
A Hybrid Network Implementation to Extend Infrastructure Reach

Matthew J. Miller William D. List Nitin H. Vaidya
University of Illinois at Urbana-Champaign

{mjmille2,list,nhv}@uiuc.edu

Technical Report
January 2003 ∗

Abstract

This paper describes a hybrid network implementa-
tion that uses both ad hoc connectivity and access
points. The network also allows mobile hosts that
are multiple hops from an access point to use cen-
tralized services, like DHCP, which are not available
in pure ad hoc networks. Many scenarios may ben-
efit from this extension of services, such as mobile
users near university buildings or at an airport. For
efficiency, the “radius” of an access point is limited
to K hops. This means all routes have at most K
consecutive wireless hops before reaching the desti-
nation or an access point. We believe this limitation
may lead to more efficient routing by trading off some
connectivity. The protocol uses proactive routing at
the access points and on-demand routing at the mo-
bile hosts. We present an implementation done as
proof-of-concept and a basis for future research.

1 Introduction

This report describes the implementation of a testbed
for a network. A hybrid network is defined to be one
that contains mobile devices, relay devices and access
points. Mobile devices can be anything from laptops
to PDA’s to cell phones. Access points give mobile
hosts (MHs) access to other devices outside of a MH’s
transmission range. An example of such a system is
shown in Figure 1. In the figure, MH2 can reach
MH5 despite the fact they cannot communicate in
ad hoc mode. For the purposes of this paper, base
station (BS), gateway (GW) and access point (AP)
are synonymous. We also use the term mobile host
(MH) and node interchangeably.

Current wireless infrastructure only provides ser-
vices, such as DHCP and Internet connectivity, to
MHs that are one hop away. That is, the MH is

∗Revised version of a draft report from September 2002.

BS1 BS2

MH1

MH3

MH2

MH4
MH5

MH6

MH7

Wired Network

Figure 1: An example hybrid network

within transmission range of the AP and hence the
two can directly communicate. This allows MHs to
function like hosts on traditional shared media net-
works that access a gateway for outside connectivity
and centralized services. However, this model does
not take advantage of the plethora of research that
has been done in ad hoc networks (discussed in Sec-
tion 2) to allow MHs to communicate directly. By
incorporating ad hoc networking into the existing in-
frastructure, the “range” of an AP can be extended
to allow for more connectivity. For example, in Fig-
ure 1, the services of BS2 can be extended to MH6
and MH7 as opposed to just MH4 and MH5. Addi-
tionally, when ad hoc networking is incorporated, not
all communication between MHs has to go through
the AP. This may increase the spatial reuse of the
channel and ease the burden placed on the AP. If
MH2 and MH5 can communicate directly, we avoid
using resources such as the base stations and wired
network.

The protocol allows MHs to register with an AP.
The “radius” around an AP is limited to a specified
number of hops, K. The protocol is designed to test
the efficiency of specialized protocols when compared



to more general routing protocols like Ad-hoc On-
Demand Vector Routing (AODV) [1] and Dynamic
Source Routing (DSR) [2]. We believe the K hop
paradigm will be useful in small, busy geographic ar-
eas, such as a university campus or airport. In such
areas, there is usually a limited range of coverage with
respect to the entire area. For example, there may
be APs inside a building, but users just outside the
building cannot access it. However, if there are other
mobile users, or dedicated relays, in the lobby of the
building, such devices may serve as routers to extend
the range of the AP to the outside users.

Building a testbed allows us to explore issues which
may arise in implementation that are not handled in
simulation. The system does not have to rely on a
simulator’s modeling of mobility, obstacles and fad-
ing. The project also lends itself to upper layer ex-
tensions, like TCP and security. Additionally, users
may potentially find the protocol useful in real-world
applications.

Our initial goal in designing the protocol is to have
a minimal routing implementation that is complete,
but not too complex. Essentially, we wanted to ex-
tract from existing research only what is required
for a functioning routing protocol while not worrying
about the many optimizations which may be possi-
ble. The protocol was also designed to function with
standard forwarding table implementations. Stan-
dard forwarding is a function of three parameters:
the destination (and netmask), the next hop and the
interface. When a data packet arrives it should only
be forwarded based on these criteria. Therefore, the
protocol could not use any type of source routing
or forwarding based on the packet’s 〈source, desti-
nation〉 tuple.

The rest of this report is organized as follows. In
Section 2, we discuss previous work in ad hoc routing
and hybrid systems. We provide a definition for K-
hop networks in Section 3. Section 4 describes how
our protocol performs routing. Section 5 discusses
how IP addresses are assigned in our network. In
Section 6, we describe how Internet connectivity is
achieved. Section 7 presents other software used in
our implementation. In Section 8, we conclude the
report.

2 Related Work

Our proposed routing protocol borrows characteris-
tics of the AODV protocol [1, 3]. Consequently, we
provide a brief overview of the AODV protocol in
Section 2.1. DSR [2] is another widely researched
reactive protocol, performing route discovery using

RREQs and RREPs. DSR maintains full path infor-
mation for routing as opposed to AODV which re-
members only next-hop addresses for destinations.
We chose to avoid maintaining source routes due
to complexity issues with the Linux kernel and in-
stead opted for following AODV’s style for maintain-
ing routes. AODV contains many optimizations and
features that make it quite complex. Since one of the
primary goals of our protocol is simplicity, we did
not incorporate many similar features into it. Some
of these features include multicast support, unidirec-
tional link support, expanding ring search, hello mes-
sages and local repair.

Our protocol is also akin to the Zone Routing Pro-
tocol (ZRP) [4] in that it contains both proactive and
reactive mechanisms. However, ZRP uses proactive
routing within a zone, and reactively exchanges rout-
ing information between zones, whereas in the pro-
tocol we present, access points proactively maintain
routes to reachable mobile devices, with local route
discovery being completed in a reactive fashion.

Yet another protocol that achieves similar same
goals as ours is LUNAR [5]. The Lightweight Un-
derlay Network Ad-Hoc Routing (LUNAR) protocol
implements a layer in between the MAC layer and the
IP layer to perform a variation of multi-hop ARP.
The protocol is simple and is designed to work in
small-hop environments. LUNAR uses a combina-
tion of reactivity and proactivity for route discovery
and maintenance. The protocol performs automatic
address assignment and supports Internet access, a
similar objective of our protocol. A special gateway-
ing node handles passing packets back and forth be-
tween the Internet and the LUNAR network. Our
protocol differs from LUNAR in the following ways:

• We do not support multi-hop ARP, and use
DHCP for address assignment rather than a ran-
domized scheme.

• The LUNAR model requires encapsulation of
data packets, which we chose to avoid due to the
amount of overhead incurred by passing pack-
ets back and forth between user space and the
kernel.

• In LUNAR, broadcasts are performed using a
tree; we use a traditional broadcast scheme.

• We employ AP broadcasting to identify nodes in
each zone, LUNAR does not have any registra-
tion process.

The approach we take of combining small, K-hop
ad hoc networks with a structured backbone has been

2



studied by several others [6, 7, 8, 9, 10, 11]. The fo-
cus of [6] and [7] is on relieving congestion in cellular
networks by introducing ad hoc functionality among
mobile devices. We are not explicitly concerned with
network congestion. In the Multihop Cellular Net-
work (MCN) [8] architecture, nodes in a cell are al-
lowed to use ad hoc mechanisms to improve through-
put or reduce the number of needed base stations.
A-GSM [9] allows devices to relay through each other
to reach a base station, in an effort to reduce the oc-
curence of dead spots in the network. A performance
comparison between ad hoc and cellular networks is
presented in [10], along with a suggested hybrid sys-
tem that switches back and forth between cellular
and ad hoc modes based on network conditions. Our
model requires all nodes to operate in the ad hoc
mode, including the APs. Finally, in [11], the authors
offer enhancements for ad hoc networks to increase
overall throughput. One of the additions, called as-
sisted scheduling, aims at using a central base sta-
tion to coordinate flows between ad hoc nodes. Our
model relies on the DCF mode of IEEE 802.11 [12]
for packet communication and does not impose any
strict scheduling.

An initial hierarchical design akin to our own ap-
peared in [13]. Ko and Vaidya envisioned networks
made up of Super Mobile Hosts (Super-MHs) and
Mini Mobile Hosts (Mini-MHs). Routing between
Super-MHs is performed using a separate channel
than that of Mini-MHs. The route discovery scheme
used by Mini-MHs attempts to find either (1) the
destination directly, or (2) the nearest Super-MH.

Gerla et al. have also recently experimented with
using one or more routing protocols in a hierarchi-
cal fashion to create hybrid networks [14, 15, 16, 17].
In particular, [16] presents Hierarchical AODV (H-
AODV), an implementation of AODV that operates
at two levels, similar to our own. Although the clus-
tering scheme in [16] constrains clusters to span K
hops (zones in our model), each node is limited to
routing within their own cluster, whereas in our ar-
chitecture, nodes are able to locally route to anyone
within the K-hop bound. This is especially impor-
tant for allowing edge routing between zones.

2.1 AODV Overview

The Ad-Hoc On-Demand Distance Vector
(AODV) [1, 3] routing protocol uses a packet
exchange to establish routes. A source node S
wishing to communicate with a destination node
D broadcasts a Route Request (RREQ) packet and
expects to receive a Route Reply (RREP) either from
D or from an intermediate node along a path from

S to D. The RREP is unicast back to the source.
Upon receiving the RREP, S can begin sending data
to D using the path that has been set up during the
route discovery process.

Routes generated using the route discovery process
are temporary and expire after some time if not re-
cently used. If S’s route to D is deleted and S has
additional data to send to D, the route discovery pro-
cess is initiated again. Nodes forwarding RREQs and
RREPs use the route information contained in the
packets to learn routes to other nodes. These routes
are stored temporarily in a cache and often have a
shorter lifetime than the routes stored at the source
and destination nodes. To avoid processing old pack-
ets, each broadcast packet is uniquely identified by a
〈source, packet id〉 tuple. Sequence numbers are also
used to determine the freshness of routes.

AODV uses Route Error (RERR) packets to signal
nodes of unreachable destinations. When an active
link breaks, the node upstream of the broken link
informs its upstream neighbors by issuing a RERR.
The RERR is propagated by each upstream node de-
pending on its own cached routes. Nodes that receive
a RERR may elect to initiate route discovery for the
node that is determined unreachable using the invalid
route.

3 A K-hop Network

In this section, we describe in detail the properties of
a K-hop network.

A K-hop network is an ad hoc network where es-
tablished connections between two hosts are limited
to K wireless hops. Connections between two nodes
that are farther than K hops away are not permitted
(except for example in emergency situations where K
could be ∞). To support paths that are longer than
K hops, nodes must make use of APs to “jump” from
one part of the network to another. Using APs, paths
containing up to 2K wireless hops are possible. Take
for example the network of Figure 2, with K equal
to 4. Shown in the figure are two valid paths from
node A to node E. The path indicated by the dot-
ted and solid lines represent the path constructed by
using the two APs that are closest to A and E. The
total number of wireless hops in this path is 2. The
second path that goes through nodes B, C, and D
comprises 4 hops. Note that if K were 3 in this Fig-
ure, A would no longer be able to reach E using the
path A → B → C → D → E, and would be limited
to the first path A → AP1 → AP2 → E. The choice
of which path to use is determined by the routing
protocol, such as the one presented in Section 4. As

3



A

B C
D

E

AP1

AP2

Figure 2: A sample K-hop network with K = 4.
Node A can reach node E using either APs AP1 and
AP2 or nodes B, C, and D.

AP1

AP2

B

C

A

D

E

Figure 3: A valid path from A to E for K ≥ 3.

another example, for K ≥ 3 in Figure 3, the path
A → B → C → AP1 → AP2 → D → E is valid
even though the total path length is 5 since AP1 is
reached after only 3 (≤ K) hops.

The zone for each AP is likewise defined by the
nodes that can be reached in K hops or less. Looking
at the 2-hop networks of Figure 4, we can see the
number of nodes serviced by an AP varies depending
on node locations and behaviors (such as grouping).
The shaded nodes in Figure 4(a) are within the zone
of AP1, while the shaded nodes in Figure 4(b) can
be serviced by AP2. Note that nodes C and D could
use either AP1 or AP2 (or both), if all nodes and
APs use the same channel.

The APs that are a part of the K-hop network
are assumed to be connected via some other network
medium such as highspeed wireline or wireless an-
tennas operating in a different frequency range than
the subscriber nodes. Thus, APs are able to com-
municate with each other to exchange information as
detailed later in Section 4.

It should be noted that the value of K can be dy-
namic, changing over the life of the network. A large
network can also potentially be made up of several
small K-hop networks, each with its own K bound.
We intend to determine in the future the role that K

E

A

B

AP1

AP2

AP1

AP2

(b)

(a)

A

B C
D

D

E

C

Figure 4: Zones for (a) AP1 and (b) AP2 with K =
2. Dashed lines indicate connectivity in the zones.

plays in network performance.
The architecture here of a K-hop network will be

assumed for the remainder of the report, unless oth-
erwise noted.

4 The Routing Protocol

Our routing protocol attempts to take advantage of
a combination of reactive and proactive components
similar to ZRP. The AP maintains data about routes
to all MHs within its own zone.

Each AP tries to proactively discover devices in its
own zone and then uses this information in answer-
ing RREQs. The collection of MHs are the reactive
component, only maintaining routes to devices which
they are actively using, either as a source or interme-
diate hop. The routing protocol essentially consists
of four separate phases:

1. Beaconing: The process by which APs learn of
MHs within their zone.

2. Route Discovery: Occurs when a device needs
to send data to a destination for which it does
not have a route.

3. Error Handling: The process by which the
protocol handles route errors.

4. Data Forwarding: This phase is concerned
with forwarding data packets.

4



All of these phases can operate concurrently, and
are described in more detail in the following subsec-
tions.

The routing protocol is slightly different for APs
and MHs. In this section, we describe how each phase
is handled and differences in how APs and MHs re-
spond. It should be noted that the routing protocol is
designed to function in this hybrid network as well as
in a purely ad hoc setting. The MHs essentially run
a stripped down version of AODV. The APs respond
differently by taking advantage of proactive state and
connectivity to other APs whenever possible.

In our implementation, APs are actually laptops
that have both a wireless and wired interface. The
WLAN cards can either be in ad hoc or managed
mode. Managed mode requires a MH to connect to
an existing AP within one-hop. When cards are in
one mode, they do not communicate with cards in
the other mode. Since our system requires cards to
communicate with the AP as well as ad hoc nodes,
we placed all cards in ad hoc mode and used the
wired interface of the laptops, functioning as APs, to
connect to the rest of the network.

4.1 Beaconing

To make APs in a K-hop network aware of the MHs
within its own zone and allow MHs to create default
routes (described in Section 6), our routing protocol
employs an AP-driven beaconing mechanism. This
beaconing process is performed at the network layer
and involves a three-way handshake between MHs
and APs.

The beaconing process works as follows. Each AP
is responsible for periodically transmitting a Bea-
con (BEACON) packet. These beacons are broad-
cast with a Time-To-Live (TTL) of K. When a MH
receives a beacon, it responds with a Join (JOIN)
packet under two conditions. First, if the MH is not
registered with any other APs and is not waiting for
a reply from an AP due to a recently sent JOIN, it
attempts to join the zone of the message originator
by issuing a JOIN message. The MH will also at-
tempt to join a zone if a BEACON originates from
the AP with which it is currently registered. This
soft-state leasing mechanism does not require MHs
to unregister with an AP when it leaves the zone.

When the AP receives a JOIN request, it adds or
updates its internal state for the MH. It then re-
sponds with a unicast Join Acknowledgment (JOIN-
ACK) packet. Once the MH receives this message,
the registration is complete.

APs drop any overheard BEACONs or JOIN-
ACKs (e.g., due to overlapping coverage). Interme-

diate MHs that receive JOINs or JOIN-ACKs up-
date their own forwarding tables as described in Sec-
tion 4.3.

4.2 Beaconing Alternatives

Depending on the characteristics of the network, al-
ternative beaconing schemes can be employed. The
first beaconing alternative to the one described above
is initiated periodically by each MH. The second
method we describe is a beaconing system that is
on-demand (i.e., MH data driven). Although we de-
scribe these two alternatives, we have presently only
implemented the scheme described in Section 4.1.

4.2.1 Mobile Host Periodic Registration

Periodic beacons from the AP is an expensive op-
eration, particularly when nodes are relatively sta-
tionary. Rather than making the AP responsible for
identifying who is in the zone, we can make it a chore
of each MH to reveal itself. In detail, when a MH first
enters the network (either by booting up, or moving),
it broadcasts a JOIN (with TTL = K) and receives a
JOIN-ACK from one or more APs, from which a de-
fault route can be constructed. Once the IP address
of the AP has been identified, subsequent periodic
JOINs sent by the MH can be unicast rather than
broadcast. In the event that a JOIN does not elicit
a JOIN-ACK from the AP, several attempts can be
made before giving up. This registration scheme has
the added benefit that other nodes in the network
can learn about the presence of a new node when it
receives a new JOIN.

4.2.2 On-Demand Registration

The third option is to support only implicit registra-
tion with the AP when a MH wishes to send data.
When a MH has data to send, it performs a RREQ.
Upon receiving a RREQ from a node that is has not
heard from before, the AP sends a message telling
the MH to register. Through this exchange the MH
learns its default route. This scheme scales to the
amount of data connections in the network. This
scheme suffers one major drawback. Suppose node A
in zone Z1 of AP1 wants to find node B in zone Z2 of
AP2. A RREQ must be flooded to all zones if none
of the APs know about B. In contrast with the two
proactive registration schemes, multiple zones incur
extra traffic from the RREQ generated by A. Re-
quiring each node to register with the AP regardless
of whether or not they have data to send avoids this
problem.

5



4.3 Route Discovery

Route discovery is currently only initiated by MHs as
APs in our model do not produce application layer
data. The process begins when a user space data
packet is received in the kernel and the forwarding
table has no entry for the destination. This data
packet, and subsequent data packets for the destina-
tion, are then buffered as described in Section 7.1.

In response to this event, a RREQ packet is gen-
erated with a TTL of K. This RREQ is broadcast
by the MH. The RREQ specifies the destination be-
ing searched for and the originator’s IP address. The
packet also specifies the current sequence number for
the source which is used to avoid loops. The RREQ
also includes how long intermediate nodes should
cache a route to the original source. If the originat-
ing source had an entry for the requested destination
within a specified amount of time, it will remem-
ber the destination’s sequence number and include
it in the RREQ. If the destination sequence number
is present, this indicates to intermediate nodes that
they may respond on behalf of the destination if they
have a fresh enough route. Otherwise, the RREQ can
only be answered by the specified destination. This
broadcast should not be expensive for small values of
K because it can only propagate K hops. Due to the
limited propagation of broadcasts, responding from
cached entries is not as important. Furthermore, this
avoids some loops that may occur due to routes ex-
piring at different times as discussed in Section 4.3.1.

When a MH receives a RREQ, it first updates or
adds an entry for the original source in case it must
forward a RREP back. If the MH is the ultimate
destination, it will generate a RREP with its current
sequence number and return it to the originator. If
the MH is not the destination, it will check to see if
it can satisfy the RREQ. For an intermediate MH to
generate a RREP, three conditions must be satisfied:

1. The MH has a route to the queried destination.

2. The distance between the MH and the originat-
ing source plus the distance from the MH to the
queried destination does not exceed K hops.

3. The RREQ specifies a sequence number for the
queried destination and the MH’s entry is fresh
enough to respond.

When RREPs are received, MHs update their entries
to the destination in the same way that source entries
are updated for RREQs. These entries are tempo-
rary, they are purged after a specified timeout unless
data is forwarded to the destination.

APs handle the route discovery process differently
because they have proactive knowledge of all MHs
within their zone. For this, we use the beaconing
scheme described in Section 4.1. Furthermore, we
assume each AP has a well-known list of all other
APs on its subnet, so it can unicast packets to them.
Alternatively, if all the APs were on the same LAN,
most of the control packets could just be broadcast.

When the AP receives a RREQ, it first determines
if the request came from a MH or another AP accord-
ing to whether the IP source is one of the well-known
APs or not. Alternatively, this could be done by look-
ing at which interface the packet came in on. The AP
will only handle RREQs from MHs which are in its
zone. The set of MHs within an AP’s zone is deter-
mined by destinations which have responded to the
beaconing recently. So for a given RREQ, multiple
APs will not try to resolve it. First, the AP deter-
mines if it knows of a route to the destination. If the
AP does not know of a route it will drop the packet
if it is from another AP or send the RREQ to all the
other APs if it is from a MH. It does not rebroadcast
the RREQ over its wireless interface in this case. If
the AP responds to an RREQ with a broken route,
the normal RERR procedure will take place when
the source tries to send data. This scenario is similar
to an intermediate node responding with an invalid
route to a destination.

Next, consider the case where an AP does have an
entry to the destination and it can satisfy the RREQ
(that is the originator allows cached responses and
the sequence number is fresh enough). In this case,
the request is just unicast back to the source, which
may be on the wireless or wired interface.

When a MH receives a RREP for an outstanding
RREQ, the forwarding table is updated immediately,
and all packets are sent to the destination.

4.3.1 Sequence Numbers and Loops

Sequence numbers are an important mechanism, pro-
posed in AODV, for providing loop-free routes. Their
main function is to act as a virtual timestamp for the
system to give a causal ordering to the sequence in
which routes to a given destination are discovered.
A useful property of sequence numbers is that as
you move from the destination to a source, the se-
quence numbers for the destination along the path
are non-increasing. However, this scheme requires
state to be maintained for other MHs. This is soft-
state and may timeout eventually, which means that
a MH will “forget” how fresh the last route it had
for a given destination was. The state is also lost
when a MH crashes and reboots. This is why our

6



protocol requires RREQs to be answered by the des-
tination when the originator has no previous state for
the destination. If a RREP is generated by the desti-
nation, a loop cannot exist. However, if every RREQ
has to be answered by the destination, efficiency is
lost by not allowing intermediate nodes to reply on
behalf of the destination. Examples of how loops can
occur in AODV are illustrated in [18].

4.4 Route Errors

A route error will occur for two reasons. The first
is when a data packet is received from another MH
with an IP destination that is not in the local for-
warding table. Such a situation may occur when one
MH’s forwarding entry times out before another’s.
The second situation is when an MH detects the loss
of communication with a neighbor in its forwarding
table. A MH considers a link to be down whenever
the MAC layer has to drop a packet after multiple
retransmissions. In both cases, the error must be
propagated toward the source of the data packet.

Within our implementation, the information we get
when one of the two errors occurs is not as complete
as we would like. In the case where a destination
does not exist in the table, we receive the original
IP source and ultimate IP destination of the data
packet. In the case where link layer loss is detected,
all we are given is the MAC address of the next hop
for the data packet.

Another way to detect link loss is to require hello
or heartbeat messages to be periodically broadcast
with a TTL of 1. This indicates that communication
with a neighbor is possible. This approach is rather
heavyweight as it requires another control message
and a periodic broadcast. Also, the latency of learn-
ing about the downed link is usually greater.

When a data packet arrives and there is no for-
warding table entry, the MH will generate a RERR,
unless default routes are used (described in Sec-
tion 6). The RERR simply specifies the unreachable
destination IP address. If the MH has a route to
the IP source, the RERR is unicast, otherwise it is
broadcast with a TTL of K hops.

When a data packet is dropped at the MAC layer,
a RERR is created with the unreachable neighbor’s
IP address and sequence number in it. Additionally,
all destinations for which this neighbor serves as the
next hop are also removed from the forwarding table
and placed in the RERR packet. This packet must
be broadcast because we have no knowledge of who
the original sender was. The broadcast is done with
a TTL of K. This procedure could be optimized if
the WLAN card driver was modified to specify the

source of the dropped packet.
When a MH receives a RERR, it will update its

forwarding table. This is done by removing entries
which use the RERR sender as the next hop to the
specified destinations. This MH then creates a new
RERR packet based on its unreachable destinations.
If there is at least one unreachable destination, the
new RERR packet is broadcast with the TTL decre-
mented by one. If the TTL becomes zero, the packet
is dropped. In this manner, the RERR will eventu-
ally reach the original data sender (assuming a RERR
is not lost along the way and the original sender is
reachable).

The only difference in the way APs handle errors
is when the AP generates and broadcasts RERRs,
they are sent on the wireless link as well as to each
of the other APs. When APs receive RERRs from
other APs, they will broadcast or unicast the message
within their zone after the appropriate updates. Any
broadcast after a RERR is received from an AP is
done with a TTL of K. When APs receive RERRs
from MHs in their zone that are broadcast, they will
broadcast the RERR on the wireless interface and
send it to all the APs.

There are a couple of alternative methods to prop-
agate RERRs toward a source. First, as in AODV, a
predecessor list for each destination could be main-
tained. This would specify the subset of neighbors
that uses a MH to communicate with each destina-
tion. This subset is all the neighbors for which a MH
forwards or generates a RREP. With this informa-
tion, we could unicast RERRs only to the neighbors
which are known to use the link. They can propagate
the RERR further back in a similar manner. Another
alternative would be to maintain a list of sources that
use a MH for a given destination. For each source,
the MH maintains a special reverse pointer to the
source. This pointer is not placed in the forwarding
table or used in routing, but is only used to provide
a path from the MH to the source in the event of a
RERR. In this case, the RERR can always be unicast
to all the sources that use a given destination and all
intermediate nodes along the path could also delete
the unreachable destinations from their forwarding
tables. This scheme would require the maintenance
of these special reverse pointers.

4.5 Data Forwarding

Data forwarding should be done independent of our
protocol, which is responsible for setting up the for-
warding tables. Once this is done, the forwarding is
done in the kernel with no intervention from our sys-
tem. As discussed in previous sections, the only time

7



data forwarding interacts with our system is when
data packets arrive for a destination that is not in the
table or the MAC layer times out because of too many
retransmissions. Data packets for unknown destina-
tions are detected by the method described in Sec-
tion 7.1. In Section 7.2, we discuss how MAC layer
time outs are detected. Since the forwarding table
specifies an interface, there is no special handling for
APs. Each forwarding entry will expire after a cer-
tain amount of time. If an entry is about to expire
but it has recently been used to forward data, it is
refreshed.

5 Address Assignment

For most networks, a node should be allowed to enter
and leave at will. Therefore, MHs should be capable
of being dynamically configured by the network upon
entry. Automatic address assignment in IPv4 net-
works is often handled by the Dynamic Host Config-
uration Protocol (DHCP) [19]. DHCP requires that
each host be within one hop of either a DHCP server
or a DHCP relay. Relays are configured with the IP
address of the server, and can thus be several hops
away with routers in between. In networks with ad
hoc nodes, neither the server nor the relay are likely
to be within one hop of the node requesting configu-
ration. Thus, the protocol has been viewed as a poor
choice for ad hoc networks with multiple hops.

One proposal for generating automatic IP ad-
dresses in ad hoc networks is presented in [20]. The
technique presented requires little or no user configu-
ration, a primary goal of the Zeroconf working group
of the Internet Engineering Task Force. To obtain
an address, a node first selects two random address
A1 and A2 from the 169.254/16 address range. A1

is used as a temporary address for the subsequent
address request procedure, and A2 indicates the can-
didate address the node wishes to obtain. A new
ICMP message called an AREQ is broadcast to all
the nodes in the network by the node requesting ad-
dress A2. If someone else in the network is already us-
ing A2, a AREP is generated and unicast back using
the temporary address A1. If no response is heard,
the requesting node assumes that the address A2 is
not in use and is therefore valid. This method for
performing Duplicate Address Detection (DAD) splits
the available address space in half, severely reducing
the number of hosts that can be a part of the ad hoc
network. A second problem arises if two nodes pick
the same temporary addresses in separate network
partitions that later merge [21].

Another attempt at providing addresses for ad hoc

nodes is presented in [22]. The paper describes a
distributed dynamic host configuration protocol for
configuring nodes in a MANET. Essentially, when a
new node enters the network, a different node pro-
poses a candidate IP address for it and an agreement
is made among all the nodes in the ad hoc network.
An assumption of this solution is that the ad hoc net-
work is a stand-alone network, with no external con-
nections, whereas our model assumes constant global
connectivity. Furthermore, sending a message to ev-
ery node in the network for each assigned address
results in unnecessary packet overhead.

The schemes described so far are adequate for ad
hoc networks that are isolated from the rest of the
Internet. When Internet connectivity is available,
the addresses selected using either algorithm might
not be globally valid. We believe that using a pro-
tocol such as DHCP in this setting both reduces the
amount of overhead as compared to the other propos-
als, and allows for assignment of useful IP addresses.
Additional benefits of using DHCP include being able
to perform load balancing, network security and mon-
itoring, and faster and more accurate routing. Below
we describe how DHCP can be used in ad hoc net-
works that are connected to a central DHCP server
via APs.

5.1 Obtaining an Address

For nodes that are only one hop away from the AP,
the DHCP protocol works fine. A problem arises for
nodes that are more than one hop away. To allow for
these nodes to obtain an IP address from the server,
we require that all nodes in the ad hoc network run
the DHCP relay daemon after obtaining their own
address.

The steps used for obtaining an IP address are
identical to those used in the standard DHCP proto-
col. In short, for an unassigned node N , the following
events are performed:

1. N broadcasts a DHCP DISCOVER message

2. Neighboring relays of N forward the DISCOVER
message to the DHCP server.

3. A DHCP OFFER message is generated by the
server and unicast back to N via the relays.

4. N and the DHCP server exchange one or more
DHCP REQUEST/OFFER messages followed
by a DHCP ACK message from the server.

5. N starts the DHCP relay daemon to help other
nodes farther away obtain IP addresses.

8



The DHCP relay daemon must be supplied the IP
address of the DHCP server. This address can be
obtained from the “server identifier” option field of
the DHCP packets. Once the relay daemon has been
started, it listens for DHCP packets and forwards
them toward the DHCP server. The underlying rout-
ing protocol automatically handles the forwarding
process. Since the node did not perform route dis-
covery for the DHCP server, a route must be added
by the system to indicate that the route to DHCP
server uses the same next hop as that of the node’s as-
sociated AP. Assuming that nodes are equipped with
default routes as described in Section 6, address dis-
covery for the DHCP server can be suppressed in fa-
vor of the default route. On the occasion where the
route to the AP fails, route discovery is performed to
find a new path. The AP, upon hearing a RREQ for
the IP address of the DHCP server, should respond
on behalf of the DHCP server.

This form of address assignment runs under the
stipulation that nodes closer to the AP must ob-
tain valid IP addresses before nodes farther away can
contact the DHCP server. Since address assignment
is the first step when a node boots up or restarts,
this requirement seems reasonable. The delay expe-
rienced by a node requesting an address is relatively
low, except in the case where it is not within reach
of the AP and the DHCP request times out, in which
case we recommend using a scheme such as the one
in [20] for creating temporary addresses.

5.2 Alternatives

The above address assignment technique attempts
to minimize latency for obtaining an address. The
scheme can be modified to meet other needs. Below
we discuss some alternatives to our basic scheme that
could be implemented to reduce either operational
cost or network overhead.

1. If we assume that the DHCP server always re-
sides behind the APs, it is not necessary for
nodes to know the IP address of the server.
Instead, all DHCP traffic can be directed to-
ward the AP instead. The AP, upon receiving
a DHCP message, forwards the message to the
server. The trade-off here is more complexity at
the AP in exchange for protocol simplicity and
decreased latency.

2. Broadcasting DHCP DISCOVER messages
while having multiple relay neighbors can result
in unnecessary redundant network traffic. To
avoid this situation, a node wishing to obtain an
IP address can decide to wait until at least one

beacon has been heard from a nearby AP. This
modification requires the AP beacons to contain
the IP address of the DHCP server. Once this
address is learned, the node can bypass broad-
casting DHCP DISCOVER messages in favor of
unicasting DHCP REQUEST messages to the
server.

With our K-hop architecture, it is not necessary to
perform DAD when a node enters a new zone. Our
model assumes that addresses are unique across all
zones, since they are allocated by one central DHCP
server. The one scenario where DAD might be re-
quired is when an isolated ad hoc cloud comes in
contact with a zone.

6 Internet Connectivity

A goal of our protocol is for ad hoc nodes to be able to
communicate with hosts on the Internet. Attaching
ad hoc networks to the Internet requires solving sev-
eral addressing and routing issues. Several methods
for achieving Internet connectivity have been offered
already [23, 24, 25, 26].

An initial design proposed by Broch et al. [23] at-
tempts to integrate the DSR protocol with Internet
routing and Mobile IP [27, 28]. In this technique,
foreign agents act as relays between the ad hoc and
wired networks. Nodes inside the ad hoc network
are given legally routable addresses from a single IP
subnet, so that outside routers can advertise their
presence.

Similar designs employing AODV have been of-
fered [26, 24, 25]. These designs use Mobile IP for-
eign agents as gateways to the Internet. In MIP-
MANET [26], nodes are required to use their home
address for all communication, whereas in the ap-
proach taken in [24, 25] requires nodes entering an ad
hoc network to obtain a care-of-address either from a
foreign agent (FA) or by automatic generation using
an advertised network prefix. In the second case, the
address must be checked for uniqueness using a form
of DAD such as the one proposed in [20].

In the schemes described thus far, a node that re-
ceives a packet for which it has no next-hop entry
will generate a RERR. Therefore, when an internal
ad hoc node, S, wishes to connect to a host, D, on the
Internet, every node along the path from the source
to the FA must also have a route to D. This require-
ment can result in crowded routing tables. Although
each ad hoc node bears the burden of being a router
for other nodes in the network, they should not have
to keep track of hosts that are outside of the ad hoc
network.

9



To circumvent this situation, once the route dis-
covery reveals that the path to D is through the FA,
S can use IP encapsulation to forward data packets
first to the FA, which then decapsulates the packet
and relays the data to D. On the reverse trip, data for
S is re-encapsulated and forwarded using the ad hoc
protocol to S. This approach is adopted by both [26]
and [25].

An alternative for dealing with Internet host routes
is to introduce the concept of default routes for each
ad hoc node, as suggested for IPv6 ad hoc net-
works [29]. In this technique, each ad hoc node main-
tains a special route toward its Internet-gateway, a
router placed at the edge of the ad hoc network that
provides Internet connectivity. This default route is
used when a node receives a data packet for which
it does not have a host-specific next hop. As such,
each node along the path from S to D does not need
to know about D, and IP encapsulation is no longer
necessary. However, this scheme has drawbacks for
dealing with link breakages and repairs efficiently.

Our method for providing Internet connectivity to
nodes in the ad hoc network is based on [29], with
several changes for operation under IPv4 and with-
out the need for mobility agents. Below we describe
suggested protocol changes in order to achieve Inter-
net access.

6.1 Routing Protocol Modifications

To support routing to hosts on the Internet, we have
modified our routing protocol in Section 4. In this
section, we describe the differences between the basic
and modified protocols.

6.1.1 Modified Route Discovery

The route discovery process for destinations that are
within the ad hoc network (determined by the subnet
mask of the destination) is identical to that of Sec-
tion 4.3. This process may be repeated several times
by S before S concludes that the node is unreachable.

If the subnet mask for D does not match that of
the ad hoc network, S attempts to use its default
route (if one is available) to reach D. Recall from
Section 4.1 that a node’s default route is synonymous
to the path used to reach its AP, and is discovered
during the beaconing process. If no such route exists,
S temporarily concludes that D cannot be reached.
On the other hand, if S does have a default route,
data packets are forwarded to D using this path.

Processing of RREQs by APs is unchanged from
that in Section 4.3. If an AP has no knowledge of
the destination specified in the RREQ, it queries the

other APs in the network, one of which will respond
if the destination is valid. When replying to a RREQ,
APs are recommended, but not required, to send gra-
tuitous RREPs to the destination to avoid unneces-
sary route discovery by the destination for the source
in the case of protocols that require feedback from
the destination (e.g., TCP).

6.2 Modified Data Forwarding

For incoming external packets (i.e., packets that orig-
inate from a host outside of the ad hoc network), an
AP A checks its routing table to see if it has a route to
the destination. If a route does not exist, A performs
route discovery for the destination. An ICMP [30] un-
reachable message is generated and sent to the host
on the Internet if A does not receive a RREP after
several attempts. If a RREP is heard, A will forward
the packet using the newly discovered route. This
operation is only necessary if each ad hoc node has
a global address. Assignment of global IP addresses
for ad hoc nodes in IPv4 can be achieved by enabling
DHCP [19] to operate over multiple hops using the
method of Section 5. If the ad hoc nodes are given
private IP addresses, A should not expect to receive
any incoming packets for which it does not have an
associated connection already established.

Outgoing external packets (i.e., packets destined
for hosts outside the ad hoc network) in our proto-
col are forwarded using the default route. Intermedi-
ate nodes, upon receiving a packet with an unknown
destination, simply use their own default route to for-
ward the data. If a node cannot forward the packet
using its default route (e.g., due to link breakage), a
RERR is generated, indicating that the default route
is outdated, and must be recalculated. Packets that
reach the AP are simply forwarded on to A’s default
gateway. From this point on, an ICMP destination
unreachable message is issued to the sender in the
event of an error.

7 System Software

The implementation of our protocol used open-source
software from two other sources to address our needs.
The Ad hoc Support Library (ASL) [31] provides a
general API for use in systems such as ours. Its major
functions are to efficiently handle data packets which
do not have an entry in the forwarding table and to
determine how recently a forwarding table entry has
been used. The Wireless Tools for Linux [32] gives
a common API for interacting with wireless devices.
It is supported by widely used WLAN cards includ-
ing Cisco’s Aironet and Orinoco’s WaveLAN cards.

10



This allows us to detect link loss and extract other
link characteristics from the driver without worrying
about the specific underlying hardware.

7.1 Ad hoc Support Library
(ASL) [31]

The ASL provides a simple interface to handle data
packets which trigger events in ad hoc protocols.
First, a default route entry is placed in the forward-
ing table which goes to a virtual tunneling device
(TUN/TAP). Therefore, any packet which uses the
default route is passed to this device, transferring it
from kernel space to user space. This sets a polled
file descriptor. If the IP source is from the local ma-
chine, our protocol initiates route discovery. If the
IP source is from another destination, a route error is
generated. While in the process of route discovery, all
other packets for the destination will also be queued
in the virtual device. When the route discovery is
finished, the packets are either dropped if the desti-
nation was not found or re-injected into the kernel
for forwarding if the entry was added. If the packets
are re-injected, they are sent via a raw socket since
they already have IP headers. The ASL also includes
a module which records how recently forwarding en-
tries are used and the API allows us to query this
data for a given destination. By using the ASL, we
do not have to pass every data packet to user space
or do any kernel programming.

7.2 Wireless Tools [32]

Wireless Tools for Linux gives a common interface to
the wireless device. Open-source device drivers have
been developed to interact with Wireless Tools. It
serves as a bridge between device drivers and user
space programs. From it, we can extract data such
as the address of the AP a card is currently associ-
ated with, the signal level of the AP and the current
transmission power level. Our protocol uses it for two
purposes. First, we use it to identify which interface
is wireless when setting up the sockets. The second
use is for detecting link layer loss. While the mech-
anism they provide for this is rather convoluted, it
is much easier than trying to manipulate the device
driver. The interface provides a socket we can poll
for link loss and when it occurs, the link layer address
of the destination is passed to user-space. From this
information, we can determine the IP address from
the ARP cache.

8 Conclusion

We have presented a simple routing protocol that ex-
tends the connectivity of APs while avoiding AP use
when it is not necessary. Furthermore, the system
limits the range of broadcasts and trades reachabil-
ity with overhead. The protocol also bridges a gap
between reactive and proactive components in a wire-
less system. We allow efficient reactivity in the ad hoc
part and proactivity between APs, where bandwidth
is plentiful, to reduce latency and avoid additional
broadcasts.

This report describes work that has been com-
pleted on the project. Additional work is ongoing
and will be presented in future papers.

References

[1] C. Perkins and E. Royer, “Ad-Hoc On-Demand Dis-
tance Vector Routing,” in Proceedings of the IEEE
WMCSA, 1999.

[2] D. Johnson and D. Maltz, “Dynamic source routing
in ad hoc wireless networks,” in Mobile Computing
(Imielinski and Korth, eds.), vol. 353, Kluwer Aca-
demic Publishers, 1996.

[3] C. E. Perkins, E. M. Belding-Royer, and S. Das, “Ad
Hoc On-Demand Distance Vector (AODV) Rout-
ing.” IETF Internet Draft, draft-ietf-manet-aodv-
10.txt, Work-in-progress, March 2002.

[4] Z. Haas, “A New Routing Protocol for the Recon-
figurable Wireless Networks,” in Proceedings of the
IEEE ICUPC, 1997.

[5] C. Tschudin and R. Gold, “LUNAR: Lightweight
Underlay Network Ad-Hoc Routing,” tech. rep., Uni-
versity of Basel, Switzerland, January 2002.

[6] C. Qiao and H. Wu, “iCAR: An Intelligent Cellu-
lar and Ad-hoc Relay System,” in Proceedings of the
IEEE IC3N, October 2000.

[7] X. Wu, S. Chan, and B. Mukherjee, “MADF: A
Novel Approach to Add an Ad-hoc Overlay on a
Fixed Cellular Infrastructure,” in Proceedings of the
IEEE WCNC, September 2000.

[8] Y. Lin and Y. Hsu, “Multihop cellular: A new archi-
tecture for wireless communications,” in Proceedings
of INFOCOM, pp. 1273–1282, 2000.

[9] G. Aggelou and R. Tafazolli, “On the Relaying Ca-
pacity of Next-Generation GSM Cellular Networks,”
IEEE Personal Communications, vol. 8, pp. 40–47,
February 2001.

[10] H. Hung-Yun and R. Sivakumar, “Performance
Comparison of Cellular and Multi-hop Wireless Net-
works: A Quantitative Study,” in Proceedings of the
ACM SIGMETRICS, June 2001.

11



[11] R. Sivakumar and H. Hsieh, “On Using the Ad-hoc
Network Model in Wireless Packet Data Networks,”
in Proceedings of the ACM MOBIHOC, June 2002.

[12] IEEE Computer Society, 802.11: Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) Specifications , June 1997.

[13] Y.-B. Ko and N. H. Vaidya, “A routing protocol for
physically hierarchical ad hoc networks,” Tech. Rep.
TR97-010, Texas A & M University, Sept. 1997.

[14] X. Hong, M. Gerla, Y. Yi, K. Xu, and T. J. Kwon,
“Scalable ad hoc routing in large, dense wireless net-
works using clustering and landmarks,” in ICC’02,
(New York, NY), April 2002.

[15] K. Xu, X. Hong, and M. Gerla, “An ad hoc network
with mobile backbones,” in ICC’02, (New York,
NY), April 2002.

[16] K. Xu and M. Gerla, “A heterogeneous routing pro-
tocol based on a new stable clustering scheme,” in
MILCOM’02, (Anaheim, CA), October 2002.

[17] D. L. Gu, G. Pei, H. Ly, M. Gerla, and X. Hong,
“Hierarchical routing for multi-layer ad-hoc wireless
networks with UAVs,” in MILCOM’00, (Los Ange-
les, CA), October 2000.

[18] K. Bhargavan, D. Obradovic, and C. A. Gunter,
“Formal Verification of Standards for Distance Vec-
tor Routing Protocols,” tech. rep., University of
Pennsylvannia, 1999.

[19] R. Droms, “Dynamic Host Configuration Proto-
col.” IETF Request for Comments (Standard) 2131,
March 1997.

[20] C. E. Perkins, J. T. Malinen, R. Wikikawa, E. M.
Belding-Royer, and Y. Sun, “IP Address Auto-
configuration for Ad Hoc Networks.” IETF Inter-
net Draft, draft-ietf-manet-autoconf-01.txt, Work-in-
progress, November 2001.

[21] N. H. Vaidya, “Weak Duplicate Address Detection
in Mobile Ad Hoc Networks,” in MOBIHOC, 2002.

[22] S. Nesargi and R. Prakash, “MANETconf: Config-
uration of Host in a Mobile Ad Hoc Network,” in
INFOCOM, August 2002.

[23] J. Broch, D. Maltz, and D. Johnson, “Supporting Hi-
erarchy and Heterogeneous Interfaces in Multi-Hop
Wireless Ad Hoc Networks,” in Proceedings of the
Workshop on Mobile Computing, June 1999.

[24] E. M. Belding-Royer, Y. Sun, and C. E. Perkins,
“Global Connectivity for IPv4 Mobile Ad hoc Net-
works.” IETF Internet Draft, draft-royer-manet-
globalv4-00.txt, Work-in-progress, November 2001.

[25] Y. Sun, E. M. Belding-Royer, and C. E. Perkins, “In-
ternet Connectivity for Ad Hoc Mobile Networks,”
International Journal of Wireless Information Net-
works, vol. 9, April 2002.

[26] U. Jonsson, F. Alriksson, T. Larsson, P. Johansson,
and G. Q. M. Jr., “MIPMANET — Mobile IP for

MObile Ad Hoc Networks,” in MOBIHOC, pp. 75–
85, August 2000.

[27] C. E. Perkins, “IP Mobility Support for IPv4,
Revised.” IETF Internet Draft, draft-ietf-mobileip-
rfc2002-bis-08.txt, Work-in-progress, September
2001.

[28] C. E. Perkins, “Mobile IP,” IEEE Communications
Magazine, vol. 3, pp. 84–99, May 1997.

[29] R. Wikikawa, J. T. Malinen, C. E. Perkins, A. Nils-
son, and A. J. Tuominen, “Global Connectivity
for IPv6 Mobile Ad hoc Networks.” IETF Internet
Draft, draft-wakikawa-manet-globalv6-00.txt, Work-
in-progress, November 2001.

[30] J. Postel, “Internet Control Message Protocol.”
IETF Request for Comments (Standard), Septem-
ber 1981.

[31] V. Kawadia, Y. Zhang, and B. Gupta, “System Ser-
vices for Implementing Ad–Hoc Routing Protocols,”
in Proceedings of the International Workshop for Ad
Hoc Networking, August 2002.

[32] Wireless Tools for Linux.
www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html.

12


