Multiparty Equality Function Computation in
Networks with Point-to-Point Links*

Guanfeng Liang and Nitin Vaidya

Department of Electrical and Computer Engineering, and
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign, USA
{gliang2,nhv}@illinois.edu

Abstract. In this paper, we study the problem of computing the mul-
tiparty equality (MEQ) function: n > 2 nodes, each of which is given
an input value from {1,---, K}, determine if their inputs are all identi-
cal, under the point-to-point communication model. The MEQ function
equals to 1 if and only if all n inputs are identical, and 0 otherwise.
The communication complexity of the MEQ problem is defined as the
minimum number of bits communicated in the worst case. It is easy to
show that (n—1)log, K bits is an upper bound, by constructing a simple
algorithm with that cost. In this paper, we demonstrate that communi-
cation cost strictly lower than this upper bound can be achieved. We
show this by constructing a static protocol that solves the MEQ problem
for n = 3, K = 6, of which the communication cost is strictly lower than
the above upper bound (21log, 6 bits). This result is then generalized for
large values of n and K.

1 Introduction

In this paper, we study the problem of computing the following multiparty equal-
ity function (MEQ):

Oifxy ==z,
1 otherwise.

MEQ(o,) = { M)

The input vector = (z1,---,x,) is distributed among n > 2 nodes, with only
x; known to node 7, and each z; chosen from the set {1,---, K}, for some integer
K>1.

Communication Complexity: The notion of communication complexity (CC) was
introduced by Yao in 1979 [12]. They investigated the problem of quantifying
the number of bits that two separated parties need to communicate between

* This research is supported in part by Army Research Office grant W-911-NF-0710287
and National Science Foundation award 1059540. Any opinions, findings, and con-
clusions or recommendations expressed here are those of the authors and do not
necessarily reflect the views of the funding agencies or the U.S. government.

themselves in order to compute a function whose inputs, namely X and Y, are
distributed between them.

The communication cost of a protocol P, denoted as C(P), is the number of
bits exchanged for the worst case input pair. The communication complexity of
a Boolean function f: X xY — {0,1}, is minimum of the cost of the protocols

for f.

Multiparty Function Computation: The notion of communication complexity
can be easily generalized to a multiparty setting, i.e., when the number of parties
> 2.

The communication complexity of a Boolean function f : X7 x---x X,, — {0,1},
is minimum of the cost of the protocols for f.

There are more than one communication models for the multiparty problems.
Two commonly used models are the “number on the forehead” model [4] and
the “number in hand” model. Consider function f: X3 x -+ x X,, — {0,1}, and
input (z1, 22, -, z,) where each z; € X;. In the number on the forehead model,
the i-th party can see all the z; such that j # ¢; while in the number in hand
model, the i-th party can only see x;. As in the two-party case, the n parties
have an agreed-upon protocol for communication, and all this communication is
posted on a “public blackboard”. In these two models, the communication may
be considered as being broadcast using the public blackboard, i.e., when any
party sends a message, all other parties receive the same message. Tight bounds
often follow from considering two-way partitions of the set of parties.

In this paper, we consider a different point-to-point communication model,
in which nodes communicate over private point-to-point links. This means that
when a party transmits a message on a point-to-point link, only the party on
the other end of the link receives the message. This model makes the problem
significantly different from that with the broadcast communication model. We
are interested in the communication complexity of the MEQ problem under the
point-to-point communication model.

2 Related Work

The 2-party version of the MEQ problem (i.e., n = 2), which is usually referred
to as the EQ problem, was first introduced by Yao in [12]. It is shown that the
communication complexity of the EQ problem with deterministic algorithms is
log K [6]. The complexity of the EQ problem can be reduced to O(loglog K)
if randomized algorithms are allowed [6]. MEQ problem with » > 3 has been
studied under the number on the forehead model and the number in hand model,
both assuming a “public blackboard” for broadcast communications. The MEQ
problem with n > 3 can be solved with cost of 2 bits [6] under the number on
the forehead head model, while it requires ©(log K') bits under the number in
hand model. On the other hand, the result changes significantly if we consider

the point-to-point communication model used in this paper (It is easy to show
at least £2(nlog K) bits are needed.).

The MEQ problem is related to the Set Disjointness problem and the con-
sensus problem [8]. In the n-party Set Disjointness problem, we have n parties,
and given subsets S1,...,5, C {1,..., K}, and the parties wish to determine if
S1N---NS, = ¢ without communicating many bits. The disjointness problem
is closely related to our MEQ problem. Consider the two-party set disjointness
problem with subsets S; and S3. Let x1 and z2 be the binary representations of
S1 and Ss, respectively. Then it is not hard to show that x; = x5 is equivalent
to S1 NSy = ¢ and S; N Sy = ¢. The multi-party set disjointness problem has
been widely studied under the “number on the forehead” and broadcast commu-
nication model, e.g. [7,11]. The set disjointness problem has also been studied
under the “number in hand” model and point-to-point communication model
(i.e., the same models we are using in this paper), with randomized algorithms.
In [1], a lower bound of £2(K/n*) on its communication complexity is proved for
randomized algorithms. The lower bound was then improved to §2(K/n?) in [2].
In [3], the authors established a further improved near-optimal lower bound of
2(K/(nlogn)). Nevertheless, these papers focus on the order of the communi-
cation complexity of randomized algorithms. On the other hand, in this paper,
our goal is to characterize the exact communication complexity of deterministic
algorithms.

In the Byzantine consensus problem, n parties, each of which is given an
input x; of log K bits, want to agree on a common output value x of log K bits
under the point-to-point communication model, despite the fact that up to ¢ of
the parties may be faulty and deviate from the algorithm in arbitrary fashion
[8]. The core of the consensus problem is to make sure that all fault-free parties’
outputs are identical, which is essentially what the MEQ problem tries to solve.
In our recent report [9], we established a lower bound on the communication
complexity of the Byzantine consensus problem of n parties as a function of the
communication complexity of the MEQ problem of n — ¢ parties. This motivates
the MEQ problem under the point-to-point communication model. The consen-
sus problem has also been studied under a slightly different fault-free model [5].
Authors of [5] investigated the fault-free consensus problem, which is essentially
solving the MEQ problem with 1-bit inputs, i.e., K = 2, in tree topologies. We
consider the problem under a more general setting with arbitrary K and do not
assume any structure of the communication topology.

3 Models and Problem Definition

3.1 Communication Model

In this paper, we consider a point-to-point communication model. We assume a
synchronous fully connected network of n nodes. We assume that all point-to-
point communication channels/links are private such that when a node trans-
mits, only the designated recipient can receive the message. The identity of the
sender is known to the recipient.

3.2 Protocol

A protocol P is a schedule that consists of a sequence of steps. In each step
[, as specified by the protocol, a pair of nodes are selected as the transmitter
and recetver, denoted respectively as T; and R;. The transmitter 7; will send
a message the receiver R;. The message being sent is computed as a function
my(zqy, T (1)), where z7, denotes T;’s input, and 7" (I) denotes all the messages
T; has received so far. When it is clear from the context, we will use Tl+ to denote
Tz+ (1) to simplify the presentation.

In this paper, we design protocols that are static : the triple (T}, Ry, mi(-))
are pre-determined by the protocol and are independent of the inputs. In other
words, in step [, no matter what the inputs are, the transmitter, receiver, and the
function according to which the transmitter compute the message are the same.
Since the schedule is fixed, a static protocol can be represented as a sequence of
L(P) steps: {a1,az, -+, arp)}, where oy = (T, Ry, my (T, Tl+)> in the [-th step.
L(P) is called the length of the protocol P, and P always terminates after the
L(P)-th step. Denote S;(P) as the cardinality of m;(), i.e., the number of possible
channel symbols needed in step [of a static protocol P, considering all possible
inputs. Then the communication cost of a static protocol P is determined by

L(P)
C(P) = " log, Si(P), 2)
=1

If only binary symbols are allowed, S;(P) = 2 for all [, and C(P) becomes L(P).

3.3 Problem Definitions

We define two versions of the MEQ problem.

MEQ-AD (Anyone Detects): We consider protocols in which every node i decides
on a one-bit output EQ; € {0,1}. A node i is said to have detected a mismatch
(or inequality of inputs) if it sets EQ; = 1. A protocol P is said to solve the
MEQ-AD problem if and only if at least one node detects a mismatch when
the inputs to the n nodes are not identical. More formally, the following property
must be satisfied when P terminates:

MEQ-CD (Centralized Detect): The second class of protocols we consider are the
ones in which one particular node is assigned to decide on an output. Without
loss of generality, we can assume that node n has to compute the output. Then
a protocol P is said to solve the MEQ-CD problem if and only if, when P
terminates, node n computes output F(Q),, such that

EQn = MEQ(z1,- -, 2n). (4)

Communication Complexity: Denote I'ap(n, K) and I'cp(n, K) as the sets of
all protocols that solve the MEQ-AD and MEQ-CD problems with n nodes,
respectively. We are interested in finding the communication complexity of the
two versions of the MEQ problem, which is defined as the infimum of the com-
munication cost of protocols in I'ap(n, K) and I'ap(n, K), i.e.,

Cap(n,K) = inf C(P), and Cop(n, K) = inf C(P).
PEFAD(TL,K) PEFCD(n7K)

Communication Complezity with General Protocols: In general, a protocol that
solves the MEQ problem may not necessarily be static. The schedule of transmis-
sions might be determined dynamically on-the-fly, depending on the inputs. So
the transmitter and receiver in a particular step [can be different with different
inputs. Since the set of all static protocols is a subset of all general protocols,
the communication complexities of the two versions of the MEQ problem are
bounded from above by the cost of static protocols. The purpose of this paper
is to show that there exist instances of the MEQ problem whose communication
complexity is lower than the intuitive upper bound we are going to present in
the next section. For this purpose, it suffices to show that, even if we constrain
ourselves to static protocols, some MEQ problems can still be solved with cost
lower than the upper bound. In sections 6 to 7, such examples of static protocols
are presented.

4 Upper Bound of the Complexity

An upper bound of the communication complexity of both versions of the MEQ
problem is (n — 1)logy K, for all positive integer n > 2 and K > 1. This can
be proved by a trivial construction: in step ¢, node 7 sends z; to node n, for all
1 < n. The decisions are computed according to

R MEQ(£177£YL))Z:n7
EQ%{O i< n.

(5)
It is obvious that this protocol solves both the MEQ-AD and MEQ-CD problems
with communication cost (n — 1)log, K, which implies Capcp)(n, K) < (n —
1)log, K. In particular, when K = 2*, we have C4pcpy(n,2¥) < (n — 1)k.

For the two-party equality problem (n = 2), this bound is tight [6], for
arbitrary K. The bound is also tight when K = 2 (binary inputs). (n—1)log, 2 =
n — 1 bits are necessary when K = 2, since any protocol with communication
cost < n— 1 will have at least one node not communicating with any other node
at all, making it impossible to solve the MEQ problem. However, in the following
sections, we are going to show that the (n — 1)log K bound is not always tight,
by presenting a static protocol that solves instances of the MEQ problem with
communication cost lower than (n — 1) log, K.

5 Equivalent MEQ-AD Protocols

In the rest of this paper, except for section 8, we will focus on static protocols
that solve the MEQ-AD problem.

It is not hard to see that a static protocol P can be interpreted as a directed
multi-graph G(V, E(P)), where the set of vertices V' = {1,---,n} represents the
n nodes, and the set of directed edges E(P) = {(T1,R1), -+, (Tr(p), Rr(p))}
represents the transmission schedule in each step. From now on, we will use
the terms protocol and graph interchangeably, as well as the terms transmission
and link. Fig.1(a) gives an example of the graph representation of a protocol
for n = 4. In Fig.1(a), the numbers next to the directed links indicate the
corresponding step numbers.

Two protocols P and P’ in are said to be equivalent if their costs are equal,
i.e., C(P) = C(P’). The following lemma says that we can flip the direction of
any edge in E(P) and obtain a protocol P’ that is equivalent to P.

Lemma 1. Given any static protocol P for MEQ-AD of length L(P), and any
positive integer | < L(P), there exists a equivalent static protocol P’ of the same
length, such that E(P) and E(P’) are identical, except that in the l-th step, the
transmitter and receiver are swapped, i.e.,

E(P") = E(P)\{(T, Ri)} U{(R;,T1)}
={(T1,R1), -+, (Ti—1, Ri—1), (R, T7), (Try1, Rig1), -, (Topy, Rocpy) }-

Proof. Given the integer [and a protocol P = {a1,- -+, q_1,a, u11,- -+, appy}
with oy = (T3, Ry, my(xr,, TZJF)), we construct P’ = {af, -+, a]_y,qy, a2+1’ e
O/L(P)} by modifying P as follows:
— a;-:aj for1<j<Il-1.
— o) = (R, T;,m}(zp,, R;")). Here m}(zpg,, B) = mz(ﬂle7Tl+)|x1=...=;c,,=;ch is
the symbol that party R; expects to receive in step [of protocol P, assuming
all parties have the same input as zg, .
—)= (Tj,Rj,m;(ij,T;')) for j > 1.

_ +y + -
o It Ty = Ruy, mj(ary, 1) = my(@ny, Tj) oy (ar, 1) =mi () 1 ThE
symbol that party R; sends in step j, pretending that it has received
m)(zg,, R in step [of P.

o It Tj # Ry, my(wr,, T;) = my(wr,, T

To compute the output, 7; first computes EQ7, in the same way as in P.
Then 7T} sets EQr, = 1 if mj(xr,, B)") # mu(zr,, T;), else no change. That
is, Ty sets EQ; to 1 if the symbol it receives from R; in step [of P’ differs
from the symbol T; would have sent to R; in step [of P. The other nodes
compute their outputs in the same way as in P.

To show that P and P’ are equivalent, consider the two cases:

(a) Graph representation of (b) Equivalent protocol of (c) iid equivalent protocol
P P with Step 5 flipped of P

Fig. 1: Example of graph representation of a protocol P and its equivalent protocols.
The numbers next to the links indicate the corresponding step number.

— mj(zr,, B") = mu(z7,,T;"): It is not hard to see that in this case, the execu-

tion of every step is identical in both P and P’, except for step I. So for all

i # Ty, EQ; is identical in both protocols. Since mj(zg,, Rl"’) = my(aq, Tl+),
EQT, remains unchanged, so it is also identical in both protocols.

— mj(zr,, R") # mu(z7,,T;"): Observe that these two functions can be differ-

ent only if the n inputs are not all identical. So it is correct to set EQr, = 1.

O

In Fig.1(b), the graph for an equivalent protocol obtained by flipping the link
corresponding to the 5-th step of the 4-node example in Fig.1(a) is presented.

Let us denote all the symbols a node i receives from and sends to the other
nodes throughout the execution of protocol P as it and i~, respectively. It is
obvious that i~ can be written as a function M;(z;,4"), which is the union of
my(z;,i7 (1)) over all steps [in which node i is the transmitter. If a protocol P sat-
isfies M;(x;,i") = M;(z;) for all i, we say P is individual-input-determined
(iid). The following theorem shows that there is always an iid equivalent for
every protocol.

Theorem 1. For every static protocol P for MEQ-AD, there always exists an
1d equivalent static protocol P*, which corresponds to an acyclic graph.

Proof. According to Lemma 1, we can flip the direction of any edge in E(P)
and obtain a new protocol which is equivalent to P. It is to be noted that we
can keep flipping different edges in the graph, which implies that we can flip any
subset of E(P) and obtain a new protocol equivalent to P.

In particular, we consider a protocol equivalent to P, whose corresponding
graph is acyclic, and for all (i, j) € E(P), the property ¢ < j is satisfied. In this
protocol, every node ¢ has no incoming links from any node with index greater
than 4. This implies that the messages transmitted by node ¢ are independent of
the inputs to nodes with larger indices. Thus we can re-order the transmissions
of this protocol such that node 1 transmits on all of its out-going links first, then
node 2 transmits on all of its out-going links, ..., node n — 1 transmits to n at
the end. Name the new protocol Q. Obviously @ is equivalent to P.

Since we can always find a protocol @ equivalent to P as described above,
all we need to do now is to find P*. If @ itself is iid, then P* = @ and we are

done. If not, we obtain P* in the following way (using function M’), which is
similar to how we obtain the equivalent protocol P’ in Lemma 1:

— For node 1, since it receives nothing from the other nodes, My (z1,1") =
M (z1) is trivially true.

— For node 1 < i < n, we modify @ as follows: node i computes its out-going
message as a function M (z;) = M;(@;, i |p =g, =,), Where i |5 =y o,
are incoming messages node i expects to receive, assuming that all par-
ties have the same input z;. At the end of the protocol, node i checks if
iV|gy=.ma, =z, equals to the actual incoming symbols i*. If they match,
nothing is changed. If they do not match, the inputs cannot be identical,
and node ¢ can set FQ; = 1. (The correctness of this step may be easier to
see by induction: apply this modification one node at a time, starting from
node 1 to node n —1.) 0

Theorem 1 shows that, to find the least cost of static protocols, it is sufficient
to investigate only the static protocols that are iid and the corresponding com-
munication graph is acyclic. From now on, such protocols are called iid static
protocols for MEQ-AD. Fig.1(c) shows an iid static protocol that is equivalent
to the one shown in Fig.1(a).

NOTE: The above technique of inverting the direction of transmissions can
also be applied to general non-static MEQ-AD protocols. So Theorem 1 can be
extended to cover all general protocols that solve the MEQ-AD problem. This
immediately implies that among all MEQ-AD protocols (static and not static),
there always exist an optimal protocol that is static. So for the MEQ-AD
problem, it is sufficient to only consider static protocols.

6 MEQ-AD(3,6)

Let us first consider MEQ-AD(3,6), i.e., the case where 3 nodes (say A, B and
C) are trying to solve the MEQ-AD problem when each node is given input
from one out of six values, namely {1,2,3,4,5,6}. According to Theorem 1, for
any protocol that solves this MEQ-AD problem, there exists an equivalent iid
partially ordered protocol in which node A has no incoming link, node B only
transmits to node C, and node C has no out-going link. We construct one such
protocol that solves MEQ-AD(3,6) and requires only 3 channel symbols, namely
{1,2,3}, per link. Denote the channel symbol being sent over link ij as s;;, the
schedule of the proposed protocol is: (1) Node A sends sap(z4) to node B; (2)
Node A sends sac(z4) to node C; and (3) Node B sends spc(zp) to node C.
Table 1 shows how s;; is computed as a function of ;.

Now consider the outputs. Node A simply sets FQ4 = 0. For nodes B and C,
they just compare the channel symbol received from each incoming link with the
expected symbol computed with its own input value, and detect a mismatch if the
received and expected symbols are not identical. For example, node B receives
sap(za) from node A. Then it detects a mismatch if the sap(xa) # sap(xp).

x |[1]2]|3|4]5|6
sapl||1|1|2|2]|3|3
sac||1]2|2{3|3|1
spc||1(2|3|1(2|3

Fig. 2: The bipartite graph corresponding
Table 1: A protocol for MEQ-AD(3,6) to the MEQ-AD(3,6) protocol in Table 1.

It can be easily verified that if the three input values are not all identical,
at least one of nodes B and C will detect a mismatch. Hence the MEQ-AD(3,6)
problem is solved with the proposed protocol. The communication cost of this
protocol is

3log, 3 = log, 27 ~ 0.92 x 2log, 6. (6)

Notice that in this case, the upper bound from Section 4 equals to (3 —
1)logy 6 = 2log, 6. So we have found a static MEQ-AD protocol whose com-
munication cost is lower than the upper bound. In fact, this protocol is optimal
in the sense that it can be shown to achieve the minimum communication cost
among all static protocols We prove the optimality of this protocol using an edge
coloring argument.

6.1 Edge Coloring Representation of MEQ-AD(3,K)

From Sections 5, we have shown that it is sufficient to study 3-node systems
where messages are transmitted only on links AB, AC and BC. Let us denote

[sagl, |sac| and |spc| as the number of different symbols being transmitted on
links AB, AC and BC, respectively.

Theorem 2. The existence of a MEQ-AD(3,K) static protocol P with cost
C(P) is equivalent to the existence of a simple bipartite graph G(U,V, E) and a
distance-2 edge coloring scheme W, such that |U| x |V| x |[W| = 2¢(P) " given
|E|=K,|U|x|V|> K, |U x|W|>K and |V|x |W|> K. HereU and V are
disjoint sets of vertices, E 1is the set of edges, |U| = |sap| and |V| = |sac| are
the sizes of sets U and V', and |W| = |spc| is the number of colors used in W.

The detailed proof can be found in our technical report [10]. According to
Theorem 2, we can conclude that the problem of finding a least cost static pro-
tocol for MEQ — AD(3, K) is equivalent to the problem of finding the minimum
of |U| x |[V| x |W| for the bipartite graphs and distance-2 coloring schemes that
satisfy the above constraints.

Using Theorem 2, to show that Cxp(3,6) = log, 27, we only need to show
that for every combination of |U| x |V| x |W| < 27, there exists no bipartite
graph G(U,V, E) and a distance-2 coloring scheme W that satisfy the condi-
tions as described in Theorem 2. It is not hard to see that there are only two
combinations (up to permutation) that satisfy all conditions and have product

less than 27: (2, 3, 3) and (2, 3, 4). Notice that in both cases, |E| = |U| x |V],
where every pair of edges is within distance 2 of each other, which means that
the corresponding graph G(U,V, E) can only be distance-2 edge colored with
at least |E| = 6 > 4 > 3 colors. So neither (2, 3, 3) nor (2, 3, 4) satisfies the
aforementioned conditions. Hence, together with the protocol presented before,
we can conclude that Cap(3,6) = log, 27. The bipartite graph corresponding
to Table 1 is illustrated in Fig. 2. Near the nodes U; (or V;) we show the set of
value a’s such that sap(z) =i (or sac(x) = 4). The number near each edges is
the input value corresponding to that edge.

7 MEQ-AD(3,2%)

Now we construct a protocol when the number of possible input values K =
2% k > 1 and only binary symbols can be transmitted in each step, using the
MEQ-AD(3,6) protocol we just introduced in the previous sections as a building
block.

First, we map the 2% input values into 2* different vectors in the vector space
{1,2,3,4,5,6}" where h = [logg 2¥] = [klogg 2]. Then h instances of the MEQ-
AD(3,6) protocol are performed in parallel to compare the h dimensions of the
vector. Since 3 channels symbols are required for each instance of the MEQ-
AD(3,6) protocol, we need to transmit a vector from {1,2,3}" on each of the
links AB, AC and BC. One way to do so is to encode the 3" possible vectors from
{1,2,3}" into b = [log, 3"] = [hlog, 3] bits, and transmit the b bits through the
links. Since the h instances of MEQ-AD(3,6) protocols solve the MEQ-AD(3,6)
problem for each dimension, altogether they solve the MEQ-AD(3,2%) problem.
The communication cost this protocol can be computed as [10]

C(P) = 3[hlogy 3] < (0.92 x 2k) + 7.755. (7)

From Eq.7, we can see that when k is large enough, the communication cost of
this protocol is upper bounded by 0.92 times of the upper bound 2log, 2% = 2k
from Section 4. The way in which the above protocol is constructed can be
generalized to obtain a MEQ-AD(3,K) protocol P with similar cost

C(P) < (0.92 x 2log, K) + A 8)

for arbitrary value of K, where A is some positive constant.

8 About MEQ-CD

In this section, we will show that Ccp(n, K) roughly equals to Cap(n, K):
CAD(’I’L,K)SCCD(’I’L,K)SCAD(TL,K)—I—TL—L (9)

We have shown the first inequality in Section 3.3. The second inequality can be
proved by the following simple construction: Consider any protocol P for MEQ-
AD, construct a protocol P’ by having node ¢ send EQ; to node n by the end

of P, for all i < n. Node n collects the n — 1 decisions from all other nodes and
computes the final decision

EQ!, = max{FEQ1, -+, EQ,}. (10)

It is easy to see that, EQ), = MEQ(x1,---,z,). So P’ € I'cp(n,K). Since
C(P") = C(P)+ n — 1, the second inequality is proved. From Eq.8 it then
follows that for large enough K, the MEQ-CD(3,K) problem can also be solved
with communication strictly less than 2log, K bits. The performance can be
improved somewhat by exploiting communication that may be already taking
place between node n and the other nodes. For example, to solve MEQ-CD(3,6),
instead of having nodes A and B sending 1 extra bit to node C at the end of the
MEQ-AD(3,6) protocol in Section 6, we only need to add one possible value to
spc, namely spo € {1,2, 3,4}, where spc = 4 means that node B has detected a
mismatch. The cost of this protocol is 2 log, 3+1og, 4 = 2log, 3+2 < 3log, 3+2.
The same approach can also be applied to the MEQ-AD(3,2%) protocol from
Section 7 by making |spc| = [logy(3" + 1)], and obtain an MEQ-CD(3,2%)
protocol with cost of 2[hlog, 3] + [log, (3" + 1)] bits, which is almost the same
as 3[hlog, 3] for large h.

9 MEQ Problem with Larger n

Our construction in sections 6 and 7 can be generalized to networks of larger
sizes. For brevity, just consider the case when n = 3. The nodes are organized
in m — 1 layers of “triangle”s. At the bottom ((m — 1)-th) layer, there are 3™~*
triangles, each of which is formed with 3 nodes running the MEQ-AD(3,K)
protocol presented in section 7. Then the i-th layer (i < m — 1) consists 3¢
triangles, each of which is formed with 3 “smaller” triangles from the (i + 1)-
th layer running the MEQ-AD(3,K) protocol. So the top layer consists of one
triangle. For K = 2F, the cost of this protocol is approximately

n—1

(0.92 x 2k + 7.755) ~ 0.92(n — 1)k, (11)

for large k. Notice that (n — 1)k is the upper bound from Section 4. So the
improvement of a constant factor of 0.92 can also be achieved for larger networks.

10 Conclusion

In this paper, we study the communication complexity problem of the multiparty
equality function, under the point-to-point communication model. The point-to-
point communication model changes the problem significantly compared with
previously used broadcast communication models. We focus on static protocols
in which the schedule of transmissions is independent of the inputs. We then
introduce techniques to significantly reduce the space of protocols to be studied.

We then study the MEQ-AD(3,6) problem and introduce an optimal static pro-
tocol that achieves the minimum communication cost among all static protocols
that solve the problem. This protocol is then used as building blocks for construc-
tion of efficient protocols for more general MEQ-AD problems. The problem of
finding the communication complexity of the MEQ problem for arbitrary values
of n and K is still open.

Acknowledgments We thank the referees for their insightful comments and
asking interesting questions. In particular, the referees pointed out that the MEQ
problem is related to the set disjointness problem, and also asked the question
of generalizing our results to networks larger than 3 nodes. Sections 2 and 9
incorporate these comments.

References

1. Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. In STOC, 1996.

2. Ziv Bar-yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information
statistics approach to data stream and communication complexity. In IEEE FOCS,
pages 209-218, 2002.

3. Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds
on the multi-party communication complexity of set disjointness. In IEEE CCC,
2003.

4. Ashok K. Chandra, I Merrick, L. Furst, and Richard J. Lipton. Multi-party pro-
tocols. In In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, pages 94-99, 1983.

5. Yefim Dinitz, Shlomo Moran, and Sergio Rajsbaum. Exact communication costs
for consensus and leader in a tree. J. of Discrete Algorithms, 1:167-183, April
2003.

6. Eyal Kushilevitz and Noam Nisan. Communication Complezity. Cambridge Uni-
versity Press, 2006.

7. Eyal Kushilevitz and Enav Weinreb. The communication complexity of set-
disjointness with small sets and 0-1 intersection. In IEEE FOCS, 2009.

8. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. on Programming Languages and Systems, 1982.

9. Guanfeng Liang and Nitin Vaidya. Complexity of multi-valued byzantine agree-
ment. Technical Report, CSL, UIUC (http://arziv.org/abs/1006.2422), June 2010.

10. Guanfeng Liang and Nitin Vaidya. Multiparty equality function computation in
networks with point-to-point links. Technical Report, CSL, UIUC, 2010.

11. Mihai Patragcu and Ryan Williams. On the possibility of faster sat algorithms.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 1065-1075, Philadelphia, PA, USA, 2010. Society for
Industrial and Applied Mathematics.

12. Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In STOC ’79: Proceedings of the eleventh annual ACM
symposium on Theory of computing, pages 209-213, New York, NY, USA, 1979.
ACM.

