
Error-Free Multi-Valued Consensus with Byzantine Failures

Guanfeng Liang
Dept. of Electrical and Computer Engineering,

and Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, Illinois, USA
gliang2@illinois.edu

Nitin Vaidya
Dept. of Electrical and Computer Engineering,

and Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, Illinois, USA
nhv@illinois.edu

ABSTRACT
In this paper, we present an efficient deterministic algorithm
for consensus in presence of Byzantine failures. Our algo-
rithm achieves consensus on an L-bit value with communi-
cation complexity O(nL + n4L0.5 + n6) bits, in a network
consisting of n processors with up to t Byzantine failures,
such that t < n/3. For large enough L, communication
complexity of the proposed algorithm becomes O(nL) bits,
linear in the number of processors. To achieve this goal, the
algorithm performs consensus on a long message (L bits), in
multiple generations, each generation performing consensus
on a part of the input message. The failure-free execution of
each generation is made efficient by using a combination of
two techniques: error detection coding, and processor clique
formation based on matching input values proposed by the
processors. By keeping track of faulty behavior over the
different generations, the algorithm can ensure that most
generations of the algorithm are failure-free. With param-
eterization, our algorithm is able to achieve a large class
of validity conditions for consensus, while maintaining lin-
ear communication complexity. With a suitable choice of
the error detection code, and using a clique of an appropri-
ate size, the communication cost can be traded off with the
strength of the validity condition. The proposed algorithm
requires no cryptographic techniques.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems

General Terms
Theory

Keywords
Byzantine agreement, consensus, distributed computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

1. INTRODUCTION
The Byzantine consensus problem considers n processors,

namely P1, ..., Pn, of which at most t processors may be
faulty and deviate from the algorithm in arbitrary fashion.
Each processor Pi is given an L-bit input value vi. The ba-
sic version of the consensus problem considered here requires
that the following properties to be satisfied.

• Termination: every fault-free Pi eventually decides on
an output value v′i.

• Consistency: the output values of all fault-free proces-
sors are equal, i.e., for every fault-free processor Pi,
v′i = v′ for some v′.

• Validity: if every fault-free Pi holds the same input
vi = v for some v, then v′ = v.

These properties have been used as the requirements for con-
sensus in previous literature as well [9]. Other characteri-
zations of the validity condition above are also of potential
interest in practice. For instance, we may want the proces-
sors to agree on a value v if at least �n+1

2
� processors have

input value equal to v. With suitable parameterization, our
algorithm satisfies such more general validity conditions as
well (Section 4). Algorithms that satisfy the desired proper-
ties in all executions are said to be error-free. We are inter-
ested in the communication complexity of error-free consen-
sus algorithms. Communication complexity of an algorithm
is defined as the maximum (over all permissible executions)
of the total number of bits transmitted by all the processors
according to the specification of the algorithm. This mea-
sure of complexity was first introduced by Yao [24], and has
been used widely (e.g., [8, 9, 21]).

System Model: We assume a synchronous fully connected
network of n processors. Every pair of processors is con-
nected by a pair of directed point-to-point communication
channels. Each processor correctly knows the identity of the
processors at the other end of its channels. Whenever a pro-
cessor receives a message on such a directed channel, it can
correctly assume that the message is sent by the processor
at the other end of the channel. We assume a Byzantine
adversary that has complete knowledge of the state of the
processors, including the L-bit input values. No secret is
hidden from the adversary. The adversary can take over up
to t processors (t < n/3) at any point during the algorithm.
These processors are said to be faulty. The faulty processors
can engage in any“misbehavior”, i.e., deviations from the al-
gorithm, including collusion. The remaining processors are
fault-free and follow the algorithm.

It has been shown that error-free consensus is impossible
if t ≥ n/3 [20]. Ω(n2) has been shown to be a lower bound
on the number of messages needed to achieve error-free con-
sensus [7]. Since any message must be of at least 1 bit, this
gives a lower bound of Ω(n2) bits on the communication
complexity of any binary (1-bit) consensus algorithm.

The problem of achieving consensus on a single L-bit value
may be solved using L instances of a 1-bit consensus algo-
rithm. However, this approach will result in communication
complexity of Ω(n2L), since Ω(n2) is a lower bound on com-
munication complexity of 1-bit consensus. Fitzi and Hirt
[9] proposed a probabilistically correct multi-valued consen-
sus algorithm which improves the communication complex-
ity to O(nL) for sufficiently large L, at the cost of allowing a
non-zero probability of error. Since Ω(nL) is a lower bound
on the communication complexity of consensus on an L-bit
value [9], this algorithm has optimal complexity. We present
a deterministic error-free consensus algorithm with commu-
nication complexity of O(nL) bits for sufficiently large L.
For smaller L, the communication complexity of our algo-
rithms is O(nL + n4L0.5 + n6). The proposed algorithm
is also able to satisfy more general validity conditions (with
parameterization), while still achieving communication com-
plexity linear in n.

2. ALGORITHM OVERVIEW
The goal of the proposed consensus algorithm is to achieve

consensus on an L-bit value (or message). The algorithm is
designed to perform efficiently for large L. Consequently,
our discussion will assume that L is “sufficiently large” (how
large is “sufficiently large” will become clearer later in the
paper). We now briefly describe the salient features of the
consensus algorithm, with the detailed algorithm presented
later in Sections 3 and 4.

2.1 Execution in Multiple Generations
To improve the communication complexity, consensus on

the L-bit value is performed “in parts”. In particular, for a
certain integer D, the L-bit value is divided into L/D parts,
each consisting of D bits. For convenience of presentation,
we will assume that L/D is an integer. A sub-algorithm is
used to perform consensus on each of these D-bit values,
and we will refer to each execution of the sub-algorithm as
a “generation”.

2.2 Memory Across Generations
If during any one generation, misbehavior by some faulty

processor is detected, then additional (and expensive) diag-
nostic steps are performed to gain information on the poten-
tial identity of the misbehaving processor(s). This informa-
tion is captured by means of a diagnosis graph, as elaborated
later. As the sub-algorithm is performed for each new gen-
eration, the diagnosis graph is updated to incorporate any
new information that may be learned regarding the location
of the faulty processors. The execution of the sub-algorithm
in each generation is adapted to the state of the diagnosis
graph at the start of the generation.

2.3 Bounded Instances of Misbehavior
With Byzantine failures, it is not always possible to imme-

diately determine the identity of a misbehaving processor.
However, due to the manner in which the diagnosis graph

is maintained, and the manner in which the sub-algorithm
adapts to the diagnosis graph, the t (or fewer) faulty pro-
cessors can collectively misbehave in at most t(t+1) gener-
ations, before all the faulty processors are exactly identified.
Once a faulty processor is identified, it is effectively isolated
from the network, and cannot tamper with future genera-
tions. Thus, t(t+1) is also an upper bound on the number of
generations in which the expensive diagnostic steps referred
above may need to be performed.

2.4 Low-Cost Failure-Free Execution
Due to the bounded number of generations in which the

faulty processors can misbehave, it turns out that the faulty
processors do not tamper with the execution in a majority
of the generations. We use a low-cost mechanism to achieve
consensus in failure-free generations, which helps to achieve
low communication complexity. In particular, we use an
error detection code-based strategy to reduce the amount
of information the processors must exchange to be able to
achieve consensus in the absence of any misbehavior (the
strategy, in fact, also allows detection of potential misbehav-
ior). The error detection code is used to efficiently identify a
a large enough clique of processors that “propose” an iden-
tical value. Clique formation helps reduce communication
cost by ensuring that the non-clique processors, whose input
value is not going to correspond to the final consensus, do
not interfere with the correct consensus. The algorithm can
satisfy a large range of validity conditions, without changing
the algorithm structure, simply by changing the level of re-
dundancy in the error detection code used by the algorithm,
while still maintaining low failure-free overhead.

2.5 Consistent Diagnosis Graph Maintenance
A copy of the diagnosis graph is maintained locally by

each fault-free processor. To ensure consistent maintenance
of this graph, the diagnostic information (elaborated later)
needs to be distributed consistently to all the processors in
the network. This operation is performed using an error-free
1-bit Byzantine broadcast algorithm that tolerates t < n/3
Byzantine failures with communication complexity of O(n2)
bits [6, 3]. This 1-bit broadcast algorithm is referred as
Broadcast 1 Bit in our discussion. While Broadcast 1 Bit is
expensive, its cumulative overhead is kept low by invoking
it a relatively small number of times.

The structure above is inspired by prior work on fault-
tolerant computing and communications theory, which is
discussed in Section 6. It turns out that the “dispute con-
trol” approach used in the work on multi-party computation
(MPC) has also used this structure [1], and its variation
called player elimination has been used to design an error-
free linear complexity Byzantine broadcast algorithm [2].

We now elaborate on the error detection code used in our
algorithm, and also describe the diagnosis graph in some
more detail.

2.6 Error Detection Code
We will use Reed-Solomon codes in our algorithm (poten-

tially, other codes may be used instead). Consider a (m, d)
Reed-Solomon code in Galois Field GF(2c), where c is chosen
large enough (specifically, m ≤ 2c − 1). This code encodes
d data symbols from GF(2c) into a codeword consisting of
m symbols from GF(2c). Each symbol from GF(2c) can be

represented using c bits. Thus, a data vector of d symbols
contains dc bits, and the corresponding codeword contains
mc bits. Each symbol of the codeword is computed as a
linear combination of the d data symbols, such that every
subset of d coded symbols represents a set of linearly inde-
pendent combinations of the d data symbols. This property
implies that any subset of d symbols from them symbols of a
given codeword can be used to determine the corresponding
data vector. Similarly, knowledge of any subset of d sym-
bols from a codeword suffices to determine the remaining
symbols of the codeword. So d is also called the dimension
of the code. The (m, d) code has the Hamming distance of
m − d + 1, and can always detect up to m − d errors. We
will denote a code with dimension d as Cd, and the encod-
ing/decoding operations as Z = Cd(v) and v = C−1

d (Z) for
a data vector v and the corresponding codeword Z.

In our algorithm, we also assume the availability of a null
(⊥) symbol that is distinguished from all other symbols. For
an m-element vector V , we denote V [j] as the j-th element
of the vector, 1 ≤ j ≤ m. Given a subset A ⊆ {1, . . . ,m},
denote V |A as the ordered list of elements of V at the lo-
cations corresponding to elements of A. For instance, if
m = 5 and A = {2, 4}, then V |A is equal to (V [2], V [4]).
We will say that V |A ∈ Cd if V |A contains at least d non-
null (=⊥) elements, and there exists a codeword Z = Cd(v)
for some v such that the non-null elements of V |A are equal
to the corresponding elements of Z|A. When such Z and
v exist, by generalizing the decoding operation, we define
C−1

d (V |A) = v. If no such Z and v exist, we will say that
V |A /∈ Cd.

For our algorithm, we use a (n, q−t) distance-(n−q+t+1)
code Cq−t, for a suitable q such that t+ 1 ≤ q ≤ n− t, and
ensure that there are at least q − t non-null elements in the
argument to C−1

d (when the decoding function is used at a
fault-free processor).

2.7 Diagnosis Graph
The fault-free processors’ (potentially partial) knowledge

of the identity of the faulty processors is captured by a diag-
nosis graph. A diagnosis graph is an undirected graph with
n vertices, with vertex i corresponding to processor Pi. A
pair of processors are said to “trust” each other if the corre-
sponding pairs of vertices in the diagnosis graph is connected
with an edge; otherwise they are said to “accuse” each other.

Before the start of the very first generation, the diagno-
sis graph is initialized as a fully connected graph, which
implies that all the n processors initially trust each other.
During the execution of the algorithm, whenever misbehav-
ior by some faulty processor is detected, the diagnosis graph
will be updated, and one or more edges will be removed
from the graph, using the diagnostic information commu-
nicated using the Broadcast 1 Bit algorithm. The use of
Broadcast 1 Bit ensures that the fault-free processors always
have a consistent view of the diagnosis graph. The evolution
of the diagnosis graph satisfies the following properties:

• If an edge is removed from the diagnosis graph, at
least one of the processors corresponding to the two
endpoints of the removed edge must be faulty.

• The fault-free processors always trust each other.

• If more than t edges at a vertex in the diagnosis graph
are removed, then the processor corresponding to that
vertex must be faulty.

The last two properties above follow from the first property,
and the assumption that at most t processor are faulty.

3. MULTI-VALUED CONSENSUS
In this section, we describe a consensus algorithm that sat-

isfies the properties listed in Section 1, and present a proof
of correctness. Algorithm parameterization to satisfy more
general validity requirements will be discussed in Section 4.

The L-bit input value vi at each processor is divided into
L/D parts of size D bits each, as noted earlier. These parts
are denoted as vi(1), vi(2), · · · , vi(L/D). The algorithm for
achieving L-bit consensus consists of L/D sequential execu-
tions of Algorithm 1 presented in this section. Algorithm 1
is executed once for each generation. For the g-th genera-
tion (1 ≤ g ≤ L/D), each processor Pi uses vi(g) as its input
in Algorithm 1. Each generation of the algorithm results in
processor Pi deciding on g-th part (namely, v′i(g)) of its final
decision value v′i.

The value vi(g) is represented by a vector of n− 2t sym-
bols, each symbol represented with D/(n − 2t) bits. For
convenience of presentation, assume that D/(n − 2t) is an
integer. We will refer to these n − 2t symbols as the data
symbols.

An (n, n − 2t) distance-(2t + 1) Reed-Solomon code, de-
noted as Cn−2t, is used to encode the n−2t data symbols into
n coded symbols. We assume thatD/(n−2t) is large enough
to allow the above Reed-Solomon code to exist, specifically,
n ≤ 2D/(n−2t) − 1, which implies that D = Ω(n log n). This
condition is met only if L is large enough (since L > D).
As we will see later, Cn−2t is used only for error detection.
To detect t faults, a more efficient code of dimension n − t
suffices. We will discuss this improvement in Section 7.

Let the set of all the fault-free processors be denoted as
Pgood. Algorithm 1 for each generation g consists of three
stages. We summarize the function of these three stages
first, followed by a more detailed discussion:

1. Matching stage: Each processor Pi encodes its D-bit
input vi(g) for generation g into n coded symbols, as
noted above. Each processor Pi sends one of these
n coded symbols to the other processors that it trusts.
Processor Pi trusts processor Pj if and only if the corre-
sponding vertices in the diagnosis graph are connected
by an edge. Using the symbols thus received from each
other, the processors attempt to identify a “matching
set” of processors (denoted Pmatch) of size n − t such
that the fault-free processors in Pmatch are guaranteed
to have an identical input value for the current gener-
ation. If such a Pmatch is not found, it can be deter-
mined with certainty that all the fault-free processors
do not have the same input value – in this case, the
fault-free processors decide on a default output value
and terminate the algorithm.

2. Checking stage: If a set of processors Pmatch is identi-
fied in the above matching stage, each processor Pj /∈
Pmatch checks whether the symbols received from pro-
cessors in Pmatch correspond to a valid codeword. If
such a codeword exists, then the symbols received from
Pmatch are said to be “consistent”. If any processor
finds that these symbols are not consistent, then mis-
behavior by some faulty processor is detected. Else all
the processors are able to correctly compute the value
to be agreed upon in the current generation.

3. Diagnosis stage: Whenever misbehavior is detected,
the diagnosis stage is performed, to learn (possibly par-
tial) information regarding the identity of the faulty
processor(s). For fault diagnosis, the processors in
Pmatch are required to broadcast the coded symbol they
sent in the matching stage, using the Broadcast 1 Bit al-
gorithm. Using the information received during these
broadcasts, the fault-free processors are able to learn
new information regarding the potential identity of
the faulty processor(s). The diagnosis graph (called
Diag Graph in Algorithm 1) is updated to incorporate
this new information.

In the rest of this section, we discuss each of the three
stages in more detail. Note that whenever algorithm Broad-
cast 1 Bit is used, all the fault-free processors will receive the
broadcast information identically. One instance of Broad-
cast 1 Bit is needed for each bit of information broadcast
using Broadcast 1 Bit .

3.1 Matching Stage
The line numbers referred below correspond to the line

numbers for the pseudo-code in Algorithm 1.
Line 1(a): In generation g, each processor Pi first encodes
vi(g), represented by n−2t symbols, into a codeword Si from
the code Cn−2t. The j-th symbol in the codeword is denoted
as Si[j]. Then processor Pi sends Si[i], the i-th symbol of its
codeword, to all the other processors that it trusts. Recall
that Pi trusts Pj if and only if there is an edge between
the corresponding vertices in the diagnosis graph (referred
as Diag Graph in the pseudo-code).
Line 1(b): Let us denote by Ri[j] the symbol that Pi re-
ceives from a trusted processor Pj . If a processor Pi does not
trust some processor Pj , then Pi sets Ri[j] equal to null (⊥).
Messages received from untrusted processors are ignored.
Line 1(c): Flag Mi[j] is used to record whether processor
Pi finds processor Pj ’s symbol consistent with its own local
value. Specifically, the pseudo-code in Line 1(c) is equivalent
to the following:

• When Pi trusts Pj :
If Ri[j] = Si[j], then Mi[j] = true ;
else Mi[j] = false .

• When Pi does not trust Pj : Mi[j] = false .

Line 1(d): As we will see later, if a fault-free processor Pi

does not trust another processor, then the other processor
must be faulty. Thus entry Mi[j] in vector Mi is false if
(i) Pi believes that processor Pj is faulty, or (ii) the input
value at processor Pj appears to differ from the input value
at Pi. Thus, entry Mi[j] being true implies that, as of this
time, Pi believes that Pj is fault-free, and that the value at
Pj is possibly identical to the value at Pi. Processor Pi uses
Broadcast 1 Bit to broadcast Mi to all the processors. One
instance of Broadcast 1 Bit is needed for each bit of Mi.
Lines 1(e) and 1(f): Due to the use of Broadcast 1 Bit ,
all fault-free processors receive identical vectorMj from each
processor Pj . Using these M vectors, each processor Pi

attempts to find a set Pmatch containing n − t processors
such that, for every pair Pj , Pk ∈ Pmatch, Mj [k] = Mk[j] =
true . Since the M vectors are received identically by all
the fault-free processors (using Broadcast 1 Bit), they can
compute identical Pmatch. However, if such a set Pmatch

does not exist, then the fault-free processors conclude that

all the fault-free processors do not have identical input – in
this case, they decide on a default value, and terminate the
algorithm.

It is worth noting that finding Pmatch is, in fact, equiv-
alent to identifying a clique of size n − t in an undirected
graph of size n, whose edges are defined by the M vectors.
Specifically, an edge exists between j and k in this graph,
if Mj [k] = Mk[j] = true . Finding a clique of a certain
size in general graphs is NP-Complete. It turns out that,
with a slight modification, the algorithm can perform cor-
rectly even if Pmatch is not a clique in the graph induced
by M vectors. Instead it suffices if Pmatch includes at least
n− 2t fault-free processors with identical input for the cur-
rent generation. In other words, the subgraph induced byM
and Pmatch will contain a clique of size n − 2t correspond-
ing to fault-free processors. Such a Pmatch can be found
with polynomial computational complexity (please refer the
Appendix). However, for simplicity, in our proofs, we will
assume that Pmatch indeed corresponds to a clique of size
n− t.

In the following discussion, we will show the correctness of
the Matching Stage. In the proofs of Lemmas 1, 2, and 3, we
assume that the fault-free processors (that is, the processors
in set Pgood) always trust each other – this assumption will
be shown to be correct later in Lemma 4.

Lemma 1. If for each fault-free processor Pi ∈ Pgood,
vi(g) = v(g), for some value v(g), then a set Pmatch nec-
essarily exists (assuming that the fault-free processors trust
each other).

Proof. Since all the fault-free processors have identical
input v(g) in generation g, Si = Cn−2t(v(g)) for all Pi ∈
Pgood. Since these processors are fault-free, and trust each
other, they send each other correct messages in the matching
stage. Thus, Ri[j] = Sj [j] = Si[j] for all Pi, Pj ∈ Pgood.
This fact implies that Mi[j] = true for all Pi, Pj ∈ Pgood.
Since there are at least n− t fault-free processors, it follows
that a set Pmatch of size n− t must exist.

Observe that, although the above proof shows that there
exists a set Pmatch containing only fault-free processors,
there may also be other such sets that contain some faulty
processors as well. That is, all the processors in Pmatch can-
not be assumed to be fault-free. The converse of Lemma 1
implies that, if a set Pmatch does not exist, it is certain that
all the fault-free processors do not have the same input val-
ues. In this case, they can correctly agree on a default value
and terminate the algorithm. Thus Line 1(f) is correct.

In the case when a set Pmatch is found, the following
lemma is useful.

Lemma 2. All processors in Pmatch∩Pgood have identical
input in generation g.

Proof. |Pmatch ∩ Pgood| ≥ n − 2t because |Pmatch| =
n − t and there are at most t faulty processors. Consider
any two processors Pi, Pj ∈ Pmatch ∩ Pgood. Since Mi[j] =
Mj [i] = true , it follows that Si[i] = Sj [i] and Sj [j] = Si[j].
Since there are n−2t fault-free processors in Pmatch∩Pgood,
this implies that the codewords computed by these fault-free
processors (in Line 1(a)) contain at least n − 2t identical
symbols. Since the code Cn−2t has dimension (n− 2t), this
implies that the fault-free processors in Pmatch∩Pgood must
have identical input in generation g.

Algorithm 1 Multi-Valued Consensus (generation g)

1. Matching Stage:
Each processor Pi performs the matching stage as follows:

(a) Compute (Si[1], . . . , Si[n]) = Cn−2t(vi(g)), and send Si[i] to every trusted processor Pj

(b) Ri[j]←
{

symbol that Pi receives from Pj , if Pi trusts Pj ;
⊥, otherwise

(c) If Si[j] = Ri[j] then Mi[j]← true ; else Mi[j]← false
(d) Pi broadcasts the vector Mi using Broadcast 1 Bit

Using the received M vectors:

(e) Find a set of processors Pmatch of size n− t such that
Mj [k] = Mk[j] = true for every pair of Pj , Pk ∈ Pmatch

(f) If Pmatch does not exist, then decide on a default value and terminate;
else enter the Checking Stage

2. Checking Stage:
Each processor Pj /∈ Pmatch performs steps 2(a) and 2(b):

(a) If Rj |Pmatch ∈ Cn−2t then Detectedj ← false ; else Detectedj ← true .
(b) Broadcast Detectedj using Broadcast 1 Bit

Each processor Pi performs step 2(c):

(c) Receive Detectedj from each processor Pj /∈ Pmatch (broadcast in step 2(b)).
If Detectedj = false for all Pj /∈ Pmatch, then decide on v′i(g) = C−1

n−2t(Ri|Pmatch);
else enter Diagnosis Stage

3. Diagnosis Stage:
Each processor Pj ∈ Pmatch performs step 3(a):

(a) Broadcast Sj [j] using Broadcast 1 Bit

Each processor Pi performs the following steps:

(b) R#[j]← symbol received from Pj ∈ Pmatch as a result of broadcast in step 3(a)
(c) For all Pj ∈ Pmatch,

if Pi trusts Pj and Ri[j] = R#[j] then Trusti[j]← true ;
else Trusti[j]← false

(d) Broadcast Trusti|Pmatch using Broadcast 1 Bit
(e) For each edge (j, k) in Diag Graph , such that Pj ∈ Pmatch

remove edge (j, k) if Trustj [k] = false or Trustk[j] = false
(f) If R#|Pmatch ∈ Cn−2t then

if for any Pj /∈ Pmatch,
Detectedj = true , but no edge at vertex j was removed in step 3(e)

then remove all edges at vertex j in Diag Graph
(g) If at least t+ 1 edges at any vertex j have been removed so far,

then processor Pj must be faulty, and all edges at j are removed.
(h) Find a set of processors Pdecide ⊂ Pmatch of size n− 2t in the updated Diag Graph,

such that every pair of Pj , Pk ∈ Pdecide still trust each other
(i) Decide on v′i(g) = C−1

n−2t(R
#|Pdecide)

NOTE: Instead of performing steps 3(h) and 3(i), Algorithm 1 may be repeated for generation g again
after the diagnosis graph has been updated in step 3(g). This alternative does not affect algorithm correctness.

3.2 Checking Stage
When Pmatch is found during the matching stage, the

checking stage is entered.
Lines 2(a), 2(b): Each fault-free processor Pj /∈ Pmatch

checks whether the symbols received from the trusted pro-
cessors in Pmatch are consistent with a valid codeword: that
is, check whether Rj |Pmatch ∈ Cn−2t. The result of this test
is broadcast as a 1-bit notification Detectedj , using Broad-
cast 1 Bit . If Rj |Pmatch /∈ Cn−2t, then processor Pj is said
to have detected an inconsistency.
Line 2(c): If no processor announces in Line 2(b) that it

has detected an inconsistency, each fault-free processor Pi

chooses C−1
n−2t(Ri|Pmatch) as its output for generation g.

The following lemma argues correctness of Line 2(c).

Lemma 3. If no processor detects inconsistency in Line
2(a), all fault-free processors Pi ∈ Pgood decide on the iden-
tical output value v′(g) such that v′(g) = vj(g) for all Pj ∈
Pmatch ∩ Pgood.

Proof. We assume that the fault-free nodes trust each
other. Observe that size of set Pmatch ∩ Pgood is at least
n−2t, and hence the decoding operations C−1

n−2t(Ri|Pmatch)

and C−1
n−2t(Ri|Pmatch ∩ Pgood) are both defined at fault-free

processors.
Since fault-free processors send correct messages, and trust

each other, for all processors Pi ∈ Pgood, Ri|Pmatch ∩ Pgood

are identical. Since no inconsistency has been detected by
any processor, every Pi ∈ Pgood decides on C−1

n−2t(Ri|Pmatch)

as its output. Also, C−1
n−2t(Ri|Pmatch) = C−1

n−2t(Ri|Pmatch ∩
Pgood), since Cn−2t has dimension (n− 2t). It then follows
that all the fault-free processors Pi decide on the identical
value v′(g) = C−1

n−2t(Ri|Pmatch ∩ Pgood) in Line 2(c). Since
Rj |Pmatch∩Pgood = Sj |Pmatch∩Pgood for all processors Pj ∈
Pmatch∩Pgood, v

′(g) = vj(g) for all Pj ∈ Pmatch∩Pgood.

3.3 Diagnosis Stage
When any processor that is not in Pmatch announces that

it has detected an inconsistency, the diagnosis stage is en-
tered. The algorithm allows for the possibility that a faulty
processor may erroneously announce that it has detected an
inconsistency. The purpose of the diagnosis stage is to learn
new information regarding the potential identity of a faulty
processor. The new information is used to remove one or
more edges from the diagnosis graph Diag Graph – as we
will soon show, when an edge (j, k) is removed from the di-
agnosis graph, at least one of Pj and Pk must be faulty. We
now describe the steps in the Diagnosis Stage.
Lines 3(a), 3(b): Every fault-free processor Pj ∈ Pmatch

uses Broadcast 1 Bit to broadcast Sj [j] to all processors. Let
us denote by R#[j] the result of the broadcast from Pj .
Due to the use of Broadcast 1 Bit , all fault-free processors
receive identical R#[j] for each processor Pj ∈ Pmatch. This
information will be used for diagnostic purposes.
Lines 3(c), 3(d): Every fault-free processor Pi uses flag
Trusti[j] to record whether it “believes”, as of this time,
that each processor Pj ∈ Pmatch is fault-free or not. Then
Pi broadcasts Trusti|Pmatch to all processors using Broad-
cast 1 Bit . Specifically,

• If Pi trusts Pj and Ri[j] = R#[j],
then set Trusti[j] =true ;

• If Pi does not trust Pj or Ri[j] 	= R#[j],
then set Trusti[j] =false .

Line 3(e): Using the Trust vectors received above, each
fault-free processor Pi then removes any edge (j, k) from the
diagnosis graph such that Trustj[k] = false or Trustk[j] =
false . Due to the use of Broadcast 1 Bit for distributing
Trust vectors, all fault-free processors will maintain an iden-
tical view of the updated Diag Graph . Note that edges may
only be removed from Diag Graph .1

Line 3(f): As we will soon show, in the case R#|Pmatch ∈
Cn−2t, a processor Pj /∈ Pmatch that announces that it has
detected an inconsistency, i.e., Detectedj =true , must be
faulty if no edge attached to vertex j was removed in Line
3(e). Such a processor Pj is “isolated”, by having all edges
attached to vertex j removed from Diag Graph , and the
fault-free processors will not communicate with it anymore
in subsequent generations.
Line 3(g): As we will soon show, a processor Pj must be
faulty if at least t+ 1 edges at vertex j have been removed.
The identified faulty processor Pj is then isolated.

1If the system allows“repair”of faulty processors, then edges
will need to be added back to Diag Graph .

Lines 3(h) and 3(i): Since Diag Graph is updated only
with information broadcast with Broadcast 1 Bit (Detected,
R# and Trust), all fault-free processors maintain an iden-
tical view of the updated Diag Graph . Then they can
compute an identical set Pdecide ⊂ Pmatch containing ex-
actly n− 2t processors such that every pair Pj , Pk ∈ Pdecide

trust each other. Finally, every fault-free processor chooses
C−1

n−2t(R
#|Pdecide) as its decision value for generation g.

Lemma 4. Every time the diagnosis stage is performed,
at least one edge attached to a vertex corresponding to a
faulty processor will be removed from Diag Graph, and only
such edges will be removed.

Proof. We prove this lemma by induction. For the con-
venience of discussion, let us say that an edge (j, k) is “bad”
if at least one of Pj and Pk is faulty.

Consider a generation g starting with any instance of the
Diag Graph in which only bad edges have been removed.
Suppose that a processor Pi /∈ Pmatch “claims”that it detects
a failure by broadcasting Detecti =true in Line 2(b). This
implies that, if Pi is fault-free, Ri|Pmatch cannot be a valid
codeword, i.e., Ri|Pmatch /∈ Cn−2t.

The symbols broadcast by processors of Pmatch in Line
3(a), i.e., R#|Pmatch, can either be a valid codeword of
Cn−2t or not. We consider the two possibilities separately:

• R#|Pmatch ∈ Cn−2t: In the case, if Pi is actually fault-
free, R#[k] 	= Ri[k] must be true for some faulty pro-
cessor Pk ∈ Pmatch, which is trusted by Pi. Thus,
Trusti[k] = false and the bad edge (i, k) will be re-
moved in Line 3(e). The converse of this argument
implies that if Detectedi =true but no edge attached
to vertex i is removed in Line 3(e), then Pi must be
faulty. As a result, all bad edges at vertex i are re-
moved in Line 3(f).

• R#|Pmatch /∈ Cn−2t: There are always at least n − 2t
fault-free processors in Pmatch∩Pgood, andRj |Pmatch ∈
Cn−2t is true for every Pj ∈ Pmatch ∩ Pgood. Thus,
if R#|Pmatch /∈ Cn−2t, then R#|Pmatch 	= Rj |Pmatch

must be true for every Pj ∈ Pmatch ∩ Pgood. Similar
to the previous case, R#[k] 	= Rj [k] must be true for
some faulty processor Pk ∈ Pmatch which is trusted
by every processor Pj ∈ Pmatch ∩ Pgood. As a result,
Trustj[k] = false and the bad edge (j, k) will be re-
moved in Line 3(e), for all Pj ∈ Pmatch ∩ Pgood.

At this point, we can conclude that by the end of Line 3(f),
at least one new bad edge has been removed. Moreover,
since Ri[k] = R#[k] for every pair of fault-free processors
Pi, Pk ∈ Pgood, Trusti[k] remains true , which implies that
the vertices corresponding to the fault-free processors will
remain fully connected, and each will always have at least
n − t − 1 edges. This follows that a processor Pj must be
faulty if at least t+ 1 edges at vertex j have been removed.
So all edges at j are bad and will be removed in Line 3(g).

Now we have proved that for every generation that begins
with a Diag Graph in which only bad edges have been re-
moved, at least one new bad edge, and only bad edges, will
be removed in the updated Diag Graph by the end of the
diagnosis stage. Together with the fact that Diag Graph is
initialized as a complete graph, we finish the proof.

The above proof of Lemma 4 shows that all fault-free pro-
cessors will trust each other throughout the execution of

the algorithm, which justifies the assumption made in the
proofs of the previous lemmas. The following lemma shows
the correctness of Lines 3(h) and 3(i).

Lemma 5. By the end of diagnosis stage, all fault-free
processors Pi ∈ Pgood decide on the same output value v′(g),
such that v′(g) = vj(g) for all Pj ∈ Pmatch ∩ Pgood.

Proof. First of all, the set Pdecide necessarily exists since
there are at least n − 2t ≥ t + 1 fault-free processors in
Pmatch ∩Pgood that always trust each other. Secondly, since
the size of Pdecide is n− 2t ≥ t+ 1, it must contain at least
one fault-free processor Pk ∈ Pdecide ∩ Pgood. Since Pk still
trusts all processors of Pdecide in the updated Diag Graph,
R#|Pdecide = Rk|Pdecide = Sk|Pdecide. The second equal-
ity is due to the fact that Pk ∈ Pmatch. Finally, since
the size of set Pdecide is n − 2t, the decoding operation of
C−1

n−2t(R
#|Pdecide) is defined, and it equals to vk(g) = vj(g)

for all Pj ∈ Pmatch ∩ Pgood, as per Lemma 2.

We can now conclude the correctness of the Algorithm 1.

Theorem 1. Given n processors with at most t < n/3
are faulty, each given an input value of L bits, Algorithm 1
achieves consensus correctly in L/D generations , with the
diagnosis stage performed for at most t(t+ 1) times.

Proof. Lemmas 1 to 5 imply that consensus is achieved
correctly for each generation g of D bits. So the termination
and consistency properties are satisfied for the L-bit outputs
after L/D generations. Moreover, in the case all fault-free
processors are given an identical L-bit input v, the D bits
output v′(g) in each generation g equals to v(g) as per Lem-
mas 1, 3 and 5. So the L-bit output v′ = v and the validity
property is also satisfied.

According to Lemma 4 and the fact that a faulty proces-
sor Pj will be removed once more than t edges at vertex j
have been removed, it takes at most t(t+ 1) instance of the
diagnosis stage before all faulty processors are identified. Af-
ter that, the fault-free processors will not communicate with
the faulty processors. Thus, the diagnosis stage will not be
performed any more. So it will be performed for at most
t(t+ 1) times in all cases.

3.4 Communication Complexity
Let us denote by B the complexity of broadcasting 1 bit

with one instance of Broadcast 1 Bit . In every generation,
the complexity of each stage is as follows:

• Matching stage: every processor Pi sends at most n−1
symbols, each of D/(n−2t) bits, to the processors that
it trusts, and broadcasts n− 1 bits for Mi. So at most
n(n−1)
n−2t

D + n(n− 1)B bits in total are transmitted by
all n processors.

• Checking stage: every processor Pj /∈ Pmatch broad-
casts one bit Detectedj with Broadcast 1 Bit , and
there are t such processors. So tB bits are transmitted.

• Diagnosis stage: every processor Pj ∈ Pmatch broad-
casts one symbol Sj [j] of D/(n− 2t) bits with Broad-
cast 1 Bit , and every processor Pi broadcasts n − t
bits of Trusti|Pmatch with Broadcast 1 Bit . So the
complexity is n−t

n−2t
DB + n(n− t)B bits.

According to Theorem 1, there are L/D generations in to-
tal. In the worst case, Pmatch can be found in every genera-
tion, so the matching and checking stages will be performed
for L/D times. In addition, the diagnosis stage will be per-
formed for at most t(t+1) time. Hence the communication
complexity of the proposed consensus algorithm, denoted as
Ccon(L), is then computed as

Ccon(L) =

(
n(n− 1)

n− 2t
D + n(n− 1)B + tB

)
L

D

+t(t+ 1)

(
n− t

n− 2t
D + n(n− t)

)
B. (1)

For a large enough value of L, with a suitable choice of

D =
√

(n2−n+t)(n−2t)L
t(t+1)(n−t)

, we have

Ccon(L) =
n(n− 1)

n− 2t
L+ t(t+ 1)n(n− t)B

+2BL0.5

√
(n2 − n+ t)t(t+ 1)(n− t)

n− 2t
. (2)

Error-free algorithms that broadcast 1 bit with commu-
nication complexity Θ(n2) bits are known [3, 6]. So we as-
sume B = Θ(n2). Then the complexity of our algorithm for
t < n/3 becomes

Ccon(L) =
n(n− 1)

n− 2t
L+O(n4L0.5 + n6)

= O(nL+ n4L0.5 + n6). (3)

For L = Ω(n6), the communication complexity becomes
O(nL). (This requirement can be improved to L = Ω(n5) if
we use a technique from [1] in the Diagnosis stage.2)

4. OTHER VALIDITY CONDITIONS
Algorithm 1 satisfies the validity conditions stated in Sec-

tion 1. As noted earlier, other validity conditions may also
be desirable in practice. Algorithm 1 is flexible in the sense
that, with proper parameterization, it can achieve other
(reasonable) validity properties. In particular, q-validity
property defined below can be achieved for t+1 ≤ q ≤ n−t:

• q-Validity: If at least q fault-free processors hold an
identical input v, then the output v′ agreed by the
fault-free processors equals input vj for some fault-free
processor Pj . Furthermore, if q ≥ �n+1

2
�, then v′ = v.

In order to achieve q-validity, we need to change the error
detection code and the size of Pmatch in Algorithm 1 as
follows (q is said to be the parameter of the algorithm):

• Throughout the algorithm, we replace the (n, n − 2t)
distance-(2t+1) code Cn−2t with a (n, q− t) distance-
(n− q+ t+1) code, denoted as Cq−t. Since q ≥ t+1,
q − t ≥ 1. Thus Cq−t always exists.

• Line 1(e): Choose a set of q processors Pmatch such
that Mj [k] = Mk[j] = true for every pair of Pj , Pk ∈
Pmatch.

3

2We would like to thank Martin Hirt for suggesting this
improvement.
3The validity condition achieved can be made stronger, par-
ticularly for q ≤ n/2, by choosing the largest possible set
Pmatch with size at least q.

• Lines 3(h) and 3(i): For the more general validity
conditions, instead of performing steps 3(h) and 3(i),
as stated in the NOTE at the end of Algorithm 1, the
algorithm can be repeated for generation g with the
updated diagnosis graph. For q > 2t, we also have the
alternative of retaining steps 3(h) and 3(i), but the size
of the chosen Pdecide must be q − t.

Similar to Lemmas 1 through 5, we can prove that

1. If at least q fault-free processors Pi ∈ Pgood hold the
same input vi(g) = v(g) for some v(g), then a set
Pmatch of size q necessarily exists.

2. There are at least q − t ≥ 1 fault-free processors in
Pmatch and all the fault-free processors in Pmatch have
the same input for generation g.

3. If no processor detects inconsistency in Line 2(a), all
fault-free processors Pi ∈ Pgood decide on the identical
output value v′(g) such that v′(g) = vj(g) for all Pj ∈
Pmatch ∩Pgood. Furthermore, when q ≥ �n+1

2
�, and at

least q fault-free processors have identical input v, at
least one of these fault-free processors is bound to be
in Pmatch, and therefore, v′(g) = v.

4. In case (for q > 2t) steps 3(h) and 3(i) are used, by
the end of diagnosis stage, all fault-free processors Pi ∈
Pgood decide on the same output value v′(g), such that
v′(g) = vj(g) for all Pj ∈ Pmatch ∩ Pgood. Otherwise,
the algorithm is repeated for generation g with the
updated diagnosis graph.

Then it can be concluded that Algorithm 1 achieves q-validity
for t+1 ≤ q ≤ n− t with the aforementioned parameteriza-
tion. The communication complexity for achieving q-validity
is

Cq
con(L) =

n(n− 1)

q − t
L+O(n4L0.5 + n6)

= O(nL+ n4L0.5 + n6), if q − t = Ω(n).

When q < �n+1
2
�, there may be more than one choice for

Pmatch in Line 1(e). For example, there can be two disjoint
cliques, one containing q fault-free processors with the same
input v, and the other containing q − t fault-free processors
with input u (v 	= u) and t faulty processors that pretend
to have input u. It is possible that the second clique is
picked to be Pmatch and the consensus value ends up being
u. So in this case, even though at least q fault-free processors
hold the same input, we can only guarantee agreement on
the input of some fault-free processors, but not necessarily
equal to the q identical inputs. However, when q ≥ �n+1

2
�,

it is guaranteed that, if at least q inputs at the fault-free
processors equals to v, then the agreed output equals v.

5. MULTIPLE CONSENSUS
In the above discussion, we considered consensus on a sin-

gle long L-bit value. An alternate view of the problem is
likely to be more relevant in practice. In particular, let us
consider the problem of performing g instances of consen-
sus, with each processor receiving a D-bit input for each
instance (in particular, the input for Pi is vi(g) for instance
g). Then the consensus properties need to be satisfied for
each instance separately. We assume that the identity of
faulty processors remains fixed across the different instances.

Then it should not be difficult to see that Algorithm 1 solves
the multiple consensus problem, with the algorithm for g-
th generation essentially performing the g-th instance of the
consensus problem for D-bit values.

Let us denote the average complexity for performing g in-
stances of consensus on D-bit values as Ccon(g,D). Similar
to the analysis in Section 3.4, for g ≥ t(t+ 1), we have

Ccon(g,D) =
n(n− 1)

n− 2t
D + n(n− 1)B + tB

+
t(t+ 1)

g

(
n− t

n− 2t
D + n(n− t)

)
B (4)

= O

((
n+

n4

g

)
D + n4 +

n6

g

)
. (5)

From Eq.5, we can conclude that we only need D = Ω(n3)
and g = Ω(n3) instances of D-bit consensus for the per con-
sensus complexity to reduce to O(nD). In other words, when
the goal is to sequentially perform a large number (Ω(n3))
of instances of consensus, the input size for each instance
only needs to be Ω(n3) in order to achieve complexity linear
in n, rather than Ω(n6) as discussed in Section 3.4.

6. RELATED WORK
Binary agreement: Binary agreement corresponds to L =
1 in our notation. For binary agreement, optimal error-free
algorithms with O(n2) communication complexity have been
proposed [3, 6]. King and Saia [11] introduced a random-
ized consensus algorithm with communication complexity of
O(n1.5), allowing a non-zero probability of error.

Multi-valued agreement: Fitzi and Hirt [9] proposed a
multi-valued consensus algorithm in which an L-bit value
(or message) is first reduced to a much shorter message,
using a universal hash function. Byzantine consensus is then
performed for the shorter hashed values. Given the result of
consensus on the hashed values, consensus on L bits is then
achieved by requiring processors whose L-bit input value
matches the agreed hashed value deliver the L bits to the
other processors jointly. By performing initial consensus
only for the smaller hashed values, this algorithm is able to
achieve linear communication complexity for large L and up
to t < n/2 failures, with a non-zero error probability. Our
algorithm can also probabilistically tolerate more than n/3
failures if Broadcast 1 Bit is replaced by any 1-bit broadcast
algorithm that is probabilistically correct up to the desired
number of faults.

Beerliova-Trubiniova and Hirt have presented an error-
free linear communication complexity multi-party compu-
tation algorithm, which uses a linear complexity Byzantine
broadcast algorithm as a sub-algorithm [2]. This algorithm
achieves linear complexity using a player elimination frame-
work, which is motivated by the dispute control framework
proposed in [1]. When two processors disagree with each
other (or, do not trust each other, in our terminology), one
of the two processors must be fault-free. In player elimi-
nation, both the processors are removed from the system,
and the underlying algorithm is performed on the smaller
system, which must now tolerate one fewer faulty proces-
sor, with two fewer processors. This approach has also been
adopted by asynchronous Byzantine agreement algorithms
(e.g. [19]). While it may be possible to also use player elimi-
nation to achieve consensus, we believe that our approach, in

general, can more efficiently achieve stronger validity prop-
erties than approaches that may be designed using player
elimination.

In designing the proposed algorithm, we drew inspiration
from well-known ideas in prior work, as summarized next.

System-level diagnosis: Preparata, Metze and Chien [23]
introduced the system diagnosability problem in their 1967
paper. Since then there has been a large body of work ex-
ploring different variations of the problem (e.g., [18]). The
work on system-level diagnosis considers a (un)directed di-
agnosis graph (or a test graph), wherein each (un)directed
edge represents a test: in essence, when node X tests node
Y, it may declare Y as faulty or fault-free, with a faulty
tester providing potentially erroneous test outcomes. The
goal then is to use the results of the tests to either exactly
identify the faulty nodes, or identify a small set of nodes
that contains the faulty nodes. The past work differ in the
nature of tests being performed, and the nature of the faults
being diagnosed. In the system-level diagnosis jargon, our
faults are intermittent [17], and the tests are comparison-
based [4]. We interpret the test outcome fault-free (faulty)
as equivalent to the corresponding two processors trusting
(not trusting) each other. In our work, we strengthen the
comparison-based system-level diagnosis approach by incor-
porating an error detection code, which provides additional
structure to our “comparison test” outcomes. This structure
can be exploited for computational efficiency as well (see
Appendix).

Linear coding and block coding: A standard mecha-
nism for improving efficiency of information transmission is
to use block codes, meaning that a “block” (or multiple bits)
of data is encoded together in a single codeword. Our spe-
cific approach for using linear error detection (block) codes
for consensus is motivated by the rich literature on network
coding, particularly, multicasting in the presence of a Byzan-
tine attacker (e.g., [25, 5, 10]). Application of such an ap-
proach to Byzantine consensus or broadcast in an arbitrary
point-to-point networks under per-link capacity constraints
is non-trivial [14, 15]. However, under the communication
complexity model, the problem is simpler, as the algorithm
in this paper demonstrates. Essentially, the simplification
arises from the ability to treat each point-to-point link iden-
tically, resulting in a solution that has a certain symmetry
(such a symmetric solution is generally not optimal when
the different links have different capacities).

Make the common case fast: In fault-tolerant systems,
a common trick to improve average system performance (or
reduce average overhead of fault-tolerance) is to make the
“common case”, namely, the failure-free execution, efficient,
with the possibility of much higher overhead when a failure
does occur. This approach works well when failure rates are
low. There are many instances of the application of this
idea, but some examples include error detection followed
by retransmission for link reliability, and checkpointing and
rollback or roll-forward recovery after failure detection [22].

7. FURTHER RESEARCH
Algorithm 1 has complexity n(n−1)

n−2t
L (ignoring the terms

sub-linear in L). We have recently developed another algo-

rithm with communication complexity n(n−1)
n−t

L [16] (when

q = n − t), which can be twice as efficient as Algorithm 1
when t gets close to n/3. (A Byzantine broadcast algorithm
with the same communication complexity is introduced in
our earlier report [12].) While the new algorithm may not be
better in terms the order of the communication complexity,
in practice, a factor of 2 reduction in communication over-
head is quite significant. Whether this algorithm is optimal
for arbitrary t and n (t < n/3) remains an open question.
What we do know, however, is that the degenerate version
of the algorithm for t = 0 with complexity (n − 1)L is not
optimal for all n (when t = 0, the consensus problem with
q = n− t reduces to the problem of checking equality of the
inputs at all the processors, which are necessarily fault-free
[13]). In [16], we also introduce a consensus algorithm that
achieves q-validity with O(nL) communication complexity
for all t+1 ≤ q ≤ n−t, not just when q−t = Ω(n) (as is the
case for the solution in Section 4). In particular, while the
solution in Section 4 has O(nL) complexity for q = t+Ω(n),
the complexity is quadratic in n for q = t+1. The algorithm
in [16] achieves linear complexity even for q = t+1 (and can
also achieve lower complexity for some other values of q).

Another related research direction of interest is multiple
agreements under the constraints of the communication net-
work capacity. In our related work [14, 15], we have stud-
ied the Byzantine broadcast and consensus problems in net-
works where each communication channel has a finite capac-
ity. We proved upper bounds for the throughput of agree-
ment in such networks, and showed their tightness in some
(substantially) restricted classes of topologies. The problem
is still open in general networks.

8. CONCLUSION
In this paper, we present an efficient error-free Byzantine

consensus algorithm for long messages. The algorithm re-
quires O(nL) total bits of communication for messages of L
bits for sufficiently large L. The algorithm makes no cryp-
tographic assumptions. With proper parameterization, the
proposed algorithm also satisfies a range of validity proper-
ties, while still achieving complexity linear in n. The choice
of the parameter (called q in the paper) affects the choice
of error detection code used to achieve consensus, and also
the size of a processor clique that the algorithm attempts to
identify. With a suitable choice of the error detection code,
and using a clique of an appropriate size, the algorithm can
trade-off communication cost with the strength of the valid-
ity condition.

9. ACKNOWLEDGMENTS
We thank the referees for their insightful comments and

asking interesting questions. In particular, the referees asked
whether strong forms of validity conditions can be satisfied,
and whether the clique required in our algorithm can be de-
termined efficiently. Section 4 and the Appendix address
these questions. We thank Martin Hirt (ETH) for his en-
couraging feedback on our prior related work, and for point-
ing us to some of the relevant literature on multi-party com-
putation. Thanks also to Manoj Prabhakaran (UIUC) and
Ashish Chaudhury (ISI-Kolkata) for their feedback, and to
Jennifer Welch for answering our many questions on dis-
tributed algorithms. This research is supported in part by
Army Research Office grant W-911-NF-0710287 and Na-

tional Science Foundation award 1059540. Any opinions,
findings, and conclusions or recommendations expressed here
are those of the authors and do not necessarily reflect the
views of the funding agencies or the U.S. government.

10. REFERENCES
[1] Z. Beerliova-Trubiniova and M. Hirt. Efficient

multi-party computation with dispute control. In
TCC, 2006.

[2] Z. Beerliova-Trubiniova and M. Hirt. Perfectly-secure
MPC with linear communication complexity. In TCC,
2008.

[3] P. Berman, J. A. Garay, and K. J. Perry. Bit optimal
distributed consensus. Computer science: research and
applications, 1992.

[4] D. Blough and A. Pelc. Complexity of fault diagnosis
in comparison models. IEEE Trans. Comp., 1992.

[5] N. Cai and R. W. Yeung. Network error correction,
part ii: Lower bounds. Communications in
Information and Systems, 2006.

[6] B. A. Coan and J. L. Welch. Modular construction of
a byzantine agreement protocol with optimal message
bit complexity. Inf. Comput., 97(1):61–85, 1992.

[7] D. Dolev and R. Reischuk. Bounds on information
exchange for byzantine agreement. J. ACM, 1985.

[8] D. Dolev and H. R. Strong. Authenticated algorithms
for byzantine agreement. SIAM J. on Comp., 1983.

[9] M. Fitzi and M. Hirt. Optimally efficient multi-valued
byzantine agreement. In ACM PODC, 2006.

[10] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and
M. Medard. Resilient network coding in the presence
of byzantine adversaries. In IEEE INFOCOM, 2007.

[11] V. King and J. Saia. Breaking the o(n2) bit barrier:
scalable byzantine agreement with an adaptive
adversary. In ACM SIGACT-SIGOPS PODC, 2010.

[12] G. Liang and N. Vaidya. Complexity of multi-valued
byzantine agreement. Tech-Report, UIUC, June 2010.

[13] G. Liang and N. Vaidya. Multiparty equality function
computation in networks with point-to-point links.
Tech-Report, UIUC, October 2010.

[14] G. Liang and N. Vaidya. Capacity of byzantine
agreement with finite link capacity. In IEEE
INFOCOM, 2011.

[15] G. Liang and N. Vaidya. Capacity of byzantine
consensus with capacity limited point-to-point links.
Tech-Report, UIUC, March 2011.

[16] G. Liang and N. Vaidya. New efficient error-free
multi-valued consensus with byzantine failures.
Tech-Report, UIUC, under preparation (as of March
2011).

[17] S. Mallela and G. Masson. Diagnosable systems for
intermittent faults. IEEE Trans. Comp., 1978.

[18] G. M. Masson, D. M. Blough, and G. F. Sullivan.
System diagnosis. Fault-Tolerant Computer System
Design. Prentice Hall, 1996.

[19] A. Patra and C. P. Rangan. Communication optimal
multi-valued asynchronous byzantine agreement with
optimal resilience. Cryptology ePrint Archive, 2009.

[20] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. J. ACM, 1980.

[21] B. Pfitzmann and M. Waidner. Information-theoretic

pseudosignatures and byzantine agreement for
t ≥ n/3. Technical Report, IBM Research, 1996.

[22] D. Pradhan and N. Vaidya. Roll-forward and rollback
recovery: performance-reliability trade-off. IEEE
Trans. Comp., 1997.

[23] F. P. Preparata, G. Metze, and R. T. Chien. On the
connection assignment problem of diagnosable
systems. IEEE Trans. Electr. Comput., 1967.

[24] A. Yao. Some complexity questions related to
distributive computing. In STOC, 1979.

[25] R. W. Yeung and N. Cai. Network error correction,
part i: Basic concepts and upper bounds.
Communications in Information and Systems, 2006.

APPENDIX
To make the algorithm computationally more efficient, we
need to modify Algorithm 1 slightly, as elaborated later in
this appendix. With this change, the algorithm only looks
for a set Pmatch of size n − t such that all the fault-free
processors in Pmatch ∩ Pgood have the same input in gen-
eration g. The algorithm’s response when such a Pmatch

is not found is now somewhat different, as sketched below.
A complete description and the proof of correctness of the
modified algorithm is omitted for brevity.

Pmatch is found as follows. We maintain a set Q that
contains the largest set of processors that appear to have
identical input up to the previous generation. Initially, Q is
the set of all n processors. The matching stage is performed
as it is in Algorithm 1, up to Line 3(d). The subsequent
steps of the matching stage are different.

(i) Determine the largest set Q′ ⊆ Q such that all the pro-
cessors in set Q′ have M vectors that contain at least n− t
true entries. If |Q′| < n− t, then the fault-free processors
must have different L-bit inputs, and the algorithm termi-
nates with the decision being a default value. If |Q′| ≥ n−t,
the proceed to the following steps.

(ii) For every pair Pi, Pj ∈ Q′ that trusts each other, if
there are more than t distinct processors not trusted by Pi

or Pj , then one of Pi and Pj must be faulty. Remove edge
(i, j) in the diagnosis graph, set Mi[j] = false and Mj [i] =
false , and go back to step (i) above.

(iii) For every pair Pi, Pj ∈ Q′ (that now trust the same
set of at least n−t processors), check whetherMi[k] = Mj [k]
for each Pk that is trusted by both Pi and Pj . If this check
fails, then either vi(g) and vj(g) are different (or, pretending
to be different, in case one of these processors is faulty), or
Pk has sent different symbols to Pi and Pj . In this case, go
to step (iv); otherwise it can be proved that vi(g) = vj(g) if
Pi and Pj are both fault-free. If all these checks pass, then
Pmatch can be chosen as any subset of Q′ of size n− t, and it
always contains a clique of at least n−2t fault-free processors
that have the same input for the current generation. Then
proceed to the Checking stage as in Algorithm 1.

(iv) If misbehavior, or difference in processor inputs, is de-
tected in step (iii) above, some additional steps are needed:
All processors in Q′ broadcast their inputs for generation g.
Q is then updated as the largest subset of Q′ that broadcast
the same value. If |Q| < n − t, then terminate and decide
on a default output. If |Q| ≥ n− t, then decide on the value
broadcast by processors in Q. Additionally, diagnosis is also
performed to remove an edge from the diagnosis graph, if
misbehavior has indeed occurred.

