process as a
point in the d-dimensional Euclidean space. Denote by v[0] the column vector
consisting of the initial states of the (n−ψ) fault-free processes. The i-th element
of v[0] is vi[0], the initial state of process i. Thus, v[0] is a vector consisting of
(n − ψ) points in the d-dimensional Euclidean space. Denote by v[t], for t ≥ 1,
the column vector consisting of the states of the (n− ψ) fault-free processes at
the end of the t-th iteration. The i-th element of vector v[t] is state vi[t].

Lemma 7 below states the key result that helps in proving the correctness of
Algorithm Byz-Iter. In particular, Lemma 7 allows us to use results for non-
homogeneous Markov chains to prove the correctness of Algorithm Byz-Iter.



Lemma 7. Suppose that graph G(V , E) satisfies Condition SC. Then the state
updates performed by the fault-free processes in the t-th iteration (t ≥ 1) of
Algorithm Byz-Iter can be expressed as

v[t] = M[t]v[t− 1] (4)

where M[t] is a (n−ψ)×(n−ψ) row stochastic matrix with the following property:
there exists a reduced graph H [t], and a constant β (0 < β ≤ 1) that depends
only on graph G(V , E), such that

Mij [t] ≥ β

if j = i or edge (j, i) is in H [t].

The proof is presented in [15].

Matrix M[t] above is said to be a transition matrix. As the lemma states,
M[t] is a row stochastic matrix. The proof of Lemma 7 shows how to identify
a suitable row stochastic matrix M[t] for each iteration t. The matrix M[t]
depends on t, as well as the behavior of the faulty processes. Mi[t] is the i-th
row of transition matrix M[t]. Thus, (4) implies that

vi[t] = Mi[t]v[t− 1]

That is, the state of any fault-free process i at the end of iteration t can be
expressed as a convex combination of the state of just the fault-free processes at
the end of iteration t−1. Recall that vector v only includes the state of fault-free
processes.

Theorem 2. Algorithm Byz-Iter satisfies the termination, validity and
ǫ-agreement conditions.

Proof. This proof follows a structure used to prove correctness of other con-
sensus algorithms in our prior work [14, 11]. Sections 5.4, 5.5 and 5.6 provide
the proof that Algorithm Byz-Iter satisfies the three conditions for Byzantine
vector consensus, and thus prove Theorem 2.

5.4 Algorithm Byz-Iter Satisfies the Validity Condition

Observe that M[t + 1] (M[t]v[t− 1]) = (M[t+ 1]M[t])v[t − 1]. Therefore, by
repeated application of (4), we obtain for t ≥ 1,

v[t] =
(

Πt
τ=1M[τ ]

)

v[0] (5)

Since each M[τ ] is row stochastic, the matrix product Πt
τ=1M[τ ] is also a row

stochastic matrix. Recall that vector v only includes the state of fault-free pro-
cesses. Thus, (5) implies that the state of each fault-free process i at the end of
iteration t can be expressed as a convex combination of the initial state of the
fault-free processes. Therefore, the validity condition is satisfied.



5.5 Algorithm Byz-Iter Satisfies the Termination Condition

Algorithm Byz-Iter stops after a finite number (tend) of iterations, where tend
is a constant that depends only on G(V , E), U , µ and ǫ. Therefore, trivially,
the algorithm satisfies the termination condition. Later, using (10) we define a
suitable value for tend.

5.6 Algorithm Byz-Iter Satisfies the ǫ-Agreement Condition

The proof structure below is derived from our previous work [14] wherein we
proved the correctness of an iterative algorithm for scalar Byzantine consensus
(i.e., the case of d = 1), and its generalization to a broader class of fault sets
[11].

Let RF denote the set of all the reduced graph of G(V , E) corresponding to
fault set F . Thus, RF is the set of all the reduced graph of G(V , E) corresponding
to actual fault set F . Let

r = max
|F |≤f

|RF |.

r depends only on G(V , E) and f , and it is finite. Note that |RF | ≤ r.
For each reduced graph H ∈ RF , define connectivity matrix H as follows,

where 1 ≤ i, j ≤ n− ψ:

– Hij = 1 if either j = i, or edge (j, i) exists in reduced graph H .
– Hij = 0, otherwise.

Thus, the non-zero elements of row Hi correspond to the incoming links at
process i in the reduced graph H , and the self-loop at process i. Observe that
H has a non-zero diagonal.

Lemma 8. For any H ∈ RF , and any k ≥ n − ψ, matrix product Hk has at
least one non-zero column (i.e., a column with all elements non-zero).

Proof. Each reduced graph contains n − ψ processes because the fault set F
contain ψ processes. By Lemma 4, at least one process in the reduced graph,
say process p, has directed paths to all the processes in the reduced graph H .
Element Hk

jp of matrix product Hk is 1 if and only if process p has a directed
path to process j containing at most k edges; each of these directed paths must
contain less than n − ψ edges, because the number of processes in the reduced
graph is n − ψ. Since p has directed paths to all the processes, it follows that,
when k ≥ n− ψ, all the elements in the p-th column of Hk must be non-zero.

For matrices A and B of identical dimensions, we say that A ≤ B if and only
if Aij ≤ Bij , ∀i, j. Lemma 9 relates the transition matrices with the connectivity
matrices. Constant β used in the lemma below was introduced in Lemma 7.

Lemma 9. For any t ≥ 1, there exists a reduced graph H [t] ∈ RF such that
βH[t] ≤ M[t], where H[t] is the connectivity matrix for H [t].



The proof is presented in [15].

Lemma 10. At least one column in the matrix product Π
u+r(n−ψ)−1
t=u H[t] is

non-zero.

The proof is presented in [15].

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these
matrices is a product of r(n− ψ) of the M[t] matrices. Specifically,

Q(i) = Π
ir(n−ψ)
t=(i−1)r(n−ψ)+1 M[t] (6)

From (5) and (6) observe that

v[kr(n − ψ)] =
(

Πk
i=1 Q(i)

)

v[0] (7)

Lemma 11. For i ≥ 1, Q(i) is a row stochastic matrix, and

λ(Q(i)) ≤ 1− βr(n−ψ).

The proof is presented in [15].

Let us now continue with the proof of ǫ-agreement. Consider the coefficient
of ergodicity δ(Πt

i=1M[i]).

δ(Πt
i=1M[i]) = δ

(

(

Πt
i=⌊ t

r(n−ψ)
⌋r(n−ψ)+1M[i]

)

(

Π
⌊ t
r(n−ψ)

⌋

i=1 Q(i)

))

(8)

by definition of Q(i)

≤ λ
(

Πt
i=⌊ t

r(n−ψ)
⌋r(n−ψ)+1M[i]

)

Π
⌊ t
r(n−ψ)

⌋

i=1 λ(Q(i)) by Lemma 5

≤ Π
⌊ t
r(n−ψ)

⌋

i=1 λ(Q(i)) because λ(.) ≤ 1

≤
(

1− βr(n−ψ)
)⌊ t

r(n−ψ)
⌋

by Lemma 11

≤ (1− βrn)⌊
t
rn

⌋ because 0 < β ≤ 1 and 0 ≤ ψ < n. (9)

Observe that the upper bound on right side of (9) depends only on graphG(V , E)
and t, and is independent of the input vectors, the fault set F , and the behavior
of the faulty processes. Also, the upper bound on the right side of (9) is a non-
increasing function of t. Define tend as the smallest positive integer t for which
the right hand side of (9) is smaller than ǫ

nmax(‖U‖,‖µ‖) , where ‖x‖ denotes the

absolute value of real number x. Thus,

δ(Πtend
i=1 M[i]) ≤ (1− βrn)⌊

tend
rn ⌋ <

ǫ

nmax(‖U‖, ‖µ‖)
(10)



Recall that β and r depend only on G(V , E). Thus, tend depends only on graph
G(V , E), and constants U , µ and ǫ.

Recall that Πt
i=1M[i] is a (n − ψ) × (n − ψ) row stochastic matrix. Let

M∗ = Πt
i=1M[i]. From (5) we know that state vj [t] of any fault-free process

j is obtained as the product of the j-th row of Πt
i=1 M[i] and v[0]. That is,

vj [t] = M∗
jv[0].

Recall that vj [t] is a d-dimensional vector. Let us denote the l-th element of
vj [t] as vj [t](l), 1 ≤ l ≤ d. Also, by v[0](l), let us denote a vector consisting of
the l-th elements of vi[0], ∀i. Then by the definitions of δ(.), U and µ, for any
two fault-free processes j and k, we have

‖vj[t](l)− vk[t](l)‖ = ‖M∗
jv[0](l)−M∗

kv[0](l)‖ (11)

= ‖

n−ψ
∑

i=1

M∗
jivi[0](l)−

n−ψ
∑

i=1

M∗
kivi[0](l)‖ (12)

= ‖

n−ψ
∑

i=1

(

M∗
ji −M∗

ki

)

vi[0](l)‖ (13)

≤

n−ψ
∑

i=1

‖M∗
ji −M∗

ki‖ ‖vi[0](l)‖ (14)

≤

n−ψ
∑

i=1

δ(M∗)‖vi[0](l)‖ (15)

≤ (n− ψ)δ(M∗)max(‖U‖, ‖µ‖) (16)

≤ (n− ψ)max(‖U‖, ‖µ‖) δ(Πt
i=1M[i])

≤ nmax(‖U‖, ‖µ‖) δ(Πt
i=1M[i]) because ψ ≤ n (17)

Therefore, by (10) and (17),

‖vi[tend](l)− vj [tend](l)‖ < ǫ, 1 ≤ l ≤ d. (18)

The output of a fault-free process equals its state at termination (after tend it-
erations). Thus, (18) implies that Algorithm Byz-Iter satisfies the ǫ-agreement
condition.

6 Summary

This paper addresses Byzantine vector consensus (BVC), wherein the input at
each process is a d-dimensional vector of reals, and each process is expected to
decide on a decision vector that is in the convex hull of the input vectors at the
fault-free processes [9, 12]. We address a particular class of iterative algorithms
in incomplete graphs, and prove a necessary condition (NC), and a sufficient
condition (SC), for the graphs to be able to solve the vector consensus problem



iteratively. This paper extends our past work on scalar consensus (i.e., d = 1) in
incomplete graphs in presence of Byzantine faults [13, 14], which yielded an exact
characterization of graphs in which the problem is solvable for d = 1. However,
the necessary condition NC presented in the paper for vector consensus does not
match with the sufficient condition SC. We hope that this paper will motivate
further work on identifying the tight sufficient condition.
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